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B. I. Ivlev
Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208
and Instituto de Rica, Universidad Autacoma de San Luis Potgs$an Luis PotosiSan Luis Potos78000, Mexico
(Received 3 May 2000; published 10 November 2000

The process of quantum tunneling of particles in various physical systems can be effectively controlled even
by a weak and slow varying in time electromagnetic signal, especially if to adapt its shape to a particular
system. During an under-barrier motion of a particle, such a signal provides a ‘“coherent” assistance of
tunneling by the multiquanta absorption resulting in a strong enhancement of the tunneling probability. The
semiclassical approach based on trajectories in the complex time is developed for tunneling in a nonstationary
field. Enhancement of tunneling occurs when a singularity of the signal coincides in position at the complex
time plane with a singularity of the classical Newtonian trajectory of the particle. The developed theory is also
applicable to the over-barrier reflection of particles and to reflection of classical welegtromagnetic,
hydrodynamic, etg.from a spatially-smooth medium.

PACS numbgs): 03.65.Sq, 42.50.Hz

[. INTRODUCTION signal is#. Than one can distinguish two different physical
situations:(i) hard signal fast varying field with6~#/V,

Control of quantum systems by tuned external signals isind(ii) soft signaj slow varying field withd~ » 1. Tunnel-
an actively developed field at present, see for example Refng can be governed easily by a hard signal even when its
[1] and references therein. Excitation of molecules, when onamplitude is less than the static barrier fislgl/a, since the
should excite only particular chemical bonid-4], forma-  probability of quantum absorptiora€/V,)? competes, ac-
tion of programmable atomic wave packgs, a control of  cording to Eq.(1), with the small tunneling ratén this case
electron states in heterostructuf€s, and a control of pho- O~ ¢ 1~V,/#). It is also obvious that a soft signal of the
tocurrent in semiconductof3], are typical examples of con- high amplitudeV,/a (static field of the barrigris able to
trol by laser pulses. A control of quantum tunneling by elec-govern tunneling. Can a soft signal with the amplitude much
tromagnetic signals is also a matter of interest, sincemaller than the static field of a potential barrier control ef-
tunneling is a part of many physical processes and of somfectively a tunneling process? Suppose a soft signal has the
chemical reactions. Modern facilities enable to tailor fast sigfollowing shape
nals required for this purpog8,9].

Let us focus on main aspects of tunneling under a nonsta-
tionary perturbation. The potential barridf(x), extended E(t)= .
over the distance, sets two typical energy scales: the barrier (1+t%6%)"
heightV, and# w~#\V,/ma?, wherew can be associated
with an oscillation frequency in the overturned potential. Forlts Fourier harmonicg,~ (2 6)"1£6 exp(—Q6) should be
semiclassical barriers the two energy scales are well sep#serted into Eq.(1). As follows from Eg. (1), when the
rated,hw<<Vy, and in absence of a nonstationary field, thesignal width# is less than 1/@, the quadratic irf correction
probability of tunneling through the barrier can be estimatedo the static probability diverges with an increase(df It
with the exponential accuracy &8~ exp(—Vp/fiw). In the  means the perturbation theory with respect to a weak nonsta-
presence of the periodic signé}, cosQt, a particle can ab- tionary signal breaks down for sufficiently short pulses.
sorb the quantunf) with the probability @&, /Vo)? and  Note, the pulse still remains soft. This is an indication of
tunnel in the more transparent part of the barrier with theefficiency of soft signals. Breaking of the perturbation theory
probability exp—(Vo—Q)/hw]. The total tunneling rate can means a significance of multiguantum processes and a prin-

2

be written as cipal question is What theory has to be used in this case?
A review of some aspects of tunneling in complex sys-

Vo aty\? Vo~ tems, including the instanton approach, was done in the book
W~exp — ho + Vo T ho [10], see also Ref[11]. Recent achievements in the semi-

5 classical theory under stationary conditions are presented in
=exy{ _ ﬁ) (1+ aco eﬂ,w) B Refs.[12—14. As it has been argued in Refd5,16,1(, the
ho ' semiclassical method of complex trajectories is applicable
also to a nonstationary case, when a signal is periodic in
Equation(1) is approximate since in quantum mechanics oneime. Nevertheless, despite a number of publications, use of
should multiply amplitudes but not probabilities, neverthe-semiclassical theory for tunneling in a nonstationary field
less the form(1) accounts for the necessary physical featureremains nonobvious. What happens in the general case, in
Suppose a tunneling particle is acted by some electric fielgharticular, for a short pulse such as the one given by the
&(t) (periodic or pulse typeand the typical time scale of this relation(2)? The goal of this paper is to show that the semi-
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classical theory based on the concept of the complex time ighe barrier transition is strongly stimulated even by a rela-
an appropriate description of tunneling under action of a softively small signal. This opens a possibility to effectively
pulse of any shape. For the particular case of a triangulamanipulate a tunneling process by a specially adafaee
barrier the tunneling rate in presence of a nonstatiofeoft)  cording to Eq.(3)] electromagnetic signal of a small ampli-
field is found to be determined, in the main exponential aptude.

proximation, by the classical actio§(x,t) satisfying the In Secs. 1I-VII the tunneling probability as a function of
Hamilton-Jacobi equation. In this approximation the wavetime is calculated for the triangular barrier. In Sec. VIII the
function is proportional to eXjS(x,t)] (below Planck’s con- method of complex trajectories is described. In Secs. IX-X
stant is unity. The first correction(preexponentialto this  this method is applied to the triangular barrier to compare
classical result and the second one were found explicitly an@ith the results obtained by the direct solution of the
shown to be small compared to the main contribution, whichHamilton-Jacobi equation. In Secs. XI-XIV the method of
is typical for semiclassical approximation. The tunneling ratecomplex trajectories is applied to a barrier given by an ana-
is found as a function of time, it tends to its static value atlytical functionV(x), when there is no simple solution of the
t— *+o, whené&(t)=0, and reaches the maximum at someHamilton-Jacobi equation.

moment of time. This maximum value is given, with an ex-

ponential accuracy, by an extreme value of the classical ac- Il TRIANGULAR BARRIER

tion, which is determined, according to classical mechanics,

by means of classical trajectories. The classical trajectory In this section we consider decay of the metastable state
obeys Newton’s equatiomd?x/dt?+V'(x)=&(t) in the in the potential

complex time, since in the real time there is no classical

under-barrier path. 2(V—E)
So, the method of classical trajectories in the complex V(X)=V—E|x|— Té(x) (4)
time can be used, when the full time dependence of the tun-

neling rate is not required, but only its maximum value with ) _ oo o
an exponential accuracy is a matter of interest. Note, despitdnder action of a nonstationary electric fi€id). In the limit
the fact that the classical action depends functionally on trafo— 0. the energyE corresponds to the bound state in the
jectories defined in the complex time plane, the argurhefit ~ &-function potential well. The symmetric wave function
the actionS(x,t) is considered to be always real. The com-L#(X:.t)=¢(—x,t)] can be written down in the form

plex time has no physical meaning, it is only a possible way

to parametrize a solution of the Hamilton-Jacobi equation. P(x,t)=exdiS(x,t) +io(x,t)], )
Nevertheless, this way is very useful. For a weak nonstation-

ary field £(t), the classical trajectoryy(t) satisfies the un- where the classical actidhobeys the Hamilton-Jacobi equa-
perturbed equationni/2) (9xo/dt)2+ V(xo) =E, whereE is  tion atx>0

the particle energy, which can identified with an incident

energy of particle flux on the barriev(x). The classical S 1
trajectoryxy(t), as a function of the completx has the sin- EJF om
gularity att=t,(E) [15,16 and the external signdR) has
the singularity att=i6. As shown in this paper, when the
two singularities coincide

2
+V—Ex—x&()=0 (6)

)

ox

with the boundary condition

Imty(E)=0, ()

asg:(,t)) =iy2m(V—E). 7)
x=0

the effect of an external signal on tunneling is enhanced.

Under the conditior(3), the perturbation theory breaks down At x=0, one can impose the conditi®(0t)=—Et. The
at essentially weaker nonstationary signals compared to @quation fore has the form

general case. The parametertyfE) depends on properties
of the static barrier and the particle enefd$, 16|, but 6 is a
characteristic of a nonstationary signal. The physical mean- —
ing of the condition(3) is not straightforward since a Jt - mox gx  2m
guantum-mechanical process is described by a product of

amplitudes but not of probabilities. The conditi®) rather  \ith the boundary condition
corresponds to a coherent cooperation of tunneling and

doc 1dSdec 1 (dc\? i (920'_i S g
x| 2m gx2  2m gx2 ®

guanta absorption, in other words, it is some ‘“resonance” do
condition between the motion of the system and the external —) =0. 9)
signal. Equation3) determines some remarkable threshold X/ =0

energyE;. As shown below, when the particle energy is big,

E>E+, the tunneling process is moderately violated by theEquations(6) and (8) are exact ones. The solution of the
signal(2) (of course, if the signal is less, than the static fieldHamilton-Jacobi equatiof6) can be found by conventional
of the barrierv/a); for lower energyE<E+, the process of methodq17]
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ty 2
p+50tl+j dtzg(tz))
0

1 t
S(X,t): - ﬁft dtl
0

t
+ p+80t+J dt,&(ty) | X+ (V—E)ty— Vt.
0

(10

The functiongp(x,t) andty(x,t) have to be defined from the

conditions 9S/dp=0 and 9S/dty=0, which gives the fol-
lowing expressions

p(x,t)=iy2m(V—E)—&xto— fotodtzg(tz) (11
and

12

t t
mx=f dt, p+80tl+fldt2€(t2)).

Equation (12) has to be inserted into Eq$10) and (11),
which results in the final expression for the action

1 [t
S(X,t): - ﬁﬁ dtl( i \ 2m(V_ E) + (tl_tO)SO
0

t 2
+f "At,E(t,) | +x| I 2MIV_E) + (t—to)&
to
t
+J dt,&(ty) | +(V—E)tg— Vt, (13
to
where the functioriy(x,t) is given by the equation
&
mx=i(t—to)V2m(V— E)+(t—t0)27°
t
+f dt;(t—1tq)&(ty). (14
to

By means of the relatioa partial derivative is taken under

the fixed lower index
(a) +1(‘9$ (‘9) _(&)
gt mlox/) \ox| —\at
X t t to

the Eqg.(8) for o in new variableg, andt has the form

(15

o 1 o 2+ i d 1do
), 4(V-E)F?\dto/, 4(V—E)F1dtgF dto/,
0
1+h(t
:—(0)_ (16)
F 700
Here new notations are introduced
ot
F(to,t)=1+i——[1+h(ty)]; (17)
700
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&(t) J2m(V=E)
h(t):5—0§ TOO:—gO :

In terms of new variables, the boundary conditi® reads

do(to,t)
it

=0. (18

to=t

In semiclassical approximatiom, should be small compared

to a big classical actioBand it can be expanded into a series
o=01t0oyt+ -, (19

which is produced by Eq.16), where the last two terms in
the left-hand side have to be considered as a perturbation.
Now one can write

t—tg to
Un(tO:t):fo <3|77<I>n(77,to)+f0 dt;®,(0ty), (20)

where
1+h(ty)
(Dl(t—to,to):m (21)
and
D, (t—tg,ty) = ! ((901)2
25 0 qv—E)R2\ dto
CA(V-E)Fdtg F dto ) 22

From Egs.(20) and (21) one can obtain an explicit expres-
sion

. 1 i to
ioq(tg,t)=— Eln F(tg,t)+ Foofo dt;[1+h(ty)].
(23

The expression foo, can be easily obtained from Eq0)
and(22) but it is too bulky and we do not write it here. The
main parametric estimate at=1

1

O — 2
[(V=E)7p0)" * 29

On

characterizes Eq19) as a typical semiclassical series since
(V—E)7y>1. The pulse width is supposed to be order of
Too. Equations(13) and (14) for the classical action, and
Egs.(19—(23) for o, enable the consideration of a decay of
the metastable state under action of the nonstationary field
&(t).

IIl. CAUSALITY

Suppose a pulse of the electric field has the form

EH)=EDO —t)+E (HO(t—t"). (25
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Equation(25) can be considered in the complex time if used iS(x,0)
to represen® functions in the form A
X, X, X
o= —1+exp(—)\t)>H+x' (26) -

With the definition (26) the ® function can be treated as

O (Ret). As follows here, the functiod(t) at the complex
plane depends ofi(t) [£'(t)] only to the left(right) of the
vertical line Re=t". If choosing the contours of integration
in Eq. (13) to the left of the vertical line with the real parf t
than the actiors(x,t) does not have information on how the
nonstationary pulse behaves at moments later tharhis

ch_oic_e of contours of integration corresponds to the causality FIG. 1. A plot of the imaginary part of the action for the case of
principle.

the triangular potential barrier &&=0. The classical position of a
particle before tunneling is=0 and after tunneling ix=x; (a
IV. CLASSICAL ACTION classical turning point In absence of a nonstationary pulse the two
branches go over into conventional increasing and decreasing WKB

In this section we consider only the classical act®m
branches.

Eq. (5). Under the signaf2) the imaginary part oS reaches

its minimum value at some moment of time resulting in a

maximum of the decay rate. For this reason we consider firgranches in Fig. 1 in the lim#=0 go over into conventional
the actionS(x,0) att=0. For a pulse symmetric in time, Wentzel-Kramers-Brillouin (WKB) ~ wave  functions

to(x,0) is an imaginary value and we introdueg(x)=  ©XP(=/[pd). At the lower branch, wheréS/9x=0,
—itg(x,0). At small amplitude of the signdPR), essential
values ofry are close tod and the new variable

iS(x4,00=(V—E) 6| 1 > Eo” (31)
iS(x1,00=(V— - x= .
L 2 7 2m

z=1- (27)

At the common point, wheré?S/gx%>—,
is convenient £<<1). Below, only integer values=3 in Eq.

(2) and 8< 7, are considered. It follows from EqgEl3) and i 0\? &b
- 9S(x,0) z\" 1t (32
[ =—(m00— O\1—| = o . - .
X z Near the common point,, the deviation of the action from
Un-1) the value(32) is proportional to x,—x) and in the second
, :( £ ) 28) order to= (x,—x)%?, is what develops the two branches.
" 2= 1)(r0— 0)&
and V. NONSEMICLASSICAL CORRECTIONS
For validity of the semiclassical approximation the in-
C0°S(x,0)  0/(190— 0)+(2,/2)" m equalities
i = —;
ax? 1—(z,/2)" 0
|S|>|0q|>|0|> . .. (33
) 1in
22:<n—> . (29 should hold. Like in a static case, one can expect a violation
2" (10— 0)&o of the semiclassical theory near the poitx;, where

dS/9x=0, and the poink=Xx,, whered?S/dx>*—». Let us
compareo with the classical actiors near these “danger-
ous” points.

Under the conditionz;<z<z)/("*?) as follows from

Egs.(21)—(24),
1 ( 22) "
z

In Egs.(28) and (29), the amplitude of the signal is sup-
posed to be small leading to smalj and z,. As follows
from Eq. (14), the functionry(x) is determined by the rela-
tion

amx
Iy =(700— 0)&— (30

20

(34)

) 1 0
|ol(x,0)——iln((1——> ]_2700

700
By means of Eqs(28) and (29) one can find the coordinate
dependence of the actid® which is shown in Fig. 1. Two and
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1 3n(n+1)+n(2n—3)(z,/z)"
48V—E)0 25 (1—0l1o)[1—(2,/2)"]°

2
22 n+
S
z

An x dependence in the right-hand sides of E@! and
(35 comes througtz according to Eq(27). At the pointx

i op(X,0)=

(35

=x1 (z=29)
. 1 |n—-1 0 1 i
IUl(leO):_Eln z (1—7_—00 575 (36)
and
, 3 1
1720X0100 =~ 28V T E) 02, (1— O 7gg)
6\%2 n(2n—3)
X[8(n—1) 1—7—00) +T' (37
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VI. FINITE TIME

Equation(14) determines the functioty(x,t) and for the
signal (2) one can write ak=x; and|t|< 6

to(x,t) =i+ ab” [t + i (39)
X,0)=IT — | | —=T—].
0 ! 2(70— 0) 9% 6

According to the causality principle, the contour of integra-

tion in Eq.(13) should be to the left of the timeand hence
the condition Reéy<t results in the restriction>0. At t

<0, the semiclassical approach in its present form is not
valid since the integration penetrates “in the future” and this
case requires further investigation. The time dependence of

the classical action can be found from E#j0)

IS(x,t) 1 .
- :—ﬁlm(n/Zm(V—E)Jr(t—to)go
2
+ftdt15(tl)) . (40)
to

A particle positioned in the well corresponds3(0,0) at the At Xx=x; andt=0 the right-hand side of Eq40) is zero.
upper branch in Fig. 12~1). A particle leaves the barrier One can easily obtain

under the conditio@S/dx= 0 at the poink=x, of the lower

branch in Fig. 1 ¢=z;). One should be sure the points t4

=0 andx=Xx, relate to the same semiclassical solution, in Im S(x1,t)=1m S(x1,0) +(n=1)(V-E) —-.
the other words, it should be possible to find a way from 0 to 700
X1 with no violation of the semiclassical conditiori33).
Between real pointg~1 andz=z,, there is only one “dan-
gerous” pointz=z,, where, according to Eq35), c—®
and the condition33) breaks down. Nevertheless, the semi-
classical approximation remains valid if the conditi(88)
holds on some contoyz— z,| ~z, around the point, in the

(41)

VIl. THE TRANSITION PROBABILITY

Supposew(t) is the probability to find a particle in the
S-function potential and initiallyw equals unity. The conti-
nuity equation readgw/dt= — (2/m)Im(y* 9yl 9x), where
complexz plane. The pointz, (x=X,) is a branch point of the right-hand side is taken at=x;. Using expression for
the action, which has a contribution proportional te, ( the wave function
—x)%2, like a turning point in a static problem. The sequence
of the Stokes and anti-Stokes ling¢$8] going from this

s > 9 ; ; (X, ) = (0 )exdiS(x,t) —iS(0t) +io(x,t) —ia(0t)],
point, is qualitatively the same as in a static case. The con-

dition (33) on the above circle can be written in the follow- (42
ing approximate form as if to put~z, in Eq. (35 (0
<To0) where
g |21 a £ (0 =[2m(V—E)]*exp —iEl), (43
(T _0) s =<z 1<(V-E)e.

00 [((V=E)¢] 0 39) and by means of Eq$42) and(43) one can obtain
In the relation(38), the numerical coefficiena,~1 atn ﬁw_(t): — A /M(aReSexq_z Im(S+0)]
~1, but at bign the coefficienta,, increases, which pre- at m IxX x=x,
scribes to choose a not higfor validity of the semiclassical (44)

approximation. The conditioto,|<|o4| at the pointx=x;
is less rigorous. The semiclassical conditigd®) require the
pulse amplitudef to be not small. Remarkably, this ampli- Equations(11) and (13) give d ReS/dx=E&qt at x=x; and
tude can be still less than the static barrier fi€jdAt lower  the main time dependence in the exponential of Egf)
£, than one satisfying the relatiori88), one should expect follows from S(x4,t) [Eq.(41)]. Collecting all the terms, one
the perturbation theory to be applicable. can obtain finally 0<<7g0)
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aw(t) 2(V—E)t ( £ )1“”—1) AY
t en—1)""D(rp0— ) | 2700~ )&

I

4
><exp( —2(n—1)(va—f)t) Eax

700

@ T
Xexp{ —-2(V— E)0<1—3—2>]. (45)

Too

As discussed in Sec. VI, E¢45) is valid only att>0. The
semiclassical condition&3) are supposed to hold. Accord-
ing to Eq.(45), the typical time scale of the output fluxt
~[ 675/ (V—E)]** determines the uncertainty of energy of 0 ?
outgoing particlesAE~At ™%, which is much smaller than

the energyE. The decay ratew(t)/dt tends to its static FIG. 2. A snapshot of a particle motion through the potential
value att— o0 having a maximum at some moment of time barrier under the action of a nonstationary pulse at a moment of the

maximum tunneling fluxE,, 4 is the maximum(in time) energy of
(mN) p{ 2(V E)0( 1 " )
- ~exp — - -——1.
at max 27—30

escaped particles. All particles with the incident ener§iesE; are

(46) collected at the threshold levE}; after passing the barrier. A mo-
tion of particles withE>E is violated a little.

The exponent in Eq(46), according to its derivation, is a -

minimum value of the imaginary part of the classical action.{Xo.to} and{xs,t:}. The contourC is symmetric with re-

A minimum value of action can be calculated, as knownspect to the real axis. It is convenient to write E4j?) in the

from classical mechanics, by means of trajectories satisfyinform

Newton’s equation. So, when we are not interested in the full . ) )

time dependence of a decay rate, but we need only its maxi- Winax™~|€XHiS(xy,t1) ~1S(Xo,to) 1|, (48)

mum value with an exponential accuracy, the method Ofg; v . o the nonstationary field(t)—0, a connec-

classical trajectories can be used. This method is described in ; ) -
the next section. tion between values of the action at the poitgsandt is

simple

VIll. METHOD OF COMPLEX TRAJECTORIES

S(Xo,t0) =S(Xo,to) +(to—to)E, (49
In this section we consider penetration of incident par- ) o . ]
ticles through a potential barrier under action of a nonstationWhereE is the energy of an incident particle. According to
ary pulse. We restrict ourselves only by the main exponentiaFds- (48) and (49), the maximum amplitude value of the
approximation when one can use the semiclassical expre§4tgoing flux of particles has now the form
sion for a wave functiony(x,t) ~exdiS(x,t)]. We consider
here a particle flux on to the barrier shown in Fig. 2, but the

final result can be easily applied to decay of the metastable -
state through the triangular barrig¥). The maximum value @
of the outgoing flux of particles can be calculated as a maxi- }'0 .
mum with respect to time g 19
Winax~MaXexfd iS(x,t) —iS(xq,t) ]| (47) P e 1
Here x is some coordinate to the right of the barrigp— t 0 t
ilo 1

—oo, where ImS(xq,t)=0, and in Eq.(47) one can put i

S(Xg,tg) instead ofS(xgq,t). The right-hand side of Eq47)

does not depend ow and x,. It is a function oft only. C

Equation (47) corresponds to the extreme classical action, i '

which can be found by method of classical trajectoséy

defined in the complekplane, since in real time there is no -4 C

classical trajectory for an under-barrier motion. The complex Y

pathC is shown in Fig. 3. The real classical turning point is FIG. 3. The contours of integratio@ and C, (in absence of a
pulse are shown in the plane of complex timé. is the position of
singularity of the nonstationary pulse amndis the branch point

X1=X(t1), wheregx(t)/dt=0. This point corresponds to the
classical exit of a particle from under the barrier. The real

coordinatexg=X(to) is defined under the condition Rg  singularity of the classical trajectory. The cut is denoted by the
=t,— —o. The classical trajectory connects the pointsdashed horizontal line.
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Wiax~exp(—A), (50
where
iy m/ ox\?
A——|Ldt§ E) —V(X)+XE(H) +E (51)

is defined by means of trajectory satisfying Newton’s equa,

tion m #?x/9t?>+ V' (x)=£(t) in the complex time. Due to
symmetry of the contou€, the value ofA is real. The tra-
jectory x(t) should not be necessarily real at glit should
be real at least in the vicinity of real poimtg andx;. On the
left horizontal parts of the contouE, where&(t)=0, x(t)
satisfies the equation

2

mx +V(x)=E 52
5|50 (X)= (52
and is expressed through the real functimqsf(t—To,E)

(up) and x=f(t—73 ,E) (down), whereE is a real energy.

Now one can formulate conditions on how to choose the

contourC: for given (att— — ) particle energye and the

pulse shape(t) one should find Ini, and the real turning
point x;=Xx(t;). Equation(51) holds for a potential barrier
V(x), which is an analytical function of the variabte Such
a barrier has no artificial restriction in coordinates singu-
larity at a realx). For this reason, Eq51) can be interpreted

PHYSICAL REVIEW A62 062102

and this terminates the integration in E§3). The parameter
7o has a meaning of under-barrier traversal tih@] and can
be found from the equation

Eorot fOTodTg(i 7)=\2m(V—E).

(56)

Equation(56) is equivalent to the conditiop=0 following
from Eq.(11). Since the time is imaginary the functidncan
be called the Euclidian action

£3 . 2&,

3T —f Tde dry&(iTy)

_%fomdf( fordrlg(in))z.

The outgoing particle has the energy- SE, where

—TO —f dTJ dTlc‘)ITl))

(58)

A=2(V—E)1o—

(57)

SE=V—E—[&+&(0)]

After escape from the barrier, an action of the nonstationary
field on the particle can be omitted since it is determined by
the parametef/ &,, which is much smaller than the one gov-

erning the particle under the barrier and defined by the con-
ditions (38). In the absence of a nonstationary pulse the en-

as one accounting for not only an under-barrier part, but als€rgy of outgoing particles has the same vald& € 0) and

some pre-barrier motion.

IX. APPLICATION TO A TRIANGULAR BARRIER

Equation(51) is applicable to the case of a potential bar-

rier V(x), which is an analytical function of the variabteln
the case of the triangular barrig}), which is a nonanalytical

the Eucledian action equals, determined by the conven-
tional WKB formula

4
Ao(E)= §(V—E) 700> (59

where 7y is given by Eq.(17) and has a meaning of the

function, the all classical path of the particle is restricted byunder-barrier traversal time in the stationary case. The con-

an under-barrier motion. In this case the expomgnhstead
of Eq. (51), should be written in the form

m | dx\?
E E —V+X50+Xg(t)+E, (53

0
A=2 Imf dt
[KJ0)

wherex(t) is the trajectory satisfying the Newton equation
in the complex time

2

&—X—e —&(1). (54)
a2 0

The trajectory starts at the metastable wli~,) =0 with
the boundary conditions

(&x(t)) Ny [2(V—E)
“at | ! m

ITO

(59

For a symmetric pulsé(—t)=&(t) the velocitydx/dt=0 at

t=0, at this point the particles escape from under the barrier,

dition 6= 74y, which is a particular case of E@3), sets
some threshold energy

62€2
V- —2.

Er= 2m

(60)

As follows from Eqgs.(57) and (58), the intensity and the
energy of outgoing particles strongly depends on whether the
initial energyE is bigger (roo<6) or smaller < 7qg) than

E;. At E;<E the effect of the nonstationary signal on tun-
neling is weak and increases only in the vicinity Bf

3¢ 1
A=A, 1— :
(N—1)2"Ey (1— 700/ 6)" 2
SE 2 1 6
V=B (n-1)2" (1- 100/ 0)" "

At low energiesE<E- the situation is very nonperturbative
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A 2(V—E)
A=AyE7)+2(Es—E)6— P
|
\ 6 &o
| X| 1= —|Inf —|. (65)
\\ TOO 5((1)9)”72
\\ Further minimization, with respect @, gives an infinite(in
\ this approachvalue ofw, indicating the logarithmic terms in
\ Egs.(65) to be small and hence Eg®5) coincide with the
result(62).
E Let us consider another example, where such a simple
0 > > approach also gives a corre@ith exponential accuragy
E. v decay rate. Suppose the Gaussian pulse
FIG. 4. The energy dependence of the exponk{f) (solid E(t)=Eexp—O%t?) (66)

line) which determines the maximurtin time) of the tunneling
probability W, ..~ exd —A(E)]. The dashed line is the plot of the acts on a particle in the stable potential w@ll with £,=0.
exponentdy(E) in the absence of a pulse. It merges the solid line atThen in the effective action

E>E;.
vm(V—E
. o . . : A(w,N):lenu, (67)
which coincides with the exponent in E@6) obtained by a g,

direct solution of the Hamilton-Jacobi equation. The energy

dependence of the Euclidian action is shown in Fig. 4. Thisone should pu€,— & exp(— w?/Q?), according to the Fourier

type of scenario of barrier penetration is shown schematiharmonic of the pulse, and=(V—E)/w, since in this case

cally in Fig. 2 in the case of particle flux on the barrier.  there is no tunneling and a particle should reach the top of
the barrier. This leads to the relation

X. SEPARATION OF QUANTA ABSORPTION AND _ 1 woJm(V—E
TUNNELING A w,—)=2(V—E) —+—In¥ .
o) 40?2 o &

For a monochromatic field,,, of frequencyw, the total (68)
probability of penetration through a barrier can be approxi-
mately written as a product of two probabilities: absorptionThe minimization of this expression with respectdagives

of N quanta and tunnelinfsee the comment to E¢l)] the optimum value ofA
_ e 12
&—W~( Co 2Nexq—A (E+ wN)]=exd — A(w,N)] A= Z(VQ E)<'”Q m(gv E)) (69
at 500)7'00 0 @ B @ '

(63 the optimum pulse frequency, and the optimum number of
absorbed quanta
For the pulsg1) the amplitudef,, should be substituted by
E(w6) " exp(—wbh) and the effective action becomes of the

ol Qym(V-E)\** _V-E
form @opt™ T Nopt= Wopt (70
¢ The result(69) coincides with calculation of the Euclidian
A(w,N)=Ao(E+wN)+2 In 0 _ action for the pulse§§6) by the sem|cI§SS|c_aI methods devel-
Ewh)" 2exp — wb) oped abovécalculations are not put in this pape©ne can

(64)  see from here, the decay rate under action of a nonstationary

pulse can be calculated with an exponential accuracy on the

. . o base of simple arguments of optimum frequency and number

The semiclassical approximation corresponds to some opt¢ guanta. This approach of separation of quanta absorption

mum choice ofw in a continuous spectrum of the pulse and 3ng subsequent tunneling, described in this section, works
the number of quanta of this optimum frequeridywhich 4y for a potentiaM(x), which isnot an analytical function
provide ~a minimum of A(w,N). The condition  of the variablex like the potential(4). In this case one can

dA(w,N)/IN=0 gives the following relations: use an interpretation of quanta absorption at some point
[position of singularity of/(x) on the real axis WhenV(x)
20(V—E) < is_ an _anal_ytical function t_here is no such particular poin_t, the
SE=wN=(E;—E)— In( 0 ) situation is more complicated, and the method of simple
WToo Ewo)"? separation of absorption and tunneling does not work, since
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the quantum interference of these processes becomes very ISA
nontrivial. The case of analytical potential is considered in mZO- (77
the next section.

A meaning of the minimization conditioV7) can be clari-
XI. WEAK NONSTATIONARY SIGNAL fied in the following way. According to classical mechanics,

Let us go back to an analytical potential barriéfx). the variation of the particle energy #&/dt = E(t) 9xy/dt. At

_F _T* . . .
When £(t)=0, the contourC is reduced to the contol€, t=ty, and att=tg, when the nonstationary field is zero,

shown in Fig. 3, which consists of the vertical part betweerfN€rdy should have the same values, that is

the points=+i Im1t, and the horizontal semi-infinite lines at f IXo(t+At)
c

Ret<0. In this static case th(t)a— (78

t

Im,= \EJ dx 71) Equation(78) coincides with Eq.(77). If the minimization
2) NWx)-E’ condition (77) violates the particle, enerdy would acquire
an imaginary part. In summary of this section, in case of
where the integration goes between two classical turningmall non-stationary field(t), one can use the perturbation
points determined by the relatidf(x) = E. Equationg51) at ~ approach(76) with the further minimization(78).
E(t)=0 determines the conventional WKB exponent by
means of the unperturbed Lagrangiag XIl. ANALYTICAL PROPERTIES OF TRAJECTORIES

Ag=—i fcdtLozzﬁf dx\V(x)—E,

We consider the potential barrier

V(x)= (79

cositx/a’

m{ dXg
L3

2
7) —V(XO)+E. (72)
The classical unperturbed trajectory satisfies the relations

Here xy(t) is the classical trajectory determined at by [15.14
Eq. (52). The small puls&(t) results in the perturbed trajec- .
tory Xo(t) + 6x(t). The perturbation in Eq51) has the form PXo(L+AD = aw sinha(t+At) : MZZE
ot Jeost w(t+At)+E/(V—E) ma’
. 2% ~ (80)
A=—i L0+ Xo(t)(c;(t)"‘m 75}( (tO)
¢ ¢ and is an analytical function of the complex variableaving
dXo ~ the branch points at=t,t% , where
-m Wéx)(tO) (73
1 V+E
N - - tszirs——lnl—At; Te= o (81)
The velocitiesix/ ot attg andt, are real and ® V—-E 20

Close to the branch poirtt, the trajectory has the form

Xo(t+At)=— ? +aV2o(t—t)VVIE. (82

The cut is shown in Fig. 3 by the dashed horizontal line.
9%\ 2 ~ B Now the integral, definingdA in Eqg. (76), can be calculated
f dtLozf dtLo—Zi(W) (tp) Im Sty (75 on the basis of analytical properties.
c Co

- Xy ~ | ~

Here 6t is a variation oft, due to the pulse given by Eq.
(71). One can easily see that

Collecting Eqs(73)—(75), one can obtain Xill. TUNNELING PROBABILITY

Let us choose the nonstationary pulse in the f¢é2nwith
_ . i n=2 and the potential barri¢79). Then the integrand in Eq.
A= Aot oA oA Ifcdtg(t)XO(HAt)' (76) (76) has singularities of two types in the compleglane:t,
comes from the analytical functio(t+ At) andi & comes
Here we keep the argument shift of the unperturbed so- from the analytical functior£(t). There are different posi-
lution, satisfying Eq(52), determined in the way the classi- tions of the contoulC with respect to those singular points
cal turning pointt; = — At. The method of classical trajecto- giving rise to different branches of the extreme action. The
ries produces a minimum value 8f which means the shift branch, giving the minimum value oA, results from the
At is found from the minimization condition position shown in Fig. 3, when the contoGrgoes between
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the two singularities. This very branch determines the effectpulse are not surprising. A much less ftrivial matter is the
We consider here only the case g 6. The contouiC can  way of construction of the trajectory method. The condition
be deformed up and in the limivE 7)< 0, where the pole  (3) of coincidence of singularity of a trajectory and of a field

circle att=i6 gives the main contribution leads to unexpected conclusions. The threshold enEsgy
set by the conditior{3), divides the all incident flux of par-
V| 4 - ticlefs by two grou_ps:(_i) partic_les with E? Et passes _the
SA=mncarll—=| Ren/—— . (83)  barrier practically like in a stationary cadé) particles with
*\E 2(ts—i0) lower energie€ < E are affected strongly by the pulse that

collects all particles after passing the barrier at the same
energyE+ regardless of their initial energy. This enables us
to use short pulses, adapted to the necessary energy level by
the relation(3), to get outgoing particles collected at this
0— 7 level at some moment of time. In other words, adapted sig-
At=— 3 (84) nals can be used for a selective control of tunneling: in solids
and molecules it excites only some particular bonds leaving
The moment, = — At is the delay time of outgoing particles Other bonds nonexcited. There is an obvious advantage of
from under the barrier. The correcti@ in Eq. (76) has the ~ USIng soft signals for control of tunnelmg. Thg hard pulse .of
form the type (2) cannot control tunneling selectively, since it
kicks up all particles to the top of the barrier. When the pulse
(2) serves as an envelope for the monochromatic signal of
_ (85) the frequency)~1/V it provides, in a nonselective manner,
0— 1 equal) shifts of all escaping particles with respect to their

. _ . incident energies. It is remarkable, the soft Gaussian signal
Finally, Egs.(50), (72), (76), and(85) determine the maxi- ¢ty = ¢exp(~t2/6?) cannot produce a strong enhancement of

mum outgoing flux of particles tunneling through the poten-y,nneling when its amplitude is much less than a static field
tial barrier(79) in the case of a weak nonstationary sigi®l 4t 4 potential barrier. This is an indication of importance of
with n=2. Equation(85) is analogous to the formul&l) for e gnalytical structure of the signé). This can be under-
the triangular potential. Whe—Imtg, the perturbation 504 in another way looking at E€L), where the Fourier
theory breaks down and the result becomes a very nonlineq;rmonics of the Gaussian sign&h~ £ exp(—Q26%/4) do
function of the nonstationary pulselike E§2). We see that .t result in divergence if).

the relation(3) plays a crucial role in the physics of tunnel- e giatic electric field in solids and molecules can be
ing under nonstationary conditions. For the potential barrieggtimated ag,~10’ Vicm, a typical pulse width is in the
(79), ts appears in a “natural” way as a result of analytical ;5n46 of tens of femtoseconds, and the amplitude of the elec-

properties, whereas for a nonanalytical potential it is detersi- field of the pulse can be chosen &s 10°—10° V/cm
mined by the time of motion between a turning point and a,hich is reachable in experiments. ’

According to Eq.(81), t; depends om\t, and the minimiza-
tion (77) produces

e 2
SA=— ZEar?

3V\¥ [ 30
E

point of the nonanalytical singula}rity of the potentjiatg in The developed theory is also applicable to quantum-

the case of the triangular potenti@)]. mechanical over-barrier reflection of particles. The reflection
of classical waves(electromagnetic, hydrodynamic, etc.

XIV. DISCUSSIONS AND CONCLUSIONS from a spatially-smooth medium also may be described by

In the case of the triangular potential barrier the semiclaszhe above theory, when the medium is influenced by an

sical theory in a nonstationary case is constructed based (ﬁgapted signal.
classical trajectories in the complex time. This becomes pos-

sible since for such a barrier nonsemiclassical corrections

can be calculated exactly. The conditions of applicability of | am grateful to S. Obukhov, J. Krause, A. Efimov, and E.
the semiclassical approa¢$oftly varying and not very small Ryabov for stimulating discussions.
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