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Quantum to classical phase transition in noisy quantum computers
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~Received 21 October 1999; published 14 November 2000!

The fundamental problem of the transition from quantum to classical physics is usually explained by
decoherence, and viewed as a gradual process. The study of entanglement, or quantum correlations, in noisy
quantum computers implies that in some cases the transition from quantum to classical is actually a phase
transition. We define the notion of entanglement length ind-dimensional noisy quantum computers, and show
that a phase transition in entanglement occurs at a critical noise rate where the entanglement length transforms
from infinite to finite. Above the critical noise rate, macroscopic classical behavior is expected, whereas, below
the critical noise rate, subsystems that are macroscopically distant one from another can be entangled. The
macroscopic classical behavior in the supercritical phase is shown to hold not only for quantum computers but
for any quantum system composed of macroscopically many finite state particles, with local interactions and
local decoherence, subjected to some additional conditions. This phenomenon provides a possible explanation
for the emergence of classical behavior in such systems. A simple formula for an upper bound on the entangle-
ment length of any such system in the supercritical phase is given, and in principle can be tested
experimentally.

PACS number~s!: 03.67.Lx, 03.65.Bz, 64.60.Ak
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I. INTRODUCTION

Quantum computation is a fascinating subject that ma
fests the peculiarities of quantum mechanics and uses t
in order to achieve an advantage in terms of computatio
power over classical computers. Shor’s algorithm@1# is the
most astonishing known example for such an advantag
computational power: It enables one to factor an intege
polynomial time using a quantum computer, whereas the
classical algorithm for this task is subexponential. The
vantage of quantum algorithms such as Shor’s algorit
over classical algorithms suggests, although it does
prove, that the computational complexity class of quant
computation is not polynomially equivalent to that of clas
cal, even randomized, Turing machines.

In real life, quantum computers will be subject to nois
We will make the assumption here that the noise is prob
listic and local, meaning that each particle, at each time s
suffers a certain faulty event with probabilityh, which is
referred to as the noise rate. Quantum computing is n
known to maintain its full computational power even in t
presence of such local noise, as long as the noise ra
weaker than a certain thresholdh0 @2–4,26#. On the other
hand, it is known@5# that, when the noise in the system
stronger than a much higher thresholdh1 , the quantum com-
putation can be simulated efficiently by a classical Tur
machine. Trying to put the two results together, we learn t
there are two regimes of noise in the quantum computer
which the computational power of the system is qualitativ
different. For weak noise, the computational power is fu
quantum, whereas for strong noise it becomes classical.
raises the following question: What is the physical differen
between the two noise regimes, which reflects itself in
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difference in computational power, and how does the tran
tion between the two different physical behaviors occur?

It turns out that an answer to these questions can be g
in terms of the behavior of entanglement, or quantum co
lations in the system. Perhaps the best way to explain
notion of entanglement is by saying what entanglemen
not: We say a state in the Hilbert space of a composite s
tem A^ B is nonentangled, if two persons, Alice and Bo
each having access to one side of the system, could cons
the overall state by applying local quantum operations
their side, and exchanging classical information, by, s
talking on the phone. Any state in the composite systemA
^ B that cannot be constructed in this way is said to
entangled. Here we will be interested not only in whether o
not states are entangled, but rather in the amount of entan
ment in quantum states. Several possible definitions for
amount of bipartite entanglement have been suggested
entanglement of formation@6#, the asymptotic entanglemen
of formation @6,7#, and the asymptotic entanglement of di
tillation @6,8#. In this paper we will use the entanglement
formation, but the results hold for any measure of entang
ment that satisfies certain continuity requirements.

To study the behavior of entanglement in noisy quant
computers, we define the notion ofentanglement length.
Roughly speaking, the entanglement length is the rate of
cay of the entanglement between two disjoint sets of p
ticles, as a function of the distance between the two s
This is the analogous quantity to correlation length in sta
tical physics, except that here we will be interested in cor
lations between two subsets of the system, rather tha
two-point correlations. We study the behavior of the e
tanglement length in the noisy quantum computer as a fu
tion of the noise rate. We find that there exists a noise rateh1
that depends on the geometry of the system, such that
entanglement length is finite forh1,h<1. This means that
the entanglement between two sets of particles decays e
nentially with the distance between the two sets for t
©2000 The American Physical Society11-1
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DORIT AHARONOV PHYSICAL REVIEW A 62 062311
range of noise rates. On the other hand, the entanglem
length is shown to be infinite in the range 0<h,h0 , where
h0 is the threshold for fault tolerance. This means that
entanglement between two sets of particles can be large
gardless of the distance between the two sets. These
facts show the existence of a phase transition in entan
ment at a nontrivial noise rateh0<hc<h1 . The system in
the subcritical regime behaves in a quantum fashion eve
the macroscopic scale—two sets of particles, within mac
scopic distance, can share a lot of entanglement, so the
long-range entanglement in the system. In the supercrit
phase, where entanglement decays exponentially with
tance, the system behaves classically on the macrosc
scale, because two macroscopic subsets within macrosc
distance are essentially nonentangled.

The results can be generalized to quantum systems
are not necessarily quantum computers. We show that m
roscopic classical behavior is expected above the crit
noise rate for any macroscopic quantum system with lo
interactions, local decoherence of a certain type, and s
additional restrictions to be discussed later. This shows
the phase transition in entanglement is expected in any s
quantum system that exhibits long-range entanglement in
absence of noise. Moreover, our results can, in principle
verified experimentally in any such system, as long as
density matrices of subsystems can be measured accur
enough. The entanglement length can then be numeric
computed~this is a difficult computational task, but possib
for small subsystems! and compared to the finite entangl
ment length that is predicted by our analysis.

The emergence of classical macroscopic behavior in la
quantum systems has been an intriguing area of researc
the last several decades. Perhaps the most common an
ceptable explanation so far is by decoherence, i.e., inte
tions with the environment that cause the system to lose
quantum features. See, for example,@9,10# and references
therein. This explanation, however, predicts a gradual tra
tion from quantum to classical behavior. A very interesti
implication of the results presented in this paper is that t
suggest an alternative way to explain the transition fr
quantum macroscopic behavior to classical macroscopic
havior in certain physical systems, which is qualitatively d
ferent from the standard gradual explanation~but see in this
context@11#!. The origin of the abrupt phase transition fro
quantum to classical predicted by our results is that in
model we combine the decoherence process with the
sumption that noise, as well as interactions, is local, wh
the behavior we are interested in is global.

The first part of the proof involves showing that the e
tanglement decays exponentially with the distance whenh is
larger than a certain threshold. To do this, we use a met
due to Aharonov and Ben-Or@5# to present the density ma
trix as mixtures of clustered states, and then we study
behavior of the sizes of the clusters, evolving in time, us
a mapping of the problem to percolation. Known resu
from percolation theory@12# imply an exponentially decay
ing bound on the probability for distant sets of particles to
in the same cluster, and this implies exponentially small
tanglement between the two sets. For the second part o
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proof, i.e., in order to show that the entanglement length
infinite for weak noise, we use the threshold result for fau
tolerant quantum computation@2–4,26#, which enables one
to create long-range entangled states in the noisy quan
computer.

We start by defining the notions of entanglement and
tanglement length, and then proceed to prove the strong-
the weak-noise cases, which together imply the existenc
a phase transition at a critical point. We conclude with ge
eralizations to various quantum systems, and with sev
open questions regarding possible implications to the tra
tion from quantum to classical.

II. ENTANGLEMENT

The notion of entanglement is associated with a state
quantum system composed of two systemsA and B. The
term entanglement refers to the quantum correlations
tweenA andB, in a state that exists inA^ B. Remarkably,
two parts of a composite quantum system can exhibit v
strong correlations that cannot be explained classically,
less one drops a very important axiom in physics, nam
locality. The remarkable phenomena that can be exhib
due to entanglement between two quantum systems w
first discovered by Einstein, Podolsky, and Rosen@13#, more
than 60 years ago, and manifested in Bell’s inequality m
than 30 years ago@14,15#. However, the elusive phenomeno
of entanglement is still far from being understood.

In this paper we will be interested in theamountof en-
tanglement in quantum systems; we therefore need a g
measure of entanglement. One very important requirem
on such a measure is that the entanglement in any state
not increase by classical communication and local quan
operations on theA andB sides separately; this is the who
essence of the term ‘‘entanglement.’’ We will denote suc
process involving local operations and classical commun
tion by LOCC. A desired property of a measure of entang
ment is additivity, meaning that the entanglement inr ^ s
should be equal to the sum of the entanglement inr and the
entanglement ins. This is required if entanglement is to b
viewed as a physical resource.

A natural way to construct a measure of entanglemen
to ask whether there is an elementary unit of entanglem
so that any state can be constructed with LOCC given su
ciently many such entanglement units. It turns out that th
exists exactly such a unit: the Bell state (1/&)(u0& ^ u0&
1u1& ^ u1&). It was shown@16,6# that any bipartite quantum
state can be generated by Alice and Bob using only LO
operations given that sufficiently many Bell states area pri-
ori shared betweenA andB. One can try to use the numbe
of elementary units required to construct a state as a g
measure of the entanglement in this state. It is reasonab
take the asymptotic limit of such a process, and to define
entanglement in a state as the following limit. Letr be our
quantum~pure or mixed! state, and letkn be the number of
Bell states required to generate a statern , and letrn ap-
proach the stater ^ n as n tends to infinity. The asymptotic
entanglement of formation@6,7# of the stater is defined to be
the infimum over all such processes ofkn /n as n tends to
1-2



ar

e
ch
si

el

us
e

id

s

a
n

or
ill
fo
tin
r
o

s,
ta

t

u

.
en
it
ic
e

-
on

by

e-
o far

e to

e
er

is-
es,

e-
se-

x

le-
le-

g
ace

of

ri-
to
f
ot
ent

on
u-
aper
e of
per
of
g

no-

QUANTUM TO CLASSICAL PHASE TRANSITION IN . . . PHYSICAL REVIEW A62 062311
infinity. Let us denote this measure byEf
` . This measure can

easily be shown not to increase by LOCC, and is also cle
partially additive, i.e.,Ef

`(r ^ r)5Ef
`(r)1Ef

`(r).
An equally natural definition would be the converse on

called the asymptotic entanglement of distillation, in whi
one is interested in generating as many Bell states as pos
by applying LOCC on many copies of the original stater.
The asymptotic limit of the ratio between the number of B
states generated in this way andn was defined in@6# to be the
asymptotic entanglement of distillation. A more rigoro
definition was given by Rains@8#. Let us denote this measur
by Ed

` .
Fortunately, for pure states these two measures coinc

and have a very beautiful form. As was shown in@16#, they
are exactly the von Neumann entropy of the reduced den
matrix on one part of the system. Ifr5uf&^fu,

E~A:B,uf&^fu!5S~ trAuf&^fu!5S~ trBuf&^fu!. ~2.1!

The entropy of entanglement possesses both additivity
monotonicity under LOCC, and also behaves nicely in ma
other ways.

The situation for mixed states, however, is much m
interesting. It turns out that although the asymptotic dist
able entanglement and the asymptotic entanglement of
mation coincide on pure states, there are very interes
differences between them when mixed states are conside
Clearly, the asymptotic entanglement of distillation is n
larger than the asymptotic entanglement of formation@6#.
The question of whether there exist states in whichEf

` is
strictly larger thanEd

` is still open. This irreversible proces
in which the entanglement that was inserted into the s
cannot be distilled, is calledbound entanglement@17# and is
now being extensively studied.

The asymptotic entanglement of formation is believed
be equal to the following quantity, called theentanglement of
formation @6#, and denoted byEf . Ef(r) is the least ex-
pected entropy of entanglement of any ensemble of p
states realizingr, or more formally

Ef~A:B,r!5 min
( iwi ua i &^a i u5r

(
i

wiE~A:B,ua i&^a i u!,

~2.2!

with wi>0. The question of whetherEf is equal or not toEf
`

depends upon whetherEf is additive. It is believed that in-
deed it is the case thatEf is additive, but this is not known

Let us survey what is known about the above three
tanglement measures, in terms of convexity and continu
Entanglement of formation is trivially convex. Asymptot
entanglement of formation can also be shown to be conv
Here is a sketch of the proof thatEf

`
„pr01(12p)r1…

<pEf
`(r0)1(12p)Ef

`(r1). Alice and Bob want to ap-
proximate the matrix„pr01(12p)r1…

^ n. This matrix is
equal to the mixture(a1 ,...,an

pn0(12p)n1‹irai
, where ai

runs over the set$0,1% andn0 (n1) is the number of 0s~1s! in
the stringa1 ,...,an . It can be easily shown that all but ex
ponentially small weight or probability is concentrated
06231
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strings of the forma1 ,...,an in which n0 andn1 are within
n3/4 of their expected values,pn and (12p)n, respectively.
Hence, Alice and Bob can approximate the overall matrix
deciding classically on one such random stringa1 ,...,an ,
according to the appropriate probability distribution, and n
glecting the cases where the number of 0s and 1s are to
from the expected. Having decided on a stringa1 ,...,an ,
they can generate the matrix‹irai

using the protocols forr0

andr1 separately. Since the number of 0s and 1s is clos
the expected, and using the definition ofEf

` for r0 andr1 ,
this requires at most (pn1n3/4)Ef

`(r0)1@(12p)n
1n3/4#Ef

`(r1) plus a small correction. When dividing byn,
the contribution of the extran3/4 terms tends to zero and w
get the desired result. Currently it is not known wheth
asymptotic entanglement of distillation is convex or not.

As for continuity, the situation is even less clear. To d
cuss continuity, we use the trace metric on density matric
which is defined as

ir2si5trur2su ~2.3!

whereuAu5AA†A. It is known that the above three entangl
ment measures are continuous, in the sense that, if a
quence of density matricessn converges to a density matri
r in the trace metric, then the entanglement insn converges
to the entanglement inr:

lim
n→`

sn5r⇒ lim
n→`

E~sn!5E~r!. ~2.4!

However, we will be interested in how different the entang
ment of two very close density matrices can be. Entang
ment of formation was recently shown by Nielsen@18# to
have very strong continuity properties, in the followin
sense: Given two density matrices of a bipartite Hilbert sp
of dimensiond3d8, which are within distancee from one
another, in the trace metric, the entanglement of formation
the two matrices is at moste times some linear function in
log(d) and log(d8), plus a term independent ofd and d8
which goes to 0 ase goes to 0:

uEf~A:B,r!2Ef~A:B,s!u

<9ur2su log~max$d,d8%!2ur2su log~ ur2su!.

This strong continuity implies that, when two density mat
ces ofn finite state particles are polynomially close one
another ~in the number of particles!, the entanglement o
formation between them is also polynomially small. It is n
yet known whether the asymptotic measures of entanglem
possess these nice continuity properties, or not.

In this paper we work with the entanglement of formati
Ef , which is known to be both convex and strongly contin
ous. We remark that the phenomena presented in this p
depend very weakly on the exact properties of the measur
entanglement that is being used. The results in this pa
hold, with straightforward modifications, for any measure
entanglementE that is continuous in a sufficiently stron
sense, meaning that two density matrices that aree apart
have entanglements not different by more than some poly
mial in the number of particles and ine.
1-3
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DORIT AHARONOV PHYSICAL REVIEW A 62 062311
III. THE MODEL OF THE QUANTUM SYSTEM

We are interested in quantum systems composed on
two-state particles, embedded on ad-dimensional lattice.
Such quantum particles are usually calledqubits in the con-
text of quantum computers. The Hilbert space ofn such par-
ticles is the tensor product ofn two-dimensional complex
vector spacesC2, where the basis ofC2 is usually taken to be
u0& andu1&. The system is initialized with a certain state~usu-
ally a tensor product state, but not necessarily! and evolves
in time via interactions between the particles. Time is d
cretized into time steps and all interactions are assumed t
instantaneous and occur at integer times. In this model,
ticles interact only with their nearest neighbors on the latti
An important assumption is that one particle cannot inter
with more than one other particle at any given time. F
simplicity, we will assume that the particles interact alte
nately with particles to each of their sides. For one dim
sion, i.e., an array of particles, this means that a part
interacts with a particle to its left and to its right alternate
The interaction graph can easily be viewed in
(d11)-dimensional scheme, which ford51 looks as in Fig.
1.

Two particles can interact via an arbitrary interaction, a
we do not assume anything about the nature or strengt
each interaction. After the interactions are turned off, a
before the next step of interactions is turned on, we apply
noise step. The noise is assumed here to be local and
chastic, meaning that each particle with a certain probab
h undergoes an arbitrary fault process, associated with
noise operatorE operating on the density matrix of one pa
ticle.

We make here another assumption, and restrict the n
to be one of the following two processes. The first proce
namely, independent stochastic collapse, is a proces
which at each time step each particle is measured with in
pendent probabilityh, in a fixed but arbitrary basis. Alterna
tively, we can use the depolarization model, in which at e
time step each particle, with independent probabilityh, is
replaced by a particle in a completely mixed state. In the
of the paper, we will assume that the noise model is in
pendent stochastic collapse, but all results can easily
stated using stochastic depolarization.

This model of noisy quantum circuits is somewhat wea
than the general model of noisy quantum circuits usua

FIG. 1. The vertical axis corresponds to time, and the horizo
axis corresponds to space. Horizontal edges connect two intera
particles. Particles interact alternately with particles to their left a
to their right.
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discussed in the literature, due to our restriction that o
nearest-neighbor particles are allowed to interact. Never
less, it was shown in@19,26# that, like general quantum cir
cuits, suchd-dimensional noisy quantum circuits are capab
of performing fault-tolerant quantum computation, as long
the noise rateh is smaller than a certain thresholdh0 . The
threshold, however, is worse than the threshold without
nearest-neighbor restriction, by one or two orders of mag
tude, depending on the dimension. The fact that such syst
are capable of performing quantum computation will pro
to be important for the result of the phase transition in th
systems.

IV. ENTANGLEMENT LENGTH

For quantum systems that are embedded on a lattice
notion of distance between sets of particles is well defin
In this case, one can define the entanglement length in
system. We would like to define an analogous quantity to
standard correlation length from statistical physics. In t
case, one says that the correlation length in a physical sys
is j if the correlation between the outcomes of a cert
observableO measured at sitesa andb decays exponentially
with the distance between themd(a,b), where the distance
is scaled in the decay factor byj:

^OaOb&}e2d~a,b!/j. ~4.1!

More precisely,j is defined to be the quantity

j215 lim
d~a,b!→`

S 2 log^OaOb&
d~a,b!

D , ~4.2!

where the system that is considered is usually assumed t
spatially homogeneous so that the choice ofa, b does not
matter.

In analogy with the correlation length, we could have d
fined the entanglement length in the quantum system to bm
if the entanglement between two particlesa and b decays
exponentially with the distance between themd(a,b), where
the distance is scaled in the decay factor bym:

E~a:b!}e2d~a,b!/m. ~4.3!

However, there are a few problems with this definitio
which will force us to modify it slightly. The first modifica-
tion is necessary due to the fact that entanglement is a n
local quantity. It might well be that the system contains a
of entanglement, but small subsets of the system are c
pletely unentangled. For example, in fault-tolerant quant
computers, the entanglement is bound to be shared by l
sets of qubits, and in order to see entanglement it is ne
sary to probe large subsets of the system. We will theref
be interested not in two-point correlations but in entang
ment between two setsA andB of arbitrary size.

Another problem is the following. In systems that are h
mogeneous in space and time, one can easily take the lim
the size of the system to infinity, and therefore t
asymptotic behavior in Eq.~4.2! is well defined. However,
we are interested in fault-tolerant quantum computers, wh
are not homogeneous in space or in time. Roughly speak

l
ing
d

1-4
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QUANTUM TO CLASSICAL PHASE TRANSITION IN . . . PHYSICAL REVIEW A62 062311
we will say that the entanglement length in the system ism if
the entanglement between any two setsA andB is bounded
by a function that decays exponentially with the distan
between the sets, where the decay factor is scaled bym. The
fact that we are interested in a bound, and not in the ex
behavior of any pair of sets, allows for nonhomogeneity
space. To allow for nonhomogeneity in time, we will co
sider the average entanglement betweenA andB over time.
This corresponds to the following behavior:

^E~A:B!& t}poly~ uAu,uBu!e2d~A,B!/m, ~4.4!

whereuAu is the number of particles inA and similarly forB.
We allow the additional polynomial factor due to the fa
that, for sets that are not too large compared to the dista
between them, the exponential decay dominates the pol
mial in the sizes ofA andB, and what we will see is merely
an exponential decaying behavior. We claim that it is n
reasonable to consider two sets of particles that are v
large, and to study the behavior of the entanglement t
share as a function of the distance between them, in the ra
where that distance is extremely small compared to the s
of the sets.

The characterization ofm by Eq. ~4.4! is very helpful to
keep in mind, and in fact this is the definition of entang
ment length that we will be using in this paper. However,
above definition is not quite rigorous, and for the sake
completeness we next show how to make it rigorous by g
ing it a similar form to that of Eq.~4.2!. In order to do that,
we first need to make the notion of a quantum system m
precise. In the nonhomogeneous case, it is not clear wha
notion of an infinite system means. We therefore defin
quantum~infinite! system to be a sequence of quantum s
tems $Qn%n51

` , where Qn consists ofn particles, and we
think of n as growing to`. For a givenn,Qn is a finite
system in space, which evolves in time fromt50 to t
5Tn . Since eachQn is finite in space, in order to take a lim
similar to that of Eq.~4.2!, we need to consider a sequence
pairs of setsA andB that belong to larger and larger system
We thus add a subscriptn to the subsetsAn andBn , indicat-
ing that they belong to the quantum systemQn . We would
now like to translate the fact that we are interested in s
that are not too large compared with their distance to a p
cise restriction on the sequences of sets$An%,$Bn%. The
weakest condition we can impose, to avoid pathologi
cases, is that limn°`uAnuuBnu/exp@d(An ,Bn)#50, meaning
that the sizes ofAn andBn are not growing exponentially o
faster than exponentially with the distance between th
Finally, we want to take care of the fact that we are int
ested in the largest entanglement length that can be obse
in the system. This corresponds to taking the infimum o
all such sequences ofAn and Bn . All this translates to the
following definition.

Definition 1. The entanglement lengthm of a quantum
system$Qn%n51

` is defined by

m215 inf lim inf
n→`

S 2 log^E~An :Bn!& t

d~An ,Bn! D ,
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where the infimum is taken over all pairs of sequen
$An%n51

` ,$Bn%n51
` , such that An and Bn are disjoint sets in

Qn , limn°` d(An ,Bn)5`, and limn°`uAnuuBnu/
exp@d(An ,Bn)#50.

Note that if one puts into Definition 1 the exponenti
behavior of Eq.~4.4!, the contribution of the polynomial fac
tor in Eq. ~4.4! tends to zero due to the requirements onAn
and Bn , and the correctm pops out. Although Definition 1
might seem complicated, calculating the above infimu
turns out to be very simple in all our applications.

The notion of a family of quantum systems might see
rather unrestricted at this point. A natural family of circui
to consider is the family of quantum circuits associated w
a certain computational problem. Thenth circuit Qn is the
quantum circuit solving the problem for input strings ofn
bits, and the entanglement is averaged over the comp
tional time.

V. CLUSTERED DENSITY MATRICES

We now proceed to study the entanglement length
d-dimensional noisy quantum circuits, in the strong-noise
gime. In this case, we will try to bound the entanglement
the system from above. Now a very useful observation is
place. After a particle has been hit by the noise process,
no longer entangled with the rest of the system. In ot
words, in both noise processes that we consider, the den
matrix after applying the noise process can be written in
form

E+r5~12h!r1h(
i

pir i
Q

^ r i
q , ~5.1!

where the indexq refers to the noisy particle andQ refers to
the rest of the system. For example, for the stochastic n
process, in which the last two-state particle is measured
the basis$u0&, u1&%, the resulting density matrix is of the form

E+r5~12h!r1h(
i 50

1

Pr~ i !r i
Q

^ u i &^ i u, ~5.2!

where r i
Q is the density matrix of all but the last particle

under the condition that the last particle is measured to b
the stateui&. We use this observation as follows. We will ai
to present the density matrix in such a way that lack of
tanglement translates to tensor product structure. In o
words, we will present a density matrix as a mixture of te
sor product states, as follows:

r~ t !5(
i

wir i~ t !,

r i~ t !5r i
1~ t ! ^¯^ r i

mi~ t !, ~5.3!

wherer i
j (t) is a density matrix that describes a set of p

ticles Ai
j and for eachi the setsAi

j are a partition of the
system. These sets of supposedly entangled particles
called clusters. It should be understood here that, give
density matrix, there is no single way to present it as a m
1-5
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DORIT AHARONOV PHYSICAL REVIEW A 62 062311
ture of clustered states. However, we will define the rep
sentation according to the dynamics of the process that
eratesr, so that our representation will be well defined.

Our goal is to find a way to represent the matrix as
mixture of clustered states with clusters as small as poss
The intuition is that we want to give an upper bound on
amount of entanglement in the system. When all the clus
are of size 1, there is no entanglement in the system. We
see later that this can be generalized to say that small lo
ized clusters imply no entanglement between distant sets
will thus try to keep the clusters as small as possible. T
way we do this is as follows. In a quantum computer,
initial state is a basic state, which is a pure state in which
particles are in tensor product with one another:

r5r~1! ^ r~2! ^¯^ r~n!. ~5.4!

Thus, fort50, all clusters are of size 1. Given any clustere
state description of the density matrix at timet, we can ob-
tain a clustered-state description for the matrix at timet11
as follows. From each participant in the mixture,r i(t), we
obtain r i(t11), which will be a mixture of clustered
states. r(t11) will then be a mixture of allr i(t11). To
obtainr i(t11) fromr i(t), we first apply the interaction ste
and then apply the noise step.

To apply the interaction step of timet, we apply for each
interaction at that time step the unitary transformation co
sponding to the interaction, on the appropriate pair of p
ticles. If the two particles are in one cluster inr i(t), then we
simply apply the appropriate unitary matrix, correspond
to the interaction, on the density matrix describing this cl
ter, and there is no need to change the clusters. Howeve
the two particles are from two different clusters, we can
longer keep the two clusters in tensor product, becaus
general they will be entangled after the interaction. The
fore, we first join the two clusters together, by taking t
tensor product of the density matrices describing the
clusters, and then apply the appropriate unitary matrix on
new big cluster. The resulting state after all interactions
time stept have been applied is therefore, in general, a cl
tered state with larger clusters than the stater i(t).

We then apply the noise step on the resulting cluste
state. Recall that a measurement detaches a particle fro
cluster, and thus after a measurement the particle is a clu
of its own. To apply the noise process, we transform the s
to a mixture of states, which are the results of all possi
combinations of which particles where measured, with
appropriate probabilities. Clusters in the state can only sh
due to this process.

We would now like to understand the typical size of clu
ters in this representation of the density matrix. Before we
this in a more formal way, let us gain some intuition. If th
system were noise-free, very soon all the clusters would
come one giant cluster ofn particles. What makes the situa
tion more interesting are the stochastic collapses, wh
separate a measured particle from its cluster, thereby
creasing the size of the cluster by 1, and creating ano
cluster of size 1. One can view the noisy quantum evolut
in time as a struggle between two forces: the interactio
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which tend to join clusters and entangle the different parts
the system, and the stochastic collapses, which tend to de
particles from their clusters, thereby destroying this e
tanglement constantly. A crucial point here is that the t
competing forces are matched in power, since they both
erate on the order ofn particles each time step. We thu
expect a critical error ratehc at which the two forces are
equal, and at which some transition occurs from the do
nance of the entangling interaction process to the domina
of the disentangling noise process. We now go on to see
phenomenon more rigorously, using a map to a percola
process.

VI. THE PERCOLATION PROCESS

It turns out that the dynamics of the clusters in the abo
description are intimately connected with a percolation p
cess on thequantum circuititself. The percolation process o
the graph is defined as follows. For each time step, e
vertical edge, along thei th wire, between timet andt11, is
erased with independent probabilityh. In the cluster picture,
this corresponds to the collapse of thei th particle between
time stepst and t11, which disentangles the particle’s pa
and future. Thus an event in the probability space of
noise process, i.e., a specific choice of which particles c
lapsed during the process, is mapped to an event in the
colation process, in which the corresponding vertical ed
are erased. Since events in the stochastic noise process
respond to members in the mixed density matrix, we hav
map between clustered states arising from our cluster dyn
ics and realizations of the percolation process. This map
serves the probability measure.

We now claim that clusters in the clustered state cor
spond to connected components in the percolation proce

Lemma 1 (correspondence lemma). Two particles a an
are in the same cluster at time t in one realization of t
noise process in the cluster model, if and only if (a, t) a
(b, t) are connected by a path that uses only edges up to
t in the corresponding realization of the percolation mode.

Proof. To prove this combinatorial lemma we use indu
tion on t. For the base of the inductiont50 the correspon-
dence is true by definition. Let us now assume that
lemma is correct fort and prove it fort11. To apply the
induction step, the following observation comes in han
Each path that connects (a,t11) and (b,t11) in the perco-
lation process is actually a concatenation of alternating pa
occurring either after timet or at times up tot. We denote the
points at which the different concatenated paths connec
one another by (x1 ,t1),...,(x2k ,t2k). It is easy to see tha
there is always an even number of such points, and that1
5t25¯5t2k5t. Let us call the particlesx1 ,...,x2k the con-
nection particles. We shall also denotea5x0 , b5x2k11 . A
schematic example for the one-dimensional quantum cir
case is shown in Fig. 2.

Let us now prove the first direction: Leta andb be two
particles connected at timet11 in the percolation model
We want to show thata andb are in the same cluster at tim
t11. To see this, we show that all particlesa5x0 ,
x1 ,...,x2k , x2k115b are in the same cluster at timet11.
1-6
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QUANTUM TO CLASSICAL PHASE TRANSITION IN . . . PHYSICAL REVIEW A62 062311
For the pairs of particlesx2i 11 andx2i 12 , i.e., pairs in which
the first particle has odd index, this is true since they
connected by a path confined to time stepst or earlier, so by
the induction assumption they are in the same cluster at
t. Moreover, none of the connection particles collapsed
tween time stepst andt11, due to the fact that they conne
between a path before timet and a path after timet. There-
fore x2i 11 and x2i 12 are in the same cluster also at timet
11. ~In the schematic example, this shows that particlesx1
andx2 are in the same cluster at timet11, and similarlyx3
andx4 .! Now, by definition of the connection particle, the
is a path after timet connectingx2i andx2i 11 , which means
that x2i andx2i 11 interact at timet11. At the edges of the
chain, i.e., fori 50 or i 5k, it might be thatx2i andx2i 11 are
the same particle, and therefore they are trivially connec
~In the example, this corresponds to the interaction at t
t11 betweena andx1 , and betweenx2 andx3 , and to the
fact thatb5x4 .! By the definition of the clusters’ evolution
in time, the fact that particles interact implies that their clu
ters are joined, and thereforex2i and x2i 11 are in the same
cluster at timet11. Combining this with the fact thatx2i 11
andx2i 12 are in the same cluster att11, this implies that all
the particlesa5x0 , x1 ,...,x2k , x2k115b are in the same
cluster at timet11, which completes one direction of th
induction step.

Let us now prove the other direction of the induction ste
We want to prove that there is a path connecting (a,t11)
and (b,t11) in the percolation process, assuming thata and
b are in the same cluster at timet11. This cluster of time
stept11, which containsa andb, was generated by joining
together several smaller clusters, which existed after
noise step of time stept. It is easy to see that there is a subs
of those clusters,C21 ,C0 ,...,Ck21 ,Ck , such thataPC21
and bPCk , and such that each two subsequent clustersCi
and Ci 11 were connected at timet11 by a unitary gate.
Note that each clusterCi , except maybeC21 andCk , con-
sists of at least two particles: one particle, denoted byx2i 11 ,
participates in an interaction with a particle from the prec

FIG. 2. A path connecting the two particlesa and b at time t
11 can be represented as a concatenation of paths that ar
stricted alternately to the time intervals@0, t# and@ t,t11#. The path
(a,t11)°(b,t11) in the figure is a concatenation of the pat
(a,t11)°(x1 ,t)°(x2 ,t)°(x3 ,t)°(x4 ,t)°(b,t11).
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ing cluster in the chain,Ci 21 , and the other particlex2i 12
participates in an interaction with a particle from the ne
cluster in the chain,Ci 11 . To construct a path froma to b at
time t11, we first note that by the induction assumptio
there is a path connecting the two particles in the same c
ter, x2i 11 andx2i 12 , at timet. Moreover, these particles di
not collapse between time stept andt11, because if they did
collapse they would have belonged to a cluster consisting
one particle exactly. Hence there is a path connecting the
time t11. A path between the second particle ofCi and the
first particle ofCi 11 exists because by definition they inte
act at timet11. Paths froma to the first particlex1 , and
from the last particlex2k to b, exist because either they in
teract at timet or they are simply the same particle. Th
enables us to construct a concatenated path froma to b at
time t11. h

We can now investigate the sizes of the connected c
ponents in the percolation model and then translate our fi
ings to the cluster model. Such percolation processes@12# are
known to exhibit a phase transition at a critical point, abo
which there is a connected component of linear size,
below which the typical connected components are of lo
rithmic size at the most. Moreover, the connected com
nents in the subcritical phase are localized, in the sense
the probability for two particles to be in the same connec
component decays exponentially with the distance betw
these particles.

Let us first release the restriction to a percolation on
rectangle of sizen3T corresponding to the quantum circui
and consider the infinite lattice. We show the existence o
phase transition in connectivity for percolation on the infin
lattice, and from this we will be able to get information abo
the finite case. One more simplification that is useful is
notice that, by contracting each edge corresponding to
interaction to one point, we do not change the connectiv
properties of the process, and the resulting percolation p
cess is the usual model of bond percolation. For example
the two-dimensional lattice associated with the on
dimensional quantum circuit, the interaction edges are
actly the horizontal edges in Fig. 1, and so, after contract
each of these edges to one point, the resulting percola
process is the standard bond percolation on the square la
which is rotated by 45°. The contraction therefore transfor
the problem to standard bond percolation on translatio
invariant lattices, which is quite well understood.

In bond percolation on translational invariant lattices o
usually usesp as the probability for one edge to be prese
so in our casep512h. One can define the criticalp, pc , to
be the smallest probability for which the point 0~an arbitrary
fixed point in the lattice! belongs to an infinite connecte
component with positive probability. In translational invar
ant lattices, this is also equal to the smallestp for which the
expected size of 0s connected components~the set of all
points connected to the point 0! is infinite @20–22#

pc5 inf$pzPrp@ uH~0!u5`#.0%5 inf$puEp@ uH~0!u#5`%,

~6.1!

whereH(0) is the connected component of 0.

re-
1-7
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DORIT AHARONOV PHYSICAL REVIEW A 62 062311
A theorem by Hammersley@22,12#, asserts that for trans
lational invariant lattices of any finite dimensiond, for p
,pc , the probabilityt(x,y:p) for x to be connected toy
decays exponentially with the distance:

t~x,y:p!<expS 2
d~x,y!

jp
D ~6.2!

with jp,`. Above pc , the probability for the point 0 to be
connected to infinity is larger than 0 by definition ofpc , so
jp5` for p.pc .

What can we infer from Eq.~6.2! regarding the finite case
of percolation on the quantum circuit? Note that percolat
on the circuit up to timeT is simply a restriction of the
infinite case to ann3T rectangle. Thus, the probability fo
two points in the rectangle to be connected by a path wit
the rectangle is smaller than their probability to be connec
by a path in the infinite lattice. Hence, an upper bound on
probability for connectedness that holds for the infinite l
tice case necessarily holds also for the restricted finite c
Therefore Eq.~6.2! holds also for the percolation on then
3T quantum circuit. This means that below the criticalpc
the connected components in the percolation process in
quantum circuit are very small with very high probability.

We end this section with some facts about the value
pc . In particular, we would like to know thatpc is bounded
away from 0 and from 1, so that the two phases of weak
strong connectivity are nontrivial. It is easy to calculate t
critical probabilitypc in the case of the infinite lattice corre
sponding to a one-dimensional quantum circuit. This infin
lattice turns out to be simply the square latticeZ2, after
contracting the interaction edges. For percolation onZ2 it is
known @12# that the critical probability is exactly one-hal
Let us denote bypc(d11) the criticalpc for bond percola-
tion on the infinite lattice corresponding to a quantum circ
of dimensiond. Hence,

pc~111!5 1
2 . ~6.3!

For higher dimensions, we can boundpc(d11) away from 0
and 1, but the bounds are not tight.

Lemma 2. 1/3<pc(d11)<1/21/d.
Proof. The upper bound comes from the fact that the p

jection of thed11 percolation with parameterp on a 111
percolation gives percolation in 111 with parameterpd.
This is true since, after a particle interacts with a parti
along one axis, it waitsd time steps before it interacts aga
with a neighbor along the same axis. This gives the up
bound, since if the original process has exponentially dec
ing correlations it cannot be that in the projected process
are above the phase transition where the point 0 is conne
with constant probability to infinity. The lower bound is d
rived from a standard argument that reduces the problem
branching process. A branching process is a process
starts with one node, and each node createsk nodes with
some probability distributionp(k), independent of the othe
nodes. It is a standard result~see @23#, for example! that
when the expected number of descendants for each no
less than 1 the dynasty dies out in finite time with probabi
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1. To construct the corresponding branching process, obs
that the degree of the lattice, after contracting the horizon
edges, is exactly 4, regardless of the dimensiond. Thus,
there are four edges going out from the point 0. Starting w
the point 0, we regard each of its neighbors for which t
connecting edge is present in the percolation process a
ancestor of a dynasty. Each such node has three edges g
out from it to three neighbors in the lattice, apart from t
edge going back to 0. The descendants of the node are t
of the neighbors for which the connecting edge is presen
the percolation process. Each of these descendants ha
own descendants, and so on. When we encounter a node
is already in the dynasty, we do not count it again; this w
we have a tree. Clearly, in this way we can reach any n
that is in the connected component of 0 in the percolat
process. Thus if the branching process is finite the conne
component of the point 0 is finite. It is easy to see that
branching process starting at each neighbor of the point
finite with probability 1 if p, 1

3 . This is true since the ex
pected number of descendants of each node is exactly
number of its neighbors that are not yet in the dynasty tim
p. Since the degree of the graph is 4, and one of the ne
bors is the node’s ancestor, the expected number of des
dants is at most 3p, which is less than 1 forp less than1

3.
This gives the desired result.h

VII. FINITE ENTANGLEMENT LENGTH

The analysis of the percolation process has taught us
when p is smaller than the critical point for percolationpc
the connected components in the system are small. We
now go back to the density matrix picture, and use this re
to show that the entanglement length is finite whenh.1
2pc . The intuition behind the proof is to use the correspo
dence lemma together with Eq.~6.2! to show that the clusters
are small and localized forh.12pc . More precisely, for
h.12pc , the density matrix of the quantum system can
approximated by a mixture of clustered states with localiz
clusters of logarithmic size. Thus, distant subsets of partic
are with high probability contained in different clusters. Th
means that most of the weight of the density matrix is co
centrated on states in which there is no entanglement
tween the two subsets. The weight of the states in wh
there is entanglement between the two sets decays expo
tially with the distance between the sets. By continuity
entanglement, this implies that the entanglement between
two sets decays exponentially with the distance. The rate
the decay is the entanglement length of the system. Note
in such a situation the entanglement between the two se
already negligible when the distance is of the order of logn)
particles. The above reasoning translates to the follow
theorem.

Theorem 1. Consider a d-dimensional quantum circ
with nearest-neighbor interactions, subjected to local no
of the type of stochastic depolarization or stochastic c
lapse, with noise rateh. If the circuit is initialized with an
unentangled state, i.e., a tensor product state, and ifh.1
2pc(d11), then the entanglement of formation betwe
any two sets of particles A and B at any time t>0 decays
1-8
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QUANTUM TO CLASSICAL PHASE TRANSITION IN . . . PHYSICAL REVIEW A62 062311
exponentially with the distance between the two sets:

Ef~A:B!<min$uAu,uBu%uAuuBue2d~A,B!/j12h.

For a general initial state, a similar formula is true exce
for a correction term that decays exponentially with time:

Ef„A:B,r~ t !…<min$uAu,uBu%~ uAuuBue2d~A,B!/j12h

1n min$uAu,uBu%e2t/j12h!.

Proof. Let us start with the simple case, in which th
initial state is a complete tensor product, i.e., all clusters
of size 1. By Eq.~6.2!, the probability for two particlesA and
B to be connected decays exponentially in the distance
tween them. The correspondence lemma implies that
probability for two particles to be in the same cluster at tim
t is equal to the probability they are connected in the per
lation model at timet, i.e., the probability for two particles
from A andB to be in the same cluster is bounded above
exp@2d(A,B)/j12h#. Thus, the probability for any pair of par
ticles from A and B to be in the same cluster is bounde
above byuAuuBuexp@2d(A,B)/j12h#. The density matrix can
thus be written as a mixture of one density matrix w
weight smaller thanuAuuBuexp@2d(A,B)/j12h# and another
density matrix that is a mixture of density matrices, where
all these matrices all the particles inA are in different clus-
ters from all the particles inB. The reduced density matrix t
A,B of the second matrix is thus separable, and contains
entanglement betweenA and B. By convexity of entangle-
ment of formation, the entanglement in the entire dens
matrix is bounded above by the entanglement in the fi
density matrix times the weight of this matrix. The entang
ment of the first matrix is at most the number of particles
the system, and this gives the desired result.~For measures
of entanglement that are not convex, but strongly continuo
one should replace the term min$uAu,uBu% by the appropriate
polynomial from the continuity bound.!

We now proceed to the general initial state. We will gi
an upper bound for the case in which the initial state is o
big cluster and any other case is trivially implied by it. To d
this, we have to understand where we have used the fact
the initial state is not entangled. This was used for the b
of the induction in the correspondence lemma, where the
that all clusters are of one particle corresponds to the
that in the percolation graph the initial connected com
nents at time 0 are all of size 1. To adapt the situation to
case in which all particles are in one big cluster at time 0,
add a horizontal line of lengthn connecting all particles to
one big connected component at timet50. The correspon-
dence lemma then applies. However, Eq.~6.2! no longer
holds. To correct it, we add to it a term that corresponds
the probability forA to be connected toB by a path that goes
through timet50, i.e., through the additional new line w
have added to the graph. For such a path to exist, bothA and
B need to be connected to time 0. The probability for any o
of the particles inA to be connected to any one of then
particles at time 0 is at mostnuAu times the probability for
one particle at timet to be connected to one particle at tim
0, which is at most exp(2t/j12h) by Eq. ~6.2!. The same
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argument applies for the connection fromB to time 0, and
this gives the desired result.h

This shows that the system cannot create entanglem
between distant sets of particles: roughly speaking, the t
cal range of entanglement is microscopic. This is true for a
initial condition, where the relaxation time to the typical u
entangled state is of the order of log(n) steps.

This result implies an upper bound on the entanglem
length in the quantum system above the critical noise r
and in particular shows that it is finite. This is done by taki
the limit in the definition of entanglement length, whic
gives the following corollary.

Corollary 1. The entanglement lengthmh of a
d-dimensional quantum circuit with nearest-neighbor inte
actions, subjected to local noise of the type of stocha
depolarization or stochastic collapse, with noise rateh, sat-
isfies

mh<j12h

wherejp is defined in Eq. (6.2). In particular, mh is finite for
h.12pc(d11).

This gives a bound on the entanglement length, in ter
of the correlation length in classical bond percolation. T
correlation length of a given lattice can easily be estima
by computer experiments, and analytical bounds are give
@22,12#.

VIII. INFINITE ENTANGLEMENT LENGTH

We now want to concentrate on the other noise regim
and show that below the critical noise the entanglem
length is infinite. One might naively think that this can b
deduced from the fact that the density matrix is a mixture
clustered states with linear sized clusters. However, there
difficulty in pursuing the connection between clusters a
entanglement for this purpose, for the following reason. T
density matrix is actually a mixture of many clustered stat
The mixture of two clustered states, with very large cluste
can be a density matrix in which the clusters are of size
One example of such a case is a mixture of the two sta
(1/&)(u0n&1u1n&) and (1/&)(u0n&2u1n&), the mixture of
which is a nonentangled state. Thus, the sizes of the clus
can be used for upper bounds on entanglement, but it is
clear how to use them in order to show a lower bound on
entanglement in the system.

We therefore need to use different techniques for low
bounds on entanglement. We will use techniques from qu
tum computation. A quantum computer embedded on a
tice is a special case of the quantum systems we are disc
ing. The particles are quantum bits, and the interactions
fixed according to the algorithm. Therefore Corollary
shows that the entanglement length is finite above the crit
noise rate in fault-tolerant quantum computers also.
fault-tolerant quantum computers we can also analyze
other side of the noise scale, and show that the entanglem
length in the system is infinite if the noise rate is below
certain threshold. We will use the threshold result@2–4,26#
for fault-tolerant quantum computation, which shows th
quantum computation can be made robust to noise, u
1-9
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DORIT AHARONOV PHYSICAL REVIEW A 62 062311
quantum error-correcting codes, as long as the nois
smaller than a certain threshold. In fact, here we need
slightly stronger version of the threshold result@19,26#,
which asserts that this can be done even when the quan
system is embedded on ad-dimensional lattice. The thresh
old is thenh0(d), which for d51 is estimated to be 1027

@26#. In the fault-tolerant range, two distant sets of qubits c
be entangled, and remain entangled for a long time, with
amount of entanglement independent of the distance.

We now give an example of a quantum computer t
exhibits entanglement among distant parts of the sys
when h,h0(d), but the entanglement length is finite fo
noiseh.12pc(d11). The idea is that a fault-tolerant com
puter can simulate any quantum state, including states
taining entanglement between sets of qubits that are
apart. Hence, we will construct a quantum algorithm
which there is entanglement between two parts of the sys
and make it fault tolerant. This can be done in many wa
but here is a simple example, ford51. Divide the set of
qubits to three sets,A,B,C. We will create entanglemen
amongA andB, while leaving the qubits in the middle,C, in
a basic state. This will be done by constructing the state

1

&
~ u0m&A^ u0n&C^ u0q&B1u1m&A^ u0n&C^ u1q&B)

~8.1!

on a fault-tolerant quantum computer, and keeping this s
for a long time, by applying error corrections. This sta
indeed contains entanglement between the two registeA
andB, which aren sites apart. The algorithm that construc
such a state is very simple, and uses only two basic quan
gates: the Hadamard gate, which is a one-qubit gate appl
the unitary transformation

u0&°
1

&
~ u0&1u1&),

u1&°
1

&
~ u0&2u1&), ~8.2!

and the controlledNOT gate, which is a two-qubit gate ap
plying the unitary transformation~said to be applied from the
first qubit to the second one!

ua& ^ ub&°ua& ^ ua% b&, ~8.3!

where% means addition mod2. Using these gates, it is e
to create the state

1

&
~ u0m1qu1u1m1q&) ~8.4!

on the firstm1q qubits, by applying a Hadamard gate on t
first qubit and then controlledNOT gates from the first qubi
to the second, from the second to the third, and so on. T
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we want to swap them11,...,m1q qubits to the right. To do
this, we first swap the last qubit inB with qubits to its right
until it gets to the last site. In the same way we bring the o
before last qubit inB to the one before last site, and so o
until all qubits inB are in the rightmost sites, which achieve
the desired state with only nearest-neighbor interactions.

This algorithm by itself is not fault tolerant, and in th
presence of any amount of noise, i.e.,h.0, the entangle-
ment in the system will be lost immediately. However, w
can make this algorithm fault tolerant by the methods
@2–4,26#, as long ash is smaller thanh(d), the threshold for
fault tolerance for d-dimensional quantum computer
@19,26#. These results are too complicated to explain here
detail. In a nutshell, fault tolerance is achieved by encod
the qubits using quantum error-correcting codes, and c
puting the algorithm on the encoded states, while apply
quantum error correction on the state frequently. Each q
is replaced by polylog(n) qubits, encoding its state. The sta
u0& is encoded by the stateuS0& of polylog(n) qubits, and
similarly u1& is encoded by the stateuS1&. Let us denote by
A8, B8, and C8 the qubits encoding the original sets
qubitsA, B, andC, respectively. If no fault occurs, at the en
of the algorithm the system will be in the state~8.1! encoded
by the quantum error-correcting code,

uS0
m&A8^ uS0

n&C8^ uS0
q&B81uS1

m&A8^ uS0
n&C8^ uS1

q&B8 ,
~8.5!

normalized by a factor of 1/&. The entanglement in this
state will remain there for ever if errors do not occur. Ho
ever, errors do occur. Fault tolerance means that at the en
the computation the density matrix is polynomially close to
density matrixr that can be corrected to the correct sta
~8.5! by noiseless quantum error corrections. Due to co
nuity of entanglement, it suffices to argue that suchr con-
tains a constant amount of entanglement. But this is t
since we know thatr can be corrected to the state~8.5! by
local operations not involving interactions betweenA8 and
B8. Since entanglement cannot increase by local operati
the entanglement betweenA8 andB8 in r is at least as large
as that in the state~8.5!, i.e., one entanglement unit. Th
distance between the actual density matrix and a correct
density matrixr is, by @2,26#, at most the number of time
stepst divided by a polynomial inn, because the error intro
duced at each time step is at most 1 over a polynomial inn.
This distance is smaller than some constante as long as the
number of time steps is polynomial in the size of the syst
n. Thus, by strong continuity the entanglement betweenA8
and B8 will remain bounded from below by a constant fo
polynomially many time steps. The average entanglem
over time is very close to 1, since the time it takes to co
struct the state is much smaller than the polynomial time
which the entanglement remains in the system. This pro
the existence of a nontrivial subcritical side of the pha
transition.

Theorem 2. The entanglement length in the d-dimensio
fault-tolerant quantum computer defined above satisfies
1-10
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mh5`

for h smaller than the threshold for fault tolerance
d-dimensional quantum computers, i.e., h,h0(d). h

Corollary 1 and Theorem 2 together imply the existen
of a phase transition in entanglement length in fault-toler
quantum computers, since they imply the existence of a c
cal point, at which the entanglement length transforms fr
infinite to finite.

IX. GENERALIZATIONS TO OTHER
QUANTUM SYSTEMS

The model of noisy quantum circuits actually describ
not only quantum systems designed to serve as comp
tional devices but a much broader class of physical syst
as well. We first claim that anyd-dimensional quantum sys
tem, in which the particles are located in space with l
enough density, and in which interactions occur only b
tween particles that are not too far apart, can be modele
a quantum circuit. This can be done by discretizing the m
dium to very small cells, such that each cell contains at m
one particle. Time will be discretized to sufficiently sma
intervals such that a particle can move only to a neighbor
in one time step. Then the movement of particles can
modeled by an interaction between an occupied and an
occupied cell, and, since the density of particles is low, o
particle never interacts with more than one other particle
the same time, so the notion of a quantum gate is appro
ate.

We argue that the noise model used in this paper, stoc
tic collapses, actually captures a much more general
nario. It turns out that stochastic collapses are equivalen
the following process of local decoherence, in which ea
particle interacts with its own independent thermal bath@24#.
Consider a particle-bath interaction that causes the
diagonal elements of the particle’s density matrix to dec
with a certain rateg. This may be true when the densi
matrix is written in a basis that is not necessarily the co
putational basis. We assume the process is Markovian
that the environment of the particle is renewed each t
step. If the particle-bath interaction operates for timeDt, the
~i,j! element of the density matrix transforms to

r i , j°r i , j exp@2gDt~12d i , j !#. ~9.1!

Thus, the off-diagonal elements of the density matrix of
particle decay by a certain factor at each time step. If we
exp(2gDt)512h, we get

r i , j°~12h!r i , j1hr i , jd i , j , ~9.2!

which is equivalent to a measurement with probabilityh.
Thus stochastic collapses are a good model for such d
herence processes, as long as the decoherence during
actions can be neglected, for example, in low-density s
tems or when interactions between particles in the system
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instantaneous. Similarly, the depolarization process can
presented as a gradual change of the density matrix of
particle.

The results generalize to noninstantaneous interaction
long as the interactions last for less than a time step, so
there is a time interval in which decoherence takes pl
when the particle is not participating in any interaction. Th
is obvious if there is no noise during the interactions. Ho
ever, the results hold even if these interactions are both n
instantaneous and noisy. To see this, we argue in the foll
ing way. Letd characterize the decoherence rate during
interaction. The proof of the upper bound on the entang
ment length, for largeh, holds regardless of the amount o
noise in the interactions,d, because the proof uses only th
noise occurring between interactions. The proof of the low
bound on the entanglement length, for smallh, holds as long
as h1d is smaller than the threshold for fault toleranc
Hence, it is straightforward to see that the results hold
such noninstantaneous interactions as well.

One can relax several other assumptions that we h
made. The simplest generalization is to particles of m
than two states. Clearly, the results apply to particles w
any finite number of states, not necessarily qubits, and
ferent particles need not have the same number of poss
states. Another assumption is the restriction of the partic
to interact alternately. However, this exact form of the alt
nating interactions is not important, since any interact
graph of nearest-neighbor interactions is a subgraph of
alternating graph, if time is scaled by a factor of 2d.

The above arguments show that the analysis done in
paper regarding upper bounds on the entanglement leng
the supercritical phase in quantum computers holds also f
wide variety of quantum systems with macroscopically ma
finite-state particles, with local instantaneous interactio
and appropriate local decoherence processes. There
Theorem 1 and Corollary 1 can be generalized to these ca
In such quantum systems, our analysis provides an expl
tion for the emergence of macroscopic classical beha
above the critical noise rate, as will be discussed in the
section. If, in addition, such a system generates long-ra
entanglement in the absence of weak or no noise, then
proved to exhibit the same phenomenon of phase trans
in entanglement length.

X. OPEN PROBLEMS AND QUANTUM-CLASSICAL
TRANSITION

We have proved the existence of a phase transition
entanglement in noisy quantum computers, using the par
eter we have called the entanglement length. However,
merely introduced the phenomenon in this paper. The lis
questions remaining open is extremely large, and varie
different physical fields, and there are many implications
the results that require further study.

A set of open questions regarding the phase transi
comes from statistical physics. For example, what are
critical exponents related to this phase transition? What is
universality class of this phase transition? In fact, it is n
clear that there is only one critical point here. In the case
1-11
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the quantum computer, or other quantum systems, th
might well be an intermediate regime of noise between
two thresholds, for which the entanglement behaves in a
ferent way, i.e., its dependence on the distance is neithe
exponential decay nor constant. The question of showing
there is only one critical point remains open.

An important question is how general these results are
particular those results concerning the weak-noise regime
this paper, we have been able to show the existence
nontrivial subcritical phase in fault-tolerant quantum co
puters. Are there more natural quantum systems, in partic
systems that are homogeneous~or periodic! in space and in
time, which have local interactions and local noise, that
able to maintain long-range entanglement in the presenc
weak or zero local noise for a long time? Does a rand
quantum system, i.e., one in which random interactions
applied, exhibit long-range quantum correlations? Such s
tems will provide more examples of quantum systems
which a phase transition in entanglement length occurs.

Indeed, it is worthwhile to ask which of our assumptio
regarding the properties of the physical system are essen
and which are technical. Intuitively, the most important a
sumption is that of locality of both the noise and the int
actions. This is true since locality is what makes the t
competing forces, the interactions that tend to entangle
system and the noise that tends to disentangle it, compar
in power. It is the fact that two forces of approximately ev
power compete that gives rise to the existence of a crit
point at which a phase transition occurs. It seems, howe
that the assumption about the exact form of the noise pro
might not be very important. An open question is to char
terize and understand the exact class of noise operatorsE for
which the results hold. The question is what noise opera
can be decomposed into a process in which with a cer
probability or amplitude the particle becomes disentang
from the other particles in the system. It also seems that
discretization of the interactions is not essential. Howeve
is not clear how to generalize the results to the case in wh
the particle interacts simultaneously with all its neighbo
and the environment. It seems that a considerably diffe
approach would be needed to deal with this case.

Perhaps the most interesting open problem raised by t
results is to further understand their implications for our u
derstanding of the transition from quantum to classical ph
ics. By studying the entanglement in quantum computers
were able to shed some light on the fundamental questio
the transition from quantum to classical: Our results sugg
that in some cases this transition is actually a phase tra
tion. Moreover, the paper suggests that the emergenc
classical macroscopic phenomena in large quantum sys
can be attributed in the case of fault-tolerant quantum co
puters and in other cases to the fact that the noise ra
larger than a certain critical point, so that the entanglem
length is finite. The suggestion of explaining the transiti
from quantum to classical macroscopic behavior as a ph
transition in entanglement is fundamentally different fro
the standard point of view of a gradual transition, usua
explained by decoherence. What is the applicability of t
explanation? This question is related, of course, to the un
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standing of the generality of the phase transition result. T
relation of the phase transition to other abrupt quantu
classical phenomena, such as the threshold for violation
Bell inequalities@11#, should also be understood. Anoth
important question is whether there exists some classica
quasiclassical description of the behavior of a quantum s
tem in its finite-entanglement-length phase. In essence,
expect such a description to exist due to the general intui
that entanglement is what captures the ‘‘quantumness’
the system. This intuition raises another related quest
which is whether the existence of a phase transition in
tanglement induces other quantum phase transitions at
same critical point in the same system.

A very interesting problem is to come up with a bett
order parameter related to entanglement, rather than the
tanglement length. There are many problems with the
tanglement length as an order parameter. The most impo
one is that it might be that the system is very entangled,
the entanglement between any two distant subsets is z
Such is, for example, a system in the state (1/&)(u0n&
1u1n&), for which any subsystem is nonentangled. Entang
ment in such very entangled quantum systems will not
detected when looking at subsystems, and the entanglem
length will therefore contain no information about the actu
behavior of the entanglement in the system. Another moti
tion for this question is provided by@5#, where the size of the
clusters is analyzed, relaxing the restriction to neare
neighbor interactions. The sizes of the clusters in this c
indeed transform from logarithmic to linear at a critical noi
rate. However, the notion of entanglement length cannot
defined in a system without geometry, so it is not clear h
to define an order parameter that exhibits the phase trans
in this case.

An important observation is that the model discussed h
deals with quantum systems out of thermal equilibrium. T
quantum systems we consider here can be in a steady s
but the density matrix is not in the Gibbs distribution of th
eigenvectors of some Hamiltonian, and there is no temp
ture associated with the system. Thus the notion of z
noise rate does not coincide with that of zero temperature
other words, long-range entanglement when the noise is
does not necessarily coincide with long-range entanglem
in the ground state of the Hamiltonian of the system. T
fact that the quantum computer does not achieve ther
equilibrium despite the noise is explained by the fact that
system is constantly cooled by quantum error corrections
is left as an open problem to further investigate possi
thermal equilibrium phase transitions in entanglement, a
the connection to the nonequilibrium phase transition p
sented here. The reader is referred to@25# and references
therein for an introduction to nonequilibrium phase tran
tions.

We conclude with the intriguing open problem of expe
mental verification of these results. The entanglement len
is an observable, and in principle it can be measured. S
an experiment might teach us a lot about quantum entan
ment on large scales. Unfortunately, there is no exist
physical realization of a quantum computer of more th
several qubits, and hence the existence of a phase trans
1-12
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in entanglement length in fault-tolerant quantum compu
cannot be verified at this stage. However, perhaps it is p
sible to test the results regarding the upper bound on
tanglement length in other quantum systems for which th
rem 1 applies, as was discussed in the previous section.
approach is to find a quantum system in which it is poss
to measure with high enough accuracy the joint density m
trix of two subsets of the system. The entanglement betw
the two subsystems can then be numerically approxima
using a~doable, but extremely difficult! minimization over
Eq. ~2.2!. The entanglement can then be found as a func
of the distance between the sets, from which the entan
ment length can be deduced. It would be extremely inter
ing to design and perform such an experiment in order
measure the entanglement length in a concrete quantum
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tem, and to compare it with the entanglement length p
dicted by the upper bound given in Corollary 1.

ACKNOWLEDGMENTS

I am most grateful to Michael Ben-Or and to Micha
Nielsen. Discussions with them inspired this work. I am a
indebted to Joseph Imri, Noam Nisan, David Ruelle, a
Wojtek Zurek for interesting and stimulating discussions
would like to thank Jennifer Chayes, Christian Borgs, Jeo
Han Kim, David Aldous, and Oded Schramm for use
comments about classical percolation. Thanks to J
Kempe, Daniel Lidar, and Michael Nielsen for useful com
ments and corrections on early drafts of this paper. This
search was supported in part by the University of Califor
and NDF Grant No. CCR-9800024.
her,

v.

,

ity
,

-

c.

e,
@1# P. W. Shor, SIAM J. Comput.26, 1484~1997!.
@2# D. Aharonov and M. Ben-Or, inProceedings of the 29th An

nual ACM Symposium on Theory of Computing (STOC)~ACM
Press, 1997!.

@3# A. Yu. Kitaev, Russ. Math. Surveys52, 1191~1997!.
@4# E. Knill, R. Laflamme, and W. Zurek, Science279, 342

~1998!.
@5# D. Aharonov and M. Ben-Or, in37th Annual Symposium o

Foundations of Computer Science (FOCS), IEEE Computer
Society Press, 1996!, pp. 46–55.

@6# C. Bennett, D. P. DiVincenzo, J. Smolin, and W. Wootte
Phys. Rev. A54, 3824~1996!.

@7# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Re
Lett. 84, 2014~2000!.

@8# E. Rains, Phys. Rev. A60, 173 ~1999!.
@9# W. H. Zurek, Phys. Today44 „10…, 36 ~1991!.

@10# D. Giulini, E. Joos, C. Keifer, J. Kupsch, I.-O. Stamatescu, a
H. D. Zeh, Decoherence and the Appearance of a Classi
World in Quantum Theory~Springer-Verlag, Berlin, 1996!.

@11# L. A. Khalfin and B. S. Tsirelson, Found. Phys.22, 879
~1992!.

@12# G. Grimmett,Percolation~Springer-Verlag, New York, 1989!.
@13# A. Einstein, N. Rosen, and B. Podolsky, Phys. Rev.47, 777

~1935!.
@14# J. S. Bell, Physics~Long Island City, N.Y.! 1, 195 ~1964!.
,

.

d
l

@15# J. S. Bell, Rev. Mod. Phys.38, 447 ~1966!; Speakable and
Unspeakable in Quantum Mechanics~Cambridge University
Press, Cambridge, 1987!.

@16# C. Bennett, H. Bernstein, S. Popescu, and B. Schumac
Phys. Rev. A53, 2046~1996!.

@17# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Re
Lett. 80, 5239~1998!.

@18# M. A. Nielsen, Phys. Rev. A61, 064301~2000!.
@19# D. Gottesman, J. Mod. Opt.47, 333 ~2000!.
@20# M. V. Menshikov, S. A. Molchanov, and A. F. Sidorenko

Itogi Nauk. Tekh.24, 53 ~1986!.
@21# M. Aizenman and D. J. Barsky, Commun. Math. Phys.108,

489 ~1987!.
@22# J. T. Chayes, A. Puha, and T. Sweet, inProbability Theory and

Applications, edited by E. Hsu and S. Varadhan, IAS/Park C
Mathematics Series Vol. 6~American Mathematical Society
Providence, RI, 1999!.

@23# Feller,An Introduction to Probability Theory and its Applica
tions ~Wiley, New York, 1961!, Vol. 1, pp. 275–276.

@24# G. M. Palma, K.-A. Suominen, and A. K. Ekert, Proc. R. So
London, Ser. A452, 567 ~1996!.

@25# J. Marro and R. Dickman,Nonequilibrium Phase Transitions
in Lattice Models~Cambridge University Press, Cambridg
1999!.

@26# D. Aharonov and M. Ben-Or, SIAM J. Comput.~to be pub-
lished!; e-print quant-ph/9906129.
1-13


