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Critcal velocity of superfluid flow past large obstacles in Bose-Einstein condensates
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By considering the stability of potential flow of a superfluid around large obstacles oRsize derive an
analytical result for the critical velocity that is of ordeg~#%/mR, scaling inversely with obstacle size, in
contrast to what is obtained from a Landau criterion. Our results are compared with numerical solutions of the
Gross-Pitaevskii equation and with recent measurements of the critical velocity in Bose-Einstein condensates
of dilute atomic gases.

PACS numbds): 03.75.Fi, 67.40.Hf

Dissipationless flow for small, finite velocities is a basic of the sound velocity for obstacle sizd®~(10—20)¢,
and, originally, defining property of superfluidd]. For  which are in fact typical values considered both experimen-
Bose-Einstein-condensates in dilute atomic gases, this phéally and in the numerical simulations. As pointed out by
nomenon was recently investigated by stirring the condenNozieres and Pinefl], the predictiorv .~#%/mRis a generic
sate with a blue detuned laser bed§#3]. The associated result for the critical velocity due to vortex generation, as
time-dependent repulsive potential of macroscopic $e shown, e.g., by Feynman’s estimatg~ (%/mD)In D/é<c,
much larger than the healing lengéh gives rise to a finite  [10] for superfluid flow in a long channel with diametBr
dissipation only above a critical velocity,, where superflu- > ¢ [11]. A very similar result for a cylindrical trap was
idity breaks down. The rate of dissipation can be obtainedbtained very recently by Crescimanabal.[12].
either by measuring the amount of heating via the resulting The dynamics of a dilute, weakly interacting Bose-
depletion of the condensaftg] or, more directly, by observ- Einstein-condensatéBEC) is accurately described by the
ing the asymmetry in density associated with a finite pressurGPE for the complex condensate wave functidn[13].
difference across the moving objd&]. The latter phenom-  Since we are considering a bulk situation, it is convenient to
enon is in fact completely analogous to the current-inducedormalize® according tof |®|2d3x=N. In the rest frame of
asymmetry around defects in a Fermi liquid, as predictedhe obstacle, where the problem is stationary, the energy
long ago by Landauer as the basic microscopic origin ofunctional 7/{®] of a homogeneous condensate moving with
residual resistanc¢4,5]. The measured values af. are  velocity v, has the standard form
found to be a small fraction.~(0.1-0.25%, of the sound
velocity at the trap center with a numerical factor, which AP]=dP]-v-PLP]. 1)
appears to increase with densitg]. These results are in
rough agreement with numerical solutions of the Gross—Here
Pitaevskii equatiofiGPE) for a moving cylindrical perturba-
tion in a homogeneouss,7] or inhomogeneoul3] conden- é[q)]=J ddx
sate. In the homogeneous case, for a fixed cylinder size, the
critical velocity is around 0.4%. Qualitatively this result
may be understood in the spirit of the Landau criteritih

#? g
ﬁ|vqp|2+ §|‘1>|4 (2

is the condensate energy functional in its rest frame and

by arguing that there is no dissipation as long as the local i%

velocity u(x) at any point remains belows. For an incom- 'P[CD]ZJ ddX7[¢V¢* —d*VP] (©)
pressible flow,u(x) has its maximal value, which is twice

the object speed, at the side of the cylindgf=R,0= s the momentum functional of the moving condensate. For

/2 [9] Since the local sound VelOCity .iS reduced by thed”ute gases, the interaction paramm4wﬁ2a/m is de-
depletion of the actual condensate density close to the oRermined by the scattering lengéh which is assumed to be
stacle, a value . smaller tharcy/2 (or 2/ for a sphergbut  positive. Splitting the condensate wave functiah(x)

independendf R is expected from this type of argument. In = f(x)e'*® into magnitude and phase, the energy functional
an inhomogeneous situation like that for atomic condensateg) takes the form

in a harmonic trap, the critical velocity will be lowered fur-

ther because the density decreases away from the trap center. g h? 5 o )
Our aim in the present work is to derive an analytical f[f’@]:f d"x m[(Vf) +15(Ve)]
criterion for the critical velocity of superfluid flow around
macroscopic obstacles of sige ¢ by considering the linear 9., )
stability of the dissipationless potential flow belaw to- + §f —ho-(Ve)f7). 4)

wards the generation of vortices. For a strongly repulsive

potential,v is of order 5i/mRi.e., independent of the den- In order to calculate the critical velocity, we determine the
sity and inversely proportional to the obstacle size. Sincdimit beyond which small fluctuations around the dissipation-
filmé=v2c,, the critical velocity coincides with a fraction less potential flow below . are no longer stable. Since ot
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vanishes identically below., the condensate velocity rela- K 2
tive to the obstacle at rest can quite generally be written in A= —"( 1+ ﬁ—l), (8
the form V2 £k
h & [1+A4
u(x)="—Ve(x)+ov, (5 o=/ *R ©)

. Equation(7) smoothly interpolates on the scajebetween
where the terni/mV ¢ accounts for the backflow induced the bulk condensate density= ./g far from the obstacle to
by the presence of the obstacle. Far from the obstacle, where : : ;

o : . essentially zero at its cente=0 (note R>¢). The ansatz
the densityf< is constant, the backflow is necessarily of a

(7) thus describes a “soft,” penetrable obstacle as realized

dipolar form experimentally. Although E¢.7) is not an exact solution of
the three-dimensional GPE, comparison to numerical solu-
h dh(v-n)—v tions shows that the approximation is excellEHs].
EVQD: ~Ad rd ' 6) To calculate the critical velocity of the superfluid flow, we

follow a method similar to that used to determine the stabil-

. . . . . .. ity of electrical supercurrents in a wire by Langer and Am-
T o b oA boga0ka( 16, W consider sl devitons around e 2p-
~f2divu. Heref is the unit vector in the direction ofand ~ Proximate stationary poin®=fe'¢ described by Eqs(6)
d=2, 3 the relevant dimensionalitg € 2 for a moving cyl- @nd(7), which are conveniently written in the form
inder,d=3 for a spherg For a weak obstacle potentisl )
<, the response of the superfluid to the moving object can P =[f(x)+w(x)]expie(x)]. (10)
be treated in first-order perturbation thedfyf]. The result-
ing dipole strengthAg~(1/n)(an/du)-V(q=0) is deter- For a general complex functiow(x), this ansatz includes
mined by the bulk compressibilitynx=(1/n)(an/du) both amplitude and phase fluctuations around the stationary
=(mc?) ! and the Fourier transform of the potential at van-solution with phasep(x). Since the potential flow around the
ishing wave vector. For a potential of siiethis leads to a obstacle described b is a stationary point of the energy
behaviorAy~VgR%/ . In the experiments, however, the re- functional (1), the expansion of{®] up to second order in
pulsive potential is rather strongg>u and, in particular, W,
we want to investigate the hard core limiflz—oo, where
perturbation theory definitely fails. In this regime the ob- f[q)]:f[q_)]+gg[w]+---, (11)
stacle is equivalent to the boundary conditiomi|zr=0 of
Vanishing normal Ve.IOCity d'x| =R. .PrOVided the baCkﬂOW y|e|ds a quadratic forn'Qa[W:l The eigenva|ues c@a[w]
_has th? form givenin Eqﬁ) for arb_|trary_ values C_)f’ th's give the characteristic curvature off®] at ®=fe'¢ in
immediately fixesAy=R%/(d—1). With this approximation, . - —

function space. In order faF to have a local minimum ab,

Eq. (6) is just the flow pattern of an incompressible, ideal "~ L .

classical fluid around an obstacle, which has a vanishinéghICh means that th_e_ solution is stable, aII_the elge_nvalues of

drag force in a stationary situatiarn= const[9]. To account o[ W] ”?“St be pqsﬁwg. The Iovyest yelocmyfor Wh'Ch.Q

for the depletion in density due to the finite compressibilityh"’}s_' an e|gen_funct|0n with negative e_lge_nva_lue _thus gives the
critical velocity v for the onset of dissipation in the BEC

of a real BEC, we use the following ansatz: ! ; i
[20]. The eigenvalue equatiofiQ/ Sw* =Aw can be written

in the form
\/;t r(—r_é) for r>R
—tan orr , 5 ) )
h he(V
f(r)= ’ V2 7 —mVZWJr %—hV@v w+ 2 f2gw-+ f2gw*
72
\gAequM(r—R)] for r<R, AW, 12

with £=#/\2mg, K= 2m(Vg— w)/%2, and obstacle po- Similar to the situgtion discussed ﬂm6_], it turns out that a
tential V. Equation (7) combines the standard one- purely com_p_le>wy|eld_s the smz_illest elgenvalue and thus t_he
dimensional solution of the GPE at an infinite potential step>Mallest critical velocity. Physically this means that the in-
with a one-particle wave function that decays exponentiallftab'l'ty is d_rlven by phase fluctuat|ons_ assomated_ with vor-
below the barrieNs. The latter is a solution of the GPE (€X generation, as also found numerically7]. Using w
without the ®3 term and thus is valid in the limivg>p, - W, the eigenvalue equatiofl2) can be written as a
where the external potential due to the obstacle is mucfPcralinger equation

larger than the mean-field interaction energy. Matching the
logarithmic derivative of (r) atr =R, leads to the following
expressions fob and A:

hZ
- %Wmveﬁ(r,a,u)wzm, (13
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S ' ' ' ' ' ' Introducing reduced unitR=R/¢& andVg/u, the condi-
450 1 tion Ng.=1 takes the following form for the cylindrical ob-
41 1 stacle:
35 by .
= 3t e 'ﬁZ 2m *® . Ve 2
§ 25 L i 1—§f0 d@fopdpmlﬂo,c—s
= 2+ 4
K 15 1 1.2 72
> . X{—7+—=(2cog0-1)+2f%p)||. (16
Lr p P
051 For the spherical perturbation the corresponding condition
0 for v, reads
_0‘5 1 1 1 1 1 1 1
04 06 08 1 rl/; 14 16 18 2 ) &3 f” _ edafx o] O(UC)Z( 1
= sin min[ 0, —| {—%
6v2m Jo 0 PP Cs 496
FIG. 1. Effective potentialVey(r,0=m/2p=0.7c;) for Vg
=10x andR=20¢. The solid line is the potential id=3 and the 1 - 812
dashed line id=2. X(3 CO§ 0+1)+ ?(3 CO§ 0_1) +2f (p)

17

In Egs.(16) and (17) T is the function(7) in reduced units

with an effective potential that is determined by inserting the
approximationg6) and(7) in Eq. (12). The effective poten-
tial thus has the following form il dimensions:

moZf( Aa)® tan E _% for p>1
Veﬁ(r,ﬁ.v)ZT (F‘?) {(d®>—2d)cog 6+1} - V3 p = p>1,
p =
~ IV
+%ﬂ{dco§ o—1}|+gfdr). (19 Aexp(R f_l(p_l)) for p<1.

(18

Examining the effective potential, we find that an attractive  Equations(16) and(17) are the main results of this work,
well is formed around§=* /2, where bound states with providing a simple criterion for the critical velocity of a
negative eigenvalue may develtgee Fig. 1 The depth of  moving cylinder and sphere. Evidently the ratip/c, de-
this pOtentIal well increases with the VeIOCﬁM and thus pends On'y on the two dimensionless parame‘t@'ﬁﬂ and
there is a critical velocity . beyond which Eq(13) has a R/¢. In the limit R/¢>1 and Vg/u>1, the function(18)
negative eigenvalue. In agreement with numerical simulagonyerges to the step functiof(p—1). In this limit the
tions[17], 6=+ m/2 is the position at the side of the obstacle jytegrals in Eqs(16) and (17) are independent oR/¢ and

where vortices are generated at the breakdown of superflyy,/,, The dependence of the critical velocity on the ob-
idity, i.e., it is the barrier for vortex creation that vanishes atstacle radius is therefore simply

Vg
In principle, the velocity at which the lowest eigenvalue 3

of the Schrdinger equation with the anisotropic potential VT R (19
(14) becomes negative may be found numerically. In order to

obtain an analytical result that displays the relevant paramrhe proportionality factor for the cylinder and sphere can be
eter dependence of the critical velocity, however, it is MOr€asily evaluated giving .= 7.6%/mR andv,.=4.8%/mR,
convenient to use a simple semiclassical estimate for thg,gpectively. The precise numerical factor is in agreement
number of eigenstates in the effective potenitiz8] with the lines shown in Fig. 2. It will change in an exact
solution of the Schrdinger equatior{13), without, however,
J2m\¢ affecting the basic resuit.= consxz/mR As shown in Fig.
Nsdv)= (ﬁ) Vdf d%|Ver(r,0,0)|92, (15 2 the numerical integration of Eq&L6) and (17) gives criti-

7 Verr<0 cal velocities that very closely obey theRlécaling(19) for
radii larger than about ¥0or 15¢ for the sphere or the cyl-
whereVy is the volume of the unit sphere thdimensions. inder. For small radiR<7¢, the critical velocity becomes
Equation(15) gives the number of states that have negativdarger than the sound velocity. In this regime our approxima-
eigenvalue and is just the classical phase-space volume @ibns are no longer valid and a more microscopic theory is
the region wherd/ <0 in units of (27%)%. The condition necessary to determing,. Choosing different values for
N{v.) =1 thus gives a simple semiclassical approximationVg/u, it turns out that the result shown in Fig. 2 remains
for the critical velocity. unchanged down t&g~5u, beyond whichv . starts to in-
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2 - - - - - - - - In the experiment$2,3] the blue detuned laser beam that
' 1 served as a cylindrical obstacle had a radiuRsf20¢ and a
potential barrie’Vg=(6.4—8)u. The measured critical ve-
locity in the trapped BEC was about (0.1-0.25) For the
values of Ref[2] our approach yields a critical velocity,
=0.51c, for a perturbation moving uniformly in a homoge-
neous condensate. Compared with the experiments, this is
about a factor of 2 larger. Now, as has been found in recent
numerical simulations of the GP[B], the measured critical
velocity is lower than in the bulk for two reasons: First of all,
in the trapped BEC, the obstacle touches regions of the con-
densate with lower density and thus a lower velocity of
sound. Accordingly vortices will appear first in the outer
5 10 15 20 25 30 35 40 45 50 regions of the condensate and penetrate towards the trap cen-
RE ter. Second, due to the oscillatory movement, the obstacle
FIG. 2. Critical velocityv as a function of the obstacle radius creates its own Wake, thus IOV\_/Qring the f:ritical velocity fur-
for a .oténtialv =10 Tr?e upper curve presents the movin ther._ln the experimeriB] the C.“.“‘:a' vglocny was measured
ap B ol ppe P 9 H)r different condensate densitiasat fixedR. In contrast to
cylinder and the lower one the moving sphere. The results obtaine . . .
from Eqgs.(16) and(17) are shown as crosses, the lines exhibit the Yl result(19), the critical VelO_C'ty see_ms to_ scale _W'dg
1/R dependence. ~yn or even more strongly with de_nS|ty. It is p_035|ble_ that
this discrepancy is caused by our incompressible fluid ap-

proximation for the strengttAy of the dipolar backflow.

crease, in .aglreemkent with the belha(\jnor. fo”ﬂd numericallys|early a more microscopic calculation Af, for strong scat-
[8]. Numerical work on a moving cylinder in a homogeneousiering is required to clarify the situation and also experi-

BEC [6,7] observed a critical velocity of about 0@bfor . ments, in which the effective obstacle siReis varied at
R>¢. No dependence of the results on the obstacle radlumed density.

was reported, however. Simulations for a trapped BEC and |5 conclusion, we have derived a simple analytical result
an ob_stacle with Gaussian object potential reported a_crltlce\clOr the critical velocity of a macroscopic moving obstacle in
velocity between 0.55 and 0.8, [8], close to the typical 5 BEC. In particular, it has been shown that the critical ve-
values forv ;. found in this work. Similar values were derived locity scales inversely with the obstacle size, a prediction

analytically[19] for a hard sphere witR=10¢, by expand-  that should easily be checked experimentally.
ing the magnitude and phase of the wave function to first

order iné/R. We thank W. Ketterle for helpful comments.

[1] P. Noziees and D. PinesThe Theory of Quantum Liquids Il [11] A. L. Fetter, inThe Physics of Liquid and Solid Helium, Payt |
(Addison-Wesley, Redwood City, CA 1980 edited by K. H. Bennemann and J. B. Kettergdohn Wiley &
[2] C. Raman, M. Kbl, R. Onofrio, D. S. Durfee, C. E. Sons, New York, 1976

Kuklewicz, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. [12] M. Crescimanno, C. G. Koay, R. Peterson, and R. Walsworth,
83, 2502(1999. Phys. Rev. A(to be published e-print cond-mat/0001163v2.

[3] R. Onofrio, C. Raman, J. M. Vogels, J. Abo-Shaeer, A. P [13] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.

. ) Mod. Phys.71, 463(1999.
Chikkatur, and W. Ketterle, Phys. Rev. Le#6, 2228(2000; [14] D. Pines, and P. Nozies, The Theory of Quantum Liquids |

e-print cond-mat/0006111. (Addison-Wesley, Redwood City, CA, 1988

[4] R. Landauer, IBM J. Res. Det, 223(1957. [15] C. Nore, C. Huepe, and M. E. Brachet, Phys. Rev. L&.

[5] W. Zwerger, Phys. Rev. Let?9, 5270(1997. 2191(2000.

[6] T. Frisch, Y. Pomeau, and S. Rica, Phys. Rev. L&39t.1644  [16] J. S. Langer and V. Ambegaokar, Phys. RE&4, 498(1967),
(1992. Appendix C.

[7] T. Winiecki, J. F. McCann, and C. S. Adams, Phys. Rev. Lett.[17] B. Jackson, J. F. McCann, and C. S. Adams, Phys. Rev. Lett.
82, 5186(1999. 80, 3903(1998.

[8] B. Jackson, J. F. McCann, and C. S. Adams, Phys. R&4,A [18] B. Simon,Functional Integration and Quantum Physi@sca-
051603R) (2000. demic Press, New York, 1979

[9] L. D. Landau and E. M. LifshitzFluid Mechanics(Pergamon [19] N. G. Berloff and P. H. Roberts, J. Phys.38, 4025(2000.
Press, Oxford, 1987 [20] In the case of a uniform condensate, this approach leads to an

[10] R. P. Feynman, Prog. Low Temp. Phys.17 (1955. eigenvalue spectrum that is positive unlesscs.

061601-4



