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Quantum tomography of input-output processes
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We demonstrate the possibility of practical tomographic determination of arbitrary input-output transforma-
tions. It is shown that the Liouville-space formalism provides a generalization of standard tomography encom-
passing the reconstruction of processes as well as of quantum states.

PACS numbgs): 03.65.Bz, 03.65.Db, 42.30.Wb, 42.50.Dv

[. INTRODUCTION when the input is prepared to be the eigenstates of rotated
position or quadrature operators.

The concept of measurement has occupied a distinguished Finally, in Sec. IV we show that this scheme for the re-
position in quantum theory from its very beginning. The construction of processes can be formally expressed by ex-
standard idea of measurement deals with the procedures dectly the same equations valid for the reconstruction of quan-
termining the statistics of some set of compatible observtum states. This identification can be established by using the
ables. This original framework has been enlarged since it ha¢ector representation of operators in Liouville spate].
been demonstrated that there are practical schemes that alldie think it is worth stressing the importance of this point
for the determination of the quantum state in which the syssince it implies that the practical reconstruction of processes
tem is [1_6] Such schemes can be regarded as being me&an benefit from the well-established theoretical and experi-

surements of the density matrix. mental background of quantum-state tomography.
More recently, the idea of measurement has been further

enlarge_d b_y dem(_)nstratmg the p035|b|llty of experimental Il. PHASE-SPACE REPRESENTATION

determinations of input-output transformatidiisg]. Among OF TRANSEORMATIONS

other potential applications, this might serve to ascertain the
influence of external agents by disclosing the exact way in In this section, we briefly outline the description of the
which the real process differs from the theoretically assumedhost general input-output transformation and its representa-
one. This can be of importance for any technical applicatiortion by functions on phase space. The input and output de-
of quantum states in rapidly developing fields of researctgrees of freedom of interest will be represented by the Hil-
such as information processing, computation, and cryptogradert spaces;, and H,,;, respectively. The corresponding
phy. guantum states are represented by the density mafsiges
Concerning potential implementations of this reconstruc-and p,;. In order to describe the most general transforma-
tion of quantum processes, it has been shown that there at®n, including open as well as closed systems, we have to
measuring arrangements whose statistics provide informasonsider possible couplings of the systems with additional
tionally complete phase-space representations of arbitrargegrees of freedom that will be described by a Hilbert space
processe$8]. As it occurs for quantum states, there are sev-H,. Their initial state before the coupling will be described
eral different representations of processes by functionby the density matriy .. In many situationg . as well as
[9,10]. Although in the ideal case all of them will provide the dynamical details of the coupling are unknown and out of
complete information about the process, they are no longerontrol.
equivalent concerning their sensitivity to unavoidable experi- The Hilbert spaceH,,, is defined such that;,® Haux
mental errors and uncertainties. includes all degrees of freedom directly or indirectly in-
One of the most fruitful and robust methods for recon-volved in the process. In other wordK;,® H,.x iS @ closed
structing quantum states is tomograpf,2,5,6,11. The system and the input-output process is necessarily described
quantum state can be obtained by measuring posifien by a unitary operator
trapped ions or quadratures(for electromagnetic-field
modes after arbitrary rotations in phase space. U Hin® Haux— Hout® Hagce: (2.7
In this brief report, we introduce and examine the tomog-

raphic determination of transformations. To this end, in Sec, . ; )
Il we recall basic definitions that allow to represent arbitraryWhere Hacc IS the Hilbert space needed to completely de

transformations by quasidistributions and characteristic func§Cr|be the image oHin® Haux (F.'g' D). .
We assume that the total input state factorigg® .uy-

tions on phase space. - . e
Then, in Sec. lll we show that one of such characteristic;lr_::rggglidegfi';ésmzfttrg: 'L?at:k;r? og;[/p::ttrc:;gre\;e;rigfbll‘gesedom of
functions can be easily determined in practice. This can be out 9 ace

achieved by a tomographic determination of the output states N
Pout= racd Upinpawdd ') =U(pin) - (2.2

*Electronic address: alluis@eucmax.sim.ucm.es Using the following decomposition fgs,,y:
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p Hilbert-space approach, there are complete formulations of
aux the quantum theory on the classical phase space by means of

which the solution of quantum-mechanical problems can be
expressed in a quasiclassical form. In particular there is a

p family of A—~W correspondences between operathrand
in l ] Egnlcct)ionsw on phase spacg@uasidistributionsof the form
out
T W(a,s)=t[AA(a,s)],
I
v . (2.6
|
Hace A= ;J d?aW(a,s)A(a,—S),
FIG. 1. Scheme illustrating the definition of the states and
spaces involved in a general input-output process. where the operatoh(«,s) is
. 2 pas| Bl22.8* a— Ba*
Paw= 2 Pl i, (2.3 Aas)=—| d?pe’f e D(B), (27

where|yy) € Hay the input-output relation can be written D(g) is the displacement operator
as

D(B)=ef~#"8, 2.9
Poutzz pkUmkPinUIwkv (2.9
m.k and the parametes distinguishes between differedt— W
correspondences. As particular cases we hav@thaction
(s=—1), theP representationg=1), and the Wigner func-
Umnic=(@ml U110, (2.5  tion (s=0).

Not only quantum states, but also processes can be fully
and| ¢, € Haccis any family of vectors providing a resolu- described by functions on phase space. The input-output
tion of the identityl ;o= = | @m){ @l ON Hace- transformation(2.2) can be expressed as a relation between

In the most general case the input and output degrees efuasidistributions
freedom need not necessarily coincidl;,# Hout, Haux
F Hace AlSO H,yy and/orH .. can be trivial so it can occur L L
thatU: Hin— Hou® Hace OF U Hin® Haux— Hout- The lack of Woul@',s ):f d®alf(a,s;0’,S" )Win(a,s), (2.9
coincidence between input and output variables is actually
the case of generalized measurements described by positiighere
operator measures, where the measurement is performed on a
number of outputs different from the number of relevant in- 1
puts [13]. For example, this is the case of the eight-port U(a,s;a’,s")=—tr[Aqa’,s" ) UA(a,—S)paT],
homodyne detector that is the basis for an operational defi- & (2.10
nition of quantum phase differen¢24]. In such an example '
H;, contains two field modes whil&(,,, includes four field
modes.

where the operatord ,: Hin— Hou: are

andW,,, W, are the corresponding quasidistributions asso-
L . ciated withpy,, pou [8,9,19. Formally, this function is the
For the sake of simplicity, in what follows we will con- output for impulse inputs of the form/ (a,s) = &(a— ag).

sider thatHi, and Hoy represent an unbounded Cominuou.SNevertheless not all values ferallow system states having
degree of freedom describable by adimensional Cartesm&lch a delta bhase—space representative

variablesq, p, which in the quantum domain become opera- Alternatively, the input-output relatiof2.2) can be also

tors saﬂsfyn_wg the commutat|on_relat|{)q,p]=|. The points expressed as a relation between characteristic functions
of the classical phase space will be denoted by the complex

variable a= (q+ip)/\/2, which becomes the complex am-

plitude ope_ratpna in the quantum r(.agime.. Among o_ther ex- Xout(ﬁ',s')=f dzﬁﬂ(ﬂ,s;ﬂ’,s’)xin(ﬁ,s), (2.11)
amples this includes the one-dimensional motion of a

trapped ion, wherg and p are proportional to position and - . .
momentum, and also a single mode of the electromagneti®€r€ Xin, Xour aré the characteristic functions associated

field whereq andp are field quadratures. with pin and poy;, respectively,
In this paper we are not interested in representing trans- )
formations by operators, such as in E2.5). Instead we will X(,B,s)=es|5| 2t pD(B)], (2.12

use functions that might be then suitably related to the sta-
tistics of measuring arrangements. Aside from the standardnd

054302-2



BRIEF REPORTS PHYSICAL REVIEW A 62 054302

~ , 1 1 a2 _ 2
UpB,sp s ):;es 1B’ 26 s|Bl“12 ——| PROCESS —)—D\
|X, 8 N
Xt[D(B)UD(~ B)panl']. {x;d

(2.13 FIG. 2. Outline of the scheme for the measurement of an arbi-

. . e . trary input-output process. The input state is prepared in the state
Characteristic functions and quasidistributions are Foune{x 6). After the transformation the operatqp, is measured at the
transform pairs so boti/(a,s) and x(B,s) provide full in- q,put. The statistics of this measurement are given by projection of
formation about the system state. Recently, a family of genthe output state ofx’, "), the eigenstates af, .

eralized Wigner functions has been defined that includes

W(e,0) andx(,0) as two particular cas¢46]. Moreover,  cillator [17]. The observableg, can be measured also in the

x(B,s) is a well-behaved function even wh&(«,s) does  case of trapped ions, as it is shown in Ré&6].

not exist as an ordinary function. In this brief report we are interested in applying this tech-
Therefore, the functiod{ in Egs.(2.11) and(2.13 is a  nique to the characterization of arbitrary input-output trans-

Fourier transform oft/ and therefore it determines com- formations. To this end, we focus on tke=s’'=0 charac-

pletely the transformation. The use lfor U is a matter of teristic functionZ{(ﬂ,O;,B’,O) with the aim of relating it to
convenience and, in fact, many practical schemes directlyneasurable quantities. After definitio3.2) and (3.3 we
measure characteristic functions instead of quasidistributionsave from Eq(2.13):

[4]. In particular, phase-space tomography relies on the mea-
surement of thes=0 characteristic functiohl1].

77 ’ 1 iNdgr 1IN t
U(B,0:B",0)=—tr(e™ drUe™Mrp,,UT)

IIl. TOMOGRAPHY OF TRANSFORMATIONS

1 _
[ ’ (N x"—=\x) ! n!
The tomographic reconstruction of quantum states relies Wf dx’dxe P(x,0:x",6"),

on the determination of the characteristic function for 3
=0, x(B)=x(B,0), which can be expressed as 3.7

) h
X(B)=t[pD(B)]=tr(pe*d), @y e

! A ’ ’ 2 ’ T
where the real numbebs and 6 are defined by PO, 1) =tr([x", %) (", 67| Ulx, )¢, Ol pawt) )(3.8)
_ i—)\em (3.2 This implies that/(3,0;8',0) can be easily determined af-
B= 2 ' ' ter obtaining from experiment the probabilities
P(x,6;x",0"). To this end, the input of the transformation
and the operatorg, are must be prepared in the state #) and the operatag,, must
be measured at the output, as schematized in Fig. 2. This
1 _ _ demonstrates that the tomographic methods can be applied to
q,=—=(e "Ya+e'%a’y=qcosd+psing, (3.3 the practical determination of arbitrary transformations.
\/E Strictly speaking, the statdg, #) are not proper vectors
of the Hilbert spacé;,, so in principle they cannot be gen-
Brated. Nevertheless, it is possible to actually produce states
as close as desired t®, ). For example this is the case of
squeezed states, which can be experimentally generated in
quantum optic$18] as well as for the motion of trapped ions
[19]. This approximation of rotated position or quadrature

which are rotated quadrature or rotated position operators. |
this context it is customary to restriét to a 7 interval 6
e[0,7) so thatA must take positive and negative values.
The characteristicy(B) can be determined in practice by
measuring the operatorg, [1,2,5,6,11. From Eq.(3.1) we

have eigenstates by squeezed states was successfully considered
' before for the reconstruction of the motional state of a
X(B)Zf dxeé™P(x, ), (3.4  trapped ion in Ref[6].
where IV. TOMOGRAPHY IN LIOUVILLE SPACE
P(x,0)=(x, 0] p|x, 0), (3.5 Finally, we show that the tomography of states and trans-

formations can be expressed by the same equations. This is
possible by using the Liouville-space formulation where op-

and|x, #) is the eigenvector with eigenvaluex: ) X .
[x.0) g ofly g erators are represented by vectors in a suitably doubled Hil-

dglX, 0) =X|x, 6). (3.9  bert spacg12]
In the optical case this measurement can be achieved by A= A Invml<lAN=S A Inm 4.1
using balanced homodyne detection with a strong local os- % | M{M| = [A)) nEm amlMM)),  (4.1)
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where |n) is an orthonormal basis in the original Hilbert Pu 21( PlUma) (U 49
space, whilgln,m)) is the associated basis in the enlarged
space. With this representation traces become scalar produdssa true density matrix representing the transformation in
: Liouville space. It can be easily checked thaj=0, pL
tr(ATB)=((A|B)). 42 —p,, and trp,=1.
. : Formally, Eq.(4.4) is exactly the same expressi¢8.5
p ()I(:rg.r)r:/ ';fl)scfn‘?m (ezkg)r’esasne% (;35'8) the basic function applied to the quantum state represented by the density ma-
IS trix p;, in the doubled Hilbert space. The vectors
Ix’',60";x,6)) are the eigenstates of rotated quadratures or
P(X,6;x",0")=>, pl(X",6"|Umdx,6)| rotated position in both Hilbert spaces of the enlarged space.
mk The only difference with the standard tomography of quan-
tum states is that in our cagg, describes transformations
:% pultr([x, 0)(x", 6’ [Upn|%. (4.3 instead of states.

Using EQq.(4.2) we arrive at the final expression V. CONCLUSIONS

o L, o We have demonstrated the possibility of the tomographic
P(x,0;x",6")=((x",6";X,0]p/X",0":X,0)), (44 getermination of quantum input-output transformations. The
' oA, . ' formalism can be arranged so that formulas for the recon-
where|x',6";x,6)) is defined by Eq(4.1) as struction of states and transformations are exactly the same.
X', 60" )X, 0] |x",0";X, 6)) (4.5  Therefore, the approach developed here can be regarded as
an enlargement of quantum-state tomography to include
and more general objects.
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