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Quantum to classical phase transition in noisy quantum computers
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The fundamental problem of the transition from quantum to classical physics is usually explained by
decoherence, and viewed as a gradual process. The study of entanglement, or quantum correlations, in noisy
guantum computers implies that in some cases the transition from quantum to classical is actually a phase
transition. We define the notion of entanglement lengtt-@gimensional noisy quantum computers, and show
that a phase transition in entanglement occurs at a critical noise rate where the entanglement length transforms
from infinite to finite. Above the critical noise rate, macroscopic classical behavior is expected, whereas, below
the critical noise rate, subsystems that are macroscopically distant one from another can be entangled. The
macroscopic classical behavior in the supercritical phase is shown to hold not only for quantum computers but
for any quantum system composed of macroscopically many finite state particles, with local interactions and
local decoherence, subjected to some additional conditions. This phenomenon provides a possible explanation
for the emergence of classical behavior in such systems. A simple formula for an upper bound on the entangle-
ment length of any such system in the supercritical phase is given, and in principle can be tested
experimentally.

PACS numbgs): 03.67.Lx, 03.65.Bz, 64.60.Ak

[. INTRODUCTION difference in computational power, and how does the transi-
tion between the two different physical behaviors occur?
Quantum computation is a fascinating subject that mani- It turns out that an answer to these questions can be given
fests the peculiarities of quantum mechanics and uses them terms of the behavior of entanglement, or quantum corre-
in order to achieve an advantage in terms of computationdhtions in the system. Perhaps the best way to explain the
power over classical computers. Shor’s algoritfithis the  notion of entanglement is by saying what entanglement is
most astonishing known example for such an advantage iRot: We say a state in the Hilbert space of a composite sys-
computational power: It enables one to factor an integer ifem A®B is nonentangled, if two persons, Alice and Bob,
p0|yn0mia| time using a quantum Computer, whereas the beﬁaCh haVing access to one side of the System, could construct
classical algorithm for this task is subexponential. The adthe overall state by applying local quantum operations on
vantage of quantum algorithms such as Shor's algorithnih€ir side, and exchanging classical information, by, say,
over classical algorithms suggests, although it does nd@!king on the phone. Any state in the composite sysfem
prove, that the computational complexity class of quantunf®B that cannot be constructed in this way is said to be

computation is not polynomially equivalent to that of classi—emangled Here we will be mteresteq not only in whether or
cal, even randomized, Turing machines. not states are entangled, but rather in the amount of entangle-

In real life, quantum computers will be subject to noise.ment in quantum states. Several possible definitions for the

We will make the assumption here that the noise is probabigmount of bipartite entanglement have been suggested: the

. . . . entanglement of formatiof6], the asymptotic entanglement
listic and local, meaning that each particle, at each time ste 9 [e] ymp 9

f in faul ith babil hich i Ryt formation [6,7], and the asymptotic entanglement of dis-
sufiers a certain faulty event with probability, Which IS 4401 [6,8]. In this paper we will use the entanglement of

referred to as the noise rate. Quantum computing iS NOWomation, but the results hold for any measure of entangle-
known to maintain its full computational power even in the yent that satisfies certain continuity requirements.
presence of such local noise, as long as the noise rate is T study the behavior of entanglement in noisy quantum
weaker than a certain thresholgh [2—4,26. On the other computers, we define the notion ehtanglement length
hand, it is known[5] that, when the noise in the system is Roughly speaking, the entanglement length is the rate of de-
stronger than a much higher threshejg, the quantum com- cay of the entanglement between two disjoint sets of par-
putation can be simulated efficiently by a classical Turingticles, as a function of the distance between the two sets.
machine. Trying to put the two results together, we learn thaThis is the analogous quantity to correlation length in statis-
there are two regimes of noise in the quantum computer, itical physics, except that here we will be interested in corre-
which the computational power of the system is qualitativelylations between two subsets of the system, rather than in
different. For weak noise, the computational power is fullytwo-point correlations. We study the behavior of the en-
guantum, whereas for strong noise it becomes classical. Thtanglement length in the noisy quantum computer as a func-
raises the following question: What is the physical differencetion of the noise rate. We find that there exists a noise#ate
between the two noise regimes, which reflects itself in thehat depends on the geometry of the system, such that the
entanglement length is finite faj; < »=<1. This means that
the entanglement between two sets of particles decays expo-
*Email address: doria@cs.berkeley.edu nentially with the distance between the two sets for this
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range of noise rates. On the other hand, the entanglemenptoof, i.e., in order to show that the entanglement length is
length is shown to be infinite in the range=0;< 7,, where infinite for weak noise, we use the threshold result for fault-
70 is the threshold for fault tolerance. This means that thdolerant quantum computatidi2—4,26, which enables one
entanglement between two sets of particles can be large réo create long-range entangled states in the noisy quantum
gardless of the distance between the two sets. These twkPmputer.

facts show the existence of a phase transition in entangle- We start by defining the notions of entanglement and en-
ment at a nontrivial noise ratg,< 7.<7,. The system in tanglement length, and then proceed to prove the strong- and

the subcritical regime behaves in a quantum fashion even off€ Weak-noise cases, which together imply the existence of

the macroscopic scale—two sets of particles, within macro@ Phase transition at a critical point. We conclude with gen-

scopic distance, can share a lot of entanglement, so there falizations to various quantum systems, and with several
long-range entanglement in the system. In the supercriticd]P€N duestions regarding possible implications to the transi-

phase, where entanglement decays exponentially with didlon from quantum to classical.
tance, the system behaves classically on the macroscopic

s<_:a|e, because two_macroscopic subsets within macroscopic Il. ENTANGLEMENT
distance are essentially nonentangled.

The results can be generalized to quantum systems that The notion of entanglement is associated with a state of a
are not necessarily quantum computers. We show that maguantum system composed of two systefsnd B. The
roscopic classical behavior is expected above the criticadlerm entanglement refers to the quantum correlations be-
noise rate for any macroscopic quantum system with localweenA andB, in a state that exists iA® B. Remarkably,
interactions, local decoherence of a certain type, and somi&vo parts of a composite quantum system can exhibit very
additional restrictions to be discussed later. This shows thagtrong correlations that cannot be explained classically, un-
the phase transition in entanglement is expected in any sud@ss one drops a very important axiom in physics, namely,
quantum system that exhibits long-range entanglement in thigcality. The remarkable phenomena that can be exhibited
absence of noise. Moreover, our results can, in principle, bdue to entanglement between two quantum systems were
verified experimentally in any such system, as long as théirst discovered by Einstein, Podolsky, and RoEES|, more
density matrices of subsystems can be measured accuratdhyan 60 years ago, and manifested in Bell's inequality more
enough. The entanglement length can then be numericallfhan 30 years agld4,15. However, the elusive phenomenon
computed(this is a difficult computational task, but possible of entanglement is still far from being understood.
for small subsystemsand compared to the finite entangle-  In this paper we will be interested in tfeenountof en-
ment length that is predicted by our analysis. tanglement in quantum systems; we therefore need a good

The emergence of classical macroscopic behavior in larggeasure of entanglement. One very important requirement
quantum systems has been an intriguing area of research fop such a measure is that the entanglement in any state can-
the last several decades. Perhaps the most common and &@t increase by classical communication and local quantum
ceptable explanation so far is by decoherence, i.e., intera@perations on thé andB sides separately; this is the whole
tions with the environment that cause the system to lose it¢ssence of the term “entanglement.” We will denote such a
quantum features. See, for exampl®,10] and references process involving local operations and classical communica-
therein. This explanation, however, predicts a gradual transtion by LOCC. A desired property of a measure of entangle-
tion from quantum to classical behavior. A very interestingment is additivity, meaning that the entanglementin o
implication of the results presented in this paper is that theyshould be equal to the sum of the entanglement &md the
suggest an alternative way to explain the transition fromentanglement inr. This is required if entanglement is to be
quantum macroscopic behavior to classical macroscopic bedewed as a physical resource.
havior in certain physical systems, which is qualitatively dif- A natural way to construct a measure of entanglement is
ferent from the standard gradual explanatibat see in this to ask whether there is an elementary unit of entanglement,
context[11]). The origin of the abrupt phase transition from so that any state can be constructed with LOCC given suffi-
quantum to classical predicted by our results is that in ougiently many such entanglement units. It turns out that there
model we combine the decoherence process with the aexists exactly such a unit: the Bell state 2)(]0)®|0)
sumption that noise, as well as interactions, is local, wherer|1)®|1)). It was showr{16,6] that any bipartite quantum
the behavior we are interested in is global. state can be generated by Alice and Bob using only LOCC

The first part of the proof involves showing that the en-operations given that sufficiently many Bell states areri-
tanglement decays exponentially with the distance whén  ori shared betweeA andB. One can try to use the number
larger than a certain threshold. To do this, we use a methodf elementary units required to construct a state as a good
due to Aharonov and Ben-Qb] to present the density ma- measure of the entanglement in this state. It is reasonable to
trix as mixtures of clustered states, and then we study thtake the asymptotic limit of such a process, and to define the
behavior of the sizes of the clusters, evolving in time, usingentanglement in a state as the following limit. Leebe our
a mapping of the problem to percolation. Known resultsquantum(pure or mixed state, and lek, be the number of
from percolation theory12] imply an exponentially decay- Bell states required to generate a state and letp, ap-
ing bound on the probability for distant sets of particles to beproach the state®" asn tends to infinity. The asymptotic
in the same cluster, and this implies exponentially small enentanglement of formatiol6,7] of the state is defined to be
tanglement between the two sets. For the second part of thee infimum over all such processeslgf/n asn tends to
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infinity. Let us denote this measure By . This measure can strings of the formay,...,a, in which ng andn; are within
easily be shown not to increase by LOCC, and is also clear|j7|3’4 of their expected valuegn and (1-p)n, respectively.
partially additive, i.e.Ef (p®p) =E{(p) +E{(p). Hence, Alice and Bob can approximate the overall matrix by
An equally natural definition would be the converse one,deciding classically on one such random string...,a,,
called the asymptotic entanglement of distillation, in whichaccording to the appropriate probability distribution, and ne-
one is interested in generating as many Bell states as possiki¢ecting the cases where the number of Os and 1s are too far
by applying LOCC on many copies of the original state from the expected. Having decided on a striag...,a,,
The asymptotic limit of the ratio between the number of Bellthey can generate the mati®;p, using the protocols fop,
states generated in this way amas defined ii6] to be the  andp, separately. Since the number of Os and 1s is close to

asymptotic entanglement of distillation. A more rigorousthe expected, and using the definitionEf for pq and p4,
definition was given by Rair{$]. Let us denote this measure thjs  requires at most pn+n34E;(py)+[(1—p)n

by Eg . ~ +n%4E7(p,) plus a small correction. When dividing by
Fortunately, for pure states these two measures coincidgye contribution of the extra®? terms tends to zero and we
and have a very beautiful form. As was showr[16], they  get the desired result. Currently it is not known whether
are exactly the von Neumann entropy of the reduced densitysymptotic entanglement of distillation is convex or not.
matrix on one part of the system. pf=|$){4), As for continuity, the situation is even less clear. To dis-
cuss continuity, we use the trace metric on density matrices,

E(A:B,|#)(#|) =S(tral p)(p|) = S(tra[p){(¢]). (2.D which is defined as

The entropy of entanglement possesses both additivity and lp—o|=tr|p— o] (2.3
monotonicity under LOCC, and also behaves nicely in many
other ways. where|A|= JATA. Itis known that the above three entangle-

The situation for mixed states, however, is much morement measures are continuous, in the sense that, if a se-
interesting. It turns out that although the asymptotic distill-quence of density matrices, converges to a density matrix
able entanglement and the asymptotic entanglement of folp in the trace metric, then the entanglementipconverges
mation coincide on pure states, there are very interesting the entanglement ip:
differences between them when mixed states are considered.

Clearly, the asymptotic entanglement of distillation is not lim on=p= lim E(oq)=E(p). 2.4
larger than the asymptotic entanglement of formati6h _ ) ) )

The question of whether there exist states in which is However, we will be mteresteql in how_dlfferent the entangle-
strictly larger tharE? is still open. This irreversible process, MeNt of two very close density matrices can be. Entangle-

in which the entanglement that was inserted into the stat ent of formation was recently shown by Nielsgt8] to

cannot be distilled, is calledound entanglemeni7] and is ave }/ery strong conpnwty .propert|es_, n the.followmg
now being extensively studied. sense: Given two density matrices of a bipartite Hilbert space

- . \ . R
The asymptotic entanglement of formation is believed toOf dimensiondxd’, which are within distance from one

be equal to the following quantity, called tbatanglement of another, in th.e trape metric, the entanglement of formatiqn of
formation [6], and denoted b¥E,. E(p) is the least ex- the two matrices is at mogttimes some linear function in
pected entropy of entanglement of any ensemble of pur@ﬁ_(dr)] and Iog(g)), plus a te&m independent af and d
states realizing, or more formally which goes to 0 ag goes to 0:

|Ef(Ava)_Ef(ABvU)|
Ef(A:B,p)= min > WE(AB,|e)ai),

Slaag=p <9|p—ollog(maxd,d’'})—|p—allog(|p—a]).
(2.2 This strong continuity implies that, when two density matri-
ces ofn finite state particles are polynomially close one to
: i . ) . another(in the number of particlgs the entanglement of
gepgn.?.s liﬁon Wheg:gf IS aéjéj_ltt'lve. tl)t Lsﬂ?el[evedt Lhat IN"" formation between them is also polynomially small. It is not
eed itis the case 1S additive, but this 1S not known. yet known whether the asymptotic measures of entanglement

Let us survey what is known about the above three enbossess these nice continuity properties, or not.

tanglement measures, ir_1 terms .Of convexity and continu_ity. In this paper we work with the entanglement of formation
Entanglement of formation is trivially convex. Asymptotic E,, which is known to be both convex and strongly continu-

entanglement of formation can also bi shown to be conve us. We remark that the phenomena presented in this paper
Here is a sketch of the proof tha(ppo+(1-P)p1)  depend very weakly on the exact properties of the measure of
<PE¢(po) +(1-p)E¢(p1). Alice and Bob want to ap- eptanglement that is being used. The results in this paper
proximate the matrix(ppo+(1—p)p1)®". This matrix is  nold, with straightforward modifications, for any measure of
equal to the mixtureX, o p"(1—p)"®ip,, Wherea;  entanglemenE that is continuous in a sufficiently strong
runs over the s€0,1} andng (n,) is the number of 0§19 in sense, meaning that two density matrices that eapart

the stringa,,...,a,. It can be easily shown that all but ex- have entanglements not different by more than some polyno-
ponentially small weight or probability is concentrated onmial in the number of particles and i

with w;=0. The question of whethé; is equal or not tdey
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] 1 discussed in the literature, due to our restriction that only
nearest-neighbor particles are allowed to interact. Neverthe-
less, it was shown 19,26 that, like general quantum cir-
cuits, suchd-dimensional noisy quantum circuits are capable
of performing fault-tolerant quantum computation, as long as
the noise ratey is smaller than a certain threshotg . The
threshold, however, is worse than the threshold without the
nearest-neighbor restriction, by one or two orders of magni-
tude, depending on the dimension. The fact that such systems
are capable of performing quantum computation will prove

FIG. 1. The vertical axis corresponds to time, and the horizontatg phe important for the result of the phase transition in these
axiIs Corresponds to space. Horizontal edges connect two Interactlrglstems_

particles. Particles interact alternately with particles to their left and
to their right.

Time

O DNWEROTOY~J00

—

a

()

IV. ENTANGLEMENT LENGTH

Ill. THE MODEL OF THE QUANTUM SYSTEM For quantum systems that are embedded on a lattice, the
notion of distance between sets of particles is well defined.
In this case, one can define the entanglement length in the
system. We would like to define an analogous quantity to the
standard correlation length from statistical physics. In this
case, one says that the correlation length in a physical system
is ¢ if the correlation between the outcomes of a certain
observableD measured at sitesandb decays exponentially
with the distance between thed{a,b), where the distance

is scaled in the decay factor l3y

We are interested in quantum systems composed of
two-state particles, embedded ondadimensional lattice.
Such quantum particles are usually caltptbitsin the con-
text of quantum computers. The Hilbert spacenauch par-
ticles is the tensor product af two-dimensional complex
vector space€?, where the basis af? is usually taken to be
|0y and|1). The system is initialized with a certain statesu-
ally a tensor product state, but not necesspdlyd evolves
in time via interactions between the particles. Time is dis-
cretized into time steps and all interactions are assumed to be (0,0p,)ced@bVE (4.1
instantaneous and occur at integer times. In this model, par-
ticles interact only with their nearest neighbors on the latticeMore precisely ¢ is defined to be the quantity
An important assumption is that one particle cannot interact
with more than one other particle at any given time. For ¢ l= (M) (4.2)
simplicity, we will assume that the particles interact alter- dabj—=\ d(a,b) /'’ '

n_ately_ with particles to each of the!r sides. For one dlm(.an'vvhere the system that is considered is usually assumed to be
sion, i.e., an array of particles, this means that a particl

Spatially homogeneous so that the choiceaph does not
interacts with a particle to its left and to its right alternately. P y 9 ©

X . . . i matter.
The interaction graph can easily be viewed in

) . : - In analogy with the correlation length, we could have de-
g_d+ 1)-dimensional scheme, which fdr=1 looks as in Fig. fined the entanglement length in the quantum system te be

f the entanglement between two particlasand b decays
ponentially with the distance between thd(a,b), where
e distance is scaled in the decay factoriby

Two particles can interact via an arbitrary interaction, andI
we do not assume anything about the nature or strength
each interaction. After the interactions are turned off, an
before the next step of interactions is turned on, we apply the E(a:b)xe d@b/u, (4.3
noise step. The noise is assumed here to be local and sto-
chastic, meaning that each particle with a certain probabilitfHowever, there are a few problems with this definition,
n undergoes an arbitrary fault process, associated with thehich will force us to modify it slightly. The first modifica-
noise operatof operating on the density matrix of one par- tion is necessary due to the fact that entanglement is a non-
ticle. local quantity. It might well be that the system contains a lot
We make here another assumption, and restrict the noisaf entanglement, but small subsets of the system are com-
to be one of the following two processes. The first processpletely unentangled. For example, in fault-tolerant quantum
namely, independent stochastic collapse, is a process Epmputers, the entanglement is bound to be shared by large
which at each time step each particle is measured with indesets of qubits, and in order to see entanglement it is neces-
pendent probabilityy, in a fixed but arbitrary basis. Alterna- sary to probe large subsets of the system. We will therefore
tively, we can use the depolarization model, in which at eactbe interested not in two-point correlations but in entangle-
time step each particle, with independent probabilityis ~ ment between two se#s andB of arbitrary size.
replaced by a particle in a completely mixed state. In the rest Another problem is the following. In systems that are ho-
of the paper, we will assume that the noise model is indemogeneous in space and time, one can easily take the limit of
pendent stochastic collapse, but all results can easily biéne size of the system to infinity, and therefore the
stated using stochastic depolarization. asymptotic behavior in Eq4.2) is well defined. However,
This model of noisy quantum circuits is somewhat weakewe are interested in fault-tolerant quantum computers, which
than the general model of noisy quantum circuits usuallyare not homogeneous in space or in time. Roughly speaking,
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we will say that the entanglement length in the systemis  where the infimum is taken over all pairs of sequences
the entanglement between any two sktandB is bounded {A.};_,,{B.};_;, such that A and B, are disjoint sets in

by a function that decays exponentially with the distanceQ,,,  lim,...d(A,,B))=%, and lim,_.|A,||B.l/
between the sets, where the decay factor is scaled. Ghe  exdd(A,,B,)]=0.

fact that we are interested in a bound, and not in the exact Note that if one puts into Definition 1 the exponential
behavior of any pair of sets, allows for nonhomogeneity inbehavior of Eq(4.4), the contribution of the polynomial fac-
space. To allow for nonhomogeneity in time, we will con- tor in Eq. (4.4) tends to zero due to the requirementsAgn
sider the average entanglement betwéeand B over time.  andB,,, and the correcix pops out. Although Definition 1

This corresponds to the following behavior: might seem complicated, calculating the above infimum
turns out to be very simple in all our applications.
(E(A:B))=poly(|A|,|B|)e dABIx, (4.9 The notion of a family of quantum systems might seem

rather unrestricted at this point. A natural family of circuits

where|A| is the number of particles iA and similarly forB.  to consider is the family of quantum circuits associated with
We allow the additional polynomial factor due to the fact@ certain computational problem. Tinh circuit Q, is the
that, for sets that are not too large compared to the distancgiantum circuit solving the problem for input strings rof
between them, the exponential decay dominates the polyndits, and the entanglement is averaged over the computa-
mial in the sizes ofA andB, and what we will see is merely tional time.

an exponential decaying behavior. We claim that it is not

reasonable to consider two sets of particles that are very V. CLUSTERED DENSITY MATRICES

large, and to study the behavior of the entanglement the .
shgre asafunctionyof the distance between ther?n in the rany We now proceed to study the entanglement length in

where that distance is extremely small compared to the size -dlmen5|o_nal noisy quantum circuits, in the strong-noise re-
of the sets. gime. In this case, we will try to bound the entanglement in

The characterization of by Eq. (4.4) is very helpful to the system from above. Now a very useful observation is in

keep in mind, and in fact this is the definition of entangle_place. After a particle has been hit by the noise process, it is

ment length that we will be using in this paper. However, the'© longer entangled with the rest of the system. In other

above definition is not quite rigorous, and for the sake mwords, in both noise processes that we consider, the density

completeness we next show how to make it rigorous by giV_matrlx after applying the noise process can be written in the

ing it a similar form to that of Eq(4.2). In order to do that, form

we first need to make the notion of a quantum system more

precise. In the nonhomogeneous case, it is not clear what the Eop=(1—n)p+ 7;2 pipiQ®p?, (5.7
notion of an infinite system means. We therefore define a :

quantum(infinite) system to be a sequence of quantum SYSwhere the indexy refers to the noisy particle ar@ refers to

te.mS{Q”}n=l’ Whgre Qn consists ofn partlcle.s, a”?' W€ the rest of the system. For example, for the stochastic noise
think of n as growing tox. For a givenn,Q, is a finite 5 5cess, in which the last two-state particle is measured in

system in space, which evolves in time from0 0t  he pasig|0), |1)}, the resulting density matrix is of the form
=T,. Since eacl®,, is finite in space, in order to take a limit

similar to that of Eq(4.2), we need to consider a sequence of 1
pairs of setsA andB that belong to larger and larger systems. Eop=(1—n)p+ 77_2 Pri)ple i), (5.2
We thus add a subscriptto the subset#,, andB,,, indicat- 1=0

ing that they belong to the quantum systqp. We would where p? is the density matrix of all but the last particle,

now like to translate the fact that we are interested in sets . S .
. oo under the condition that the last particle is measured to be in
that are not too large compared with their distance to a pre;

cise restriction on the sequences of spi}{B,}. The the statdi). We use this observation as follows. We will aim

o, . ; . __to present the density matrix in such a way that lack of en-
weakest condition we can impose, 10 avoid pathological anglement translates to tensor product structure. In other
cases, is that lim,..|A,||B,|/exdd(A,,B,)]=0, meaning g P '

: . . words, we will present a density matrix as a mixture of ten-
that the sizes oA, andB,, are not growing exponentially or i
. . . sor product states, as follows:
faster than exponentially with the distance between them.
Finally, we want to take care of the fact that we are inter-
ested in the largest entanglement length that can be observed P(t)=2 wipi(t),
in the system. This corresponds to taking the infimum over !
all such sequences &, andB,. All this translates to the

following definition. pi()=pi ()@@ p" (1), (5.3
Definition 1. The entanglement lengih of a quantum P ) ) )
system{Q,}7_, is defined by v_vherepi (t) is a densn_y matrix that descnbes_g set of par-
ticles Al and for eachi the setsA! are a partition of the
—log(E(A,:B,)) system. These sets of supposedly entangled partic!es are
w~t=infliminf n-—n’/t , called clusters. It should be understood here that, given a
n—o d(An,Bp) density matrix, there is no single way to present it as a mix-
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ture of clustered states. However, we will define the reprewhich tend to join clusters and entangle the different parts of
sentation according to the dynamics of the process that gemhe system, and the stochastic collapses, which tend to detach
eratesp, so that our representation will be well defined. particles from their clusters, thereby destroying this en-

Our goal is to find a way to represent the matrix as atanglement constantly. A crucial point here is that the two
mixture of clustered states with clusters as small as possibleompeting forces are matched in power, since they both op-
The intuition is that we want to give an upper bound on theerate on the order of particles each time step. We thus
amount of entanglement in the system. When all the clusterexpect a critical error ratey, at which the two forces are
are of size 1, there is no entanglement in the system. We wikkqual, and at which some transition occurs from the domi-
see later that this can be generalized to say that small locaftance of the entangling interaction process to the dominance
ized clusters imply no entanglement between distant sets. Waf the disentangling noise process. We now go on to see this
will thus try to keep the clusters as small as possible. Thgghenomenon more rigorously, using a map to a percolation
way we do this is as follows. In a quantum computer, theprocess.
initial state is a basic state, which is a pure state in which all
particles are in tensor product with one another: V1. THE PERCOLATION PROCESS

p=p(L)®p(2)®---@p(n). (5.9 It turns out that the dynamics of the clusters in the above

description are intimately connected with a percolation pro-

Thus, fort=0, all clusters are of size 1. Given any clustered-cess on thguantum circuiitself. The percolation process on
state description of the density matrix at timeve can ob- the graph is defined as follows. For each time step, each
tain a clustered-state description for the matrix at timel ~ vertical edge, along thigh wire, between timé andt+1, is
as follows. From each participant in the mixtugg(t), we  erased with independent probability In the cluster picture,
obtain p;(t+1), which will be a mixture of clustered this corresponds to the collapse of tita particle between
states. p(t+1) will then be a mixture of alp;(t+1). To time stepst andt+1, which disentangles the particle’s past
obtainp;(t+1) from p;(t), we first apply the interaction step and future. Thus an event in the probability space of the
and then apply the noise step. noise process, i.e., a specific choice of which particles col-

To apply the interaction step of tintewe apply for each lapsed during the process, is mapped to an event in the per-
interaction at that time step the unitary transformation correcolation process, in which the corresponding vertical edges
sponding to the interaction, on the appropriate pair of parare erased. Since events in the stochastic noise process cor-
ticles. If the two particles are in one clustergf(t), then we  respond to members in the mixed density matrix, we have a
simply apply the appropriate unitary matrix, correspondingmap between clustered states arising from our cluster dynam-
to the interaction, on the density matrix describing this clusiCs and realizations of the percolation process. This map pre-
ter, and there is no need to change the clusters. However, $erves the probability measure.
the two particles are from two different clusters, we can no We now claim that clusters in the clustered state corre-
longer keep the two clusters in tensor product, because ispond to connected components in the percolation process.
general they will be entangled after the interaction. There- Lemma 1 (correspondence lemma). Two particles a and b
fore, we first join the two clusters together, by taking theare in the same cluster at time t in one realization of the
tensor product of the density matrices describing the twdoise process in the cluster model, if and only if (a, t) and
clusters, and then apply the appropriate unitary matrix on thé€b, t) are connected by a path that uses only edges up to time
new big cluster. The resulting state after all interactions oft in the corresponding realization of the percolation model
time stept have been applied is therefore, in general, a clus- Proof. To prove this combinatorial lemma we use induc-
tered state with larger clusters than the sigt¢). tion ont. For the base of the inductidr=0 the correspon-

We then apply the noise step on the resulting clustere@lence is true by definition. Let us now assume that the
state. Recall that a measurement detaches a particle from #gnma is correct fot and prove it fort+1. To apply the
cluster, and thus after a measurement the particle is a clust#duction step, the following observation comes in handy.
of its own. To apply the noise process, we transform the stateach path that connecta,t+1) and p,t+1) in the perco-
to a mixture of states, which are the results of all possibldation process is actually a concatenation of alternating paths,
combinations of which particles where measured, with thedccurring either after timeor at times up td. We denote the
appropriate probabilities. Clusters in the state can only shrinRoints at which the different concatenated paths connect to
due to this process. one another by xj,ty),...,(Xok,t2k). It is easy to see that

We would now like to understand the typical size of clus-there is always an even number of such points, andtthat
ters in this representation of the density matrix. Before we do=t,=---=t,=t. Let us call the particles,,... X, the con-
this in a more formal way, let us gain some intuition. If the nection particles. We shall also denate Xy, b=Xp,.1. A
system were noise-free, very soon all the clusters would beschematic example for the one-dimensional quantum circuit
come one giant cluster of particles. What makes the situa- case is shown in Fig. 2.
tion more interesting are the stochastic collapses, which Let us now prove the first direction: Letandb be two
separate a measured particle from its cluster, thereby departicles connected at timet 1 in the percolation model.
creasing the size of the cluster by 1, and creating anotheie want to show tha& andb are in the same cluster at time
cluster of size 1. One can view the noisy quantum evolution+1. To see this, we show that all particles=Xxg,
in time as a struggle between two forces: the interactionsxq,... Xo, Xoxr1=Db are in the same cluster at time-1.
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. b ing cluster in the chainC;_;, and the other particl&,; »
) a L ! participates in an interaction with a particle from the next
‘ i ) ]! : cluster in the chainC; ;. To construct a path frorato b at
X3 A XS time t+1, we first note that by the induction assumption

: there is a path connecting the two particles in the same clus-
: ter, X5, .1 andX,; 4 ,, at timet. Moreover, these particles did

: A . 1 not collapse between time stepndt + 1, because if they did
[}

[}

]

N — -

>
g

\ collapse they would have belonged to a cluster consisting of
one particle exactly. Hence there is a path connecting them at
A timet+1. A path between the second particle@fand the
first particle ofC, . ; exists because by definition they inter-
act at timet+ 1. Paths froma to the first particlex,;, and
from the last particlex,, to b, exist because either they in-
teract at timet or they are simply the same particle. This
enables us to construct a concatenated path fiaim b at

FIG. 2. A path connecting the two particlesandb at timet ~ timet+1. [J
+1 can be represented as a concatenation of paths that are re- We can now investigate the sizes of the connected com-
stricted alternately to the time intervdl®, t] and[t,t+1]. The path  ponents in the percolation model and then translate our find-
(a,t+1)—(b,t+1) in the figure is a concatenation of the paths ings to the cluster model. Such percolation procegk&kare
(a,t+ 1) (Xq, 1) (Xp,t)—> (X3,t)—> (X4, t)—>(b,t+1). known to exhibit a phase transition at a critical point, above

which there is a connected component of linear size, but

For the pairs of particles,; . ; andxy; . ,, i.e., pairs in which  pelow which the typical connected components are of loga-
the first particle has odd index, this is true since they argithmic size at the most. Moreover, the connected compo-
connected by a path confined to time steps earlier, so by  nents in the subcritical phase are localized, in the sense that
the induction assumption they are in the same cluster at timghe probability for two particles to be in the same connected
t. Moreover, none of the connection particles collapsed becomponent decays exponentially with the distance between
tween time stepsandt+ 1, due to the fact that they connect these particles.
between a path before tinteand a path after time There- Let us first release the restriction to a percolation on a
fore X541 andxy;,, are in the same cluster also at tirhe rectangle of sizeX T corresponding to the quantum circuit,
+1. (In the schematic example, this shows that partigles and consider the infinite lattice. We show the existence of a
andx, are in the same cluster at tine- 1, and similarlyx; ~ phase transition in connectivity for percolation on the infinite
andx,.) Now, by definition of the connection particle, there lattice, and from this we will be able to get information about
is a path after timé connectingk,; andx,;; 1, which means the finite case. One more simplification that is useful is to
thatx,; andx,; , interact at timet+ 1. At the edges of the notice that, by contracting each edge corresponding to an
chain, i.e., foii=0 ori =k, it might be thatx,; andx,;,; are  interaction to one point, we do not change the connectivity
the same particle, and therefore they are trivially connectecproperties of the process, and the resulting percolation pro-
(In the example, this corresponds to the interaction at timeess is the usual model of bond percolation. For example, in
t+1 betweena andx;, and betweenx, andx;, and to the the two-dimensional lattice associated with the one-
fact thatb=x,.) By the definition of the clusters’ evolution dimensional quantum circuit, the interaction edges are ex-
in time, the fact that particles interact implies that their clus-actly the horizontal edges in Fig. 1, and so, after contracting
ters are joined, and thereforg; andx,;, , are in the same each of these edges to one point, the resulting percolation
cluster at timet+ 1. Combining this with the fact that,;,;  process is the standard bond percolation on the square lattice,
andx,; ., are in the same cluster &t 1, this implies that all ~ which is rotated by 45°. The contraction therefore transforms
the particlesa=Xq, Xi,...Xo, Xk 1=D0 are in the same the problem to standard bond percolation on translational
cluster at timet+ 1, which completes one direction of the invariant lattices, which is quite well understood.
induction step. In bond percolation on translational invariant lattices one

Let us now prove the other direction of the induction step.usually uses as the probability for one edge to be present,
We want to prove that there is a path connectiagt¢1) S0 in our cas@=1— 5. One can define the critical p., to
and (,t+1) in the percolation process, assuming thand  be the smallest probability for which the pointén arbitrary
b are in the same cluster at tinte- 1. This cluster of time fixed point in the latticg belongs to an infinite connected
stept+ 1, which contains andb, was generated by joining component with positive probability. In translational invari-
together several smaller clusters, which existed after th@nt lattices, this is also equal to the smallesor which the
noise step of time stefp It is easy to see that there is a subsetéxpected size of Os connected componeiite set of all
of those clustersC_;,Cy,...,Cx_1,Cy, such thataeC_,  points connected to the poin} & infinite [20-22
andbe C,, and such that each two subsequent clustgrs
and C;,, were connected at time+1 by a unitary gate.  pc=inf{p|Pr[|H(0)|=]>0}=inf{p|E[|H(0)|]=0},
Note that each clusteZ;, except maybé& ; andC,, con- (6.1
sists of at least two particles: one particle, denotea by, ,
participates in an interaction with a particle from the precedwhereH(0) is the connected component of 0.
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A theorem by Hammerslej22,12], asserts that for trans- 1. To construct the corresponding branching process, observe
lational invariant lattices of any finite dimensiafy for p  that the degree of the lattice, after contracting the horizontal
<p., the probability7(x,y:p) for x to be connected ty  edges, is exactly 4, regardless of the dimensibrThus,

decays exponentially with the distance: there are four edges going out from the point 0. Starting with
the point 0, we regard each of its neighbors for which the

d(x,y) connecting edge is present in the percolation process as an

T(Xy: p)$exp( T ) (62 ancestor of a dynasty. Each such node has three edges going

out from it to three neighbors in the lattice, apart from the
with £,<%. Abovep., the probability for the point 0 to be edge going back to 0. The descendants of the node are those

connected to infinity is larger than 0 by definitionf, so  Of the neighbors for which the connecting edge is present in
&,=0 for p>p;. the percolation process. Each of these descendants has its

What can we infer from Eq6.2) regarding the finite case OWN descendants, and so on. When we encounter a node that
of percolation on the quantum circuit? Note that percolatiors already in the dynasty, we do not count it again; this way
on the circuit up to timeT is simply a restriction of the We have a tree. Clearly, in this way we can reach any node
infinite case to amx T rectangle. Thus, the probability for that is in the connected component of 0 in the percolation
two points in the rectangle to be connected by a path withirPrOCeSS. Thus if the branching process is finite the connected
the rectangle is smaller than their probability to be connectegomponent of the point 0 is finite. It is easy to see that the
by a path in the infinite lattice. Hence, an upper bound on th&ranching process starting at each neighbor of the point 0 is
probability for connectedness that holds for the infinite lat-finite with probability 1 if p<3. This is true since the ex-
tice case necessarily holds also for the restricted finite cas@ected number of descendants of each node is exactly the
Therefore Eq.(6.2) holds also for the percolation on te ~ number of its neighbors that are not yet in the dynasty times
X T quantum circuit. This means that below the critigal ~ P- Since the degree of the graph is 4, and one of the neigh-
the connected components in the percolation process in tHOrs is the node’s ancestor, the expected number of descen-
quantum circuit are very small with very high probability. dants is at most 8, which is less than 1 fop less than;.

We end this section with some facts about the value off his gives the desired resultL]
pc- In particular, we would like to know thai, is bounded
away from 0 aqd_ from 1, so the_lt the two phases of weak and VII. EINITE ENTANGLEMENT LENGTH
strong connectivity are nontrivial. It is easy to calculate the
critical probability p. in the case of the infinite lattice corre- ~ The analysis of the percolation process has taught us that
sponding to a one-dimensional quantum circuit. This infinitewhen p is smaller than the critical point for percolatiqn
lattice turns out to be simply the square lattiZé, after the connected components in the system are small. We will
contracting the interaction edges. For percolatiorZdrit is ~ now go back to the density matrix picture, and use this result
known [12] that the critical probability is exactly one-half. to show that the entanglement length is finite when 1

Let us denote by.(d+ 1) the criticalp, for bond percola- —Pp.. The intuition behind the proof is to use the correspon-
tion on the infinite lattice corresponding to a quantum circuitdence lemma together with E@.2) to show that the clusters
of dimensiond. Hence, are small and localized fo>1—p.. More precisely, for
n>1-p., the density matrix of the qguantum system can be
P(1+1)=3. (6.3 approximated by a mixture of clustered states with localized

clusters of logarithmic size. Thus, distant subsets of particles

For higher dimensions, we can boupgd+ 1) away from O  are with high probability contained in different clusters. This
and 1, but the bounds are not tight. means that most of the weight of the density matrix is con-

Lemma 21/3<p.(d+1)<1/2, centrated on states in which there is no entanglement be-

Proof. The upper bound comes from the fact that the protween the two subsets. The weight of the states in which
jection of thed+1 percolation with parametgron a 1+1  there is entanglement between the two sets decays exponen-
percolation gives percolation in11 with parametep®. tially with the distance between the sets. By continuity of
This is true since, after a particle interacts with a particleentanglement, this implies that the entanglement between the
along one axis, it waitsl time steps before it interacts again two sets decays exponentially with the distance. The rate of
with a neighbor along the same axis. This gives the uppethe decay is the entanglement length of the system. Note that
bound, since if the original process has exponentially decayin such a situation the entanglement between the two sets is
ing correlations it cannot be that in the projected process walready negligible when the distance is of the order ofidg(
are above the phase transition where the point 0 is connectgmrticles. The above reasoning translates to the following
with constant probability to infinity. The lower bound is de- theorem.
rived from a standard argument that reduces the problem to a Theorem 1. Consider a d-dimensional quantum circuit
branching process. A branching process is a process thatith nearest-neighbor interactions, subjected to local noise
starts with one node, and each node crei&temdes with  of the type of stochastic depolarization or stochastic col-
some probability distributiop(k), independent of the other lapse, with noise ratey. If the circuit is initialized with an
nodes. It is a standard resuee[23], for examplg that unentangled state, i.e., a tensor product state, ang>f1
when the expected number of descendants for each node isp.(d+1), then the entanglement of formation between
less than 1 the dynasty dies out in finite time with probabilityany two sets of particles A and B at any timeG decays
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exponentially with the distance between the two:sets argument applies for the connection frdgnto time 0, and
_ SAB) this gives the desired result]
Ef(A:B)<min{|A|,|B[}|A||B]e” A BIE—, This shows that the system cannot create entanglement

o o _ between distant sets of particles: roughly speaking, the typi-
For a general initial state, a similar formula is true except g range of entanglement is microscopic. This is true for any
for a correction term that decays exponentially with ime jnjtia| condition, where the relaxation time to the typical un-
. _ entangled state is of the order of loysteps.
E{(A:B,p(t))<min{|A],|B[}(|A||B|e” 4AB)é1-y This result implies an upper bound on the entanglement
+nmin{|A|,|B[}e V¢ ). length in the quantum system above the critical noise rate,
and in particular shows that it is finite. This is done by taking
Proof Let us start with the Simp|e case, in which the the limit in the definition of entanglement Iength, which
initial state is a complete tensor product, i.e., all clusters argives the following corollary.
of size 1. By Eq(6.2), the probability for two particled and Corollary 1. The entanglement lengthu, of a
B to be connected decays exponentially in the distance bdl-dimensional quantum circuit with nearest-neighbor inter-
tween them. The correspondence lemma implies that thactions, subjected to local noise of the type of stochastic
probability for two particles to be in the same cluster at timedepolarization or stochastic collapse, with noise ratesat-
t is equal to the probability they are connected in the percoisfies
lation model at tim¢, i.e., the probability for two particles _
from A andB to be in the same cluster is bounded above by Mn=&1-y
exfl —d(AB)/&, . Thus, the probability for any pair of par- whereé, is defined in Eq. (6.2). In particulag, is finite for
ticles from A and B to be in the same cluster is bounded 7>1-p.(d+1).
above by|A||B|exd —d(AB)/&;_,]. The density matrix can :

thus be written as a mixture of one density matrix with ot yhe correlation length in classical bond percolation. The
weight smaller tharjA||B|exd —d(AB)/¢,,] and another .oelation length of a given lattice can easily be estimated

density matrix. thatis a mixturt_a of density_ mqtrices, where '”by computer experiments, and analytical bounds are given in
all these matrices all the particles Aare in different clus- [22,12.

ters from all the particles iB. The reduced density matrix to
A,B of the second matrix is thus separable, and contains no
entanglement betweef and B. By convexity of entangle-
ment of formation, the entanglement in the entire density \We now want to concentrate on the other noise regime,
matrix is bounded above by the entanglement in the firsand show that below the critical noise the entanglement
density matrix times the weight of this matrix. The entangle-length is infinite. One might naively think that this can be
ment of the first matrix is at most the number of particles indeduced from the fact that the density matrix is a mixture of
the system, and this gives the desired regior measures clustered states with linear sized clusters. However, there is a
of entanglement that are not convex, but strongly continuouslifficulty in pursuing the connection between clusters and
one should replace the term rfjify,|B|} by the appropriate entanglement for this purpose, for the following reason. The
polynomial from the continuity bouny. density matrix is actually a mixture of many clustered states.
We now proceed to the general initial state. We will give The mixture of two clustered states, with very large clusters,
an upper bound for the case in which the initial state is on&an be a density matrix in which the clusters are of size 1.
big cluster and any other case is trivially implied by it. To do One example of such a case is a mixture of the two states
this, we have to understand where we have used the fact thet//2)(|0") +|1")) and (1#2)(]0")—|1")), the mixture of
the initial state is not entangled. This was used for the baswhich is a nonentangled state. Thus, the sizes of the clusters
of the induction in the correspondence lemma, where the fagtan be used for upper bounds on entanglement, but it is not
that all clusters are of one particle corresponds to the faatlear how to use them in order to show a lower bound on the
that in the percolation graph the initial connected compo-entanglement in the system.
nents at time O are all of size 1. To adapt the situation to the We therefore need to use different techniques for lower
case in which all particles are in one big cluster at time 0, webounds on entanglement. We will use techniques from quan-
add a horizontal line of length connecting all particles to tum computation. A quantum computer embedded on a lat-
one big connected component at tie0. The correspon- tice is a special case of the quantum systems we are discuss-
dence lemma then applies. However, K6.2) no longer ing. The particles are quantum bits, and the interactions are
holds. To correct it, we add to it a term that corresponds tdixed according to the algorithm. Therefore Corollary 1
the probability forA to be connected tB by a path that goes shows that the entanglement length is finite above the critical
through timet=0, i.e., through the additional new line we noise rate in fault-tolerant quantum computers also. For
have added to the graph. For such a path to exist, A@thd  fault-tolerant quantum computers we can also analyze the
B need to be connected to time 0. The probability for any onether side of the noise scale, and show that the entanglement
of the particles inA to be connected to any one of tine length in the system is infinite if the noise rate is below a
particles at time 0 is at most|A| times the probability for certain threshold. We will use the threshold re$ait4,26
one particle at time to be connected to one particle at time for fault-tolerant quantum computation, which shows that
0, which is at most expft/(;,) by Eq. (6.2). The same quantum computation can be made robust to noise, using

This gives a bound on the entanglement length, in terms

VIII. INFINITE ENTANGLEMENT LENGTH
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guantum error-correcting codes, as long as the noise e want to swap then+1,...m+q qubits to the right. To do
smaller than a certain threshold. In fact, here we need thehis, we first swap the last qubit B with qubits to its right
slightly stronger version of the threshold res(it9,26, until it gets to the last site. In the same way we bring the one
which asserts that this can be done even when the quantubefore last qubit irB to the one before last site, and so on
system is embedded ondadimensional lattice. The thresh- until all qubits inB are in the rightmost sites, which achieves
old is thenzy(d), which ford=1 is estimated to be I0  the desired state with only nearest-neighbor interactions.
[26]. In the fault-tolerant range, two distant sets of qubits can This algorithm by itself is not fault tolerant, and in the
be entangled, and remain entangled for a long time, with th@resence of any amount of noise, i.e>0, the entangle-
amount of entanglement independent of the distance. ment in the system will be lost immediately. However, we
We now give an example of a quantum computer thaitan make this algorithm fault tolerant by the methods in
exhibits entanglement among distant parts of the systerf2—4,26, as long asyis smaller tharny(d), the threshold for
when 7<#5y(d), but the entanglement length is finite for fault tolerance for d-dimensional quantum computers
noisen>1—p.(d+1). The idea is that a fault-tolerant com- [19,26). These results are too complicated to explain here in
puter can simulate any quantum state, including states cometail. In a nutshell, fault tolerance is achieved by encoding
taining entanglement between sets of qubits that are fahe qubits using quantum error-correcting codes, and com-
apart. Hence, we will construct a quantum algorithm inputing the algorithm on the encoded states, while applying
which there is entanglement between two parts of the systemuantum error correction on the state frequently. Each qubit
and make it fault tolerant. This can be done in many waysis replaced by polylog{) qubits, encoding its state. The state
but here is a simple example, for=1. Divide the set of |0) is encoded by the stafes,) of polylog(n) qubits, and
qubits to three setsA,B,C We will create entanglement similarly |1) is encoded by the stat&,). Let us denote by
amongA andB, while leaving the qubits in the middI€, in  A’, B’, and C’ the qubits encoding the original sets of
a basic state. This will be done by constructing the state qubitsA, B, andC, respectively. If no fault occurs, at the end
of the algorithm the system will be in the std&1) encoded
by the quantum error-correcting code,

1
5 (10M4807c®|0%5+[1M)28]|07)c®|1%s)

GY s elsheolShe+SDaoIShe olShar
on a fault-tolerant quantum computer, and keeping this state (8.9
for a long time, by applying error corrections. This state
indeed contains entanglement between the two regigters i , ,
andB, which aren sites apart. The algorithm that constructs "0rmalized by a factor of ¥2. The entanglement in this

such a state is very simple, and uses only two basic quantuﬁ{ate will remain there for ever if errors do not occur. How-

gates: the Hadamard gate, which is a one-qubit gate applyir ver, errors do occur. Fault tolerance means that at the end of
the uﬁitary transformation’ the computation the density matrix is polynomially close to a

density matrixp that can be corrected to the correct state
(8.5 by noiseless quantum error corrections. Due to conti-
|0>|_>i(|0>+|1>) nqity of entanglement, it suffices to argue that Slpc_bo_n-
Vv ' tains a constant amount of entanglement. But this is true
since we know thap can be corrected to the sta@5) by
local operations not involving interactions betweg&h and
1 B’. Since entanglement cannot increase by local operations,
|1>'_>E(|0>_|1>)’ (8.2 the entanglement betwedyi andB’ in p is at least as large
as that in the stat€8.5), i.e., one entanglement unit. The

and the controlledioT gate, which is a two-qubit gate ap- distance between the actual density matrix and a correctable
plying the unitary transformatiofsaid to be applied from the density matrixp is, by [2,26], at most the number of time

first qubit to the second one stepst divided by a polynomial im, because the error intro-
duced at each time step is at most 1 over a polynomial in
|a)® |b)—|a)®|a®b) 8.3 This distance is smaller than some constaat long as the

number of time steps is polynomial in the size of the system
where® means addition mod2. Using these gates, it is easf- Thus, by strong continuity the entanglement betwaén
to create the state and B’ will remain bounded from below by a constant for
polynomially many time steps. The average entanglement
over time is very close to 1, since the time it takes to con-
~ 1om+q m+q struct the state is much smaller than the polynomial time for
(JO™T 9]+ [2m79)) (8.4 . e :
V2 which the entanglement remains in the system. This proves
the existence of a nontrivial subcritical side of the phase
on the firstm+ q qubits, by applying a Hadamard gate on thetransition.
first qubit and then controlledoT gates from the first qubit Theorem 2. The entanglement length in the d-dimensional
to the second, from the second to the third, and so on. Thefault-tolerant quantum computer defined above satisfies
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My =0 instantaneous. Similarly, the depolarization process can be
presented as a gradual change of the density matrix of one
particle.

The results generalize to noninstantaneous interactions, as

Corollary 1 and Theorem 2 together imply the existencd®Ng as the interactions last for less than a time step, so that
of a phase transition in entanglement length in fault-toleranf€ré i & time interval in which decoherence takes place

quantum computers, since they imply the existence of a Critiyvhen the particle is not participating in any interaction. This

cal point, at which the entanglement length transforms fron{S 0Pvious if there is no noise during the interactions. How-
infinite to finite. ever, the results hold even if these interactions are both non-

instantaneous and noisy. To see this, we argue in the follow-

ing way. Leté characterize the decoherence rate during the

IX. GENERALIZATIONS TO OTHER interaction. The proof of the upper bound on the entangle-
QUANTUM SYSTEMS ment length, for largey, holds regardless of the amount of
noise in the interactionsy, because the proof uses only the

The model of noi ntum circui Il ri . . . .
e model of noisy quantum circits actually desc besﬁmse occurring between interactions. The proof of the lower

for » smaller than the threshold for fault tolerance in
d-dimensional quantum computers,.i.e<ny(d). O

not only quantum systems designed to serve as comput ound on the entanglement length, for smalholds as lon
tional devices but a much broader class of physical system 9 gtn, ma 9

as well. We first claim that ang-dimensional quantum sys- as n+o i; smal!er than the threshold for fault tolerance.
tem, in which the particles are located in space with lowHience, it is straightforward to see that the results hold for

enough density, and in which interactions occur only be-SUCh noninstantaneous interactions as We.”'
One can relax several other assumptions that we have

tween particles that are not too far apart, can be modeled b|¥1 de. The simplest lization is t el f
a quantum circuit. This can be done by discretizing the me- ade. The simpiest generalization 1S 1o particles ot more

dium to very small cells, such that each cell contains at mostlhan two states. Clearly, the results apply to particles with

one particle. Time will be discretized to sufficiently small any finite number of states, not necessarily qubits, and dif-

intervals such that a particle can move only to a neighbor Ceﬁerent particles need not ha\_/e the same _number of p05_3|ble
in one time step. Then the movement of particles can b tates. Another assumption is the restriction of the particles

modeled by an interaction between an occupied and an u o interact alternately. However, this exact form of the alter-

occupied cell, and, since the density of particles is low, oné]atlng Interactions Is not iImportant, since any Interaction

particle never interacts with more than one other particle agraph of nearest-neighbor interactions is a subgraph of the

. . . lternating graph, if time is scaled by a factor af.2
h me tim he notion of ntum i roprf g grapn, y . . .
;tg same time, so the notion of a quantum gate Is approp The above arguments show that the analysis done in this

We argue that the noise model used in this paper, Stocha(ﬁ__‘aper regarding upper bounds on the entanglement length in

tic collapses, actually captures a much more general sc he supercritical phase in quantum computers holds also for a

nario. It turns out that stochastic collapses are equivalent }jy ide variety of quantum systems with macroscopically many

the following process of local decoherence, in which eac Inite-state pgrtlcles, with local instantaneous interactions
and appropriate local decoherence processes. Therefore

article interacts with its own independent thermal . .
P b ] ﬁ]’heorem 1 and Corollary 1 can be generalized to these cases.

Consider a particle-bath interaction that causes the o h i ¢ vsi d I
diagonal elements of the particle’s density matrix to deca)J.n such guantum Systems, our analysiS provides an explana-
tion for the emergence of macroscopic classical behavior

with a certain ratey. This may be true when the densit g . : . .
& y y above the critical noise rate, as will be discussed in the last

matrix is written in a basis that is not necessarily the com-""""_ : .
putational basis. We assume the process is Markovian, seetion. If, in addition, such a system generates long-range

that the environment of the particle is renewed each timeentanglement n the absence of weak or no noise, then_lt. IS
step. If the particle-bath interaction operates for tifite the proved to exhibit the same phenomenon of phase transition

(i,j) element of the density matrix transforms to in entanglement length.

X. OPEN PROBLEMS AND QUANTUM-CLASSICAL

pii—pij exd — yAt(1-4 )] 9.1 TRANSITION

Thus, the off-diagonal elements of the density matrix of the We have proved the existence of a phase transition in
particle decay by a certain factor at each time step. If we segntanglement in noisy quantum computers, using the param-
exp(—yAt)=1—7, we get eter we have called the entanglement length. However, we
merely introduced the phenomenon in this paper. The list of
questions remaining open is extremely large, and varies in

pii—=>(1=n)pi i+ npi i, (920 different physical fields, and there are many implications of
the results that require further study.
which is equivalent to a measurement with probability A set of open questions regarding the phase transition

Thus stochastic collapses are a good model for such decacomes from statistical physics. For example, what are the
herence processes, as long as the decoherence during interitical exponents related to this phase transition? What is the
actions can be neglected, for example, in low-density sysuniversality class of this phase transition? In fact, it is not
tems or when interactions between particles in the system axdear that there is only one critical point here. In the case of
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the quantum computer, or other quantum systems, thergtanding of the generality of the phase transition result. The
might well be an intermediate regime of noise between theelation of the phase transition to other abrupt quantum/
two thresholds, for which the entanglement behaves in a difelassical phenomena, such as the threshold for violation of
ferent way, i.e., its dependence on the distance is neither dell inequalities[11], should also be understood. Another
exponential decay nor constant. The question of showing thamportant question is whether there exists some classical or
there is only one critical point remains open. quasiclassical description of the behavior of a quantum sys-
An important question is how general these results are, item in its finite-entanglement-length phase. In essence, we
particular those results concerning the weak-noise regime. laxpect such a description to exist due to the general intuition
this paper, we have been able to show the existence of that entanglement is what captures the “quantumness” of
nontrivial subcritical phase in fault-tolerant quantum com-the system. This intuition raises another related question,
puters. Are there more natural quantum systems, in particulawhich is whether the existence of a phase transition in en-
systems that are homogenedos periodig in space and in tanglement induces other quantum phase transitions at the
time, which have local interactions and local noise, that aresame critical point in the same system.
able to maintain long-range entanglement in the presence of A very interesting problem is to come up with a better
weak or zero local noise for a long time? Does a randonorder parameter related to entanglement, rather than the en-
guantum system, i.e., one in which random interactions aréanglement length. There are many problems with the en-
applied, exhibit long-range quantum correlations? Such syganglement length as an order parameter. The most important
tems will provide more examples of quantum systems inone is that it might be that the system is very entangled, but
which a phase transition in entanglement length occurs. the entanglement between any two distant subsets is zero.
Indeed, it is worthwhile to ask which of our assumptionsSuch is, for example, a system in the statevZ)(|0")
regarding the properties of the physical system are essentiak |1")), for which any subsystem is nonentangled. Entangle-
and which are technical. Intuitively, the most important as-ment in such very entangled quantum systems will not be
sumption is that of locality of both the noise and the inter-detected when looking at subsystems, and the entanglement
actions. This is true since locality is what makes the twolength will therefore contain no information about the actual
competing forces, the interactions that tend to entangle thbehavior of the entanglement in the system. Another motiva-
system and the noise that tends to disentangle it, comparallien for this question is provided ], where the size of the
in power. It is the fact that two forces of approximately evenclusters is analyzed, relaxing the restriction to nearest-
power compete that gives rise to the existence of a criticaheighbor interactions. The sizes of the clusters in this case
point at which a phase transition occurs. It seems, howeveindeed transform from logarithmic to linear at a critical noise
that the assumption about the exact form of the noise procesate. However, the notion of entanglement length cannot be
might not be very important. An open question is to characdefined in a system without geometry, so it is not clear how
terize and understand the exact class of noise operétiors  to define an order parameter that exhibits the phase transition
which the results hold. The question is what noise operators this case.
can be decomposed into a process in which with a certain An important observation is that the model discussed here
probability or amplitude the particle becomes disentangledleals with quantum systems out of thermal equilibrium. The
from the other particles in the system. It also seems that thquantum systems we consider here can be in a steady state,
discretization of the interactions is not essential. However, ibut the density matrix is not in the Gibbs distribution of the
is not clear how to generalize the results to the case in whickigenvectors of some Hamiltonian, and there is no tempera-
the particle interacts simultaneously with all its neighborsture associated with the system. Thus the notion of zero
and the environment. It seems that a considerably differentoise rate does not coincide with that of zero temperature. In
approach would be needed to deal with this case. other words, long-range entanglement when the noise is zero
Perhaps the most interesting open problem raised by theslwes not necessarily coincide with long-range entanglement
results is to further understand their implications for our un-in the ground state of the Hamiltonian of the system. The
derstanding of the transition from quantum to classical physfact that the quantum computer does not achieve thermal
ics. By studying the entanglement in quantum computers wequilibrium despite the noise is explained by the fact that the
were able to shed some light on the fundamental question afystem is constantly cooled by quantum error corrections. It
the transition from quantum to classical: Our results suggeds left as an open problem to further investigate possible
that in some cases this transition is actually a phase transihermal equilibrium phase transitions in entanglement, and
tion. Moreover, the paper suggests that the emergence tifie connection to the nonequilibrium phase transition pre-
classical macroscopic phenomena in large quantum systensented here. The reader is referred[25] and references
can be attributed in the case of fault-tolerant quantum comtherein for an introduction to nonequilibrium phase transi-
puters and in other cases to the fact that the noise rate tfons.
larger than a certain critical point, so that the entanglement We conclude with the intriguing open problem of experi-
length is finite. The suggestion of explaining the transitionmental verification of these results. The entanglement length
from quantum to classical macroscopic behavior as a phade an observable, and in principle it can be measured. Such
transition in entanglement is fundamentally different froman experiment might teach us a lot about quantum entangle-
the standard point of view of a gradual transition, usuallyment on large scales. Unfortunately, there is no existing
explained by decoherence. What is the applicability of thisphysical realization of a quantum computer of more than
explanation? This question is related, of course, to the undeseveral qubits, and hence the existence of a phase transition
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in entanglement length in fault-tolerant quantum computetem, and to compare it with the entanglement length pre-
cannot be verified at this stage. However, perhaps it is podicted by the upper bound given in Corollary 1.

sible to test the results regarding the upper bound on en-
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