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Spontaneous decay in the presence of dispersing and absorbing bodies: General theory
and application to a spherical cavity

Ho Trung Dung,* Ludwig Knöll, and Dirk-Gunnar Welsch
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, 07743 Jena, Germany

~Received 18 April 2000; published 12 October 2000!

A formalism for studying spontaneous decay of an excited two-level atom in the presence of dispersing and
absorbing dielectric bodies is developed. An integral equation, which is suitable for numerical solution, is
derived for the atomic upper-state-probability amplitude. The emission pattern and the power spectrum of the
emitted light are expressed in terms of the Green tensor of the dielectric-matter formation, including absorption
and dispersion. The theory is applied to the spontaneous decay of an excited atom at the center of a three-
layered spherical cavity, with the cavity wall being modeled by a band-gap dielectric of Lorentz type. Both
weak and strong coupling are studied, the latter with a special emphasis on cases where the atomic transition
is ~i! in the normal-dispersion zone near the medium resonance, and~ii ! in the anomalous-dispersion zone
associated with the band gap. In a single-resonance approximation, conditions of the appearance of Rabi
oscillations and closed solutions to the evolution of the atomic state population are derived, which are in good
agreement with the exact numerical results.

PACS number~s!: 42.50.Ct, 12.20.2m, 42.60.Da, 42.50.Lc
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I. INTRODUCTION

It is well known that the spontaneous decay of an exci
atom can be strongly modified when it is placed inside
microcavity @1,2#. There are typically two qualitatively dif-
ferent regimes: the weak-coupling regime and the stro
coupling regime. The weak-coupling regime is characteri
by monotonous exponential decay, the decay rate being
hanced or reduced compared to the free-space value dep
ing on whether the atomic transition frequency fits a cav
resonance or not. The strong-coupling regime, in contras
characterized by reversible Rabi oscillations, where the
ergy of the initially excited atom is periodically exchang
between the atom and the field. Most previous work on n
exponential decay in matter systems such as photonic c
tals@3# and waveguides with thresholdlike photon-mode d
sity @4# concentrated on nonabsorbing materials. Rec
progress in constructing certain types of microcavities s
as microspheres has rendered it possible to approach th
timate quality level determined by intrinsic material loss
@5#, so that the question of the influence of absorbing ma
rial on spontaneous decay has been of increasing intere

Effects of material losses on the lifetime of an excit
atom have been studied within Fermi’s golden-rule appro
@6–13#. In Ref. @14# the mode structure of a microsphe
without and with absorber dopant atoms, which is mode
by a constant and a Lorentzian dielectric function, resp
tively, is considered. The spontaneous emission rate and
radiation intensity as a function of the atomic transition f
quency were examined in Ref.@15# for an atom in a Fabry-
Perot cavity filled with a Lorentz-type dielectric in the ca
of strong medium-cavity interaction but weak atom-field
teraction.

*On leave from the Institute of Physics, National Center for S
ences and Technology, 1 Mac Dinh Chi Street, District 1, Ho C
Minh City, Vietnam.
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In this paper we present a theory of the spontaneous de
of an excited two-level atom in the presence of arbitra
dispersing and absorbing dielectric bodies characterized
spatially varying, frequency-dependent complex permittivi
Inclusion in the theory of absorption requires a careful co
sideration of the electromagnetic-field quantization, since
standard macroscopic approach to quantization of the e
tromagnetic field in dielectric matter of real permittivity@16#
runs into difficulties when material absorption is included.
principle, dielectric bodies could be included as a part
matter to which the electromagnetic field is coupled a
treated microscopically, as has been done for homogene
harmonic-oscillator media@17#. We shall instead use a mac
roscopic approach to the problem, transferring the class
Maxwell theory for arbitrarily given space- and frequenc
dependent permittivity to quantum theory@18–21#. This con-
cept, which generalizes the results of the microscopic
proach in Ref.@17#, has — similar to classical optics — th
benefit of being universally valid, because it uses only we
established physical properties of the permittivity and rela
quantities, without the need of involvedab initio calcula-
tions. We then apply the theory to the spontaneous deca
an atom in a spherical microcavity of a given comple
valued refractive-index profile, as is typically the case
experimental implementations. The formalism enables u
include absorption and dispersion in the theory in a con
tent way, and to give a unified treatment of spontane
emission, without restriction to a particular coupling regim

The plan of the paper is as follows. In Sec. II, the qua
tization scheme in Refs.@18–21# for an electromagnetic field
in the presence of dispersing and absorbing dielectric bo
is extended in order to include in the theory the reson
interaction of the field with a two-level atom. From th
Hamiltonian of the composed system, an integral equa
governing the temporal evolution of the upper-leve
probability amplitude of the atom is derived, the integr
kernel being determined by the Green tensor of the class
phenomenological Maxwell equations for the dielectr

-
i
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assisted electromagnetic field. General expressions for
emission pattern and the power spectrum are derived
terms of the atomic parameters and, via the Green tensor
cavity parameters of the dielectric-matter configuration.

In Sec. III, the theory is used to examine the spontane
decay of an excited two-level atom inside a spherical cav
with special emphasis on the intrinsic dispersion and abs
tion of the wall material. Spherical microcavities have be
very attractive systems for both fundamental research in c
ity quantum electrodynamics and applications in optoel
tronics ~see, e.g., Refs.@5,22–24#, and references therein!.
Changes in the level shifts and lifetimes of atoms inside
near the surfaces of spherical microstructures were stu
theoretically @25#, the latter also experimentally@26#, and
results on the strong-coupling regime reported@27–29#. The
theoretical results were typically based, with respect to
macroscopic Helmholtz equation, on orthogonal-mode
pansion, which fails for complex permittivity. Here we co
sider a spherical three-layered structure, where the mid
layer is assumed to be a~single-resonance! band-gap dielec-
tric of Lorentz type, whereas the outer and inner layers
vacuum. The strength of the atom-field coupling, which
essentially determined by the imaginary part of the Gre
tensor at the position of the atom, is analyzed, and the p
tions, heights, and widths of the possible cavity resonan
are calculated. In particular, the most pronounced resona
are observed within the band gap, the widths of which
proportional to the intrinsic damping constant of the m
dium. In a single-resonance approximation, conditions of
strong-coupling regime and closed expressions for
atomic upper-state-population probability are derived, wh
are in good agreement with the numerical solutions. Fina
a summary and conclusions are given in Sec. IV.

II. GENERAL FORMALISM

A. Quantization scheme

Let us first consider an electromagnetic field in the pr
ence of dispersing and absorbing dielectric bodies with
additional atomic sources. Following Refs.@18–21#, we rep-
resent the electric-field operatorÊ in the form

Ê~r !5Ê(1)~r !1Ê(2)~r !, Ê(2)~r !5@Ê(1)~r !#†, ~1!

Ê(1)~r !5E
0

`

dv Ê~r ,v!, ~2!

and the magnetic-field operatorB̂ accordingly. The operator
Ê and B̂ then satisfy the Maxwell equations

“•B̂~r ,v!50, ~3!

“•@e0e~r ,v!Ê~r ,v!#5 r̂~r ,v!, ~4!

“3Ê~r ,v!5 ivB̂~r ,v!, ~5!
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“3B̂~r ,v!52 i
v

c2
e~r ,v!Ê~r ,v!1m0ĵ ~r ,v!, ~6!

where the complex~relative! permittivity e(r ,v) is a func-
tion of frequency and space, the real part (eR) and the imagi-
nary part (e I) of which satisfy ~for any r ) the Kramers-
Kronig relations. The operator noise charge and curr
densitiesr̂(r ,v) and ĵ (r ,v) respectively, which are assoc
ated with absorption, are related to the operator noise po
ization P̂(r ,v) as

r̂~r ,v!52“•P̂~r ,v!, ~7!

ĵ ~r ,v!52 ivP̂~r ,v!, ~8!

where

P̂~r ,v!5 iA\e0

p
e I~r ,v! f̂~r ,v!, ~9!

with

@ f̂ i~r ,v!, f̂ j
†~r 8,v8!#5d i j d~r2r 8!d~v2v8!, ~10!

@ f̂ i~r ,v!, f̂ j~r 8,v8!#505@ f̂ i
†~r ,v!, f̂ j

†~r 8,v8!#. ~11!

From Eqs.~3!–~9!, it follows that Ê can be written in the
form

Ê~r ,v!5 iA \

pe0

v2

c2

3E d3r 8 Ae I~r 8,v! G~r ,r 8,v!• f̂~r 8,v!,

~12!

and B̂5( iv)21
“3Ê accordingly, whereG(r ,r 8,v) is the

classical Green tensor satisfying the equation

Fv2

c2
e~r ,v!2“3“3G G~r ,r 8,v!52d ~r2r 8!, ~13!

together with the boundary condition at infinity@d (r ) is the
dyadic d function#. In this way, the electric- and magnetic
field strengths are expressed in terms of a continuum se
bosonic fieldsf̂ and f̂†, which play the role of the fundamen
tal ~dynamical! variables of the composed system~electro-
magnetic field and the medium including the dissipative s
tem!, whose Hamiltonian is

Ĥ5E d3rE
0

`

dv \v f̂†~r ,v!• f̂~r ,v!. ~14!

Using Eq.~12! @together with Eqs.~1! and~2!#, we can also
express the scalar potentialŵ and the vector potentialÂ of
the electromagnetic field in terms of the fundamental boso
fields. In particular, in the Coulomb gauge we obtain
4-2
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2“ŵ~r !5Êi~r !, ~15!

Â~r !5E
0

`

dv ~ iv!21Ê'~r ,v!1H.c., ~16!

where

Ê'(i)~r !5E d3r 8 d'(i)~r2r 8!•Ê~r 8!, ~17!

with d'(r ) andd i(r ) being the transverse and longitudin
d functions, respectively.

We now consider the interaction of the medium-assis
electromagnetic field with additional point chargesqa . Ap-
plying the minimal-coupling scheme, we may write the co
plete Hamiltonian in the form

Ĥ5E d3rE
0

`

dv \v f̂†~r ,v!• f̂~r ,v!

1(
a

1

2ma
@ p̂a2qaÂ~ r̂a!#•@ p̂a2qaÂ~ r̂a!#

1
1

2 E d3r r̂A~r !ŵA~r !1E d3r r̂A~r !ŵ~r !, ~18!

where r̂a is the position operator, andp̂a is the canonical
momentum operator of theath charged particle of massma .
Hamiltonian~18! consists of four terms. The first term is th
energy @Eq. ~14!# observed when the particles are abse
The second term is the kinetic energy of the particles,
the third term is their Coulomb energy, where the poten
ŵA can be given by

ŵA~r !5E dr 8
r̂A~r 8!

4pe0ur2r 8u
, ~19!

with

r̂A~r !5(
a

qad~r2 r̂a! ~20!

being the charge density. The last term is the Coulomb
ergy of interaction of the particles with the medium. No
that all terms are expressed in terms of the dynamical v
ablesf̂(r ,v), f̂†(r ,v), r̂a , andp̂a .

B. Dynamics of an excited two-level atom

Let us consider a neutral two-level atom~position rA ,
transition frequencyvA) that resonantly interacts with radia
tion via an electric-dipole transition~dipole momentm). In
this case, the electric-dipole approximation and the rota
wave approximation apply, and the minimal-coupling Ham
tonian ~18! simplifies to~Appendix A!
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Ĥ5E d3r E
0

`

dv \v f̂†~r ,v!• f̂~r ,v!1
1

2
\vAŝz

2@ŝ†Ê(1)~rA!•m1H.c.#, ~21!

whereŝ, ŝ†, andŝz are the Pauli operators of the two-lev
atom.

When the atom is initially in the upper state and the r
of the system is in the vacuum, then the system wave fu
tion at timet can be written as

uc~ t !&5Cu~ t !e2 i (vA/2)tuu&u$0%&

1E d3r E
0

`

dv Cli ~r ,v,t !e2 i (v2vA/2)tu l &

3u$1i~r ,v!%&, ~22!

where uu& and u l & are the upper and lower atomic state
respectively,u$0%& is the vacuum state of the rest of th
system, andu$1i(r ,v)%& is the state, where the latter is ex
cited in a single-quantum Fock state. Here and in the follo
ing we adopt the convention of summation over repea
vector-component indices. The Schro¨dinger equation yields

Ċu~ t !52
m j

Ape0\
E

0

`

dv
v2

c2 E d3r @Ae I~r ,v!

3Gji ~rA ,r ,v! Cli ~r ,v,t !e2 i (v2vA)t#, ~23!

Ċli ~r ,v,t !5
m j

Ape0\

v2

c2
Ae I~r ,v!

3Gji* ~rA ,r ,v! Cu~ t !ei (v2vA)t. ~24!

We now substitute the result of formal integration of Eq.~24!
@Cli (r ,v,0)50# into Eq. ~23!. Making use of the relation-
ship

Im Gkl~r ,r 8,v!5E d3s
v2

c2
e I~s,v!Gkm~r ,s,v!Glm* ~r 8,s,v!,

~25!

we obtain the integrodifferential equation

Ċu~ t !5E
0

t

dt8 K~ t2t8!Cu~ t8!, ~26!

with the kernel function

K~ t2t8!52
kA

2m im j

\pe0

3E
0

`

dv e2 i (v2vA)(t2t8)Im Gi j ~rA ,rA ,v!

~27!
4-3
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(kA5vA /c). In the spirit of the rotating-wave approximatio
used, we have setv5vA in the integral in Eq.~27!.

Taking the time integral of both sides of Eq.~26!, we
easily derive, on changing the order of integrations on
right-hand side,

Cu~ t !5E
0

t

dt8 K̄~ t2t8!Cu~ t8!11 ~28!

@Cu(0)51#, where

K̄~ t2t8!5
kA

2m im j

\pe0
E

0

`

dv
Im Gi j ~rA ,rA ,v!

i ~v2vA!

3@e2 i (v2vA)(t2t8)21#. ~29!

The integral equation~28! is a well-known Volterra integra
equation of the second kind. An algorithm for solving su
an integral equation numerically can be found, e.g., in R
@30#. It is worth noting that the integrodifferential equatio
~26! and the equivalent integral equation~28! apply to the
spontaneous decay of an atom in the presence of an arbi
configuration of dispersing and absorbing dielectric bod
All the matter parameters that are relevant for the ato
evolution are contained, via the Green tensor, in kernel fu
tions ~27! and ~29!. In particular, when absorption is disre
garded and the permittivity is regarded as being a r
frequency-independent quantity~which of course can chang
with space!, then the formalism yields the results of standa
mode decomposition, where the methods of Laplace tra
form @3,4# and delay-differential equation@31,32# have been
exploited.

When the Markov approximation applies, i.e., when in
coarse-grained description of the atomic motion memory
fects are disregarded, then we may let

ei (vA2v)(t2t8)21

i ~vA2v!
→z~vA2v! ~30!

in Eq. ~29! @z(x)5pd(x)1 iP/x; P denotes the principa
value#, and thus

K̄~ t2t8!52
1

2
A1 idv, ~31!

where

A5
2kA

2m im j

\e0
Im Gi j ~rA ,rA ,vA! ~32!

and

dv5
kA

2m im j

p\e0
PE

0

`

dv
Im Gi j ~rA ,rA ,v!

v2vA
. ~33!

Substituting into Eq.~28! for the kernel function expressio
~31!, we obtain the familiar result that
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Cu~ t !5expF S 2
1

2
A1 idv D t G . ~34!

Obviously, this result is also obtained if in the integral in E
~26!, Cu(t8) is replaced byCu(t) and then the integral is
approximated byz(vA2v). Note that expressions~32! and
~33! for the decay rate and the line shift, respectively, are
full agreement with the results in Ref.@12#.

It is well known that the Markov approximation is a
excellent approximation for describing the radiative decay
an excited atom in free space. In order to study the c
where the atom is surrounded by dielectric matter, we
sume that the atom is localized in a more or less small fr
space region, so that the Green tensor at the position of
atom reads@36#

G~rA ,rA ,v!5GV~rA ,rA ,v!1GR~rA ,rA ,v!, ~35!

whereGV is the vacuum Green tensor, with

Im GV~rA ,rA ,v!5
v

6pc
I ~36!

~for the vacuum Green tensor, see, e.g., Refs.@6,34#!, andGR

describes the effects of reflections at the~surfaces of discon-
tinuity of the! surrounding medium. The contribution ofGV

to K̄ can then be treated in the Markov approximation. A
plication of Eqs.~31!–~33! yields the well-known vacuum
decay rate

A05
kA

3m2

3\pe0
, ~37!

and a divergent contribution to the vacuum Lamb shift wh
may be omitted, since the~renormalized! vacuum Lamb shift
may be thought of as being included in the atomic transit
frequencyvA . In this way, Eq.~29! takes the form

K̄~ t2t8!52
1

2
A01

kA
2m im j

\pe0
E

0

`

dv
Im Gi j

R~rA ,rA ,v!

i ~v2vA!

3@e2 i (v2vA)(t2t8)21#. ~38!

The integral equation~28! together with the kernel~38! can
be regarded as the basic equation for studying the influe
of an arbitrary configuration of dispersing and absorbing
electric matter on the spontaneous decay of an excited a

C. Emission pattern

The intensity of the light registered by a pointlike phot
detector at positionr and timet is given by

I ~r ,t ![^c~ t !uÊ(2)~r !•Ê(1)~r !uc~ t !&. ~39!

To obtain the emission pattern associated with the spont
ous decay of an excited atom in the presence of disper
4-4
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and absorbing dielectric matter, we combine Eqs.~1!, ~2!,
~12!, and ~22!. After some algebra we derive, on using E
~25!,

I ~r ,t !5(
i
UkA

2m j

pe0
E

0

t

dt8FCu~ t8!

3E
0

`

dv Im Gi j ~r ,rA ,v!e2 i (v2vA)(t2t8)GU2

,

~40!

where we have again setv5vA in the frequency integral
Again, all the relevant dielectric-matter parameters are c
tained in the Green tensor. In contrast to Eq.~28! together
with the kernel~38!, Eq. ~40! requires information about th
Green tensor at different space points. In particular, its
pendence on space and frequency essentially determine
retardation effects.

In the simplest case of the atom being in free space
have

m j Im Gi j
V~r ,rA ,v!5

1

8ipr S m2
r r•m

r2 D
i

3~eivr/c2e2 ivr/c!1O~r22!

~41!

(r5r2rA). We substitute expressions~34! ~with A5A0)
and~41! into Eq.~40!, calculate the time integral, and exten
in the frequency integral the lower limit to2`, which then
can be calculated by contour integration,

E
2`

`

dv ~eivr/c2e2 ivr/c!
e2(A0/21 ivA8 )t2e2 ivt

i @v2~vA82 iA0/2!#

522p expF S 2
1

2
A02 ivA8 D ~ t2r/c!GQ~ t2r/c!,

~42!

where

vA85vA2dv ~43!

@Q(x), unit step function#. We thus derive the well-known
~far-field! result that

I ~r ,t !5S kA
2m sinu

4pe0r D 2

e2A0(t2r/c) Q~ t2r/c!, ~44!

whereu is the angle betweenr andm.
Let us return to the general expression@Eq. ~40!#. If re-

tardation is ignored and the Markov approximation appli
then we can replace, for allr , Cu(t8) by Cu(t) in the time
integral in Eq.~40!, and approximate the time integral b
z(vA2v). We obtain

I ~r ,t !5uF~r ,rA ,vA!u2e2At, ~45!
05380
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where

Fi~r ,rA ,vA!5
kA

2m j

pe0
E

0

`

dv Im Gi j ~r ,rA ,v!z~vA2v!.

~46!

D. Emitted-light spectrum

Next, let us consider the time-dependent power spect
of the emitted light, which for sufficiently small passban
width of the spectral apparatus can be given by~see, e.g.,
Ref. @35#!

S~r ,vS ,T!5E
0

T

dt2E
0

T

dt1 @e2 ivS(t22t1)

3^Ê(2)~r ,t2!•Ê(1)~r ,t1!&#, ~47!

wherevS is the setting frequency of the spectral apparat
andT is the operating-time interval of the detector. In clo
analogy to the derivation of Eq.~40!, we combine Eqs.~1!,
~2!, ~12!, and~22! and use relation~25! to obtain

S~r ,vS ,T!5(
i
UkA

2m j

pe0
E

0

T

dt1Fei (vS2vA)t1E
0

t1
dt8 Cu~ t8!

3E
0

`

dv Im Gi j ~r ,rA ,v!e2 i (v2vA)(t12t8)GU2

.

~48!

Further calculation again requires knowledge of the Gre
tensor of the problem.

Let us apply Eq.~48! to the free-space case. Following th
line that has led from Eq.~40! to Eq. ~44!, we find that

S~r ,vS ,T!5S kA
2m sinu

4pe0r D 2

3Ue[ 2A0/21 i (vS2vA8 )](T2r/c)21

vS2vA81 iA0/2
U2

Q~T2r/c!.

~49!

In particular, for T→`, we recognize the well-known
Lorentzian

lim
T→`

S~r ,vS ,T!5S kA
2m sinu

4pe0r D 2 1

~vS2vA8 !21A0
2/4

. ~50!

When retardation is ignored and the Markov approxim
tion applies, then Eq.~48! can be simplified in a similar way
as Eq.~40!. In close analogy to the derivation of Eq.~45! we
may write

S~r ,vS ,T!5uF~r ,rA ,vA!u2Ue[ 2A/21 i (vS2vA8 )]T21

vS2vA81 iA/2
U2

, ~51!

with F(r ,rA ,vA) being defined by Eq.~46!.
4-5
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III. APPLICATION TO A SPHERICAL CAVITY

A. Model

We apply the formalism developed in Sec. II to the spo
taneous decay of an excited two-level atom placed insid
spherical three-layered structure~Fig. 1!. The outer layer (r
.R1) and the inner layer (0<r ,R2) are vacuum, while the
middle layer (R2<r<R1) is a dispersing and absorbing d
electric. The Green tensor of the configuration is given
Appendix B.

We have performed the calculations assuming a Lore
type dielectric with a single resonance~in the relevant fre-
quency region!:

e~v!511
vP

2

vT
22v22 ivg

. ~52!

Here vP is the plasma frequency, which is proportional
the square root of the number density of the Lorentz osc
tors, and plays the role of the coupling constant between
medium polarization and the electromagnetic field, andvT
and g, respectively, are the position and the width of t
medium resonance. The plots in Fig. 2 of the real and ima
nary parts of the index of refraction,

n~v!5Ae~v!5nR~v!1 inI~v!, ~53!

illustrate a typical band-gap behavior of the configuratio
This band gap is an inherent property of Lorentz-type diel
trics rather than produced by a periodic dielectric array a
photonic crystals@3#.

B. Weak-coupling regime

In the weak-coupling regime, the excited atomic state
cays exponentially@Eq. ~34!#. For simplicity let us assume
that the atom is positioned at the center of the cavity. Fr
Eqs. ~32!, ~35!, ~36!, and ~B22!, the cavity-modified decay
rate is then found to be

A5Ā~vA! A0 , ~54!

whereA0 is decay rate in free space, Eq.~37!, and

Ā~v!511ReC N
33~v!, ~55!

FIG. 1. Scheme of the spherical cavity.
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with C N
33(v) being given by Eqs.~B6!–~B19!. Note that if

mode expansion applies,Ā(v) would correspond to the
change of the density of modes due to the presence of
cavity.

When, far from the medium resonance absorption is d
regarded and hence the~frequency-independent! refractive
index is assumed to be real, then previous results obtaine
mode decomposition can be recovered. In particular, forR2
→0 we recognize the decay rate obtained in Refs.@25,29#
for microspheres and liquid droplets. However, it should
pointed out that even far from the medium resonance
imaginary part of the refractive index cannot be set equa
zero in general, since the contribution to the decay rate of
nonradiative decay associated with absorption increa
;R2

23 for decreasingR2 ~and nonvanishing imaginary pa
of the refractive index! @12#.

Let us restrict our attention to a true microcavi
(R2vA /c@1). From Fig. 3 it is seen that the rate of spon
neous decay sensitively depends on the transition freque
Narrow-band enhancement of spontaneous decay (Ā.1) al-
ternates with broadband inhibition (Ā,1). The frequencies
where the maxima of enhancement are observed corres
to the resonance frequencies of the cavity. Within the ba
gap the heights and widths of the frequency intervals
which spontaneous decay is feasible are essentially de
mined by the material losses. Outside the band-gap zone
change of the decay rate is less pronounced because o
relatively large input-output coupling, the~small! material

FIG. 2. ~a! The real partnR(v) and~b! the imaginary partnI(v)
of the complex refractive index are shown forvP50.5vT and g
51024 vT ~solid line!, g51023 vT ~dashed line!, and g
51022 vT ~dotted line!. The longitudinal frequency vL

5AvT
21vP

2 is vL.1.12vT , and hencevL2vT.0.12vT .
4-6
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SPONTANEOUS DECAY IN THE PRESENCE OF . . . PHYSICAL REVIEW A 62 053804
losses being of secondary importance.
WhenR2v/c@1 and exp@2nI(R12R2)v/c#!1, then Eqs.

~B6!–~B19! drastically simplify, andĀ(v) @Eq. ~55!# reads

Ā~v!.ReF n~v!2 i tan~R2v/c!

12 in~v!tan~R2v/c!G . ~56!

The positionsvm of the maxima ofĀ(v) can then be ob-
tained from the equationdĀ/dv50. As long asn(v) can be
regarded as being slowly varying compared w
tan(vR2 /c), we may neglectdn/dv, and thus determine th
resonance frequencies from the equation

2nI~vm!tan~R2vm /c!.un~vm!u221

2A~ un~vm!u221!214nI
2~vm!.

~57!

Note that Eq.~57! is exact when it is regarded as condition
equation ofR2 for a desired resonance frequency.

In the band-gap zone we may assume thatnI@nR ~see
Fig. 2!. From Eqs.~56! and ~57! it then follows that the
maximum valuesĀ(vm) and half widths at half maximum
dvm , of the cavity resonance lines, i.e., the regions wh
enhanced spontaneous decay can be observed, are give

Ā~vm!.
nI

2~vm!11

nR~vm!
.

2A~vL
22vm

2 !~vm
2 2vT

2!

gvm
, ~58!

dvm.
c

R2Ā~vm!
, ~59!

where we have assumed that the material losses are s
i.e., g!vT ,vP , andvP

2 /vT . Equations~58! and~59! reveal
that in the approximation made the heights~widths! of the
resonance lines~Lorentzians! are proportional~inversely pro-
portional! to g, the highest and narrowest line being in t
center of the band gap. Note that the productĀ(vm)dvm
does not depend ong.

FIG. 3. The function Ā(v) @Eq. ~55!# is shown for R2

530lT , d5lT ,vP50.5vT , andg51022 vT . The curves in the
inset correspond tog51022 vT ~solid line!, g5231022 vT

~dashed line!, andg5531022 vT ~dotted line!.
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Outside the band-gap zone the inequalitynR@nI is typi-
cally valid ~see Fig. 2!, and thus Eqs.~56! and ~57! yield

Ā~vm!.nR~vm!.AvL
22vm

2

vT
22vm

2
, ~60!

dvm.
c

R2Ā~vm!
. ~61!

The heights and widths of the resonance lines are now s
to be ~approximately! independent ofg. The lines become
higher and narrower ifvm becomes close tovT .

The widths of the resonance lines are responsible for
damping of intracavity fields. There are two damping mec
nisms: photon leakage to the outside of the cavity and pho
absorption by the cavity-wall material. From the analy
given above, it is seen that the first mechanism is the do
nant one outside the band gap where normal disper
(dnR /dv.0) is observed, while the latter dominates insi
the band gap where anomalous dispersion (dnR /dv,0) is
observed. To illustrate this in more detail, we have calcula
the amount of radiation energy observed outside the cav

W52ce0E
0

`

dtE
0

2p

dfE
0

p

du r2 sinu I ~r ,t ! ~62!

(r.R1), and compared it with the emitted energy in fre
spaceW05\vA . Assuming without loss of generality tha
the atomic transition dipole isz oriented, and restricting ou
attention to the relevant far-field contribution, from Eqs.~45!
and ~46! together with Eq.~B1! and Eqs.~B23!–~B25! we
derive ~see Appendix C!

W

W0
.

uA N
13~vA!u2

11ReC N
33~vA!

. ~63!

Examples of the dependence on the atomic transition
quency of the amount of radiation energy observed outs
the cavity are plotted in Fig. 4. It is seen that inside the g
most of the energy emitted by the atom is absorbed by
cavity wall in the course of time, while outside the gap t
absorption is~for the chosen values ofg) much less signifi-
cant. Note that with increasing value ofg the band gap is
smoothed a little bit, and thus the fraction of light that e
capes from the cavity can increase.

C. Strong-coupling regime

The strength of the atom-field coupling increases wh
the atomic transition frequencyvA approaches a cavity
resonance frequencyvm . In order to gain insight into the
strong-coupling regime, let us first consider the limiting ca
of one cavity-resonance line being involved in the atom-fi
interaction. Indeed, whenvA is close tovm , then contribu-
tions from the other resonance lines become small. Us
4-7
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HO TRUNG DUNG, LUDWIG KNÖLL, AND DIRK-GUNNAR WELSCH PHYSICAL REVIEW A 62 053804
Eqs. ~32!, ~54!, and ~55!, and recalling thatĀ(v) behaves
like a Lorentzian in the vicinity ofvm , we may simplify Eq.
~27! to

K~ t2t8!.2
A0

2p
Ā~vm!~dvm!2e2 i (vm2vA)(t2t8)

3E
2`

1`

dv
e2 i (v2vm)(t2t8)

~v2vm!21~dvm!2

52
1

2
A0Ā~vm!dvme2 i (vm2vA)(t2t8)e2dvmut2t8u.

~64!

Substituting this expression into Eq.~26!, and differentiating
both sides of the resulting equation with regard to time,
arrive at

C̈u~ t !1@ i ~vm2vA!1dvm# Ċu~ t !1~V/2!2Cu~ t !50,
~65!

where

V5A2A0Ā~vm!dvm. ~66!

Hence we are left, in the approximation made, with
damped-oscillator equation of motion for the upper-st
probability amplitude, whereĀ(vm) anddvm , respectively,
are given by Eqs.~58! and ~59! @or Eqs. ~60! and ~61!#.
Obviously, whenvA5vm and

V@dvm ~67!

~i.e., strong coupling!, then damped Rabi oscillations are o
served:

uCu~ t !u25e2dvmt cos2~Vt/2!. ~68!

Note that in the opposite case whereV!dvm , the solution
of Eq. ~65! is uCu(t)u25e2At, with A from Eq. ~54! for vA

FIG. 4. The amount of radiation energyW @Eq. ~63!# observed
outside the cavity is shown as a function of the atomic transit
frequencyvA for g51022 vT ~solid line!, g5231022 vT ~dashed
line!, and g5531022 vT ~dotted line!. The other parameters ar
the same as in Fig. 3.
05380
e

e

5vm, which is in agreement with Eq.~34!. Equations~66!
and ~67!, together with Eqs.~58! and ~59! @or Eqs.~60! and
~61!#, provide us with an easy rule of thumb for decidin
whether the strong-coupling regime is realized or not.

In order to obtain the exact solution to the problem, w
have also solved the basic integral equation~28! @together
with the kernel function~38!# numerically. Typical examples
of the temporal evolution of the occupation probability of t
upper atomic state are shown in Fig. 5 for the case where
atomic transition is tuned to the resonance line in the ce
of the band gap. The figure reveals that with increasing va
of the intrinsic damping constantg of the wall material the
Rabi oscillations become less pronounced, in agreement
Eqs.~58!, ~59!, and~66!, and inequality~67!. From Eqs.~58!
and~59! it is seen that~in the approximation made there! the
product Ā(vm)dvm.c/R2 does not vary withg, whereas
dvm increases linearly withg. According to Eq.~66!, V
}Ag and thusV/dvm}1/Ag, i.e., the condition of strong
coupling @Eq. ~67!# becomes violated with increasingg.
Physically, increasingg means increasing probability of~ir-
reversible! absorption of the emitted photon by the wall m
terial, and therefore reduced probability of~reversible! atom-
field energy exchange. It should be mentioned that w
increasingg the ~very small! probability that the photon~ir-
reversibly! leaves the cavity also increases. Note that
variation of g in Fig. 5 leaves the imaginary part of th
refractive index nearly unchanged,nI.1.2, while the~small!
real partnR slightly increases withg ~see Fig. 2!.

The examples of the temporal evolution of the occupat
probability of the upper atomic state shown in Fig. 6 refer
the case where the atomic transition is tuned to a resona
line closest tovT below the band gap. According to Eq
~60!, ~61!, and ~66!, and condition~67!, the resonance fre
quencies close tovT are most favorable for realizing th
strong-coupling regime in the range of normal dispersi
because of the rising real part of the refractive index@see Fig.
2~a!#. As expected, the strength of the the Rabi oscillatio
now varies with the plasma frequencyvP such that they are
less pronounced for small values ofvP . Obviously, decreas-

n

FIG. 5. The temporal evolution of the occupation probabil
uCu(t)u2 of the upper atomic state is shown forR2530lT , d
5lT ,vP50.5vT ,vA51.046 448vT , and A0lT /(2c)51026; g
51024 vT ~solid line!, g5531024 vT ~dashed line!, and g
51023 vT ~dotted line!. For comparison, the exponential decay
free space is shown~dash-dotted line!.
4-8
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ing vP means increasing the input-output coupling, i.e.,
creasing the probability that the emitted photon leaves
cavity instead of back-acting upon the atom.

Finally, Fig. 6 presents a comparison between the ex
solution, and the approximate analytical solution@solution of
Eq. ~65!#. To compensate for the short-time inaccuracy of
analytical solution, it is shifted forward in time somewha
The agreement between the exact solution and the~shifted!
analytical solution is quite good. Obviously, Eq.~65! pre-
dicts an initial decay somewhat faster than the exact one
fact, the spontaneous decay is accelerated only gradually
der the back-action of the radiated field, being multiply
flected at the boundaries@27,31#, and single-resonance cou
pling is established only after a certain interval of time. T
sharper the cavity resonance, the shorter this interval, w
is fully confirmed by the figure.

IV. SUMMARY AND CONCLUSIONS

We have developed a formalism for studying spontane
decay of an excited atom in the presence of arbitrary disp
ing and absorbing dielectric bodies. The formalism is ba
on a source-quantity representation of the electromagn
field in terms of the Green tensor of the classical probl
and appropriately chosen bosonic quantum fields. It repla

FIG. 6. The temporal evolution of the occupation probabil
uCu(t)u2 of the upper atomic state is shown ford5lT ,vA

50.9999vT , and A0lT /(2c)51025, and ~a! vP53 vT , R2

530.001 97lT and ~b! vP51.5vT , R2530.001 79lT . The solid
lines correspond to the exact solution and the dashed lines to
approximate analytical solution@solution of Eq.~65!# shifted for-
ward by~a! A0Dt50.009 and~b! A0Dt50.02. For comparison, the
exponential decay in free space is shown~dash-dotted line!.
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the standard concept of orthogonal-mode decomposi
based on the Helmholtz equation with real permittivity. A
relevant information about the bodies such as form and
trinsic dispersion and absorption properties are containe
the Green tensor. It is worth noting that the Green tensor
been available for a large variety of configurations such
planarly, spherically, and cylindrically multilayered med
@33#.

We have applied the theory to the spontaneous decay
two-level atom placed at the center of a three-layered sph
cal microcavity, modeling the wall by a Lorentz dielectri
The formalism has enabled us to study both the range
normal dispersion and the anomalous-dispersion ra
within the band gap in a unified way. Whereas in the ran
of normal dispersion the cavity input-output coupling dom
nates the strength of the atom-field interaction, the domin
ing effect within the band gap is the photon absorption by
wall material.

In the study of the spherical-cavity problem, we have
sumed that the atom is placed at the center of the cav
which has drastically reduced the mathematical effort,
cause only a spherical Bessel function of ordern51 contrib-
utes to the Green tensor. The price we paid is that the in
action of the atom with cavity excitations of largen, which
correspond to high-Q whispering gallery modes and conce
trate near the surface by repeated internal reflections, has
been included in the analysis. Since the complete Green
sor is known, there is of course no obstacle to performing
calculations for an arbitrary position of the atom. In partic
lar, when the atom is near the surface, then nonradia
energy transfer from the atom to the absorbing medium
substantially contribute to the process of spontaneous de
Further investigations are also necessary in order to giv
more detailed analysis of the evolution of the emitted rad
tion, to answer the question of the ratio of photon emiss
to nonradiative decay, and to extend the theory to multile
atom-field interactions.
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APPENDIX A: HAMILTONIAN IN DIPOLE AND
ROTATING-WAVE APPROXIMATIONS

Hamiltonian~18! can be rewritten as

Ĥ5ĤF1ĤA1ĤAF , ~A1!

ĤF5E d3rE
0

`

dv \v f̂†~r ,v!• f̂~r ,v!, ~A2!

ĤA5(
a

p̂a
2

2ma
1 1

2 E d3r r̂A~r !ŵA~r !, ~A3!

he
4-9
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ĤAF52(
a

qa

ma
p̂a•Â~ r̂a!1E d3r r̂A~r !ŵ~r !, ~A4!

where we have ignored the smallÂ2 term. Note that in the
Coulomb gauge@ p̂a ,Â#50. For a neutral atom with the
nucleus being positioned atrA , the atomic dipole operato
reads

m̂A[(
a

qa ~ r̂a2rA!5(
a

qa r̂a , ~A5!

and the first term in the interaction part of the Hamiltoni
ĤAF takes the form

2(
a

qa

ma
p̂a•Â~ r̂a!.2(

a

qa

i\
@ r̂a ,ĤA#•Â~rA!

52
1

i\
@m̂A ,ĤA#•Â~rA!, ~A6!

where the dipole approximation has been employed to
place Â( r̂a)→Â(rA) and p̂a5„ma /( i\)…@ r̂a ,ĤA# has been
used.

Now we restrict ourselves to a two-state model of an at
with upper stateuu& and lower stateu l &. These are eigenstate
of the unperturbed part of the HamiltonianĤA with the ei-
genvalues\vu and\v l , respectively. Then one can write

ĤA5\vuuu&^uu1\v l u l &^ l u, ~A7!

uu&^uu1u l &^ l u5 Î . ~A8!

In this atomic state space, the dipole operatorm̂A has the
matrix elements ^uum̂Au l &5^ l um̂Auu&[m and ^uum̂Auu&
5^ l um̂Au l &50. Using these and Eqs.~16! and~A6!–~A8!, we
arrive at

2(
a

qa

ma
p̂a•Â~ r̂a!.~ ŝ2ŝ†!

3F E
0

`

dv
vA

v
Ê'~rA ,v!2H.c.G•m

.2@ŝ†Ê'(1)~rA!•m1H.c.#, ~A9!

whereŝ5u l &^uu,ŝ†5uu&^ l u,vA5vu2v l , andv5vA is set
in the integral, because of the rotating-wave approximati

In order to deal with the second term inĤAF , we expand
r̂A(r ), @Eq. ~20!#, in a multipolar form, and retain only th
first nonvanishing term
05380
e-

.

r̂A~r !.(
a

qad ~r2rA!2“•Fd~r2rA! (
a

qa~ r̂a2rA!G
52“•d~r2rA!m̂A . ~A10!

Then we have

E d3r r̂A~r !ŵ~r !.2E d3r $“•@d~r2rA!m̂A#%ŵ~r !

5E d3r @d~r2rA!m̂A#•“ŵ~r !

52m̂A•Êi~rA!

.2@ŝ†Êi(1)~rA!•m1H.c.#, ~A11!

where integration by parts and Eq.~15! have been employed
for deriving the second and the third equation, respectiv
and the rotating-wave approximation has been used in de
ing the forth equation. Combining Eqs.~A4!, ~A9!, and
~A11! gives

ĤAF.2@ŝ†Ê(1)~rA!•m1H.c.#. ~A12!

Equations ~A1!, ~A2!, and ~A12!, and a subtraction of
(\/2)(vu1v l) Î from ĤA , @Eq. ~A7!# lead to Hamiltonian
~21!.

APPENDIX B: GREEN TENSOR OF THE SPHERICAL
CAVITY

Following Refs.@36#, we write the Green tensor of th
cavity in Fig. 1 in the form

G~r ,r 8,v!5GV~r ,r 8,v!d f s1G( f s)~r ,r 8,v!, ~B1!

whereGV(r ,r 8,v) represents the contribution of the dire
waves from the radiation sources in an unbounded medi
which is vacuum in our case,f ands denote the layers wher
the field point and source point locate,d f s is the usual Kro-
necker symbol, and the scattering Green tensorG( f s)(r ,r 8,v)
describes the contribution of the multiple reflection (f 5s)
and transmission (f Þs) waves. In particular,G(13)(r ,r 8,v)
andG(33)(r ,r 8,v) read as@36#

G(13)~r ,r 8,v!5
ik3

4p (
e,o

(
n51

`

(
m50

n

3H 2n11

n~n11!

~n2m!!

~n1m!!
~22d0m!

3@A M
13~v!M e

onm

(1)
~r ,k1!M e

onm~r 8,k3!

1A N
13~v!Ne

onm

(1)
~r ,k1!Ne

onm~r 8,k3!#J ,

~B2!
4-10
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G(33)~r ,r 8,v!5
ik3

4p (
e,o

(
n51

`

(
m50

n

3H 2n11

n~n11!

~n2m!!

~n1m!!
~22d0m!

3@C M
33~v!M e

onm~r ,k3!M e
onm~r 8,k3!

1C N
33~v!Ne

onm~r ,k3!Ne
onm~r 8,k3!#J ,

~B3!

where

k15k35
v

c
, k25Ae~v!

v

c
,

andM andN represent TE and TM waves, respectively,

M e
onm~r ,k!57

m

sinu
j n~kr ! Pn

m~cosu!S sin
cosD ~mf!eu

2 j n~kr !
dPn

m~cosu!

du S cos
sinD ~mf!ef , ~B4!

Ne
onm~r ,k!5

n~n11!

kr
j n~kr !Pn

m~cosu!S cos
sinD ~mf!er

1
1

kr

d@r j n~kr !#

dr FdPn
m~cosu!

du S cos
sinD ~mf!eu

7
m

sinu
Pn

m~cosu! S sin
cosD ~mf!efG , ~B5!

with j n(x) being the spherical Bessel function of the fir
kind, andPn

m(x) being the associated Legendre function. T
superscript (1) in Eq.~B2! indicates that in Eqs.~B4! and
~B5!, the spherical Bessel functionj n(x) has to be replaced
by the first-type spherical Hankel functionhn

(1)(x).
The coefficientsA M ,N

13 and C M ,N
33 in Eqs. ~B2! and ~B3!

are defined by

A M ,N
13 ~v!5

TF1
M ,NTF2

M ,NTP1
M ,N

TP1
M ,N1TF1

M ,NRP1
M ,NRF2

M ,N
, ~B6!

C M ,N
33 ~v!5

A M ,N
13

TP2
M ,N FRP2

M ,N

TF1
M ,N

1
RP1

M ,N

TP1
M ,NG , ~B7!

where

RP f
M 5

kf 11H ( f 11) f8 H f f2kfH f f8 H ( f 11) f

kf 11Jf fH ( f 11) f8 2kfJf f8 H ( f 11) f

, ~B8!

RF f
M 5

kf 11J( f 11) f8 Jf f2kfJf f8 J( f 11) f

kf 11J( f 11) f8 H f f2kfJ( f 11) fH f f8
, ~B9!
05380
e

RP f
N 5

kf 11H ( f 11) fH f f8 2kfH f fH ( f 11) f8

kf 11Jf f8 H ( f 11) f2kfJf fH ( f 11) f8
, ~B10!

RF f
N 5

kf 11J( f 11) fJf f8 2kfJf fJ( f 11) f8

kf 11J( f 11) fH f f8 2kfJ( f 11) f8 H f f

, ~B11!

TP f
M 5

kf 11~J( f 11) fH ( f 11) f8 2J( f 11) f8 H ( f 11) f !

kf 11Jf fH ( f 11) f8 2kfJf f8 H ( f 11) f

, ~B12!

TF f
M 5

kf 11~J( f 11) f8 H ( f 11) f2J( f 11) fH ( f 11) f8 !

kf 11J( f 11) f8 H f f2kfJ( f 11) fH f f8
, ~B13!

TP f
N 5

kf 11~J( f 11) f8 H ( f 11) f2J( f 11) fH ( f 11) f8 !

kf 11Jf f8 H ( f 11) f2kfJf fH ( f 11) f8
, ~B14!

TF f
N 5

kf 11~J( f 11) fH ( f 11) f8 2J( f 11) f8 H ( f 11) f !

kf 11J( f 11) fH f f8 2kfJ( f 11) f8 H f f

, ~B15!

with

Jil 5 j n~kiRl !, ~B16!

Hil 5hn
(1)~kiRl !, ~B17!

Jil8 5
1

r

d@r j n~r!#

dr U
r5kiRl

, ~B18!

Hil8 5
1

r

d@rhn
(1)~r!#

dr
U

r5kiRl

. ~B19!

Note thatA M ,N
13 and C M ,N

33 are functions ofn but not of m.
When the atom is positioned at the cavity center, we h
@12#

M e
onm~r ,k!ukr→0→~kr !n, ~B20!

Ne
onm~r ,k!ukr→0→~kr !n21. ~B21!

In this case, only TM waves withn51 contribute, and Eq.
~B3! simplifies to

GR[G(33)~r ,r 8,v!ur 5r 8→05
iv

6pc
C N

33~v!I . ~B22!

Similarly, Eq. ~B2! reduces to (n51)

Grz
(13)~r ,r 8,v!ur 8→05

i cosu

2pr
h1

(1)~k3r !A N
13~v!, ~B23!

Guz
(13)~r ,r 8,v!ur 8→052

i sinu

4pr

d@rh1
(1)~k3r !#

dr
A N

13~v!,

~B24!

Gfz
(13)~r ,r 8,v!ur 8→050. ~B25!
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HO TRUNG DUNG, LUDWIG KNÖLL, AND DIRK-GUNNAR WELSCH PHYSICAL REVIEW A 62 053804
APPENDIX C: DERIVATION OF EQ. „63…

For an atom at the cavity center andz-oriented dipole,
from Eqs.~46! and ~B23!–~B25!, we derive

Fr~r ,rA ,vA!5O~r22!, ~C1!

Fu~r ,rA ,vA!52
kA

2m sinu

4p2e0r

3E
0

`

dv Im@A N
13~v!eivr/c# z~vA2v!

1O~r22!, ~C2!

Ff~r ,rA ,vA!50. ~C3!

Recalling the relationz(x)5 i /(x1 i0), we perform thev
integration in Eq.~C2! to obtain
l

J

pt.

.

.

.

05380
E
0

`

dv Im@A N
13~v!eivr/c# z~vA2v!

52
1

2E0

`

dv
$A N

13~v!eivr/c2c.c.%

v2~vA1 i0!
.

2 ipA N
13~vA!eivAr/c, ~C4!

where we have ~approximately! replaced A N
13(v) by

A N
13(vA), extended the lower limit of the integral to2`,

and applied contour-integration techniques. Combining E
~45!, ~46!, ~62!, and ~C1!–~C4!, it is not difficult to prove
that

W.\vA

uA N
13~vA!u2

11ReC N
33~vA!

. ~C5!

Taking into account that the free-space valueW05\vA is
obtained by settingA N

1351 andC N
3350, Eq.~C5! just yields

Eq. ~63!.
ys.

s.

S.

.

,

ev.
-

k,

pt.

n-
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3543 ~1996!; G. Juzeliūnas and D.L. Andrews, Adv. Chem
Phys.112, 357 ~2000!.

@18# T. Gruner and D.-G. Welsch, Phys. Rev. A53, 1818~1996!.
.

@19# R. Matloob, R. Loudon, S.M. Barnett, and J. Jeffers, Ph
Rev. A 52, 4823~1995!; R. Matloob and R. Loudon,ibid. 53,
4567 ~1997!.

@20# Ho Trung Dung, L. Kno¨ll, and D.-G. Welsch, Phys. Rev. A57,
3931 ~1998!.

@21# S. Scheel, L. Kno¨ll, and D.-G. Welsch, Phys. Rev. A58, 700
~1998!.

@22# V.B. Braginsky, M.L. Gorodetsky, and V.S. Ilchenko, Phy
Lett. A 137, 393 ~1989!.

@23# V. Sandoghdar, F. Treussart, J. Hare, V. Lefe`vre-Seguin, J.-M.
Raimond, and S. Haroche, Phys. Rev. A54, R1777~1996!.

@24# D.W. Vernooy, A. Furusawa, N.Ph. Georgiades, V.
Ilchenko, and H.J. Kimble, Phys. Rev. A57, R2293~1998!.

@25# H. Chew, J. Chem. Phys.87, 1355 ~1987!; Phys. Rev. A38,
3410~1988!; S.C. Ching, H.M. Lai, and K. Young, J. Opt. Soc
Am. B 4, 2004 ~1987!; K.G. Sullivan and D.G. Hall, Phys.
Rev. A 50, 2708~1994!; W. Jhe and J.W. Kim,ibid. 51, 1150
~1995!; W. Jhe and K. Jang,ibid. 53, 1126~1996!; V.V. Kli-
mov, M. Ducloy, and V.S. Letokhov, J. Mod. Opt.43, 549
~1996!; 43, 2251~1996!.

@26# H-B. Lin, J.D. Eversole, C.D. Merritt, and A.J. Campillo
Phys. Rev. A45, 6756~1992!; M.D. Barnes, C-Y. Kung, W.B.
Whitten, J.M. Ramsey, S. Arnold, and S. Holler, Phys. R
Lett. 76, 3931 ~1996!; H. Fujiwara, K. Sasaki, and H. Masu
hara, J. Appl. Phys.85, 2052 ~1999!; H. Yukawa, S. Arnold,
and K. Miyano, Phys. Rev. A60, 2491~1999!.

@27# J. Parker and C.R. Stroud, Phys. Rev. A35, 4226~1987!.
@28# H.M. Lai, P.T. Leung, and K. Young, Phys. Rev. A37, 1597

~1988!; D. Lenstra, G. Kurizki, L.D. Bakalis and K. Banasze
ibid. 54, 2690 ~1996!; V.V. Klimov, V.S. Letokhov, and M.
Ducloy, ibid. 56, 2308~1997!; V.V. Klimov, M. Ducloy, and
V.S. Letokhov,ibid. 59, 2996~1999!.

@29# Fam Le Kien, Nguyen Hong Quang, and K. Hakuta, O
Commun.178, 151 ~2000!.

@30# W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Fla
4-12



fic

ia

s

s.

SPONTANEOUS DECAY IN THE PRESENCE OF . . . PHYSICAL REVIEW A 62 053804
nery, Numerical Recipes in FORTRAN: the Art of Scienti
Computing~Cambridge University Press, Cambridge, 1992!, p.
786.

@31# R.J. Cook and P.W. Milonni, Phys. Rev. A35, 5081~1987!.
@32# X.P. Feng and K. Ujihara, IEEE J. Quantum Electron.QE-25,

2332~1989!; Ho Trung Dung and K. Ujihara, Phys. Rev. A60,
4067 ~1999!.

@33# W. C. Chew, Waves and Fields in Inhomogeneous Med
05380
~IEEE Press, New York, 1995!.
@34# A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski,Meth-

ods of Quantum Field Theory in Statistical Physics~Dover,
New York, 1975!.

@35# W. Vogel and D.-G. Welsch,Lectures on Quantum Optic
~Akademie Verlag, Berlin, Germany, 1994!, p. 212.

@36# L.W. Li, P.S. Kooi, M.S. Leong, and T.S. Yeo, IEEE Tran
Microwave Theory Tech.42, 2302~1994!.
4-13


