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Family of Grover’s quantum-searching algorithms

A. Galindo and M. A. Martı´n-Delgado
Departamento de Fı´sica Teo´rica I, Universidad Complutense, 28040-Madrid, Spain

~Received 14 June 2000; published 8 November 2000!

We introduce the concepts of Grover operators and Grover kernels to systematically analyze Grover’s
searching algorithms. Then we investigate a one-parameter family of quantum searching algorithms of Grover
type and we show that the standard Grover algorithm is a distinguished member of this family. We show that
all the algorithms of this class solve the searching problem with an efficiency of orderO(AN), with a
coefficient which is class-dependent. The analysis of this dependence is a test of the stability and robustness of
the algorithms. We show the stability of this constructions under perturbations of the initial conditions and
extend them to a very general class of Grover operators.

PACS number~s!: 03.67.Lx
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I. INTRODUCTION

The problem of searching for an element in a list ofN
unsorted elements when this number becomes very larg
known to be one of the basic problems of computatio
science. Classically, one may devise many strategies to
form that search, but if the elements in the list are distribu
with equal probability, then we shall need to makeO(N)
trials in order to have a high level of confidence of findi
the desired element, also called the marked element.
formulation of quantum computation as a well-establish
theoretical discipline for storing and processing informat
@1# has opened the possibility of designing new search
algorithms with no classical analogue. The familiar Grov
quantum searching algorithm takes advantage of the q
tum mechanical properties to perform the searching prob
with an efficiency of orderO(AN) @2,3#.

In classical computation there exist design techniques
provide general directions for algorithmic problem solvin
In quantum computation, however, the list of quantum al
rithms is very short. It seems we are lacking the basic p
ciples underlying the quantum algorithmic design. Und
these circumstances, it is a good choice to put to the tes
currently known quantum algorithms. In this work, our a
is to follow this goal with Grover’s quantum searching alg
rithm by trying to understand the relevant pieces of this
gorithm and questioning to what extent they allow for ge
eralization@4–10#.

Let us state the searching problem in terms of a
L@0,1, . . . ,N21# with a numberN of unsorted elements
We shall denote byx0 the marked element inL that we are
searching for. The quantum mechanical solution of t
searching problem goes through the preparation of a qu
tum register in a quantum computer to store theN items on
our list. This is how quantum parallelism is realized. Thu
let us assume that our quantum registers are made ofn qubits
so that the total elements we have areN52n. Let us denote
by ux&, x50,1, . . . ,N21 the ket states of the computation
basis which are orthonormalized. Any stateuC& of the quan-
tum register is a linear superposition of the computatio
states. In the beginning of the algorithm the quantum regi
is initialized to a given quantum stateuC&5uxin&.

The second component of the algorithm is to design
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quantum operation that will be repeatedly applied touxin& in
order to find the marked element. This strategy is similar
the classical counterpart algorithm. The difference is the f
that the quantum operation is realized in terms of a unit
operator that implements the reversible quantum comp
tion. It is this quantum operation that has been so ne
designed by Grover@2#. With Grover’s choice we may say
that the quantum evolution is such that the constructive
terference of quantum amplitudes is directed towards
marked state one looks for.

II. GROVER OPERATORS

In order to set up our analysis we shall need to introdu
some definitions.

Definition 1.A Grover operatorG is any unitary operator
with at most two different eigenvalues; i.e.,G is a linear
superposition of two orthogonal projectorsP andQ:

G5aP1bQ, P25P, Q25Q, P1Q51, ~1!

wherea,bPC are complex numbers of unit norm.
Definition 2. A Grover kernelK is the product of two

Grover operators:

K5G2G1 . ~2!

Some elementary properties follow immediately from the
definitions.

Property 1. Any Grover kernelK is a unitary operator
and, therefore, it can be used to implement the unitary e
lution in a quantum computer.

Property 2.Let the Grover operatorsG1 ,G2 be chosen
such that

G15aPx0
1bQx0

, Px0
5ux0&^x0u, Px0

1Qx0
51,

~3!

G25g P̄1dQ̄, P̄1Q̄51, ~4!

with P̄ given by the rank 1 matrix
©2000 The American Physical Society03-1
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P̄5
1

N S 1 . . . 1

A A

1 . . . 1
D . ~5!

This is clearly a projectorP̄5uk0&^k0u on the subspace

spanned by the stateuk0&5
1

AN
(1, . . . ,1)t, where the super-

script denotes the transpose. Then, if we take the follow
set of parameters,

a521, b51, g521, d51, ~6!

the Grover kernel~2! reproduces the original Grover choic
This property follows immediately by construction. In fac
we have in this caseG15122Px0

5:Gx0
while the operator

G25122P̄ coincides with the diffusion operator introduce
by Grover to implement the inversion about the average@2#.

One can also show the following property, which pr
vides a geometrical meaning for the Grover kernels.

Property 3.Let KG denote the set of all the Grover ke
nels for fixed$ux0&,uk0&%. ThenKG can be viewed as a three
dimensional~3D! subset of the group U~2!, which is of the
form S13KG8 , whereKG8 is a 2D submanifold of SU~2! ~Fig.
1!.

The content of this property is illustrated in Fig. 1.
follows from the fact that the two parameters of a Grov
kernel in Definition 2 with the fixing~6! can be used to
parametrize a subset of the unitary group U~2! of complex
232 matrices. This 3D subset has a factorized formS1

3KG8 , whereS1 is the unit circle@the group U~1!#, and we
call KG8 a certain 2D submanifold of the group of spec
unitary matrices SU~2! whose construction we explain in th
following and plot in Fig. 1. This figure is constructed b
parametrizing the two elements6 iG1,2 of SU~2! as follows:
6 iG1,25eia1,2n1,2•s, wheres are the Pauli matrices andn1,2
are unit vectors which are kept fixed. Likewise, we para
etrize the corresponding Grover kernel~2! as K5eian•s.
Then, upon varying the parametersa1,2 we obtain the surface
depicted in Fig. 1. Let us point out the following interpret
tion of the Grover operators. Let us think of the compu
tional basis$ux&% as a coordinate basis in quantum mechan
and introduce the quantum discrete Fourier transform in
standard fashion,ux̂&ªUDFTux&5(1/AN)(y50

N21e2p ix•y/Nuy&.
The transformed basis$ux̂% can then be seen as the du
momentum basis. Then, it is easy to see that in such a b
the projector operatorP̄ takes the following form:

UDFT
21 P̄UDFT5u0&^0u5:P0 . ~7!

This means that the Grover operatorG2 takes the same ma
trixlike form in the momentum basis as the Grover opera
G1 in the coordinate basis. They are somehow dual of e
other. The original Grover kernel takes then the form

K5UDFTGx50UDFT
21 Gx0

, ~8!
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which shows that a Grover kernel has a part local in coo
nate space and another part which is local in momen
space. This ‘‘momentum’’ interpretation of the search alg
rithm stems from a quantum mechanical analogy betw
the computational basis and its Fourier-transformed st
that enter into the definition of the Grover operators. W
would like to point out that similar analogies have been us
in connection with alternative formulations of the quantu
searching algorithm, namely, the analog analogue of a dig
quantum computation with Grover’s algorithm@10# which is
based on a Hamiltonian formulation.

III. THE SEARCHING ALGORITHMS

A. The basic formalism

Next, the third part of the algorithms corresponds to a
plying the Grover kernelK to the initial stateuxin& a number
of timesm, seeking a final stateuxf& given by

uxf~m!&5Kmuxin& ~9!

FIG. 1. Top: half of the surfaceKG8 for N510. Bottom: the
whole surfaceKG8 for N510. The straight lines represent the rot
tion axes corresponding toiG1,2PSU(2) and the normal to thei
plane. The dot signals the original Grover kernel. The front cir
curves are the bordera5p,3p, wherea is the rotation angle. The
rest of the curves represent the locus of kernelsK with factors iG1,2

with the same rotation angles mod 2p.
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such that the probabilityP(x0) of finding the marked state i
above a given threshold value. We shall take this value to
1/2, meaning that we choose a probability of success of 5
or larger. Thus, we are seeking to determine under wh
circumstances the following condition,

P~x0!5u^x0uKmuxin&u2.1/2, ~10!

holds true.
The analysis of this probability is simplified if we realiz

that the evolution associated with the searching problem
be mapped onto a reduced 2D space spanned by the ve

H ux0&,ux'&ª
1

AN21
(

xÞx0

ux&J . ~11!

Then we can easily compute the projections of the Gro
operatorsG1 ,G2 in the reduced basis with the result

G15S a 0

0 b D , ~12!

G25S d 0

0 g D 1~g2d!S 1

N
AN21

N

AN21

N

21

N
D . ~13!

From now on, we shall fix two of the phase parameters us
the freedom we have to define each Grover factor in Eq.~2!
up to an overall phase. Then we fix them as follows:

a5g521. ~14!

With this choice, the Grover kernel~2! takes the following
form in this basis:

K5
1

N S 11d~12N! 2b~11d!AN21

~11d!AN21 b~11d2N!
D . ~15!

We shall fix the initial conditions using the same initi
state uxin& as in the original Grover algorithm@2#, i.e., we
choose the uniform state corresponding to zero momen
and find its components in the reduced basis to be

uxin&5
1

AN
ux0&1AN21

N
ux'&. ~16!

In order to compute the probability amplitude in Eq.~10!,
we introduce the spectral decomposition of the Grover ke
K in terms of its eigenvectors$uk1&,uk2&%, with eigenvalues
eiv1,eiv2. Thus we have

A~x0!ª^x0uKmuxin&

5
1

AN
(
j 51

2

$u^x0uk j&u2

1AN21^x0uk j&^k j ux'&%eimv j . ~17!
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This, in turn, can be cast into the following closed form:

^x0uKmuxin&5eimv1S 1

AN
1~eimDv21!^x0uk2&^k2uxin& D ,

~18!

with Dv5v22v1.
In terms of the matrix invariants

DetK5bd, Tr K52~b1d!1~11b!~11d!
1

N
,

~19!

the eigenvaluesz1,25eiv1,2 are given by

z1,25~Tr K !/27A2DetK1~Tr K/2!2. ~20!

The corresponding unnormalized eigenvectors are

uk1,2&}S A7A24~DetK !N21A2

2~11d!AN21

1
D , ~21!

with

Aª~b2d!N1~12b!~11d!. ~22!

Although we could work out all the expressions for a gene
valueN of elements in the list, we shall restrict our analys
to the case of a large number of elements,N→`, and we
shall leave for a numerical simulation the effect of arbitra
N. Thus, in this asymptotic limit we need to know the b
havior for N@1 of the eigenvectoruk2&, which turns out to
be

uk2&}S b2d

11d
AN1OS 1

AN
D

1
D . ~23!

Thus, for generic values ofb,d we observe that the firs
component of the eigenvector dominates over the sec
one, meaning that asymptoticallyuk2&;ux0& and then
^x0uk2&^k2uxin&5O(1/AN). This implies that the probability
of success in Eq.~18! will never reach the threshold valu
~10!. Then we are forced to tune the values of the two p
rameters in order to have a well-defined and nontrivial al
rithm and we demand

b5dÞ21. ~24!

Now the asymptotic behavior of the eigenvector chan
and is given by a balanced superposition of marked and
marked states, as follows:

uk2&;
1

A2
S id1/2

1 D . ~25!
3-3
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This is normalized and we see that none of the compon
dominates. When we insert this expression into Eq.~18! we
find

z^x0uKmuxin& z;
udu
2

ueimDv21u;UsinS mDv

2 D U. ~26!

This expression means that we have succeeded in findi
class of algorithms that are appropriate for solving the qu
tum searching problem. Now we need to find out how e
cient they are. To do this let us denote byM the values of the
time stepm at which the probability becomes maximum
then

M5 bup/Dvu c, ~27!

where b c denotes the ‘‘floor’’ of a number, i.e., the close
integer from below. As it happens, we are interested in
asymptotic behavior of this optimal period of timeM. From
Eq. ~20! we find the following behavior asN→`:

Dv;
4

AN
ReAd. ~28!

Thus, if we parametrized5eif, we finally obtain the expres
sion

M; b p

4 cos
f

2

ANc ~29!

Therefore, we conclude that the Grover algorithm of t
class parametrized byf is a well-defined quantum searchin
algorithm with an efficiency of orderO(AN) and with a
subdominant behavior that depends on each element o
family. Within this class, the original Grover algorithm is
distinguished element for which the coefficient in Eq.~29!
achieves its optimal value atf50. Moreover, the worst
value occurs forf→p; in this limit M is not well defined,
and it corresponds to the trivial case where the Grover ke
is just the identity operator,K51.

The expression~29! for M can also be given anothe
meaning regarding the stability of the Grover casef50. It is
plain that under a small perturbationdf around this value,
its optimal nature is not spoiled in first-order approximati
for we find a behavior which is quadratic in the perturbatio
namely,M;(p/4)@110.125(df)2#AN. This stability con-
sidered here is with respect to perturbations in eigenva
~or eigenvectors! in the reduced 2D subspace specified by
quantum searching problem~11!. We also require these typ
of perturbations to hold in all iterations.

However, if we happen to choose a Grover kernel with
f far from 0 we may end up with a searching algorithm f
which the leading behavior orderO(AN) is masqueraded by
the big value of the coefficient and the time needed
achieve a succeeding probability becomes very long. For
stance, we may have a Grover kernel with a behaviorM
;103AN and for a value ofN5106 it would turn out to be as
efficient as a classical algorithm of orderO(N)5106. Thus,
06230
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the limit f→p behaves as a sort of classical limit where t
quantum properties disappear. In Fig. 2 we have plotted
probability of success as a function of the time stepm for a
list of N51000 elements and a choice of parametersb5d
5eip/2 satisfying condition~24!. We observe how the algo
rithm is fully efficient in achieving the maximum probabilit
possible. Despite the fact thatf5p/2 is not close to Grov-
er’s optimal value of 0, we find an excellent behavior. T
main difference with the optimal case is that here the num
of maxima is 14 while for Grover’s it is 20, as implied by 2
This looks like a pattern of fully constructive interference

In Fig. 3 we have plotted the same function but with

FIG. 2. Probability of successP as a function of the time step
for N51000 andb5d5eip/2.

FIG. 3. Probability of successP as a function of the time step
for N51000 andb5 i ,d5 iei5/4 ~up!, b5 i ,d5ei3 ~down!.
3-4
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choice of parametersb5 i ,d5 iei5/4 (b5 i ,d5 iei3), violat-
ing condition~24!. We observe how the algorithm becom
inefficient and the maximum it takes is less than 0.002 19
~0.001 864! for any time step. This looks like a pattern o
partially constructive interference.

We find this behavior to be reminiscent of a quantu
phase transition where the transition is driven by quant
fluctuations instead of standard thermal fluctuations. In
type of transition each quantum phase is characterized
ground state which is different in each phase. It is the va
tion of a coupling constant in the Hamiltonian of the qua
tum many-body problem, which controls the occurrence
one quantum phase or another in the same manner a
temperature does in thermal transitions. In our case we
consider the two different asymptotic behaviors of the eig
vectoruk2& as playing the role of two ground states. Follow
ing this analogy, we may see our family of algorithms p
rametrized by a torusT5S13S1 where the parametersb and
d take their values and the differencegªb2d is a sort of
coupling constant that governs in which of the two pha
we are. WhengÞ0 we fall into a sort of disordered phas
where the efficiency of this class of Grover’s algorithms
spoiled. However, wheng50 we are located precisely at on
equal superposition of the principle cycles of the torus wh
defines a one-parameter family of efficient algorithms.

B. The influence of initial conditions

Next we shall address the issue of the extent to which
one-parameter family of algorithms depends on the choic
initial conditions for the initial stateuxin&. We would like to
check that the stable behavior we have found is not distur
under perturbations of initial conditions.

Let us consider a more general initial stateuxin& which is
not the precise one used in the original Grover algorithm@2#
but instead it is chosen as

uxin&5
a

AN
ux0&1bAN21

N
ux'&, ~30!

wherea and b are chosen to satisfy a normalization con
tion. Then, it is possible to go over the previous analysis
find that the probability amplitude is now given by

^x0uKmuxin&5eimv1S a

AN
1~eimDv21!^x0uk2&^k2uxin& D ,

~31!

where nowuxin& is the new initial state~30!. We have to
distinguish two cases:~i! The coefficienta of the marked
state is order 1, and~ii ! it is order bigger than 1, say, of orde
O(AN). In the latter case~ii !, it means that the initial state i
so peaked around the marked state that we do not even
to resort to a searching algorithm, but instead measure
rectly on the initial state to find the marked state succe
fully. Thus, we shall restrict ourselves to case~i! in the fol-
lowing. Now, the key point is to realize that all the previo
asymptotic analyses are dominated by the behavior of
06230
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eigenvectoruk2& given by expression~23!, which is some-
thing intrinsic to the Grover kernel and independent of t
initial conditions. Thus, if condition~24! is not satisfied, then
as we are in case~i! the first term an the right-hand side o
Eq. ~31! is not relevant and we are led again to the conc
sion that the algorithm is not efficient. On the contrary,
condition~24! is satisfied, the same mechanism based on
~25! operates again and the algorithm has a probability
success measured by

u^x0uKmuxin&u;ubusinS mDv

2 D , ~32!

with Dv also given by Eq.~28!. Then we may conclude tha
the class of algorithms is stable under perturbations of
initial conditions.

C. Extended formalism

Finally, we would like to check how general constructio
is this in terms of projection operators of the type used in E
~5! for P̄. Toward this end, let us recall thatP̄ can be inter-
preted as the projectoru0̂&^0̂u. Thus, a natural generalizatio
is to consider a projector on a different momentum state, s
u ŷ0&, with y0Þ0. The matrix elements of this projection op
erator in the coordinate basis are

~ P̄!x,x85
1

N
e2p i (x82x)y0 /N, x,x850,1, . . . ,N21.

~33!

We can go even further and consider a general form
the statesux0&,ux'&,uk0& as follows:

ux0&5~1,0, . . . ,0! t,

ux'&5
1

A12a1
2 ~0,a2 , . . . ,aN! t, ~34!

uk0&5~a1 ,a2 , . . . ,aN! t,

where there is no loss of generality by choosingux0& in this
way; a1 , . . . ,aN is a given and normalized set of arbitra
complex amplitudes, witha1.0. We will assume that
uuauu2.a1

2.

The projectorP̄ is chosen to be

P̄5uk0&^k0u ~35!

and it admits Eq.~33! as a particular case.
Now in the reduced 2D basis spanned by$ux0&,ux'&% the

Grover kernel has the following expression:

K5S 2d1Da1
2 2bDa1A12a1

2

Da1A12a1
2 b~Da1

221!
D , ~36!

with Dª11d. Thus all the dynamics depends on the re
tive strength of the real amplitudea1 with respect to the res
3-5
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of the amplitudes. If we seta i51/AN ; i , then we recover
the same expression as in Eq.~15!. Moreover, the initial
condition is taken as

uxin&5a1ux0&1A12a1
2ux'&. ~37!

In order to perform our analysis, we shall assume that
unknown amplitudea1 behaves generically asa1;1/AN,
and consequentlyA12a1

2;A121/N. Under these circum-
stances, we find the following asymptotic behavior for t
eigenvectoruk2& of the Grover kernel: ifbÞd anddÞ21,

uk2&}S b2d

11d

1

a1

1
D , ~38!

and if b5d,

uk2&;
1

A2
S id1/2

1 D . ~39!

This latter case is again the only one favorable to obtain
an efficient algorithm and the behavior of the timeM for
achieving maximum probability of success takes the follo
ing form:

M;
pa1

21

4 cos
f

2

. ~40!

We conclude then that our construction of quantu
searching algorithms of Grover’s type are general eno
under different choices of Grover operatorsG1 ,G2 and that
nc
s

th

m

y
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the analysis performed with the simplest choice of these
erators captures the essential properties of the class of a
rithms we have presented.

IV. CONCLUSIONS

We have introduced the notion of Grover operators a
Grover kernels that lead to a systematic study of Grove
quantum searching algorithms. These notions facilitate
generalization of Grover’s algorithms in several direction
We have characterized the basic features of this algorithm
terms of these operators whose main properties we have
tablished in Sec. II. Using these operators, we have inve
gated a family of Grover kernels whose qualities as effici
algorithms depend on the range of parameters entering
construction of their associated Grover operators. When
algorithms are efficient, they also perform the searching t
with order O(AN), and the original Grover’s choice give
the optimum value in the one-parameter family of alg
rithms. Moreover, we have extended this study to incor
rate initial conditions different than the standard uniform in
tial states and we have checked that aside from excepti
cases, the basic algorithms of Sec. III maintain their e
ciency. Finally, we have also addressed the issue of con
ering quite general Grover operators and found that the b
efficiency properties of the simplest choices for Grover’s
gorithm remain unchanged.

ACKNOWLEDGMENTS

We would like to thank J. I. Cirac and L. K. Grover fo
carefully reading the manuscript and suggesting referen
This work was partially supported by the CICYT throug
Project No. AEN97-1693~A.G.! and by the DGES through
Grant No. PB97-1190~M.A.M.-D.!.
r,

r,

t

@1# D. Deutsch, Proc. R. Soc. London, Ser. A400, 97 ~1985!; P.
Benioff, Phys. Rev. Lett.48, 1581~1982!; R. P. Feynman, Int.
J. Theor. Phys.21, 467 ~1982!; , Optics News11, 11 ~1985!;
A. Yao ~unpublished!; P. Shor, inProceedings of the 35th
Annual Symposium on the Foundations of Computer Scie,
edited by S. Goldwasser~IEEE Computer Society Press, Lo
Alamitos, CA, 1994!, pp. 124–134.

@2# L. K. Grover, Phys. Rev. Lett.78, 325 ~1997!.
@3# A. Yao, in Proceedings of the 34th Annual Symposium on

Foundations of Computer Science~IEEE, Computer Society
Technical Committee on Mathematical Foundations of Co
puting, Los Alamitos, CA, 1993!, pp. 352–360.

@4# M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Fortschr. Ph
e

e

-

s.

46, 493 ~1998!; e-print quant-ph/9605034.
@5# C. Zalka, Phys. Rev. A 60, 2746 ~1999!; e-print

quant-ph/9711070.
@6# D. Biron, O. Biham, E. Biham, M. Grassl, and D. A. Lida

e-print quant-ph/9801066.
@7# O. Biham, E. Biham, D. Biron, M. Grassl, and D. A. Lida

e-print quant-ph/9801066.
@8# R. Jozsa, e-print quant-ph/9901021.
@9# M. Mussinger, A. Delgado, and A. Alber, e-prin

quant-ph/0003141.
@10# E. Farhi and S. Gutmann, Phys. Rev. A57, 2403 ~1998!;

e-print quant-ph/9612026.
3-6


