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Quantum tomography of input-output processes
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We demonstrate the possibility of practical tomographic determination of arbitrary input-output transforma-
tions. It is shown that the Liouville-space formalism provides a generalization of standard tomography encom-
passing the reconstruction of processes as well as of quantum states.

PACS number~s!: 03.65.Bz, 03.65.Db, 42.30.Wb, 42.50.Dv
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I. INTRODUCTION

The concept of measurement has occupied a distinguis
position in quantum theory from its very beginning. Th
standard idea of measurement deals with the procedure
termining the statistics of some set of compatible obse
ables. This original framework has been enlarged since it
been demonstrated that there are practical schemes that
for the determination of the quantum state in which the s
tem is @1–6#. Such schemes can be regarded as being m
surements of the density matrix.

More recently, the idea of measurement has been fur
enlarged by demonstrating the possibility of experimen
determinations of input-output transformations@7,8#. Among
other potential applications, this might serve to ascertain
influence of external agents by disclosing the exact way
which the real process differs from the theoretically assum
one. This can be of importance for any technical applicat
of quantum states in rapidly developing fields of resea
such as information processing, computation, and crypto
phy.

Concerning potential implementations of this reconstr
tion of quantum processes, it has been shown that there
measuring arrangements whose statistics provide infor
tionally complete phase-space representations of arbit
processes@8#. As it occurs for quantum states, there are s
eral different representations of processes by functi
@9,10#. Although in the ideal case all of them will provid
complete information about the process, they are no lon
equivalent concerning their sensitivity to unavoidable exp
mental errors and uncertainties.

One of the most fruitful and robust methods for reco
structing quantum states is tomography@1,2,5,6,11#. The
quantum state can be obtained by measuring position~for
trapped ions! or quadratures~for electromagnetic-field
modes! after arbitrary rotations in phase space.

In this brief report, we introduce and examine the tomo
raphic determination of transformations. To this end, in S
II we recall basic definitions that allow to represent arbitra
transformations by quasidistributions and characteristic fu
tions on phase space.

Then, in Sec. III we show that one of such characteris
functions can be easily determined in practice. This can
achieved by a tomographic determination of the output st
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when the input is prepared to be the eigenstates of rot
position or quadrature operators.

Finally, in Sec. IV we show that this scheme for the r
construction of processes can be formally expressed by
actly the same equations valid for the reconstruction of qu
tum states. This identification can be established by using
vector representation of operators in Liouville space@12#.
We think it is worth stressing the importance of this po
since it implies that the practical reconstruction of proces
can benefit from the well-established theoretical and exp
mental background of quantum-state tomography.

II. PHASE-SPACE REPRESENTATION
OF TRANSFORMATIONS

In this section, we briefly outline the description of th
most general input-output transformation and its represe
tion by functions on phase space. The input and output
grees of freedom of interest will be represented by the H
bert spacesHin and Hout, respectively. The correspondin
quantum states are represented by the density matricer in
and rout. In order to describe the most general transform
tion, including open as well as closed systems, we have
consider possible couplings of the systems with additio
degrees of freedom that will be described by a Hilbert sp
Haux. Their initial state before the coupling will be describe
by the density matrixraux. In many situationsraux as well as
the dynamical details of the coupling are unknown and ou
control.

The Hilbert spaceHaux is defined such thatHin^ Haux
includes all degrees of freedom directly or indirectly i
volved in the process. In other words,Hin^ Haux is a closed
system and the input-output process is necessarily descr
by a unitary operator

U:Hin^ Haux→Hout^ Hacc, ~2.1!

where Hacc is the Hilbert space needed to completely d
scribe the image ofHin^ Haux ~Fig. 1!.

We assume that the total input state factorizesr inraux.
The final density matrix in the output degrees of freedom
interestHout arises after tracing over theHacc variables

rout5tracc~Ur inrauxU
†!5U~r in!. ~2.2!

Using the following decomposition forraux:
©2000 The American Physical Society02-1
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raux5(
k

pkuck&^cku, ~2.3!

where uck&PHaux, the input-output relation can be writte
as

rout5(
m,k

pkUmkr inUmk
† , ~2.4!

where the operatorsUmk :Hin→Hout are

Umk5^wmuUuck&, ~2.5!

and uwm&PHacc is any family of vectors providing a resolu
tion of the identityI acc5(muwm&^wmu on Hacc.

In the most general case the input and output degree
freedom need not necessarily coincide:HinÞHout, Haux
ÞHacc. Also Haux and/orHacc can be trivial so it can occu
thatU:Hin→Hout^ Haccor U:Hin^ Haux→Hout. The lack of
coincidence between input and output variables is actu
the case of generalized measurements described by pos
operator measures, where the measurement is performed
number of outputs different from the number of relevant
puts @13#. For example, this is the case of the eight-p
homodyne detector that is the basis for an operational d
nition of quantum phase difference@14#. In such an example
Hin contains two field modes whileHout includes four field
modes.

For the sake of simplicity, in what follows we will con
sider thatHin and Hout represent an unbounded continuo
degree of freedom describable by adimensional Carte
variablesq, p, which in the quantum domain become ope
tors satisfying the commutation relation@q,p#5 i . The points
of the classical phase space will be denoted by the com
variablea5(q1 ip)/A2, which becomes the complex am
plitude operatora in the quantum regime. Among other e
amples this includes the one-dimensional motion of
trapped ion, whereq andp are proportional to position an
momentum, and also a single mode of the electromagn
field whereq andp are field quadratures.

In this paper we are not interested in representing tra
formations by operators, such as in Eq.~2.5!. Instead we will
use functions that might be then suitably related to the
tistics of measuring arrangements. Aside from the stand

FIG. 1. Scheme illustrating the definition of the states a
spaces involved in a general input-output process.
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Hilbert-space approach, there are complete formulations
the quantum theory on the classical phase space by mea
which the solution of quantum-mechanical problems can
expressed in a quasiclassical form. In particular there i
family of A↔W correspondences between operatorsA and
functionsW on phase space~quasidistributions! of the form
@9,10#

W~a,s!5tr@AD~a,s!#,
~2.6!

A5
1

pE d2aW~a,s!D~a,2s!,

where the operatorD(a,s) is

D~a,s!5
1

pE d2besubu2/2eb* a2ba* D~b!, ~2.7!

D(b) is the displacement operator

D~b!5eba†2b* a, ~2.8!

and the parameters distinguishes between differentA↔W
correspondences. As particular cases we have theQ function
(s521), theP representation (s51), and the Wigner func-
tion (s50).

Not only quantum states, but also processes can be f
described by functions on phase space. The input-ou
transformation~2.2! can be expressed as a relation betwe
quasidistributions

Wout~a8,s8!5E d2aU~a,s;a8,s8!Win~a,s!, ~2.9!

where

U~a,s;a8,s8!5
1

p
tr@Dout~a8,s8!UD in~a,2s!rauxU

†#,

~2.10!

andWin , Wout are the corresponding quasidistributions as
ciated withr in , rout @8,9,15#. Formally, this function is the
output for impulse inputs of the formWin(a,s)5d(a2a0).
Nevertheless, not all values fors allow system states havin
such a delta phase-space representative.

Alternatively, the input-output relation~2.2! can be also
expressed as a relation between characteristic functions

xout~b8,s8!5E d2bŨ~b,s;b8,s8!x in~b,s!, ~2.11!

where x in , xout are the characteristic functions associat
with r in androut, respectively,

x~b,s!5esubu2/2 tr@rD~b!#, ~2.12!

and

d

2-2
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Ũ~b,s;b8,s8!5
1

p
es8ub8u2/2e2subu2/2

3tr@D~b8!UD~2b!rauxU
†#.

~2.13!

Characteristic functions and quasidistributions are Fou
transform pairs so bothW(a,s) andx(b,s) provide full in-
formation about the system state. Recently, a family of g
eralized Wigner functions has been defined that inclu
W(a,0) andx(b,0) as two particular cases@16#. Moreover,
x(b,s) is a well-behaved function even whenW(a,s) does
not exist as an ordinary function.

Therefore, the functionŨ in Eqs. ~2.11! and ~2.13! is a
Fourier transform ofU and therefore it determines com
pletely the transformation. The use ofŨ or U is a matter of
convenience and, in fact, many practical schemes dire
measure characteristic functions instead of quasidistribut
@4#. In particular, phase-space tomography relies on the m
surement of thes50 characteristic function@11#.

III. TOMOGRAPHY OF TRANSFORMATIONS

The tomographic reconstruction of quantum states re
on the determination of the characteristic function fors
50, x(b)[x(b,0), which can be expressed as

x~b!5tr@rD~b!#5tr~reilqu!, ~3.1!

where the real numbersl andu are defined by

b5
i

A2
leiu, ~3.2!

and the operatorsqu are

qu5
1

A2
~e2 iua1eiua†!5q cosu1p sinu, ~3.3!

which are rotated quadrature or rotated position operators
this context it is customary to restrictu to a p interval u
P@0,p) so thatl must take positive and negative value
The characteristicx(b) can be determined in practice b
measuring the operatorsqu @1,2,5,6,11#. From Eq.~3.1! we
have

x~b!5E dxeilxP~x,u!, ~3.4!

where

P~x,u!5^x,uurux,u&, ~3.5!

and ux,u& is the eigenvector ofqu with eigenvaluex:

quux,u&5xux,u&. ~3.6!

In the optical case this measurement can be achieved
using balanced homodyne detection with a strong local
05430
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cillator @17#. The observablesqu can be measured also in th
case of trapped ions, as it is shown in Refs.@5,6#.

In this brief report we are interested in applying this tec
nique to the characterization of arbitrary input-output tra
formations. To this end, we focus on thes5s850 charac-
teristic functionŨ(b,0;b8,0) with the aim of relating it to
measurable quantities. After definitions~3.2! and ~3.3! we
have from Eq.~2.13!:

Ũ~b,0;b8,0!5
1

p
tr~eil8qu8Ue2 ilqurauxU

†!

5
1

pE dx8dxei (l8x82lx)P~x,u;x8,u8!,

~3.7!

where

P~x,u;x8,u8!5tr~ ux8,u8&^x8,u8uUux,u&^x,uurauxU
†!.
~3.8!

This implies thatŨ(b,0;b8,0) can be easily determined a
ter obtaining from experiment the probabilitie
P(x,u;x8,u8). To this end, the input of the transformatio
must be prepared in the stateux,u& and the operatorqu8 must
be measured at the output, as schematized in Fig. 2.
demonstrates that the tomographic methods can be applie
the practical determination of arbitrary transformations.

Strictly speaking, the statesux,u& are not proper vectors
of the Hilbert spaceHin , so in principle they cannot be gen
erated. Nevertheless, it is possible to actually produce st
as close as desired toux,u&. For example this is the case o
squeezed states, which can be experimentally generate
quantum optics@18# as well as for the motion of trapped ion
@19#. This approximation of rotated position or quadratu
eigenstates by squeezed states was successfully consi
before for the reconstruction of the motional state of
trapped ion in Ref.@6#.

IV. TOMOGRAPHY IN LIOUVILLE SPACE

Finally, we show that the tomography of states and tra
formations can be expressed by the same equations. Th
possible by using the Liouville-space formulation where o
erators are represented by vectors in a suitably doubled
bert space@12#

A5(
n,m

Anmun&^mu↔uA&&5(
n,m

Anmun,m&&, ~4.1!

FIG. 2. Outline of the scheme for the measurement of an a
trary input-output process. The input state is prepared in the s
ux,u&. After the transformation the operatorqu8 is measured at the
output. The statistics of this measurement are given by projectio
the output state onux8,u8&, the eigenstates ofqu8 .
2-3
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where un& is an orthonormal basis in the original Hilbe
space, whileun,m&& is the associated basis in the enlarg
space. With this representation traces become scalar prod

tr~A†B!5^^AuB&&. ~4.2!

From Eqs. ~2.3!, ~2.5!, and ~3.8! the basic function
P(x,u;x8,u8) can be expressed as

P~x,u;x8,u8!5(
m,k

pku^x8,u8uUmkux,u&u2

5(
m,k

pkutr~ ux,u&^x8,u8uUmk!u2. ~4.3!

Using Eq.~4.2! we arrive at the final expression

P~x,u;x8,u8!5^^x8,u8;x,uurUux8,u8;x,u&&, ~4.4!

whereux8,u8;x,u&& is defined by Eq.~4.1! as

ux8,u8&^x,uu↔ux8,u8;x,u&& ~4.5!

and
t
7

s
.

.

er
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rU5(
m,k

pkuUmk&&^^Umku ~4.6!

is a true density matrix representing the transformation
Liouville space. It can be easily checked thatrU>0, rU

†

5rU , and trrU51.
Formally, Eq.~4.4! is exactly the same expression~3.5!

applied to the quantum state represented by the density
trix rU in the doubled Hilbert space. The vecto
ux8,u8;x,u&& are the eigenstates of rotated quadratures
rotated position in both Hilbert spaces of the enlarged spa
The only difference with the standard tomography of qua
tum states is that in our caserU describes transformation
instead of states.

V. CONCLUSIONS

We have demonstrated the possibility of the tomograp
determination of quantum input-output transformations. T
formalism can be arranged so that formulas for the rec
struction of states and transformations are exactly the sa
Therefore, the approach developed here can be regarde
an enlargement of quantum-state tomography to incl
more general objects.
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