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Critcal velocity of superfluid flow past large obstacles in Bose-Einstein condensates
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~Received 8 May 2000; published 15 November 2000!

By considering the stability of potential flow of a superfluid around large obstacles of sizeR, we derive an
analytical result for the critical velocity that is of ordervc;\/mR, scaling inversely with obstacle size, in
contrast to what is obtained from a Landau criterion. Our results are compared with numerical solutions of the
Gross-Pitaevskii equation and with recent measurements of the critical velocity in Bose-Einstein condensates
of dilute atomic gases.

PACS number~s!: 03.75.Fi, 67.40.Hf
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Dissipationless flow for small, finite velocities is a bas
and, originally, defining property of superfluids@1#. For
Bose-Einstein-condensates in dilute atomic gases, this
nomenon was recently investigated by stirring the cond
sate with a blue detuned laser beam@2,3#. The associated
time-dependent repulsive potential of macroscopic sizeR,
much larger than the healing lengthj, gives rise to a finite
dissipation only above a critical velocityvc , where superflu-
idity breaks down. The rate of dissipation can be obtain
either by measuring the amount of heating via the resul
depletion of the condensate@2# or, more directly, by observ
ing the asymmetry in density associated with a finite press
difference across the moving object@3#. The latter phenom-
enon is in fact completely analogous to the current-indu
asymmetry around defects in a Fermi liquid, as predic
long ago by Landauer as the basic microscopic origin
residual resistance@4,5#. The measured values ofvc are
found to be a small fractionvc'(0.1-0.25)cs of the sound
velocity at the trap center with a numerical factor, whi
appears to increase with density@3#. These results are in
rough agreement with numerical solutions of the Gro
Pitaevskii equation~GPE! for a moving cylindrical perturba-
tion in a homogeneous@6,7# or inhomogeneous@8# conden-
sate. In the homogeneous case, for a fixed cylinder size
critical velocity is around 0.45cs . Qualitatively this result
may be understood in the spirit of the Landau criterion@1#,
by arguing that there is no dissipation as long as the lo
velocity u(x) at any point remains belowcs . For an incom-
pressible flow,u(x) has its maximal value, which is twic
the object speed, at the side of the cylinderuxu5R,u5
6p/2 @9#. Since the local sound velocity is reduced by t
depletion of the actual condensate density close to the
stacle, a valuevc smaller thancs/2 ~or 2/3cs for a sphere! but
independentof R is expected from this type of argument.
an inhomogeneous situation like that for atomic condens
in a harmonic trap, the critical velocity will be lowered fu
ther because the density decreases away from the trap ce

Our aim in the present work is to derive an analytic
criterion for the critical velocity of superfluid flow aroun
macroscopic obstacles of sizeR@j by considering the linea
stability of the dissipationless potential flow belowvc to-
wards the generation of vortices. For a strongly repuls
potential,vc is of order 5\/mR i.e., independent of the den
sity and inversely proportional to the obstacle size. Sin
\/mj5&cs , the critical velocity coincides with a fraction
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of the sound velocity for obstacle sizesR'(10220)j,
which are in fact typical values considered both experim
tally and in the numerical simulations. As pointed out
Nozières and Pines@1#, the predictionvc;\/mR is a generic
result for the critical velocity due to vortex generation,
shown, e.g., by Feynman’s estimatevc'(\/mD)ln D/j!cs
@10# for superfluid flow in a long channel with diameterD
@j @11#. A very similar result for a cylindrical trap was
obtained very recently by Crescimannoet al. @12#.

The dynamics of a dilute, weakly interacting Bos
Einstein-condensate~BEC! is accurately described by th
GPE for the complex condensate wave functionF @13#.
Since we are considering a bulk situation, it is convenien
normalizeF according to* uFu2d3x5N. In the rest frame of
the obstacle, where the problem is stationary, the ene
functionalF@F# of a homogeneous condensate moving w
velocity v, has the standard form

F@F#5E@F#2v•P@F#. ~1!

Here

E@F#5E ddxF \2

2m
u“Fu21

g

2
uFu4G ~2!

is the condensate energy functional in its rest frame and

P@F#5E ddx
i\

2
@F“F* 2F*“F# ~3!

is the momentum functional of the moving condensate.
dilute gases, the interaction parameterg54p\2a/m is de-
termined by the scattering lengtha, which is assumed to be
positive. Splitting the condensate wave functionF(x)
5 f (x)eiw(x) into magnitude and phase, the energy functio
~1! takes the form

F@ f ,w#5E ddxF \2

2m
@~“ f !21 f 2~“w!2#

1
g

2
f 42\v•~“w! f 2G . ~4!

In order to calculate the critical velocity, we determine t
limit beyond which small fluctuations around the dissipatio
less potential flow belowvc are no longer stable. Since rotu
©2000 The American Physical Society01-1



-
i

d
he
a

n

ca

n

e-

b-

a
in

ity

-
te
ll

uc
th

ed
f
lu-

e
bil-

-
p-

ary
e
y

s of

the

he
in-
or-

RAPID COMMUNICATIONS

J. S. STIEßBERGER AND W. ZWERGER PHYSICAL REVIEW A62 061601~R!
vanishes identically belowvc , the condensate velocity rela
tive to the obstacle at rest can quite generally be written
the form

u~x!5
\

m
“w~x!1v, ~5!

where the term\/m“w accounts for the backflow induce
by the presence of the obstacle. Far from the obstacle, w
the densityf 2 is constant, the backflow is necessarily of
dipolar form

\

m
“w52Ad

dn̂~v•n̂!2v
r d , ~6!

since the dipole is the only function obeying both conditio
of vanishing vorticity rotu50 and stationarity 05div f2 u
' f 2 div u. Heren̂ is the unit vector in the direction ofx and
d52, 3 the relevant dimensionality (d52 for a moving cyl-
inder, d53 for a sphere!. For a weak obstacle potentialVB
!m, the response of the superfluid to the moving object
be treated in first-order perturbation theory@14#. The result-
ing dipole strengthAd;(1/n)(]n/]m)•V(q50) is deter-
mined by the bulk compressibilitynk5(1/n)(]n/]m)
5(mcs

2)21 and the Fourier transform of the potential at va
ishing wave vector. For a potential of sizeR this leads to a
behaviorAd;VBRd /m. In the experiments, however, the r
pulsive potential is rather strongVB@m and, in particular,
we want to investigate the hard core limitVB→`, where
perturbation theory definitely fails. In this regime the o
stacle is equivalent to the boundary conditionu•n̂uR50 of
vanishing normal velocity atuxu5R. Provided the backflow
has the form given in Eq.~6! for arbitrary values ofr, this
immediately fixesAd5Rd/(d21). With this approximation,
Eq. ~6! is just the flow pattern of an incompressible, ide
classical fluid around an obstacle, which has a vanish
drag force in a stationary situationv5const@9#. To account
for the depletion in density due to the finite compressibil
of a real BEC, we use the following ansatz:

f ~r !55A
m

g
tanhS r 2d

&j
D for r .R,

Am

g
A exp@km~r 2R!# for r ,R,

~7!

with j5\/A2mm, km5A2m(VB2m)/\2, and obstacle po-
tential VB . Equation ~7! combines the standard one
dimensional solution of the GPE at an infinite potential s
with a one-particle wave function that decays exponentia
below the barrierVB . The latter is a solution of the GPE
without theF3 term and thus is valid in the limitVB@m,
where the external potential due to the obstacle is m
larger than the mean-field interaction energy. Matching
logarithmic derivative off (r ) at r 5R, leads to the following
expressions ford andA:
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jkm

&
SA11

2

j2km
2 21D , ~8!

d52
j

2
lnS 11A

12AD1R. ~9!

Equation~7! smoothly interpolates on the scalej between
the bulk condensate densityn5m/g far from the obstacle to
essentially zero at its centerr 50 ~note R@j). The ansatz
~7! thus describes a ‘‘soft,’’ penetrable obstacle as realiz
experimentally. Although Eq.~7! is not an exact solution o
the three-dimensional GPE, comparison to numerical so
tions shows that the approximation is excellent@15#.

To calculate the critical velocity of the superfluid flow, w
follow a method similar to that used to determine the sta
ity of electrical supercurrents in a wire by Langer and Am
begaokar@16#. We consider small deviations around the a
proximate stationary pointF̄5 f eiw described by Eqs.~6!
and ~7!, which are conveniently written in the form

F5@ f ~x!1w~x!#exp@ iw~x!#. ~10!

For a general complex functionw(x), this ansatz includes
both amplitude and phase fluctuations around the station
solution with phasew(x). Since the potential flow around th
obstacle described byF̄ is a stationary point of the energ
functional~1!, the expansion ofF@F# up to second order in
w,

F@F#5F@F̄#1QF̄@w#1¯ , ~11!

yields a quadratic formQF̄@w#. The eigenvalues ofQF̄@w#

give the characteristic curvature ofF@F# at F̄5 f eiw in
function space. In order forF to have a local minimum atF̄,
which means that the solution is stable, all the eigenvalue
QF̄@w# must be positive. The lowest velocityv for which Q
has an eigenfunction with negative eigenvalue thus gives
critical velocity vc for the onset of dissipation in the BEC
@20#. The eigenvalue equationdQ/dw* 5lw can be written
in the form

2
\2

2m
¹2w1S \2~“w!2

2m
2\“w•v Dw12 f 2gw1 f 2gw*

5lw. ~12!

Similar to the situation discussed in@16#, it turns out that a
purely complexw yields the smallest eigenvalue and thus t
smallest critical velocity. Physically this means that the
stability is driven by phase fluctuations associated with v
tex generation, as also found numerically@17#. Using w
5 iw̃, the eigenvalue equation~12! can be written as a
Schrödinger equation

2
\2

2m
¹2w̃1Veff~r ,u,v !w̃5lw̃, ~13!
1-2
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with an effective potential that is determined by inserting
approximations~6! and ~7! in Eq. ~12!. The effective poten-
tial thus has the following form ind dimensions:

Veff~r ,u,v !5
mv2

2 F S Ad

r d D 2

$~d222d!cos2 u11%

1
2Ad

r d $d cos2 u21%G1g f2~r !. ~14!

Examining the effective potential, we find that an attract
well is formed aroundu56p/2, where bound states wit
negative eigenvalue may develop~see Fig. 1!. The depth of
this potential well increases with the velocityv, and thus
there is a critical velocityvc beyond which Eq.~13! has a
negative eigenvalue. In agreement with numerical simu
tions@17#, u56p/2 is the position at the side of the obstac
where vortices are generated at the breakdown of supe
idity, i.e., it is the barrier for vortex creation that vanishes
vc .

In principle, the velocity at which the lowest eigenvalu
of the Schro¨dinger equation with the anisotropic potenti
~14! becomes negative may be found numerically. In orde
obtain an analytical result that displays the relevant par
eter dependence of the critical velocity, however, it is m
convenient to use a simple semiclassical estimate for
number of eigenstates in the effective potential@18#

Nsc~v !5SA2m

2p\ D d

VdE
Veff,0

ddxuVeff~r ,u,v !ud/2, ~15!

whereVd is the volume of the unit sphere ind dimensions.
Equation~15! gives the number of states that have negat
eigenvalue and is just the classical phase-space volum
the region whereVeff,0 in units of (2p\)d. The condition
Nsc(vc)51 thus gives a simple semiclassical approximat
for the critical velocity.

FIG. 1. Effective potentialVeff(r,u5p/2,v50.7cs) for VB

510m andR520j. The solid line is the potential ind53 and the
dashed line ind52.
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Introducing reduced unitsR̃5R/j andVB /m, the condi-
tion Nsc51 takes the following form for the cylindrical ob
stacle:

15
R̃2

8p E
0

2p

duE
0

`

r drUminF0,S vc

cs
D 2

3H 1

r4 1
2

r2 ~2 cos2 u21!J 12 f̃ 2~r!GU. ~16!

For the spherical perturbation the corresponding condit
for vc reads

15
R̃3

6&p
E

0

p

sinu duE
0

`

r2drUminF0,S vc

cs
D 2H 1

4r6

3~3 cos2 u11!1
1

r3 ~3 cos2 u21!J 12 f̃ 2~r!GU3/2

.

~17!

In Eqs.~16! and ~17! f̃ is the function~7! in reduced units

f̃ ~r!55 tanhF R̃

& S r2
d/j

R̃
D G for r.1,

A expS R̃AVB

m
21~r21!D for r,1.

~18!

Equations~16! and~17! are the main results of this work
providing a simple criterion for the critical velocity of
moving cylinder and sphere. Evidently the ratiovc /cs de-
pends only on the two dimensionless parametersVB /m and
R/j. In the limit R/j@1 and VB /m@1, the function~18!
converges to the step functionu(r21). In this limit the
integrals in Eqs.~16! and ~17! are independent ofR/j and
VB /m. The dependence of the critical velocity on the o
stacle radius is therefore simply

vc;
\

mR
. ~19!

The proportionality factor for the cylinder and sphere can
easily evaluated givingvc57.61\/mR and vc54.82\/mR,
respectively. The precise numerical factor is in agreem
with the lines shown in Fig. 2. It will change in an exa
solution of the Schro¨dinger equation~13!, without, however,
affecting the basic resultvc5const3\/mR. As shown in Fig.
2 the numerical integration of Eqs.~16! and~17! gives criti-
cal velocities that very closely obey the 1/R scaling~19! for
radii larger than about 10j or 15j for the sphere or the cyl-
inder. For small radiiR&7j, the critical velocity becomes
larger than the sound velocity. In this regime our approxim
tions are no longer valid and a more microscopic theory
necessary to determinevc . Choosing different values fo
VB /m, it turns out that the result shown in Fig. 2 remai
unchanged down toVB'5m, beyond whichvc starts to in-
1-3
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crease, in agreement with the behavior found numeric
@8#. Numerical work on a moving cylinder in a homogeneo
BEC @6,7# observed a critical velocity of about 0.45cs for
R.j. No dependence of the results on the obstacle ra
was reported, however. Simulations for a trapped BEC
an obstacle with Gaussian object potential reported a crit
velocity between 0.55cs and 0.3cs @8#, close to the typical
values forvc found in this work. Similar values were derive
analytically@19# for a hard sphere withR510j, by expand-
ing the magnitude and phase of the wave function to fi
order inj/R.

FIG. 2. Critical velocityvc as a function of the obstacle radiu
for a potentialVB510m. The upper curve presents the movin
cylinder and the lower one the moving sphere. The results obta
from Eqs.~16! and ~17! are shown as crosses, the lines exhibit t
1/R dependence.
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In the experiments@2,3# the blue detuned laser beam th
served as a cylindrical obstacle had a radius ofR'20j and a
potential barrierVB5(6.428)m. The measured critical ve
locity in the trapped BEC was about (0.1– 0.25)cs . For the
values of Ref.@2# our approach yields a critical velocityvc

50.51cs for a perturbation moving uniformly in a homoge
neous condensate. Compared with the experiments, th
about a factor of 2 larger. Now, as has been found in rec
numerical simulations of the GPE@8#, the measured critica
velocity is lower than in the bulk for two reasons: First of a
in the trapped BEC, the obstacle touches regions of the c
densate with lower density and thus a lower velocity
sound. Accordingly vortices will appear first in the out
regions of the condensate and penetrate towards the trap
ter. Second, due to the oscillatory movement, the obsta
creates its own wake, thus lowering the critical velocity fu
ther. In the experiment@3# the critical velocity was measure
for different condensate densitiesn at fixedR. In contrast to
our result~19!, the critical velocity seems to scale withcs

;An or even more strongly with density. It is possible th
this discrepancy is caused by our incompressible fluid
proximation for the strengthAd of the dipolar backflow.
Clearly a more microscopic calculation ofAd for strong scat-
tering is required to clarify the situation and also expe
ments, in which the effective obstacle sizeR is varied at
fixed density.

In conclusion, we have derived a simple analytical res
for the critical velocity of a macroscopic moving obstacle
a BEC. In particular, it has been shown that the critical v
locity scales inversely with the obstacle size, a predict
that should easily be checked experimentally.

We thank W. Ketterle for helpful comments.
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