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Control of tunneling by adapted signals
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The process of quantum tunneling of particles in various physical systems can be effectively controlled even
by a weak and slow varying in time electromagnetic signal, especially if to adapt its shape to a particular
system. During an under-barrier motion of a particle, such a signal provides a ‘‘coherent’’ assistance of
tunneling by the multiquanta absorption resulting in a strong enhancement of the tunneling probability. The
semiclassical approach based on trajectories in the complex time is developed for tunneling in a nonstationary
field. Enhancement of tunneling occurs when a singularity of the signal coincides in position at the complex
time plane with a singularity of the classical Newtonian trajectory of the particle. The developed theory is also
applicable to the over-barrier reflection of particles and to reflection of classical waves~electromagnetic,
hydrodynamic, etc.! from a spatially-smooth medium.

PACS number~s!: 03.65.Sq, 42.50.Hz
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I. INTRODUCTION

Control of quantum systems by tuned external signal
an actively developed field at present, see for example
@1# and references therein. Excitation of molecules, when
should excite only particular chemical bonds@2–4#, forma-
tion of programmable atomic wave packets@5#, a control of
electron states in heterostructures@6#, and a control of pho-
tocurrent in semiconductors@7#, are typical examples of con
trol by laser pulses. A control of quantum tunneling by ele
tromagnetic signals is also a matter of interest, sin
tunneling is a part of many physical processes and of so
chemical reactions. Modern facilities enable to tailor fast s
nals required for this purpose@8,9#.

Let us focus on main aspects of tunneling under a non
tionary perturbation. The potential barrierV(x), extended
over the distancea, sets two typical energy scales: the barr
heightV0 and\v;\AV0 /ma2, wherev can be associate
with an oscillation frequency in the overturned potential. F
semiclassical barriers the two energy scales are well s
rated,\v!V0, and in absence of a nonstationary field, t
probability of tunneling through the barrier can be estima
with the exponential accuracy asW;exp(2V0 /\v). In the
presence of the periodic signalEV cosVt, a particle can ab-
sorb the quantumV with the probability (aEV /V0)2 and
tunnel in the more transparent part of the barrier with
probability exp@2(V02V)/\v#. The total tunneling rate can
be written as

W;expS 2
V0

\v D1S aEV

V0
D 2

expS 2
V02\V

\v D
5expS 2

V0

\v D X11S aEV

V0
D 2

eV/vC. ~1!

Equation~1! is approximate since in quantum mechanics o
should multiply amplitudes but not probabilities, neverth
less the form~1! accounts for the necessary physical featu
Suppose a tunneling particle is acted by some electric fi
E(t) ~periodic or pulse type! and the typical time scale of thi
1050-2947/2000/62~6!/062102~11!/$15.00 62 0621
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signal isu. Than one can distinguish two different physic
situations:~i! hard signal, fast varying field withu;\/V0,
and~ii ! soft signal, slow varying field withu;v21. Tunnel-
ing can be governed easily by a hard signal even when
amplitude is less than the static barrier fieldV0 /a, since the
probability of quantum absorption (aE/V0)2 competes, ac-
cording to Eq.~1!, with the small tunneling rate~in this case
V;u21;V0 /\). It is also obvious that a soft signal of th
high amplitudeV0 /a ~static field of the barrier! is able to
govern tunneling. Can a soft signal with the amplitude mu
smaller than the static field of a potential barrier control
fectively a tunneling process? Suppose a soft signal has
following shape

E~ t !5
E

~11t2/u2!n
. ~2!

Its Fourier harmonicsEV;(Vu)n21Eu exp(2Vu) should be
inserted into Eq.~1!. As follows from Eq. ~1!, when the
signal widthu is less than 1/2v, the quadratic inE correction
to the static probability diverges with an increase ofV. It
means the perturbation theory with respect to a weak non
tionary signal breaks down for sufficiently short pulse
Note, the pulse still remains soft. This is an indication
efficiency of soft signals. Breaking of the perturbation theo
means a significance of multiquantum processes and a p
cipal question is What theory has to be used in this case

A review of some aspects of tunneling in complex sy
tems, including the instanton approach, was done in the b
@10#, see also Ref.@11#. Recent achievements in the sem
classical theory under stationary conditions are presente
Refs.@12–14#. As it has been argued in Refs.@15,16,10#, the
semiclassical method of complex trajectories is applica
also to a nonstationary case, when a signal is periodic
time. Nevertheless, despite a number of publications, us
semiclassical theory for tunneling in a nonstationary fie
remains nonobvious. What happens in the general case
particular, for a short pulse such as the one given by
relation~2!? The goal of this paper is to show that the sem
©2000 The American Physical Society02-1
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B. I. IVLEV PHYSICAL REVIEW A 62 062102
classical theory based on the concept of the complex tim
an appropriate description of tunneling under action of a s
pulse of any shape. For the particular case of a triang
barrier the tunneling rate in presence of a nonstationary~soft!
field is found to be determined, in the main exponential
proximation, by the classical actionS(x,t) satisfying the
Hamilton-Jacobi equation. In this approximation the wa
function is proportional to exp@iS(x,t)# ~below Planck’s con-
stant is unity!. The first correction~preexponential! to this
classical result and the second one were found explicitly
shown to be small compared to the main contribution, wh
is typical for semiclassical approximation. The tunneling r
is found as a function of time, it tends to its static value
t→6`, whenE(t)50, and reaches the maximum at som
moment of time. This maximum value is given, with an e
ponential accuracy, by an extreme value of the classical
tion, which is determined, according to classical mechan
by means of classical trajectories. The classical trajec
obeys Newton’s equationm]2x/]t21V8(x)5E(t) in the
complex time, since in the real time there is no classi
under-barrier path.

So, the method of classical trajectories in the comp
time can be used, when the full time dependence of the
neling rate is not required, but only its maximum value w
an exponential accuracy is a matter of interest. Note, des
the fact that the classical action depends functionally on
jectories defined in the complex time plane, the argumentt of
the actionS(x,t) is considered to be always real. The com
plex time has no physical meaning, it is only a possible w
to parametrize a solution of the Hamilton-Jacobi equati
Nevertheless, this way is very useful. For a weak nonstat
ary field E(t), the classical trajectoryx0(t) satisfies the un-
perturbed equation (m/2)(]x0 /]t)21V(x0)5E, whereE is
the particle energy, which can identified with an incide
energy of particle flux on the barrierV(x). The classical
trajectoryx0(t), as a function of the complext, has the sin-
gularity at t5ts(E) @15,16# and the external signal~2! has
the singularity att5 iu. As shown in this paper, when th
two singularities coincide

Im ts~E!5u, ~3!

the effect of an external signal on tunneling is enhanc
Under the condition~3!, the perturbation theory breaks dow
at essentially weaker nonstationary signals compared
general case. The parameter Imts(E) depends on propertie
of the static barrier and the particle energy@15,16#, butu is a
characteristic of a nonstationary signal. The physical me
ing of the condition ~3! is not straightforward since a
quantum-mechanical process is described by a produc
amplitudes but not of probabilities. The condition~3! rather
corresponds to a coherent cooperation of tunneling
quanta absorption, in other words, it is some ‘‘resonanc
condition between the motion of the system and the exte
signal. Equation~3! determines some remarkable thresho
energyET . As shown below, when the particle energy is b
E.ET , the tunneling process is moderately violated by
signal~2! ~of course, if the signal is less, than the static fie
of the barrierV/a); for lower energyE,ET , the process of
06210
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the barrier transition is strongly stimulated even by a re
tively small signal. This opens a possibility to effective
manipulate a tunneling process by a specially adapted@ac-
cording to Eq.~3!# electromagnetic signal of a small ampl
tude.

In Secs. II–VII the tunneling probability as a function o
time is calculated for the triangular barrier. In Sec. VIII th
method of complex trajectories is described. In Secs. IX
this method is applied to the triangular barrier to comp
with the results obtained by the direct solution of t
Hamilton-Jacobi equation. In Secs. XI–XIV the method
complex trajectories is applied to a barrier given by an a
lytical functionV(x), when there is no simple solution of th
Hamilton-Jacobi equation.

II. TRIANGULAR BARRIER

In this section we consider decay of the metastable s
in the potential

V~x!5V2E0uxu2A2~V2E!

m
d~x! ~4!

under action of a nonstationary electric fieldE(t). In the limit
E0→0, the energyE corresponds to the bound state in t
d-function potential well. The symmetric wave functio
@c(x,t)5c(2x,t)# can be written down in the form

c~x,t !5exp@ iS~x,t !1 is~x,t !#, ~5!

where the classical actionSobeys the Hamilton-Jacobi equa
tion at x.0

]S

]t
1

1

2m S ]S

]xD 2

1V2E0x2xE~ t !50 ~6!

with the boundary condition

S ]S~x,t !

]x D
x50

5 iA2m~V2E!. ~7!

At x50, one can impose the conditionS(0,t)52Et. The
equation fors has the form

]s

]t
1

1

m

]S

]x

]s

]x
1

1

2m S ]s

]x D 2

2
i

2m

]2s

]x2
5

i

2m

]2S

]x2
~8!

with the boundary condition

S ]s

]x D
x50

50. ~9!

Equations~6! and ~8! are exact ones. The solution of th
Hamilton-Jacobi equation~6! can be found by conventiona
methods@17#
2-2
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CONTROL OF TUNNELING BY ADAPTED SIGNALS PHYSICAL REVIEW A62 062102
S~x,t !52
1

2mE
t0

t

dt1S p1E0t11E
0

t1
dt2E~ t2! D 2

1S p1E0t1E
0

t

dt1E~ t1! D x1~V2E!t02Vt.

~10!

The functionsp(x,t) andt0(x,t) have to be defined from th
conditions]S/]p50 and ]S/]t050, which gives the fol-
lowing expressions

p~x,t !5 iA2m~V2E!2E0t02E
0

t0
dt2E~ t2! ~11!

and

mx5E
t0

t

dt1S p1E0t11E
0

t1
dt2E~ t2! D . ~12!

Equation ~12! has to be inserted into Eqs.~10! and ~11!,
which results in the final expression for the action

S~x,t !52
1

2mE
t0

t

dt1S iA2m~V2E!1~ t12t0!E0

1E
t0

t1
dt2E~ t2! D 2

1xS iA2m~V2E!1~ t2t0!E0

1E
t0

t

dt1E~ t1! D 1~V2E!t02Vt, ~13!

where the functiont0(x,t) is given by the equation

mx5 i ~ t2t0!A2m~V2E!1~ t2t0!2
E0

2

1E
t0

t

dt1~ t2t1!E~ t1!. ~14!

By means of the relation~a partial derivative is taken unde
the fixed lower index!

S ]

]t D
x

1
1

m S ]S

]xD
t
S ]

]xD
t

5S ]

]t D
t0

~15!

the Eq.~8! for s in new variablest0 and t has the form

S ]s

]t D
t0

2
1

4~V2E!F2 S ]s

]t0
D

t

2

1
i

4~V2E!F S ]

]t0

1

F

]s

]t0
D

t

5
11h~ t0!

Ft00
. ~16!

Here new notations are introduced

F~ t0 ,t !511 i
t02t

t00
@11h~ t0!#; ~17!
06210
h~ t !5
E~ t !

E0
; t005

A2m~V2E!

E0
.

In terms of new variables, the boundary condition~9! reads

S ]s~ t0 ,t !

]t0
D

t05t

50. ~18!

In semiclassical approximation,s should be small compare
to a big classical actionSand it can be expanded into a seri

s5s11s21•••, ~19!

which is produced by Eq.~16!, where the last two terms in
the left-hand side have to be considered as a perturba
Now one can write

sn~ t0 ,t !5E
0

t2t0
dhFn~h,t0!1E

0

t0
dt1Fn~0,t1!, ~20!

where

F1~ t2t0 ,t0!5
11h~ t0!

F~ t0 ,t !t00
~21!

and

F2~ t2t0 ,t0!5
1

4~V2E!F2 S ]s1

]t0
D

t

2

2
i

4~V2E!F S ]

]t0

1

F

]s1

]t0
D

t

. ~22!

From Eqs.~20! and ~21! one can obtain an explicit expres
sion

is1~ t0 ,t !52
1

2
ln F~ t0 ,t !1

i

2t00
E

0

t0
dt1@11h~ t1!#.

~23!

The expression fors2 can be easily obtained from Eqs.~20!
and~22! but it is too bulky and we do not write it here. Th
main parametric estimate atn>1

isn;
1

@~V2E!t00#
n21

~24!

characterizes Eq.~19! as a typical semiclassical series sin
(V2E)t00@1. The pulse width is supposed to be order
t00. Equations~13! and ~14! for the classical action, and
Eqs.~19!–~23! for s, enable the consideration of a decay
the metastable state under action of the nonstationary
E(t).

III. CAUSALITY

Suppose a pulse of the electric field has the form

Ẽ~ t !5E~ t !Q~ t82t !1E8~ t !Q~ t2t8!. ~25!
2-3
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B. I. IVLEV PHYSICAL REVIEW A 62 062102
Equation~25! can be considered in the complex time if us
to representQ functions in the form

Q~ t !5S 1

11exp~2lt ! D
l→1`

. ~26!

With the definition ~26! the Q function can be treated a
Q(Ret). As follows here, the functionẼ(t) at the complext
plane depends onE(t) @E8(t)# only to the left~right! of the
vertical line Ret5t8. If choosing the contours of integratio
in Eq. ~13! to the left of the vertical line with the real part t,
than the actionS(x,t) does not have information on how th
nonstationary pulse behaves at moments later thant. This
choice of contours of integration corresponds to the causa
principle.

IV. CLASSICAL ACTION

In this section we consider only the classical actionS in
Eq. ~5!. Under the signal~2! the imaginary part ofS reaches
its minimum value at some moment of time resulting in
maximum of the decay rate. For this reason we consider
the actionS(x,0) at t50. For a pulse symmetric in time
t0(x,0) is an imaginary value and we introducet0(x)5
2 i t 0(x,0). At small amplitude of the signal~2!, essential
values oft0 are close tou and the new variable

z512
t0~x!

u
~27!

is convenient (z!1). Below, only integer valuesn>3 in Eq.
~2! andu,t00, are considered. It follows from Eqs.~13! and
~14!

i
]S~x,0!

]x
52~t002u!X12S z1

z D n21CE0 ;

z15S Eu

2n~n21!~t002u!E0
D 1/(n21)

~28!

and

i
]2S~x,0!

]x2
5

u/~t002u!1~z2 /z!n

12~z2 /z!n

m

u
;

z25S Eu

2n~t002u!E0
D 1/n

. ~29!

In Eqs. ~28! and ~29!, the amplitude of the signalE is sup-
posed to be small leading to smallz1 and z2. As follows
from Eq. ~14!, the functiont0(x) is determined by the rela
tion

]mx

]t0
5~t002u!E02

Eu

2nzn
. ~30!

By means of Eqs.~28! and ~29! one can find the coordinat
dependence of the actionS, which is shown in Fig. 1. Two
06210
ty

stbranches in Fig. 1 in the limitE50 go over into conventiona
Wentzel-Kramers-Brillouin ~WKB! wave functions
exp(6*upudx). At the lower branch, where]S/]x50,

iS~x1,0!5~V2E! uS 12
u2

3t00
2 D ; x15

E 0u2

2m
. ~31!

At the common point, where]2S/]x2→`,

iS~x2,0!5~V2E!uS 12
u

t00
D 2

; x25
E0u

2m
~2t002u!.

~32!

Near the common pointx2, the deviation of the action from
the value~32! is proportional to (x22x) and in the second
order to6(x22x)3/2, is what develops the two branches.

V. NONSEMICLASSICAL CORRECTIONS

For validity of the semiclassical approximation the i
equalities

uSu@us1u@us2u@ . . . ~33!

should hold. Like in a static case, one can expect a viola
of the semiclassical theory near the pointx5x1, where
]S/]x50, and the pointx5x2, where]2S/]x2→`. Let us
compares with the classical actionS near these ‘‘danger-
ous’’ points.

Under the conditionz1!z!z2
n/(n12) , as follows from

Eqs.~21!–~24!,

is1~x,0!52
1

2
lnH S 12

u

t00
D F12S z2

z D nG J 2
u

2t00
~34!

and

FIG. 1. A plot of the imaginary part of the action for the case
the triangular potential barrier att50. The classical position of a
particle before tunneling isx50 and after tunneling isx5x1 ~a
classical turning point!. In absence of a nonstationary pulse the tw
branches go over into conventional increasing and decreasing W
branches.
2-4
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is2~x,0!5
1

48~V2E!u

3n~n11!1n~2n23!~z2 /z!n

z2
2 ~12u/t00!@12~z2 /z!n#3

3S z2

z D n12

. ~35!

An x dependence in the right-hand sides of Eqs.~34! and
~35! comes throughz according to Eq.~27!. At the pointx
5x1 (z5z1)

is1~x1,0!52
1

2
lnFn21

z1
S 12

u

t00
D G2

1

2
2

ip

2
~36!

and

is2~x1,0!52
1

48~V2E!uz1~12u/t00!

3F8~n21!S 12
u

t00
D 2

1
n~2n23!

n21 G . ~37!

A particle positioned in the well corresponds toS(0,0) at the
upper branch in Fig. 1 (z;1). A particle leaves the barrie
under the condition]S/]x50 at the pointx5x1 of the lower
branch in Fig. 1 (z5z1). One should be sure the pointsx
50 andx5x1 relate to the same semiclassical solution,
the other words, it should be possible to find a way from 0
x1 with no violation of the semiclassical conditions~33!.
Between real pointsz;1 andz5z1, there is only one ‘‘dan-
gerous’’ point z5z2, where, according to Eq.~35!, s→`
and the condition~33! breaks down. Nevertheless, the sem
classical approximation remains valid if the condition~33!
holds on some contouruz2z2u;z2 around the pointz2 in the
complexz plane. The pointz2 (x5x2) is a branch point of
the action, which has a contribution proportional to (x2
2x)3/2, like a turning point in a static problem. The sequen
of the Stokes and anti-Stokes lines@18# going from this
point, is qualitatively the same as in a static case. The c
dition ~33! on the above circle can be written in the follow
ing approximate form as if to putz;z2 in Eq. ~35! (u
,t00)

S u

t002u D n/221 an

@~V2E!u#n/2
!

E
E0

; 1!~V2E!u.

~38!

In the relation~38!, the numerical coefficientan;1 at n
;1, but at bign the coefficientan increases, which pre
scribes to choose a not bign for validity of the semiclassica
approximation. The conditionus2u!us1u at the pointx5x1
is less rigorous. The semiclassical conditions~38! require the
pulse amplitudeE to be not small. Remarkably, this ampl
tude can be still less than the static barrier fieldE0. At lower
E, than one satisfying the relations~38!, one should expec
the perturbation theory to be applicable.
06210
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n-

VI. FINITE TIME

Equation~14! determines the functiont0(x,t) and for the
signal ~2! one can write atx5x1 and utu,u

t0~x,t !5 i t11
z1u2

2~t002u! S i
t2

u2
1

t3

u3D . ~39!

According to the causality principle, the contour of integr
tion in Eq. ~13! should be to the left of the timet and hence
the condition Ret0,t results in the restrictiont.0. At t
,0, the semiclassical approach in its present form is
valid since the integration penetrates ‘‘in the future’’ and th
case requires further investigation. The time dependenc
the classical action can be found from Eq.~10!

Im
]S~x,t !

]t
52

1

2m
ImS iA2m~V2E!1~ t2t0!E0

1E
t0

t

dt1E~ t1! D 2

. ~40!

At x5x1 and t50 the right-hand side of Eq.~40! is zero.
One can easily obtain

Im S~x1 ,t !5Im S~x1,0!1~n21!~V2E!
t4

ut00
2

. ~41!

VII. THE TRANSITION PROBABILITY

Supposew(t) is the probability to find a particle in the
d-function potential and initiallyw equals unity. The conti-
nuity equation reads]w/]t52(2/m)Im(c* ]c/]x), where
the right-hand side is taken atx5x1. Using expression for
the wave function

c~x,t !5c~0,t !exp@ iS~x,t !2 iS~0,t !1 is~x,t !2 is~0,t !#,

~42!

where

c~0,t !.@2m~V2E!#1/4exp~2 iEt !, ~43!

and by means of Eqs.~42! and ~43! one can obtain

]w~ t !

]t
52A8~V2E!

m S ] ReS

]x
exp@22 Im ~S1s!# D

x5x1

.

~44!

Equations~11! and ~13! give ] ReS/]x5E0t at x5x1 and
the main time dependence in the exponential of Eq.~44!
follows from S(x1 ,t) @Eq. ~41!#. Collecting all the terms, one
can obtain finally (u,t00)
2-5
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]w~ t !

]t
52

2~V2E!t

e~n21!n/(n21)~t002u!
S Eu

2~t002u!E0
D 1/(n21)

3expS 22~n21!
~V2E!t4

ut00
2 D

3expH 22~V2E!uS 12
u2

3t00
2 D J . ~45!

As discussed in Sec. VI, Eq.~45! is valid only att.0. The
semiclassical conditions~33! are supposed to hold. Accord
ing to Eq. ~45!, the typical time scale of the output fluxDt
;@ut00

2 /(V2E)#1/4 determines the uncertainty of energy
outgoing particlesDE;Dt21, which is much smaller than
the energyE. The decay rate]w(t)/]t tends to its static
value att→6` having a maximum at some moment of tim

S ]w

]t D
max

;expF22~V2E!uS 12
u2

2t00
2 D G . ~46!

The exponent in Eq.~46!, according to its derivation, is a
minimum value of the imaginary part of the classical actio
A minimum value of action can be calculated, as kno
from classical mechanics, by means of trajectories satisfy
Newton’s equation. So, when we are not interested in the
time dependence of a decay rate, but we need only its m
mum value with an exponential accuracy, the method
classical trajectories can be used. This method is describe
the next section.

VIII. METHOD OF COMPLEX TRAJECTORIES

In this section we consider penetration of incident p
ticles through a potential barrier under action of a nonstati
ary pulse. We restrict ourselves only by the main exponen
approximation when one can use the semiclassical exp
sion for a wave functionc(x,t);exp@iS(x,t)#. We consider
here a particle flux on to the barrier shown in Fig. 2, but
final result can be easily applied to decay of the metasta
state through the triangular barrier~4!. The maximum value
of the outgoing flux of particles can be calculated as a ma
mum with respect to time

Wmax;maxuexp@ iS~x,t !2 iS~x0 ,t !#u2. ~47!

Here x is some coordinate to the right of the barrier,x0→
2`, where ImS(x0 ,t)50, and in Eq.~47! one can put
S(x0 ,t0) instead ofS(x0 ,t). The right-hand side of Eq.~47!
does not depend onx and x0. It is a function of t only.
Equation ~47! corresponds to the extreme classical acti
which can be found by method of classical trajectoriesx(t)
defined in the complext plane, since in real time there is n
classical trajectory for an under-barrier motion. The comp
pathC is shown in Fig. 3. The real classical turning point
x15x(t1), where]x(t)/]t50. This point corresponds to th
classical exit of a particle from under the barrier. The r
coordinatex05x( t̃ 0) is defined under the condition Ret̃ 0
5t0→2`. The classical trajectory connects the poin
06210
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$x0 , t̃ 0% and $x1 ,t1%. The contourC is symmetric with re-
spect to the real axis. It is convenient to write Eq.~47! in the
form

Wmax;uexp@ iS~x1 ,t1!2 iS~x0 ,t0!#u2. ~48!

Since att→2`, the nonstationary fieldE(t)→0, a connec-
tion between values of the action at the pointst0 and t̃ 0 is
simple

S~x0 ,t0!5S~x0 , t̃ 0!1~ t̃ 02t0!E, ~49!

whereE is the energy of an incident particle. According
Eqs. ~48! and ~49!, the maximum amplitude value of th
outgoing flux of particles has now the form

FIG. 2. A snapshot of a particle motion through the poten
barrier under the action of a nonstationary pulse at a moment o
maximum tunneling flux.Emax is the maximum~in time! energy of
escaped particles. All particles with the incident energiesE,ET are
collected at the threshold levelET after passing the barrier. A mo
tion of particles withE.ET is violated a little.

FIG. 3. The contours of integrationC andC0 ~in absence of a
pulse! are shown in the plane of complex time.iu is the position of
singularity of the nonstationary pulse andts is the branch point
singularity of the classical trajectory. The cut is denoted by
dashed horizontal line.
2-6
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Wmax;exp~2A!, ~50!

where

A52 i E
C
dtFm

2 S ]x

]t D
2

2V~x!1xE~ t !1EG ~51!

is defined by means of trajectory satisfying Newton’s eq
tion m ]2x/]t21V8(x)5E(t) in the complex time. Due to
symmetry of the contourC, the value ofA is real. The tra-
jectory x(t) should not be necessarily real at allt, it should
be real at least in the vicinity of real pointsx0 andx1. On the
left horizontal parts of the contourC, whereE(t)50, x(t)
satisfies the equation

m

2 S ]x

]t D
2

1V~x!5E ~52!

and is expressed through the real functionsx5 f (t2 t̃ 0 ,E)
~up! and x5 f (t2 t̃ 0* ,E) ~down!, whereE is a real energy.
Now one can formulate conditions on how to choose
contourC: for given ~at t→2`) particle energyE and the
pulse shapeE(t) one should find Imt̃ 0 and the real turning
point x15x(t1). Equation~51! holds for a potential barrie
V(x), which is an analytical function of the variablex. Such
a barrier has no artificial restriction in coordinates~no singu-
larity at a realx). For this reason, Eq.~51! can be interpreted
as one accounting for not only an under-barrier part, but a
some pre-barrier motion.

IX. APPLICATION TO A TRIANGULAR BARRIER

Equation~51! is applicable to the case of a potential ba
rier V(x), which is an analytical function of the variablex. In
the case of the triangular barrier~4!, which is a nonanalytica
function, the all classical path of the particle is restricted
an under-barrier motion. In this case the exponentA, instead
of Eq. ~51!, should be written in the form

A52 Im E
i t0

0

dtFm

2 S ]x

]t D
2

2V1xE01xE~ t !1EG , ~53!

wherex(t) is the trajectory satisfying the Newton equatio
in the complex time

m
]2x

]t2
2E05E~ t !. ~54!

The trajectory starts at the metastable wellx( i t0)50 with
the boundary conditions

S ]x~ t !

]t D
i t0

5 iA2~V2E!

m
. ~55!

For a symmetric pulseE(2t)5E(t) the velocity]x/]t50 at
t50, at this point the particles escape from under the bar
06210
-

e

o

y

r,

and this terminates the integration in Eq.~53!. The parameter
t0 has a meaning of under-barrier traversal time@19# and can
be found from the equation

E0t01E
0

t0
dtE~ i t!5A2m~V2E!. ~56!

Equation~56! is equivalent to the conditionp50 following
from Eq.~11!. Since the time is imaginary the functionA can
be called the Euclidian action

A52~V2E!t02
E 0

2

3m
t0

32
2E 0

m E
0

t0
tdtE

0

t

dt1E~ i t1!

2
1

mE
0

t0
dtS E

0

t

dt1E~ i t1! D 2

. ~57!

The outgoing particle has the energyE1dE, where

dE5V2E2@E01E~0!#S E 0

2m
t0

21
1

mE
0

t0
dtE

0

t

dt1E~ i t1! D .

~58!

After escape from the barrier, an action of the nonstation
field on the particle can be omitted since it is determined
the parameterE/E0, which is much smaller than the one go
erning the particle under the barrier and defined by the c
ditions ~38!. In the absence of a nonstationary pulse the
ergy of outgoing particles has the same value (dE50) and
the Eucledian action equalsA0 determined by the conven
tional WKB formula

A0~E!5
4

3
~V2E!t00, ~59!

where t00 is given by Eq.~17! and has a meaning of th
under-barrier traversal time in the stationary case. The c
dition u5t00, which is a particular case of Eq.~3!, sets
some threshold energy

ET5V2
u2E 0

2

2m
. ~60!

As follows from Eqs.~57! and ~58!, the intensity and the
energy of outgoing particles strongly depends on whether
initial energyE is bigger (t00,u) or smaller (u,t00) than
ET . At ET,E the effect of the nonstationary signal on tu
neling is weak and increases only in the vicinity ofET

A5A0S 12
3E

~n21!2nE0

1

~12t00/u!n22D ;

dE

V2E
5

2E
~n21!2nE0

1

~12t00/u!n21
. ~61!

At low energiesE,ET the situation is very nonperturbativ

A5A0~ET!12~ET2E!u; dE5ET2E, ~62!
2-7
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B. I. IVLEV PHYSICAL REVIEW A 62 062102
which coincides with the exponent in Eq.~46! obtained by a
direct solution of the Hamilton-Jacobi equation. The ene
dependence of the Euclidian action is shown in Fig. 4. T
type of scenario of barrier penetration is shown schem
cally in Fig. 2 in the case of particle flux on the barrier.

X. SEPARATION OF QUANTA ABSORPTION AND
TUNNELING

For a monochromatic fieldEv , of frequencyv, the total
probability of penetration through a barrier can be appro
mately written as a product of two probabilities: absorpti
of N quanta and tunneling@see the comment to Eq.~1!#

]w

]t
;S Ev

E0vt00
D 2N

exp@2A0~E1vN!#5exp@2A~v,N!#.

~63!

For the pulse~1! the amplitudeEv should be substituted b
E(vu)n21 exp(2vu) and the effective action becomes of th
form

A~v,N!5A0~E1vN!12 lnS E0

E~vu!n22 exp~2vu!
D .

~64!

The semiclassical approximation corresponds to some o
mum choice ofv in a continuous spectrum of the pulse a
the number of quanta of this optimum frequencyN, which
provide a minimum of A(v,N). The condition
]A(v,N)/]N50 gives the following relations:

dE5vN5~ET2E!2
2u~V2E!

vt00
lnS E0

E~vu!n22D ,

FIG. 4. The energy dependence of the exponentA(E) ~solid
line! which determines the maximum~in time! of the tunneling
probability Wmax;exp@2A(E)#. The dashed line is the plot of th
exponentA0(E) in the absence of a pulse. It merges the solid line
E.ET .
06210
y
s
i-

i-

ti-

A5A0~ET!12~ET2E!u2
2~V2E!

v

3S 12
u2

t00
2 D lnS E0

E~vu!n22D . ~65!

Further minimization, with respect tov, gives an infinite~in
this approach! value ofv, indicating the logarithmic terms in
Eqs.~65! to be small and hence Eqs.~65! coincide with the
result ~62!.

Let us consider another example, where such a sim
approach also gives a correct~with exponential accuracy!
decay rate. Suppose the Gaussian pulse

E~ t !5E exp~2V2t2! ~66!

acts on a particle in the stable potential well~4! with E050.
Then in the effective action

A~v,N!52N ln
vAm~V2E!

Ev
, ~67!

one should putEv→E exp(2v2/V2), according to the Fourier
harmonic of the pulse, andN5(V2E)/v, since in this case
there is no tunneling and a particle should reach the top
the barrier. This leads to the relation

AS v,
V2E

v D52~V2E!S v

4V2
1

1

v
ln

vAm~V2E!

E D .

~68!

The minimization of this expression with respect tov gives
the optimum value ofA

A5
2~V2E!

V S ln
VAm~V2E!

E D 1/2

~69!

the optimum pulse frequency, and the optimum number
absorbed quanta

vopt52VS ln
VAm~V2E!

E D 1/2

; Nopt5
V2E

vopt
. ~70!

The result~69! coincides with calculation of the Euclidia
action for the pulse~66! by the semiclassical methods deve
oped above~calculations are not put in this paper!. One can
see from here, the decay rate under action of a nonstatio
pulse can be calculated with an exponential accuracy on
base of simple arguments of optimum frequency and num
of quanta. This approach of separation of quanta absorp
and subsequent tunneling, described in this section, wo
only for a potentialV(x), which isnot an analytical function
of the variablex like the potential~4!. In this case one can
use an interpretation of quanta absorption at some poix
@position of singularity ofV(x) on the real axis#. WhenV(x)
is an analytical function there is no such particular point,
situation is more complicated, and the method of sim
separation of absorption and tunneling does not work, si

t

2-8
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the quantum interference of these processes becomes
nontrivial. The case of analytical potential is considered
the next section.

XI. WEAK NONSTATIONARY SIGNAL

Let us go back to an analytical potential barrierV(x).
When E(t)50, the contourC is reduced to the contourC0
shown in Fig. 3, which consists of the vertical part betwe
the points6 i Im t̃ 0 and the horizontal semi-infinite lines a
Ret,0. In this static case

Im t̃ 05Am

2 E dx

AV~x!2E
, ~71!

where the integration goes between two classical turn
points determined by the relationV(x)5E. Equations~51! at
E(t)50 determines the conventional WKB exponent
means of the unperturbed LagrangianL0

A052 i E
C
dtL052A2mE dxAV~x!2E,

L05
m

2 S ]x0

]t D 2

2V~x0!1E. ~72!

Here x0(t) is the classical trajectory determined at allt by
Eq. ~52!. The small pulseE(t) results in the perturbed trajec
tory x0(t)1dx(t). The perturbation in Eq.~51! has the form

A52 i E
C
L01E

C
x0~ t !E~ t !1mS ]x0

]t
dxD ~ t̃ 0* !

2mS ]x0

]t
dxD ~ t̃ 0!. ~73!

The velocities]x/]t at t̃ 0* and t̃ 0 are real and

Im dx~ t̃ 0!52S ]x0

]t
d t̃ 0D ~ t̃ 0!. ~74!

Hered t̃ 0 is a variation oft̃ 0 due to the pulse given by Eq
~71!. One can easily see that

E
C
dtL05E

C0

dtL022i S ]x0

]t D 2

~ t̃ 0! Im d t̃ 0 . ~75!

Collecting Eqs.~73!–~75!, one can obtain

A5A01dA; dA52 i E
C
dt E~ t !x0~ t1Dt !. ~76!

Here we keep the argument shiftDt of the unperturbed so
lution, satisfying Eq.~52!, determined in the way the class
cal turning pointt152Dt. The method of classical trajecto
ries produces a minimum value ofA, which means the shif
Dt is found from the minimization condition
06210
ery
n

n

g

]dA

]Dt
50. ~77!

A meaning of the minimization condition~77! can be clari-
fied in the following way. According to classical mechanic
the variation of the particle energy is]E/]t5E(t)]x0 /]t. At
t5 t̃ 0 and at t5 t̃ 0* , when the nonstationary field is zero
energy should have the same values, that is

E
C
dt E~ t !

]x0~ t1Dt !

]t
50. ~78!

Equation~78! coincides with Eq.~77!. If the minimization
condition ~77! violates the particle, energyE would acquire
an imaginary part. In summary of this section, in case
small non-stationary fieldE(t), one can use the perturbatio
approach~76! with the further minimization~78!.

XII. ANALYTICAL PROPERTIES OF TRAJECTORIES

We consider the potential barrier

V~x!5
V

cosh2 x/a
. ~79!

The classical unperturbed trajectory satisfies the relati
@15,16#

]x0~ t1Dt !

]t
5

av sinhv~ t1Dt !

Acosh2 v~ t1Dt !1E/~V2E!
; v25

2E

ma2

~80!

and is an analytical function of the complex variablet having
the branch points att5ts ,ts* , where

ts5 i ts2
1

v
ln

AV1AE

AV2E
2Dt; ts5

p

2v
. ~81!

Close to the branch pointts , the trajectory has the form

x0~ t1Dt !52
ipa

2
1aA2v~ ts2t !AV/E. ~82!

The cut is shown in Fig. 3 by the dashed horizontal lin
Now the integral, definingdA in Eq. ~76!, can be calculated
on the basis of analytical properties.

XIII. TUNNELING PROBABILITY

Let us choose the nonstationary pulse in the form~2! with
n52 and the potential barrier~79!. Then the integrand in Eq
~76! has singularities of two types in the complext plane:ts
comes from the analytical functionx0(t1Dt) and iu comes
from the analytical functionE(t). There are different posi-
tions of the contourC with respect to those singular poin
giving rise to different branches of the extreme action. T
branch, giving the minimum value ofA, results from the
position shown in Fig. 3, when the contourC goes between
2-9
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B. I. IVLEV PHYSICAL REVIEW A 62 062102
the two singularities. This very branch determines the eff
We consider here only the case Imts,u. The contourC can
be deformed up and in the limit (u2ts)!u, where the pole
circle at t5 iu gives the main contribution

dA5pEats
2S V

ED 1/4

ReA v

2~ ts2 iu!
. ~83!

According to Eq.~81!, ts depends onDt, and the minimiza-
tion ~77! produces

Dt52
u2ts

A3
. ~84!

The momentt152Dt is the delay time of outgoing particle
from under the barrier. The correctiondA in Eq. ~76! has the
form

dA52
p

4
Eats

2S 3V

E D 1/4A 3v

u2ts
. ~85!

Finally, Eqs.~50!, ~72!, ~76!, and ~85! determine the maxi-
mum outgoing flux of particles tunneling through the pote
tial barrier~79! in the case of a weak nonstationary signal~2!
with n52. Equation~85! is analogous to the formula~61! for
the triangular potential. Whenu→Im ts , the perturbation
theory breaks down and the result becomes a very nonli
function of the nonstationary pulselike Eq.~62!. We see that
the relation~3! plays a crucial role in the physics of tunne
ing under nonstationary conditions. For the potential bar
~79!, ts appears in a ‘‘natural’’ way as a result of analytic
properties, whereas for a nonanalytical potential it is de
mined by the time of motion between a turning point and
point of the nonanalytical singularity of the potential@t00 in
the case of the triangular potential~4!#.

XIV. DISCUSSIONS AND CONCLUSIONS

In the case of the triangular potential barrier the semic
sical theory in a nonstationary case is constructed base
classical trajectories in the complex time. This becomes p
sible since for such a barrier nonsemiclassical correcti
can be calculated exactly. The conditions of applicability
the semiclassical approach~softly varying and not very smal
-

. H
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pulse! are not surprising. A much less trivial matter is th
way of construction of the trajectory method. The conditi
~3! of coincidence of singularity of a trajectory and of a fie
leads to unexpected conclusions. The threshold energyET ,
set by the condition~3!, divides the all incident flux of par-
ticles by two groups:~i! particles with E.ET passes the
barrier practically like in a stationary case,~ii ! particles with
lower energiesE,ET are affected strongly by the pulse th
collects all particles after passing the barrier at the sa
energyET regardless of their initial energy. This enables
to use short pulses, adapted to the necessary energy lev
the relation~3!, to get outgoing particles collected at th
level at some moment of time. In other words, adapted s
nals can be used for a selective control of tunneling: in so
and molecules it excites only some particular bonds leav
other bonds nonexcited. There is an obvious advantag
using soft signals for control of tunneling. The hard pulse
the type ~2! cannot control tunneling selectively, since
kicks up all particles to the top of the barrier. When the pu
~2! serves as an envelope for the monochromatic signa
the frequencyV;1/V it provides, in a nonselective manne
equalV shifts of all escaping particles with respect to the
incident energies. It is remarkable, the soft Gaussian sig
E(t)5E exp(2t2/u2) cannot produce a strong enhancement
tunneling when its amplitude is much less than a static fi
of a potential barrier. This is an indication of importance
the analytical structure of the signal~2!. This can be under-
stood in another way looking at Eq.~1!, where the Fourier
harmonics of the Gaussian signalEV;E exp(2V2u2/4) do
not result in divergence inV.

The static electric field in solids and molecules can
estimated asE 0;107 V/cm, a typical pulse width is in the
range of tens of femtoseconds, and the amplitude of the e
tric field of the pulse can be chosen asE;1042105 V/cm,
which is reachable in experiments.

The developed theory is also applicable to quantu
mechanical over-barrier reflection of particles. The reflect
of classical waves~electromagnetic, hydrodynamic, etc!
from a spatially-smooth medium also may be described
the above theory, when the medium is influenced by
adapted signal.
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