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Family of Grover's quantum-searching algorithms
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We introduce the concepts of Grover operators and Grover kernels to systematically analyze Grover’s
searching algorithms. Then we investigate a one-parameter family of quantum searching algorithms of Grover
type and we show that the standard Grover algorithm is a distinguished member of this family. We show that
all the algorithms of this class solve the searching problem with an efficiency of @¢eN), with a
coefficient which is class-dependent. The analysis of this dependence is a test of the stability and robustness of
the algorithms. We show the stability of this constructions under perturbations of the initial conditions and
extend them to a very general class of Grover operators.

PACS numbsd(s): 03.67.Lx

. INTRODUCTION quantum operation that will be repeatedly appliedxg) in
order to find the marked element. This strategy is similar to

The problem of searching for an element in a listNdf  the classical counterpart algorithm. The difference is the fact
unsorted elements when this number becomes very large that the quantum operation is realized in terms of a unitary
known to be one of the basic problems of computationabperator that implements the reversible quantum computa-
science. Classically, one may devise many strategies to pefion. It is this quantum operation that has been so neatly
form that search, but if the elements in the list are distributediesigned by Grovef2]. With Grover’'s choice we may say
with equal probability, then we shall need to ma®¢N)  that the quantum evolution is such that the constructive in-
trials in order to have a high level of confidence of finding terference of quantum amplitudes is directed towards the
the desired element, also called the marked element. Th@arked state one looks for.
formulation of quantum computation as a well-established
theoretical discipline for storing and processing information
[1] has opened the possibility of designing new searching
algorithms with no classical analogue. The familiar Grover |n order to set up our ana|ysis we shall need to introduce
guantum searching algorithm takes advantage of the quakome definitions.
tum mechanical properties to perform the searching problem Definition 1.A Grover operatoiG is any unitary operator
with an efficiency of orde©(/N) [2,3]. with at most two different eigenvalues; i.€5 is a linear

In classical computation there exist design techniques thauperposition of two orthogonal projectdpsand Q:
provide general directions for algorithmic problem solving.
In quantum computation, however, the list of quantum algo- G=aP+BQ, P2?=P, Q?=Q, P+Q=1, (1
rithms is very short. It seems we are lacking the basic prin-
ciples L_Jnderlying the_ quantum algorithmic design. Underwherea,,BeC are complex numbers of unit norm.
these circumstances, it is a goqd choice to put to the test the Definition 2. A Grover kernelK is the product of two
currently known quantum algorithms. In this work, our aim Grover o tors:
. . X ; ) perators:
is to follow this goal with Grover’s quantum searching algo-
rithm by trying to understand the relevant pieces of this al-
gorithm and questioning to what extent they allow for gen-
eralization[4-10].

Let us state the searching problem in terms of a listSome elementary properties follow immediately from these
£[0,1, ... N—1] with a numberN of unsorted elements. definitions.
We shall denote by, the marked element i that we are Property 1.Any Grover kernelK is a unitary operator
searching for. The gquantum mechanical solution of thisand, therefore, it can be used to implement the unitary evo-
searching problem goes through the preparation of a quanfution in a quantum computer.
tum register in a quantum computer to store khé&ems on Property 2.Let the Grover operator&;,G, be chosen
our list. This is how quantum parallelism is realized. Thus,such that
let us assume that our quantum registers are madejobits
so that the total elements we have &re 2". Let us denote Gi=aP, +BQx, Px,= [Xo){(Xol, Pxyt Qx,= 1,
by |x), x=0,1, ... N—1 the ket states of the computational (3)
basis which are orthonormalized. Any st{iée) of the quan-
tum register is a linear superposition of the computational
states. In the beginning of the algorithm the quantum register
is initialized to a given quantum stat® ) =|x;,). o

The second component of the algorithm is to design awith P given by the rank 1 matrix

Il. GROVER OPERATORS

K=G,G;. )

G,=yP+48Q, P+Q=1, (4)
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1 . .
N : . (5)
1 ... 1

This is clearly a projectoP=|ko)(ko| on the subspace

1
spanned by the stat&,)= \/_N(l’ ...,1}, where the super-

script denotes the transpose. Then, if we take the following
set of parameters,

a=-1, p=1, y=-1, 6=1, (6)
the Grover kerne(2) reproduces the original Grover choice.

This property follows immediately by construction. In fact,
we have in this casé;=1— 2P, =:Gy, while the operator

G,=1-2P coincides with the diffusion operator introduced
by Grover to implement the inversion about the averid@je

One can also show the following property, which pro-
vides a geometrical meaning for the Grover kernels.

Property 3.Let Kg denote the set of all the Grover ker-
nels for fixed{|Xo),|ko)}. ThenKg can be viewed as a three-
dimensional(3D) subset of the group @), which is of the
form S'X K, wherekC§ is a 2D submanifold of S(2) (Fig.

1).

The content of this property is illustrated in Fig. 1. It
follows from the fact that the two parameters of a Grover
kernel in Definition 2 with the fixing(6) can be used to
parametrize a subset of the unitary grouf®2)Jof complex
2X2 matrices. This 3D subset has a factorized fd®h

X Kg, whereS" is the unit circle[the group U1)], and we FIG. 1. Top: half of the surfacéCg for N=10. Bottom: the
call K; a certain 2D submanifold of the group of special whole surfaceC;, for N=10. The straight lines represent the rota-
unitary matrices S(2) whose construction we explain in the tion axes corresponding 6, e SU(2) and the normal to their
following and plot in Fig. 1. This figure is constructed by plane. The dot signals the original Grover kernel. The front circle
parametrizing the two elementsiG, , of SU(2) as follows:  curves are the border= m,3w, wherea is the rotation angle. The
*+iG,=€e'*1.2"12 7 whereo are the Pauli matrices any , rest of the curves represent the locus of kerielgith factors G, ,
are unit vectors which are kept fixed. Likewise, we param-With the same rotation angles modr2
etrize the corresponding Grover kern@) as K=¢'*"?, ) ) _
Then, upon varying the parameters, we obtain the surface which shows that a Grover kernel.has_a part chal in coordi-
depicted in Fig. 1. Let us point out the following interpreta- Naté space and another part which is local in momentum
tion of the Grover operators. Let us think of the computa-SPace. This “momentum™ interpretation of the search algo-
tional basig|x)} as a coordinate basis in quantum mechanicdithm stems from a quantum mechanical analogy between
and introduce the quantum discrete Fourier transform in th%Zt anTepr“;‘ﬁ:'o‘”:ﬁL k;iisf:i it?onr? ;tfstrfguélg\;té?n;;ggtg?s SWSS
T _ N-1.2mix-y/N :
standard fashion|x) ::_UPFT|X>_(1/‘N)EV=°E Y. would like to point out that similar analogies have been used
The transformed basif{x} can then be seen as the dual iy connection with alternative formulations of the quantum

momentum basis. Then, it is easy to see that in such a basigarching algorithm, namely, the analog analogue of a digital
the projector operatdP takes the following form: guantum computation with Grover’s algoritHrh0] which is
based on a Hamiltonian formulation.

UperPUper=[0)(0| =:Py. (7)
I1l. THE SEARCHING ALGORITHMS
This means that the Grover operaty takes the same ma-
trixlike form in the momentum basis as the Grover operator ) .
G, in the coordinate basis. They are somehow dual of each Next, the third part of the algorithms corresponds to ap-

other. The original Grover kernel takes then the form plying the Grover kerneK to the initial statex;,) a number
of timesm, seeking a final statg;) given by

A. The basic formalism

— -1
K=UoerGy-oUorrCry ® Xe(m)) =K ©
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such that the probabilitP(x,) of finding the marked state is This, in turn, can be cast into the following closed form:
above a given threshold value. We shall take this value to be

1/2, meaning that we choose a probability of success of 50% _

or larger. Thus, we are seeking to determine under which (XolK™|X;,)=€'™1 \/NHG”M‘”—1)<X0|K2><K2|Xin> ,
circumstances the following condition, (19)

= K™ x;,)|2>1/2, 10
7)(XO) |<X0| |X|n>| ( ) with szwz—wl.

holds true. In terms of the matrix invariants
The analysis of this probability is simplified if we realize
that the evolution associated with the searching problem can

1
be mapped onto a reduced 2D space spanned by the vectors Detk=p5, TrkK=-(p+o)+(1+B)(1+ 5)N’

(19
X0}, X1 )= \/— X%o |X>] (1D the eigenvalueg, ,=€'“12 are given by
— - /_ 2

Then we can easily compute the projections of the Grover §12= (TrK)/2+ V= DetK+(TrK/2)% (20

operatorsG,,G, in the reduced basis with the result . . .

The corresponding unnormalized eigenvectors are
a 0
Gl=(0 B)’ (12 AT \—4(DetK)N?+A?
| Ky o) 2(1+6)YyN—-1 , (21
1 N-1 1
s (5 0 5 N N 13
>=lo (y=9) N=T -1 13 with

N A A=(B— )N+ (1—B)(1+ ). (22

From now on, we shall fix two of the phase parameters usin
the freedom we have to define each Grover factor in(Bq.
up to an overall phase. Then we fix them as follows:

%Ithough we could work out all the expressions for a generic
valueN of elements in the list, we shall restrict our analysis
to the case of a large number of elememMs; o, and we
a=y=—1. (14) shall leave for a numerical simulation the effect of arbitrary
N. Thus, in this asymptotic limit we need to know the be-
With this choice, the Grover kernép) takes the following havior forN>1 of the eigenvectofx,), which turns out to
form in this basis: be

L1 1+8(1-N)  —p(+8)N-1 s B3 o )
Nl (1+8)yN=1  B(1+5-N) (15 PAE 1+5 N/ 23)
1

We shall fix the initial conditions using the same initial
state|x;,) as in the original Grover algorithrf2], i.e., we
choose the uniform state corresponding to zero momentu
and find its components in the reduced basis to be

r;l;hus, for generic values 08,6 we observe that the first

component of the eigenvector dominates over the second

one, meaning that asymptoticallyx,)~|x,) and then

1 N_1 (Xo| k2){ k2| Xin) = O(1//N). This implies that the probability

[Xin) = —=|Xo0) + \/ X, ) (16)  of success in Eq(18) will never reach the threshold value
\/_ (10). Then we are forced to tune the values of the two pa-

- . . rameters in order to have a well-defined and nontrivial algo-
In order to compute the probability amplitude in Efj0), rithm and we demand

we introduce the spectral decomposition of the Grover kernel
K in terms of its eigenvectorg ), |k)}, with eigenvalues B=5+—1. (24)
e'“1,e'“2, Thus we have

Now the asymptotic behavior of the eigenvector changes

o— m .
A(x) 1= (%ol K™|in) and is given by a balanced superposition of marked and un-
2 marked states, as follows:
= E {1(xol )12
\/_ - J | > 1 <i51/2> (
Kp)™~ ——= . 25)
++N <X0|Kl><KJ|XL>}elme (17 V2l 1

062303-3



A. GALINDO AND M. A. MARTI N-DELGADO PHYSICAL REVIEW A 62 062303

This is normalized and we see that none of the component: 1f
dominates. When we insert this expression into @8) we P
find 0.8t

[e)]

8l
X0l Kl - e -1~

S [mAw
sin — ) (26) 0.

This expression means that we have succeeded in finding 0 - 4}
class of algorithms that are appropriate for solving the quan-
tum searching problem. Now we need to find out how effi- ¢ .2}
cient they are. To do this let us denoteMthe values of the

time stepm at which the probability becomes maximum; ]
then 0 200 400 600 800 pp 1000

M=||m/Aw], 27 FIG. 2. Probability of succesB as a function of the time step
) for N=1000 andg=6=¢'"2,
where| | denotes the “floor” of a number, i.e., the closest

integer from below. As it happens, we are interested in th
asymptotic behavior of this optimal period of tinvk From
Eq. (20) we find the following behavior all— o:

?he limit ¢— 7 behaves as a sort of classical limit where the
quantum properties disappear. In Fig. 2 we have plotted the
probability of success as a function of the time stefor a
4 list of N=1000 elements and a choice of paramej@rso
Aw~ —Re\/s. (28) =€ satisfying condition(24). We observe how the algo-
VN rithm is fully efficient in achieving the maximum probability
possible. Despite the fact thét= /2 is not close to Grov-
er's optimal value of 0, we find an excellent behavior. The
main difference with the optimal case is that here the number
of maxima is 14 while for Grover’s it is 20, as implied by 29.
\/ﬁ (29 This looks like a pattern of fully constructive interference.
In Fig. 3 we have plotted the same function but with a

Thus, if we parametrizé=e'?, we finally obtain the expres-
sion

M ~

4 cosz—
0.0022

Therefore, we conclude that the Grover algorithm of the =
class parametrized hy is a well-defined quantum searching 0.002
algorithm with an efficiency of orde©(y/N) and with a
subdominant behavior that depends on each element of th?
family. Within this class, the original Grover algorithm is a ¢ gg1¢
distinguished element for which the coefficient in Eg9)
achieves its optimal value ap=0. Moreover, the worst 0.0014
value occurs forp— 7r; in this limit M is not well defined,

.0018

and it corresponds to the trivial case where the Grover kerneO 0012
is just the identity operatoK=1. 0.001
The expression29) for M can also be given another
meaning regarding the stability of the Grover céseO. Itis 0 100 200 300 400 m 500
plain that under a small perturbatief around this value,
its optimal nature is not spoiled in first-order approximation P

for we find a behavior which is quadratic in the perturbation, 0.00175
namely,M ~ (7r/4)[ 1+ 0.125(5¢)%]\/N. This stability con- 0.0015
sidered here is with respect to perturbations in eigenvalue:

(or eigenvectorsin the reduced 2D subspace specified by the? 00125
guantum searching proble(il). We also require these type  0.001
of perturbations to hold in all iterations.

However, if we happen to choose a Grover kernel with a
¢ far from 0 we may end up with a searching algorithm for ©0-0005
which the leading behavior ord€(/N) is masqueraded by 0.00025
the big value of the coefficient and the time needed to

.00075

0

achieve a succeeding probability becomes very long. For in- 0 50 100 150 200
: m
stance, we may have a Grover kernel with a behaWior
~10*{N and for a value oN= 1Cf it would turn out to be as FIG. 3. Probability of succesB as a function of the time step

efficient as a classical algorithm of ord®(N)=10°. Thus, for N=1000 andg=i,s=ie'®* (up), B=i,5=¢€'® (down).
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choice of parameterg=i,s=ie'>* (B=i,s=ie'®), violat-  eigenvector,) given by expressiori23), which is some-
ing condition(24). We observe how the algorithm becomesthing intrinsic to the Grover kernel and independent of the
inefficient and the maximum it takes is less than 0.002 192 3nitial conditions. Thus, if conditioni24) is not satisfied, then
(0.001 864 for any time step. This looks like a pattern of as we are in cas@) the first term an the right-hand side of
partially constructive interference. Eqg. (31) is not relevant and we are led again to the conclu-
We find this behavior to be reminiscent of a quantumsion that the algorithm is not efficient. On the contrary, if
phase transition where the transition is driven by quantuntondition(24) is satisfied, the same mechanism based on Eq.
fluctuations instead of standard thermal fluctuations. In thig25) operates again and the algorithm has a probability of
type of transition each quantum phase is characterized by success measured by
ground state which is different in each phase. It is the varia-
tion of a coupling constant in the Hamiltonian of the quan-
tum many-body problem, which controls the occurrence of
one quantum phase or another in the same manner as the
temperature does in thermal transitions. In our case we mawith Aw also given by Eq(28). Then we may conclude that
consider the two different asymptotic behaviors of the eigenthe class of algorithms is stable under perturbations of the
vector| x,) as playing the role of two ground states. Follow- initial conditions.
ing this analogy, we may see our family of algorithms pa-
rametrized by a torug= S' X S! where the parametegand C. Extended formalism
S take their values and the differenge=8— 4 is a sort of Finall Id like to check h | fructi
coupling constant that governs in which of the two phases inafly, we would fike o check how general construction
we are. Wherg#0 we fall into a sort of disordered phase is this in terms of projection operators of the type used in Eq.
where the efficiency of this class of Grover's algorithms is(®) for P. Toward this end, let us recall thtcan be inter-
spoiled. However, wheg= 0 we are located precisely at one preted as the projectdd)(0|. Thus, a natural generalization
equal superposition of the principle cycles of the torus whichs to consider a projector on a different momentum state, say,
defines a one-parameter family of efficient algorithms. |§/O>, with yo#0. The matrix elements of this projection op-
erator in the coordinate basis are

(5K~ bl mA“’), 32

B. The influence of initial conditions

Next we shall address the issue of the extent to which this (p)x’x,:%ezm(x/—x)yo/N, x,x'=0,1,... N—1.
one-parameter family of algorithms depends on the choice of (33)
initial conditions for the initial statéx;,). We would like to
check that the stable behavior we have found is not disturbed We can go even further and Cons|der a genera| form for
under perturbations of initial conditions.

Let us consider a more general initial statg) which is
not the precise one used in the original Grover algorif@in [xo)=(1,0,...,0%,
but instead it is chosen as

1

NT1 )= ——=(0,as, ..., )", 34

)=~ o) b VI, (30 )=z Oz ) (34
JIN N

ko) = (a1, az, ... .an)",

wherea andb are chosen to satisfy a normalization condi-
tion. Then, it is possible to go over the previous analysis anavhere there is no loss of generality by choosjrg) in this

find that the probability amplitude is now given by way; a4, . ..,ay IS @ given and normalized set of arbitrary
complex amplitudes, witha;>0. We will assume that
fa lal>af.
(X0l K™|xjq) = €M1 Wﬂem‘ “—=1)(Xol k2){k2|Xin) | The projectorP is chosen to be
31 =
@) P=[ko)(Kol (39

where now|x;,) is the new initial statg30). We have to
distinguish two casedii) The coefficienta of the marked
state is order 1, andi) it is order bigger than 1, say, of order
O(4N). In the latter caséi), it means that the initial state is

and it admits Eq(33) as a particular case.
Now in the reduced 2D basis spanned{byy),|x, )} the
Grover kernel has the following expression:

so peaked around the marked state that we do not even need — 5+ Aa? —,BAal\/l——af
to resort to a searching algorithm, but instead measure di- K= 1 (36)
rectly on the initial state to find the marked state success- Aa\1—a? B(Aai—1)

fully. Thus, we shall restrict ourselves to casein the fol-
lowing. Now, the key point is to realize that all the previouswith A:=1+ 6. Thus all the dynamics depends on the rela-
asymptotic analyses are dominated by the behavior of thgve strength of the real amplitude, with respect to the rest
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of the amplitudes. If we set;=1/\/N Vi, then we recover the analysis performed with the simplest choice of these op-
the same expression as in E@5). Moreover, the initial ~erators captures the essential properties of the class of algo-
condition is taken as rithms we have presented.

|Xin) = a1 |Xo) + V1= aflx, ). (37 IV. CONCLUSIONS
We have introduced the notion of Grover operators and

In order to perform our analysis, we gha}:l assume\}ﬂat th(?Srover kernels that lead to a systematic study of Grover's
unknown amplitudex; behaves generically as;~1/VN,  quantum searching algorithms. These notions facilitate the

and consequently/1—aj~J1—1/N. Under these circum- generalization of Grover's algorithms in several directions.

stances, we find the following asymptotic behavior for thewe have characterized the basic features of this algorithm in

eigenvectol k,) of the Grover kernel: if3# 8 and5#—1,  terms of these operators whose main properties we have es-
tablished in Sec. Il. Using these operators, we have investi-

3;5 i gated a family of Grover kernels whose qualities as efficient
|ko)yoc| 1+6 ag |, (39 algorithms depend on the range of parameters entering the
1 construction of their associated Grover operators. When the
algorithms are efficient, they also perform the searching task
and if 8= 6, with order O(y/N), and the original Grover's choice gives
the optimum value in the one-parameter family of algo-
1 [is'? rithms. Moreover, we have extended this study to incorpo-
| kg)~ E 1 (39 rate initial conditions different than the standard uniform ini-

tial states and we have checked that aside from exceptional

This latter case is again the only one favorable to obtaining@ses, the basic algorithms of Sec. Ill maintain their effi-
an efficient algorithm and the behavior of the tivefor ~ Ciency. Finally, we have also addressed the issue of consid-
achieving maximum probability of success takes the follow-€ring quite general Grover operators and found that the basic
ing form: efficiency properties of the simplest choices for Grover's al-

gorithm remain unchanged.

-1
TA,

(40 ACKNOWLEDGMENTS

4 cosy We would like to thank J. I. Cirac and L. K. Grover for
carefully reading the manuscript and suggesting references.
We conclude then that our construction of quantumThis work was partially supported by the CICYT through
searching algorithms of Grover’'s type are general enouglProject No. AEN97-1693A.G.) and by the DGES through
under different choices of Grover operat@s,G, and that  Grant No. PB97-1190M.A.M.-D.).

[1] D. Deutsch, Proc. R. Soc. London, Ser480, 97 (1989; P. 46, 493 (1998; e-print quant-ph/9605034.
Benioff, Phys. Rev. Lett48, 1581(1982; R. P. Feynman, Int. [5] C. Zalka, Phys. Rev. A60, 2746 (1999; e-print
J. Theor. Phys21, 467 (1982; , Optics Newsl1, 11 (1985; quant-ph/9711070.

A. Yao (unpublishegt P. Shor, inProceedings of the 35th  [6] D. Biron, O. Biham, E. Biham, M. Grassl, and D. A. Lidar,
Annual Symposium on the Foundations of Computer Science  e-print quant-ph/9801066.

edited by S. GoldwassétEEE Computer Society Press, Los [7] O. Biham, E. Biham, D. Biron, M. Grassl, and D. A. Lidar,

Alamitos, CA, 1994, pp. 124-134. e-print quant-ph/9801066.

[2] L. K. Grover, Phys. Rev. LetZ8, 325(1997. [8] R. Jozsa, e-print quant-ph/9901021.

[3] A. Yao, in Proceedings of the 34th Annual Symposium on the [9] M. Mussinger, A. Delgado, and A. Alber, e-print
Foundations of Computer Scien¢EEEE, Computer Society quant-ph/0003141.

Technical Committee on Mathematical Foundations of Com-
puting, Los Alamitos, CA, 1993 pp. 352—-360.
[4] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Fortschr. Phys.

[10] E. Farhi and S. Gutmann, Phys. Rev. 5%, 2403 (1998;
e-print quant-ph/9612026.

062303-6



