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Spontaneous decay in the presence of dispersing and absorbing bodies: General theory
and application to a spherical cavity
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A formalism for studying spontaneous decay of an excited two-level atom in the presence of dispersing and
absorbing dielectric bodies is developed. An integral equation, which is suitable for numerical solution, is
derived for the atomic upper-state-probability amplitude. The emission pattern and the power spectrum of the
emitted light are expressed in terms of the Green tensor of the dielectric-matter formation, including absorption
and dispersion. The theory is applied to the spontaneous decay of an excited atom at the center of a three-
layered spherical cavity, with the cavity wall being modeled by a band-gap dielectric of Lorentz type. Both
weak and strong coupling are studied, the latter with a special emphasis on cases where the atomic transition
is (i) in the normal-dispersion zone near the medium resonance(iiand the anomalous-dispersion zone
associated with the band gap. In a single-resonance approximation, conditions of the appearance of Rabi
oscillations and closed solutions to the evolution of the atomic state population are derived, which are in good
agreement with the exact numerical results.

PACS numbegps): 42.50.Ct, 12.26-m, 42.60.Da, 42.50.Lc

[. INTRODUCTION In this paper we present a theory of the spontaneous decay
of an excited two-level atom in the presence of arbitrary
It is well known that the spontaneous decay of an excitedlispersing and absorbing dielectric bodies characterized by a
atom can be strongly modified when it is placed inside aspatially varying, frequency-dependent complex permittivity.
microcavity [1,2]. There are typically two qualitatively dif- Inclusion in the theory of absorption requires a careful con-
ferent regimes: the weak-coupling regime and the strongsideration of the electromagnetic-field quantization, since the
coupling regime. The weak-coupling regime is characterizedtandard macroscopic approach to quantization of the elec-
by monotonous exponential decay, the decay rate being emromagnetic field in dielectric matter of real permittiv[ty6]
hanced or reduced compared to the free-space value dependns into difficulties when material absorption is included. In
ing on whether the atomic transition frequency fits a cavityprinciple, dielectric bodies could be included as a part of
resonance or not. The strong-coupling regime, in contrast, imatter to which the electromagnetic field is coupled and
characterized by reversible Rabi oscillations, where the entreated microscopically, as has been done for homogeneous
ergy of the initially excited atom is periodically exchanged harmonic-oscillator medifl7]. We shall instead use a mac-
between the atom and the field. Most previous work on nonfroscopic approach to the problem, transferring the classical
exponential decay in matter systems such as photonic cry$daxwell theory for arbitrarily given space- and frequency-
tals[3] and waveguides with thresholdlike photon-mode den-dependent permittivity to quantum thedy8—21]. This con-
sity [4] concentrated on nonabsorbing materials. Recentept, which generalizes the results of the microscopic ap-
progress in constructing certain types of microcavities suclproach in Ref[17], has — similar to classical optics — the
as microspheres has rendered it possible to approach the enefit of being universally valid, because it uses only well-
timate quality level determined by intrinsic material lossesestablished physical properties of the permittivity and related
[5], so that the question of the influence of absorbing mateguantities, without the need of involveab initio calcula-
rial on spontaneous decay has been of increasing interest.tions. We then apply the theory to the spontaneous decay of
Effects of material losses on the lifetime of an excitedan atom in a spherical microcavity of a given complex-
atom have been studied within Fermi's golden-rule approackalued refractive-index profile, as is typically the case in
[6-13. In Ref.[14] the mode structure of a microsphere experimental implementations. The formalism enables us to
without and with absorber dopant atoms, which is modelednclude absorption and dispersion in the theory in a consis-
by a constant and a Lorentzian dielectric function, respectent way, and to give a unified treatment of spontaneous
tively, is considered. The spontaneous emission rate and themission, without restriction to a particular coupling regime.
radiation intensity as a function of the atomic transition fre- The plan of the paper is as follows. In Sec. Il, the quan-
quency were examined in RdfL5] for an atom in a Fabry- tization scheme in Ref§18-21] for an electromagnetic field
Perot cavity filled with a Lorentz-type dielectric in the casein the presence of dispersing and absorbing dielectric bodies
of strong medium-cavity interaction but weak atom-field in-is extended in order to include in the theory the resonant
teraction. interaction of the field with a two-level atom. From the
Hamiltonian of the composed system, an integral equation
governing the temporal evolution of the upper-level-
*On leave from the Institute of Physics, National Center for Sci-probability amplitude of the atom is derived, the integral
ences and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chikernel being determined by the Green tensor of the classical,
Minh City, Vietnam. phenomenological Maxwell equations for the dielectric-
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assisted electromagnetic field. General expressions for the A o . A

emission pattern and the power spectrum are derived in VXB(r,w)=—i—e(r,w)E(r,0)+ uj(r,o), (6
terms of the atomic parameters and, via the Green tensor, the c -

cavity parameters of the dielectric-matter configuration.

In Sec. lll, the theory is used to examine the spontaneou
decay of an ex0|ted two-level atom inside a spherical cawtytIon of frequency and space, the real paggf(and the imagi-
with special emphasis on the intrinsic dispersion and absorgl&"y Part &) of which satisfy (for any r) the Kramers-
tion of the wall material. Spherical microcavities have been<'°Nig refations. The operator noise charge and current
very attractive systems for both fundamental research in cawlensitiesp(r,w) andj(r,w) respectively, which are associ-
|ty guantum e|ectrodynam|cs and app||cat|ons in 0ptoe|ecﬂted with absorptlon are related to the operator noise polar-
tronics (see, e.g., Refd5,22-24, and references thergin ization P(r,w) as
Changes in the level shifts and lifetimes of atoms inside or

\g/here the complexrelative permittivity e(r,w) is a func-

near the surfaces of spherical microstructures were studied Z)(r,w)= —V-E(r,w), (7)
theoretically [25], the latter also experimentallj26], and B
results on the strong-coupling regime reporfi2gd—29. The J(r,w)=—iwP(r,0), (8)

theoretical results were typically based, with respect to the

macroscopic Helmholtz equation, on orthogonal-mode exwhere

pansion, which fails for complex permittivity. Here we con-

sider a spherical three-layered structure, where the middle B(r,w)=i /@6 (r.o)¥r o) 9)
layer is assumed to be(aingle-resonangeband-gap dielec- -’ oo e

tric of Lorentz type, whereas the outer and inner layers are

vacuum. The strength of the atom-field coupling, which iswith

essentially determined by the imaginary part of the Green

tensor at the position of the atom, is analyzed, and the posi- [fi(r,w), i (1" 0)]=8;60-1r")d(w-w"), (10
tions, heights, and widths of the possible cavity resonances R R R R

are calculated. In particular, the most pronounced resonances [fi(r,w),f,-(r’,w’)]=0=[fiT(r,w),ij(r’,w’)]. (12
are observed within the band gap, the widths of which are

proportional to the intrinsic damping constant of the me-From Egs.(3)—(9), it follows that E can be written in the
dium. In a single-resonance approximation, conditions of théorm N
strong-coupling regime and closed expressions for the

atomic upper-state-population probability are derived, which . [k w?
are in good agreement with the numerical solutions. Finally, E(r,o)=i €

a summary and conclusions are given in Sec. IV.

Teq c?

fde”\/e,(r ) G(r )-f(r', o),

(12)

Il. GENERAL FORMALISM
A. Quantization scheme

Let us first consider an electromagnetic field in the presand B= (iw) VX E accordingly, whereG(r,r’,w) is the
ence of dispersing and absorbing dielectric bodies withoutlassical Green tensor satisfying the equation
additional atomic sources. Following Ref48-21], we rep-

resent the electric-field operatérin the form {wz

—Ze(r,w)—VXVX G(r,r',w)=—46(r—r"), (13
c

E=EMM+ECn), ECM=EDDI, @
together with the boundary condition at infinjty(r) is the
R © dyadic § function|. In this way, the electric- and magnetic-
E(+)(r)=f do E(r,w), (2 field strengths are expressed in terms of a continuum set of
° bosonic field$ andf", which play the role of the fundamen-
. tal (dynamica) variables of the composed systdgiectro-
and the magnetic-field operatBraccordingly. The operators magnetic field and the medium including the dissipative sys-

E andB then satisfy the Maxwell equations tem), whose Hamiltonian is
V-B(r,0)=0, 3) H:f d3rJO‘dwhwf*(r,w)-f(r,w). (14)
- ~ Using Eq.(12) [together with Eqs(1) and(2)], we can also
V- Leoelr @) E(r,0)]=p(r,w), @ 9 Eq.(12) [together with Eqs(1) and(2)], we can
- express the scalar potentialand the vector potentigh of
A . the electromagnetic field in terms of the fundamental bosonic
VXE(r,w)=iwB(r,n), (5) fields. In particular, in the Coulomb gauge we obtain
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—Volr)=El - o R R 1 -
Ve(n=E(n), (15 H=j o fo do o (r,0) Hr,0)+ Shoad,
A(r)= fo do (iw) *E (r,w)+H.c., (16) —[o"EX)(rp)- m+H.c], (21)
e - i .
where \;\{[r;?rrlea, o', ando, are the Pauli operators of the two-level
When the atom is initially in the upper state and the rest
EL(H)(',):J d3r 6+ Dr—rny.E(r) (17)  of the system is in the vacuum, then the system wave func-
’ tion at timet can be written as
with &(r) and &!(r) being the transverse and longitudinal (1)) =Cy(t)e @aDy)|{o})
6 functions, respectively.
We now CopsiQer thg interz_ic_:tion of 'Fhe medium-assisted +j d3r Jw de C”(r,w,t)e*i(w*wAIZ)tlw
electromagnetic field with additional point charggs. Ap- 0

plying the minimal-coupling scheme, we may write the com-
plete Hamiltonian in the form X[{1i(r,w)}), (22

o where |u) and |I) are the upper and lower atomic states,
|3|=f d3rf dofiwfi(r,w)-f(r,e) respectively,|{0}) is the vacuum state of the rest of the
0 system, and{1;(r,w)}) is the state, where the latter is ex-
1 cited in a single-quantum Fock state. Here and in the follow-
+ 2 5 [Pa— QAT )] [Pa— AaA(T )] ing we adopt the convention of summation over repeated
@ 2m, vector-component indices. The Schimger equation yields

1 - - N -
+5 | drpane (r)+fd3rp (Ne(r), (18 : P ©?
ZJ A A A , C,(t)=— al J d(u—fd3r Ve (r,o
u( ) \/?Oﬁ 0 C2 [ I( 1 )
where Fa is the position operator, anﬂa is the canonical XGii(ra,r o) Cpi(r,wt)e @ et] (23
momentum operator of theth charged particle of mass,, . J

Hamiltonian(18) consists of four terms. The first term is the 2

energy[Eq. (14)] observed when the particles are absent. Eilr wt)= L fe(ro)
The second term is the kinetic energy of the particles, and i(r.o.t) Jmegh c? a(ro)

the third term is their Coulomb energy, where the potential

SADA can be given by XG;(I’A,I’,(;)) Cu(t)el(wfwA)t_ (24)

~ We now substitute the result of formal integration of E24)
&’A(r):J dr’ PA(r’) ' (19) [C_”(r,w,O):O] into Eq. (23). Making use of the relation-
4areglr—r’| ship

2
w
IMG(r,r',w)= f d°s— €/(3,0)Gy(r,5,0)Giiy(r',5,0),
c

(29

with

PAN =2 4, 8(r—T,) (20
we obtain the integrodifferential equation

being the charge density. The last term is the Coulomb en-
ergy of interaction of the particles with the medium. Note C ()= ftdt’ K(t—t")Cy(t') (26)
that all terms are expressed in terms of the dynamical vari- ! 0 e
ablesf(r,w),f(r,w),r,, andp,.

with the kernel function

B. Dynamics of an excited two-level atom

2
. . , kAMiMj
Let us consider a neutral two-level atofpositionr,, Kt—t')y=———
. . ) . heg
transition frequencyw ) that resonantly interacts with radia-
tion via an electric-dipole transitiofdipole momentw). In o (oo (t-t")
this case, the electric-dipole approximation and the rotating X fo doe A IMG;j(ra,ra, o)

wave approximation apply, and the minimal-coupling Hamil-
tonian (18) simplifies to(Appendix A) (27)
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used, we have seb= w, in the integral in Eq(27). : (34)

Taking the time integral of both sides of E(R6), we
easily derive, on changing the order of integrations on thgypigusly, this result is also obtained if in the integral in Eq.

(ka=wa/c). In the spirit of the rotating-wave approximation
C,(t)=ex

1A i 6
—E +1ow |t

right-hand side, (26), C,(t') is replaced byC,(t) and then the integral is
. approximated by (ws— ). Note that expression82) and
Cu(t):J dt’ K(t—t")Cy(t")+1 (28) (33 for the decay rate and the line shift, respectively, are in
0 full agreement with the results in Refl2].

It is well known that the Markov approximation is an

[C,(0)=1], where excellent approximation for describing the radiative decay of
an excited atom in free space. In order to study the case
_ , k,i,ui,u,j = IMGjj(ra,ra,) where the atom is surrounded by dielectric matter, we as-
K(t—t")= WGOL T o—wy sume that the atom is localized in a more or less small free-
space region, so that the Green tensor at the position of the
X[e (w-wAlt=t) _17], (290  atom reads$36]
The integral equatiof28) is a well-known Volterra integral G(ra,fa,@)=G"(rp,ra,0)+G(ra,ra, ), (35

equation of the second kind. An algorithm for solving such

an integral equation numerically can be found, e.g., in RefwhereGY is the vacuum Green tensor, with
[30]. It is worth noting that the integrodifferential equation
(26) and the equivalent integral equati¢28) apply to the
spontaneous decay of an atom in the presence of an arbitrary
configuration of dispersing and absorbing dielectric bodies.

All the matter parameters that are relevant for the atomi‘fforthe vacuum Green tensor, see, e.g., Ré(&4)), andGR
evolution are contained, via the Green tensor, in kernel funcgegeripes the effects of reflections at tearfaces of discon-
tions (27) and (29). In particular, when absorption is disre- (i ity of the) surrounding medium. The contribution &

garded and the permittivity is regarded as being a reat . L
- P, o K can then be treated in the Markov approximation. Ap-
frequency-independent quantityhich of course can change plication of Eqs.(31)—(33) yields the well-known vacuum

with space, then the formalism yields the results of standard

ImGV(rA,rA,w)=6—jT)CI (36)

mode decomposition, where the methods of Laplace transd-ecay rate
form [3,4] and delay-differential equatidr1,32 have been 3 2
exploited. _ Kan 37)
When the Markov approximation applies, i.e., when in a 0" 3hmey’
coarse-grained description of the atomic motion memory ef-
fects are disregarded, then we may let and a divergent contribution to the vacuum Lamb shift which
_ may be omitted, since thgenormalizeglvacuum Lamb shift
gl(wa=o)t=t') _q may be thought of as being included in the atomic transition
i(wA—_w)Hé’(‘”A_ ) (30 frequencyw,. In this way, Eq.(29) takes the form
in Eq. (29 [¢(x)=m8(x)+iPIx; P denotes the principal Kit—t')— 1A N Kamimj (=  IMGH(ra.fa o)
valug], and thus (t= )__E 0" fmrey Jo i(w—wp)
_ 1 X —i(o—wp)(t—t") _ )
K(t—t') == SA+isw, (31) e 1] (38)
The integral equatioi28) together with the kerngl38) can
where be regarded as the basic equation for studying the influence
of an arbitrary configuration of dispersing and absorbing di-
2k,§,ui,uj electric matter on the spontaneous decay of an excited atom.
A:TlmGij(rAarAywA) (32
0

C. Emission pattern

and The intensity of the light registered by a pointlike photo-

detector at positiom and timet is given by
ow

CKamisg (= IMGy(ra.Ta,®)
= rhe Pfo do—— —on = 9 O =(sO B[ EDM[ev). (39

Substituting into Eq(28) for the kernel function expression To obtain the emission pattern associated with the spontane-
(31), we obtain the familiar result that ous decay of an excited atom in the presence of dispersing
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and absorbing dielectric matter, we combine Ed3, (2), where
(12), and(22). After some algebra we derive, on using Eq. )
(25), Kamj [
Fi(r,ra,wa)= dw ImG;ji(r,ra,w){(wa— ).
mE€ Jo
1(r,)=2
I

2
kAM‘ft dt’[Cu(t’) 40
0

TEQ

2 D. Emitted-light spectrum

Next, let us consider the time-dependent power spectrum
of the emitted light, which for sufficiently small passband
(400  width of the spectral apparatus can be given(bge, e.g.,

Ref. [35])
where we have again set=w, in the frequency integral.

Again, all the relevant dielectric-matter parameters are con- T T ety
tained in the Green tensor. In contrast to E28) together S(r’wS’T):fo dtZJO dty [e sz
with the kernel(38), Eq. (40) requires information about the
Green tensor at different space points. In particular, its de- X(EC)(r,tp) - EC)(r,t)))], 47
pendence on space and frequency essentially determines the
retardation effects. where wg is the setting frequency of the spectral apparatus,
In the simplest case of the atom being in free space wandT is the operating-time interval of the detector. In close
have analogy to the derivation of Eq40), we combine Eqs(1),
(2), (12), and(22) and use relatiori25) to obtain

K2 (T
AMJJ' dt,
0

TEQ

X f dwIm Gij(r;rA,w)e_i(‘”_wA)(t_t')}
0

PP u

p?

8imp

i S("!‘”SyT):Z
X(eiwplc_e—iwp/0)+o(p—2)
(41) Xfo dwIm Gij(r,rA,w)ei(wwA)(tlt’)}

. t
el(wsfw/_\)tlf dt’ Cu(t/)
0

2

(p=r—ra). We substitute expression(84) (with A=A) (48)
and(41) into Eq.(40), calculate the time integral, and extend
in the frequency integral the lower limit te «, which then  Further calculation again requires knowledge of the Green

can be calculated by contour integration, tensor of the problem.
Let us apply Eq(48) to the free-space case. Following the
o _ _ e (Ao2tiopNt_ g-iot line that has led from Eq40) to Eq. (44), we find that
J dw(elwplc_e—lwplc : .
1 S(rle|T)_ 47T€0p
=—-2mexp|| — 5Ay—iwp|(t—plc)|O(t—plc),
2 e[—AO/2+i(wS—w;)](T—p/c)_ 1‘ 2
X O(T-plc).
where (49
Wp=wp— S0 (43)  In particular, for T—o, we recognize the well-known
Lorentzian
[®(x), unit step functioh We thus derive the well-known
(far-field) result that ki sing)? 1
lim S(r,wg,T)= TRV (50
k2 sing Torco Admep | (wg—wp)?+AY4

I(r,t)=

2
2 ) e Mt @(t—plc), (44)
T€op When retardation is ignored and the Markov approxima-
tion applies, then Eq48) can be simplified in a similar way
as Eq.(40). In close analogy to the derivation of E¢5) we

may write

where @ is the angle betweep and u.

Let us return to the general expressidty. (40)]. If re-
tardation is ignored and the Markov approximation applies
then we can replace, for all C,(t") by C,(t) in the time
integral in Eq.(40), and approximate the time integral by S(r,wg, T)=|F(r,ra, wa)|?
{(wpa— ). We obtain

e[—A/2+i(ws—w;\)]T_1’2

wg— wpt+iAl2
L(r,t)=|F(r,ra,ma)|%e A, (45  with F(r,rp,w,) being defined by Eq46).
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2 T T
/ (a) ng

FIG. 1. Scheme of the spherical cavity.

2 ;
lll. APPLICATION TO A SPHERICAL CAVITY (b)n,
A. Model
We apply the formalism developed in Sec. Il to the spon- :
taneous decay of an excited two-level atom placed inside a 1k i
spherical three-layered structuiieig. 1). The outer layer
>R,) and the inner layer (€r<R,) are vacuum, while the
middle layer R,<r=<R;) is a dispersing and absorbing di- i
electric. The Green tensor of the configuration is given in J _
Appendix B. Py S— ) e
We have performed the calculations assuming a Lorentz- 0.9 1 /6 1.1 1.2
type dielectric with a single resonanée the relevant fre- T
quency regiohn FIG. 2. (a) The real parhg(w) and(b) the imaginary pam, (o)
2 of the complex refractive index are shown fep=0.5w and y
w —10-4 id i —10-3 ;
e(w)=1+ e (52) 10 “wt (solid line, y=10 °w; (dashed ling and y

2 2

0w —iw'y. =10"?w; (dotted ling. The longitudinal frequency o,

= \/a)T2+a)2P is w,=1.12w, and hencev, — w1=0.12w7.

Here wp is the plasma frequency, which is proportional to . . . .
the square root of the number density of the Lorentz oscilla?Vith CR’(w) being given by Eqs(B6)-(B19). Note that if
tors, and plays the role of the coupling constant between theode expansion appliesi(w) would correspond to the
medium polarization and the electromagnetic field, ad ~ change of the density of modes due to the presence of the
and vy, respectively, are the position and the width of thecavity.

medium resonance. The plots in Fig. 2 of the real and imagi- When, far from the medium resonance absorption is dis-

nary parts of the index of refraction, regarded and hence tH&equency-independentefractive
index is assumed to be real, then previous results obtained by
N(w)=Je(w) = NR(©) +in (), (53) mode decomposition can be recovered. In particularRfor

—0 we recognize the decay rate obtained in REZ$,29
) ) ) ) _ for microspheres and liquid droplets. However, it should be
illustrate a typical band-gap behavior of the configuration.,sinted out that even far from the medium resonance the
This band gap is an inherent property of Lorentz-type dieleCimaginary part of the refractive index cannot be set equal to
trics rather than produced by a periodic dielectric array as ifyerg in general, since the contribution to the decay rate of the
photonic crystalg3]. nonradiative decay associated with absorption increases
~R, ? for decreasingR, (and nonvanishing imaginary part
B. Weak-coupling regime of the refractive index[12].

In the weak-coupling regime, the excited atomic state de- Let us restrict our attention to a ftrue microcavity
. A (Rywa/c>1). From Fig. 3 it is seen that the rate of sponta-
cays exponentiallyEq. (34)]. For simplicity let us assume . "
that the atom is positioned at the center of the cauvity. Fronj €0US decay sensitively depends on the transition frequency.
Egs. (32), (35), (36), and (B22), the cavity-modified decay Narrow-band enhancement of spontaneous dedayl() al-

rate is then found to be ternates with broadband inhibitiolA&1). The frequencies
. where the maxima of enhancement are observed correspond
A=A(wpa) Ag, (54) to the resonance frequencies of the cavity. Within the band
gap the heights and widths of the frequency intervals in
whereA, is decay rate in free space, EG7), and which spontaneous decay is feasible are essentially deter-

mined by the material losses. Outside the band-gap zone the
— 33 change of the decay rate is less pronounced because of the
Alw)=1+ReC{ (w), (55 relatively large input-output coupling, thesmal) material
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0.9 1 1.1
/o

FIG. 3. The functionA(w) [Eq. (55)] is shown for R,
=30\, d=A1,0p=0.5wr, andy=10 2 wr. The curves in the
inset correspond toy=10"2 w7 (solid line), y=2X10 2wt
(dashed ling and y=5%10"2 w; (dotted ling.

losses being of secondary importance.
WhenRyw/c>1 and exp—n(R,—Ryw/c]<1, then Egs.
(B6)—(B19) drastically simplify, andA(w) [Eg. (55)] reads

n(w)—itanRyw/c)

Ale)=Re T S A Rywlc) |

(56)

The positionsw,, of the maxima ofA(w) can then be ob-

tained from the equatiodK/dw=O. As long amn(w) can be
regarded as being slowly varying

compared with

PHYSICAL REVIEW A 62 053804

Outside the band-gap zone the inequatigen, is typi-
cally valid (see Fig. 2, and thus Eqs(56) and (57) yield

2 2
J— wL_C!)
Alwm)=ng(@0m ="\ —5—3
wWT— W

T m

(60

C

50) =
" RA(wp)

(61)

The heights and widths of the resonance lines are now seen
to be (approximately independent ofy. The lines become
higher and narrower ifv,, becomes close ta .

The widths of the resonance lines are responsible for the
damping of intracavity fields. There are two damping mecha-
nisms: photon leakage to the outside of the cavity and photon
absorption by the cavity-wall material. From the analysis
given above, it is seen that the first mechanism is the domi-
nant one outside the band gap where normal dispersion
(dng/dw>0) is observed, while the latter dominates inside
the band gap where anomalous dispersidng/dw<0) is
observed. To illustrate this in more detail, we have calculated
the amount of radiation energy observed outside the cavity,

o0 27 T
W= ZCEOJ dtf d¢f dop?sindl(r,t) (62
0 0 0

tan(wR,/c), we may neglectin/dw, and thus determine the (p>R;), and compared it with the emitted energy in free

resonance frequencies from the equation

2n (omtan Rywm/¢)=|n(wy)[*~1

—J(In(wm 2= 1)+ 407 (o).
(57)

Note that Eq(57) is exact when it is regarded as conditional

equation ofR, for a desired resonance frequency.
In the band-gap zone we may assume thatng (see
Fig. 2. From Egs.(56) and (57) it then follows that the

maximum valuesA(w,,) and half widths at half maximum,

spaceWy=%w,. Assuming without loss of generality that
the atomic transition dipole iz oriented, and restricting our
attention to the relevant far-field contribution, from EG5)
and (46) together with Eq(B1) and Egs.(B23)—(B25) we
derive (see Appendix €

WA w)l?

-~ (63)
Wo 1+ReC3wp)

Examples of the dependence on the atomic transition fre-
quency of the amount of radiation energy observed outside

dwp, of the cavity resonance lines, i.e., the regions wherepe cavity are plotted in Fig. 4. It is seen that inside the gap
enhanced spontaneous decay can be observed, are given Ryyst of the energy emitted by the atom is absorbed by the

Nf(om)+1  2\(of — o) (0g— o)

Nr(®m) Y®m

Alwp)= , (59

C

= 59
RoA(wm) 59

Wm

cavity wall in the course of time, while outside the gap the
absorption igfor the chosen values af) much less signifi-
cant. Note that with increasing value ¢fthe band gap is
smoothed a little bit, and thus the fraction of light that es-
capes from the cavity can increase.

C. Strong-coupling regime

where we have assumed that the material losses are small, The strength of the atom-field coupling increases when

ie., y<owt,wp, andwéle. Equationg58) and(59) reveal
that in the approximation made the heigltgdths) of the
resonance lined_orentzians are proportionalinversely pro-

the atomic transition frequency, approaches a cavity-
resonance frequency,,. In order to gain insight into the
strong-coupling regime, let us first consider the limiting case

portiona) to y, the highest and narrowest line being in the of one cavity-resonance line being involved in the atom-field

center of the band gap. Note that the prodKQtum) Swm
does not depend o.

interaction. Indeed, whea, is close tow,,, then contribu-
tions from the other resonance lines become small. Using
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FIG. 4. The amount of radiation enerdy [Eq. (63)] observed
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FIG. 5. The temporal evolution of the occupation probability

outside the cavity is shown as a function of the atomic transition Cu(t)|* of the upper atomic state is shown f&,=30\, d

frequencyw, for y=10"2 wt (solid line), y=2x10"? w; (dashed
line), and y=5x10"2 w1 (dotted ling. The other parameters are
the same as in Fig. 3.

Egs. (32), (54), and (55), and recalling thaA(w) behaves
like a Lorentzian in the vicinity ofv,,, we may simplify Eq.
(27) to

Ay —
OA(

21

|

- _ %on(wm) 5wmefi(wmfwA)(t7t')ef Soplt—t'|

K(t—t")=— wm)(5wm)zeii(wm7‘”A)(t*t')

e—i(w—wm)(t—t/)
do

(w_wm)2+(5wm)2

(64)

Substituting this expression into E@6), and differentiating

= )\T yWp= 05(,01' yWpA= 1046 44&)1’ y and Ao)\T/(ZC) = 1076; Y
=10"*wr (solid ling, y=5X10*w; (dashed ling and y
=102 w; (dotted lind. For comparison, the exponential decay in
free space is show(dash-dotted ling

=wn, Which is in agreement with Eq34). Equations(66)
and(67), together with Eqs(58) and (59) [or Egs.(60) and
(61)], provide us with an easy rule of thumb for deciding
whether the strong-coupling regime is realized or not.

In order to obtain the exact solution to the problem, we
have also solved the basic integral equati@B) [together
with the kernel function(38)] numerically. Typical examples
of the temporal evolution of the occupation probability of the
upper atomic state are shown in Fig. 5 for the case where the
atomic transition is tuned to the resonance line in the center
of the band gap. The figure reveals that with increasing value
of the intrinsic damping constant of the wall material the
Rabi oscillations become less pronounced, in agreement with
Egs.(59), (59), and(66), and inequality67). From Eqs(58)
and(59) it is seen thatin the approximation made therthe

both sides of the resulting equation with regard to time, weproduct A(w,,) Sw,=c/R, does not vary withy, whereas

arrive at

Cu()+[i(wm— wp) + Swy] Cy(t) +(2/2)2Cy(1) =0,
(65)

where

Q= V2A0A(wm) Swp, (66)

Hence we are left, in the approximation made, with a
e

damped-oscillator equation of motion for the upper-stat
probability amplitude, wheré(w,,) and dw,,, respectively,
are given by Egs(58) and (59) [or Egs. (60) and (61)].
Obviously, whenw,= w,, and

0> dwp, (67)

(i.e., strong coupling then damped Rabi oscillations are ob-

served:
|Cu(D)|?=e%“m' cog(Q1/2). (69)

Note that in the opposite case whepe< dw,,, the solution
of Eq. (65) is |C,(t)|>=e A%, with A from Eq. (54) for wa

dw,, increases linearly withy. According to Eq.(66), ()
«/y and thusQ/dw 11/, i.e., the condition of strong
coupling [Eq. (67)] becomes violated with increasing.
Physically, increasingy means increasing probability ¢if-
reversiblg absorption of the emitted photon by the wall ma-
terial, and therefore reduced probability(oéversible atom-
field energy exchange. It should be mentioned that with
increasingy the (very smal) probability that the photofir-
reversibly leaves the cavity also increases. Note that the
variation of v in Fig. 5 leaves the imaginary part of the
refractive index nearly unchangeat~=1.2, while the(small
real partng slightly increases withy (see Fig. 2

The examples of the temporal evolution of the occupation
probability of the upper atomic state shown in Fig. 6 refer to
the case where the atomic transition is tuned to a resonance
line closest towt below the band gap. According to Egs.
(60), (61), and (66), and condition(67), the resonance fre-
guencies close taw are most favorable for realizing the
strong-coupling regime in the range of normal dispersion,
because of the rising real part of the refractive inpise Fig.
2(a)]. As expected, the strength of the the Rabi oscillations
now varies with the plasma frequeney such that they are
less pronounced for small values®§ . Obviously, decreas-
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the standard concept of orthogonal-mode decomposition
based on the Helmholtz equation with real permittivity. All
relevant information about the bodies such as form and in-
trinsic dispersion and absorption properties are contained in
the Green tensor. It is worth noting that the Green tensor has
been available for a large variety of configurations such as
planarly, spherically, and cylindrically multilayered media
[33].

We have applied the theory to the spontaneous decay of a
two-level atom placed at the center of a three-layered spheri-
cal microcavity, modeling the wall by a Lorentz dielectric.
The formalism has enabled us to study both the range of
normal dispersion and the anomalous-dispersion range
within the band gap in a unified way. Whereas in the range
of normal dispersion the cavity input-output coupling domi-
nates the strength of the atom-field interaction, the dominat-
ing effect within the band gap is the photon absorption by the
wall material.

In the study of the spherical-cavity problem, we have as-
sumed that the atom is placed at the center of the cavity,
which has drastically reduced the mathematical effort, be-
cause only a spherical Bessel function of orderl contrib-
utes to the Green tensor. The price we paid is that the inter-
action of the atom with cavity excitations of large which
correspond to higl® whispering gallery modes and concen-

FIG. 6. The temporal evolution of the occupation probability trate near the §urface by repeat(_ad internal reflections, has not
IC,(t)|? of the upper atomic state is shown fat=Ar,w, been included in thg analysis. Since the complete Grgen ten-
=0.9999w7, and Agh7/(2¢)=10"%, and (8 wp=3wr, R, soris known, there is o_f course no obstacle to performlng the
=30.001 977 and (b) wp=1.5w7, R,=30.001 7% ;. The solid  calculations for an arbitrary position of the atom. In particu-

lines correspond to the exact solution and the dashed lines to tH@r, When the atom is near the surface, then nonradiative
approximate analytical solutiofsolution of Eq.(65)] shifted for-  €nergy transfer from the atom to the absorbing medium can

ward by (a) AgAt=0.009 andb) A,At=0.02. For comparison, the substantially contribute to the process of spontaneous decay.
exponential decay in free space is shof@ash-dotted ling Further investigations are also necessary in order to give a
more detailed analysis of the evolution of the emitted radia-
ing wp Means increasing the input-output coupling, i.e., in-tion, to answer the question of the ratio of photon emission
creasing the probability that the emitted photon leaves thé&0 nonradiative decay, and to extend the theory to multilevel

cavity instead of back-acting upon the atom. atom-field interactions.
Finally, Fig. 6 presents a comparison between the exact
solution, and the approximate analytical solufisnlution of ACKNOWLEDGMENTS

Eq. (65]. To compensate for the short-time inaccuracy of the
analytical solution, it is shifted forward in time somewhat.
The agreement between the exact solution andgh#ted
analytical solution is quite good. Obviously, E@5) pre- .
dictsyan initial decay sqomeV\?hat faster thanythe (fxacﬁ one. Ifchungsgemeinschaft.

fact, the spontaneous decay is accelerated only gradually un-

der the back-action of the radiated field, being multiply re- APPENDIX A: HAMILTONIAN IN DIPOLE AND
flected at the boundarig¢€7,31], and single-resonance cou- ROTATING-WAVE APPROXIMATIONS
pling is established only after a certain interval of time. The
sharper the cavity resonance, the shorter this interval, which
is fully confirmed by the figure.

We thank Stefan Scheel for helpful discussions. H.T.D. is
grateful to the Alexander von Humboldt Stiftung for finan-
cial support. This work was supported by the Deutsche For-

Hamiltonian(18) can be rewritten as

H=HF+HA+HAF1 (Al)
IV. SUMMARY AND CONCLUSIONS

We have developed a formalism for studying spontaneous |2|F: f d3rf doho fT(r,w)-f(r,w), (A2)
decay of an excited atom in the presence of arbitrary dispers- 0

ing and absorbing dielectric bodies. The formalism is based

on a source-quantity representation of the electromagnetic ~p
field in terms of the Green tensor of the classical problem HAZZ Pa
and appropriately chosen bosonic quantum fields. It replaces @ 2m

+ %f d*rpa(r)@a(r), (A3)
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Aae=—2 %ﬁa'AGaHJ FCroane(r), (A4 paN=2 4u0(r=r)=V-

a

a(r—rA)g Au(Ta—TA)

A =—V-8(r—r) fta. A10
where we have ignored the smalf term. Note that in the ( A n (A10)

Coulomb gaugep,,A]=0. For a neutral atom with the Then we have
nucleus being positioned aj, the atomic dipole operator

reads . A o
| @ hanbtn== [ v Lot idiem
=2 Ao (Ta=Ta)=2 Ul 4, (A5) :f d3r[8(r—rp) pal- Vo(r)
and the first term in the interaction part of the Hamiltonian =—pa-El(rp)

Har takes the form - —[&TE”(*)(rA)~u+ H.cl, (A11)
where integration by parts and Ed.5) have been employed
-> &ﬁa.,&(fa)z - iﬁa[;a HAT-A(rp) for deriving the second and t_he third equation, respgctively,
a Mg a | and the rotating-wave approximation has been used in deriv-
ing the forth equation. Combining Eq$A4), (A9), and

=—%[ﬁA,HA]~A<rA>, (A6)  (ALD) gives

A, = —[gTEM) .
where the dipole approximation has been employed to re- Hap=—[o'E 7 (ra)- ptHC]. (A12)

place A(r,)—A(rn) andp,=(m,/(i%))[r,,Hal has been Equations (A1), (A2), and (A12), and a subtraction of

used. _ (7112)(wy+ o)1 from Hy, [Eq. (A7)] lead to Hamiltonian
Now we restrict ourselves to a two-state model of an at0W21)_

with upper statéu) and lower statdl ). These are eigenstates

of the unperturbed part of the I_—|ami|toniam with the e_i- APPENDIX B: GREEN TENSOR OF THE SPHERICAL
genvaluesiw, andf w,, respectively. Then one can write CAVITY

. Following Refs.[36], we write the Green tensor of the
Ha=h oy u)(ul+Aaw|l)I], (A7)  cavity in Fig. 1 in the form

; G(r,r',w)=GV(r,r'",w) 8+ G 9(rr',w), (Bl
o+ 4=, (ne) rem S e T e, B
where GV(r,r’,w) represents the contribution of the direct

In this atomic state space, the dipole operaigr has the wayes_from the r_adiation sources in an unbounded medium,
. - - B N which is vacuum in our caséands denote the layers where

ma”'i‘ eIements'(u|;uA|I>=<I|;uA|u)=,L and (ulpalu) the field point and source point locat&, is the usual Kro-

=(I| pall)=0. Using these and EqL6) and(A6)—~(A8), we  necker symbol, and the scattering Green te@&&9 (r,r’, w)

arrive at describes the contribution of the multiple reflectioi=(s)

and transmissionf(#s) waves. In particularG*3)(r,r’, )

q andG®3(r,r’, w) read agd36]

—2 P AR =(0-a)

a

ik S
GB(r 1" @)= —
( w) 41 o n§=:l m§=:0
2n+1 (n—m)! ol s
=—[o"E* () (rp)-pm+Hc], (A9 X\ anT D) (nrmyt (2 dom)

(1) ,
XLAW(@)Me (1k)M (T ka)

©  Wpa
X J dw—AEL(rA,w)—H.C. 7
0 O

whereo=|1)u|,o"=|u){l|,0r=w,— »,, ando=w, is set
in the integral, because of the rotating-wave approximation.
. 2 (1) ,
In order to deal with the second termlity -, we expand +Ah3(w)Ngnm(r,k1)N§nm(r S

pa(r), [EQ. (20)], in a multipolar form, and retain only the
first nonvanishing term (B2

053804-10
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iks S K aH(reayrH = KeHeH (r11)
3 3 REp=——— L (B10)

GE(r 1" w)=1— ,
Ki+1deeH (14 1y = KedeeH (11 1)1

477'eon

2n+1 (n—m)!

— K¢y qd Ji—KeJesd/
X nn+1) (n+m)!(2 Som) RY.— f+1J(f+ )i Kedird(r+1)f ' (B11)
Ki+1dgr+yrH = Ked(r4 1yeH e
X[C (w)M nm(r k3)Menm( ", k3)
v Kee1( I nyH = I yH 1)
33 e k.)Ne "k Pf— , (B12)
TCON(@)NEm(r Ka)NE (1" k3) I, Kes13teH (s 16— KedfH (1)t
(B3)

K 1(Jls s 1 H -J Hie o)
T¥f= fradr+ 0+ 1)f — J(F+ 1)t (f+1)f, (B13)

Ky 1d(r+1)tH = Ked(r+1)iH s

where

w w ! ’
kl:kgzg’ k,= 6<w)?' Tgf:kf+1(J(f+1)fH(f+l)f_J(f+1)fH(f+1)f), (B14)

kf+13§fH(f+1)f—kaffH('fH)f

andM andN represent TE and TM waves, respectively,

N _ Kiy1(Igr+nyfH (1)1~ J(f+1)fH(f+1)f)

. (B15)
M (1K) = % = (kr) PR(coS0) i;l)<m¢>e(, T ke Hi k(g M
with
_ dP;'(cosf) [ co
‘Jn““)T(si:)(m@% (B4 3i=in(kiR), (B16)
n(n+1) cos Hi=h{M(kiR)), (B17)
Ngnm(r:k): Tjn(kr)an(COS‘g)( sin) (m¢)er )

5L dlpin(p)] B18)

1 d[rj,(kr)][dP™(cosh) (¢ p  dp e

kr dr 46 (sms)(m‘b)e" P

. 1.d[ph{P(p)]

f=—— B19
_um(cose) C(I)S)(m¢)e¢ (B5) T dp p=kR, (B19)

with j(x) being the spherical Bessel function of the first Note that AgP and Cf/l:s,_l\! are functions ofn but not of m.
kind, andP™(x) being the associated Legendre function. The¥hen the atom is positioned at the cavity center, we have
superscript (1) in Eq(B2) indicates that in Eqs(B4) and [12]
(B5), the spherical Bessel functign(x) has to be replaced
by the first-type spherical Hankel functidrrﬁ,l)(x).

The coefficientsA ¥y andCy?y in Egs. (B2) and (B3)
are defined by

Mgnm(rvk)|krao_>(kr)nr (B20)
NE (1K) [ o— (kP (B2Y)

In this case, only TM waves with=1 contribute, and Eq.

T T T . o
AB (@)= ’ (B6) (B3) simplifies to
NG TMiN+TFiNR.“:”iNR¥2’N
R— (33) 33
Al3 RM’N RMYN G G w)|r I'~>0 6 C (w)l (822)
Ciin(@)= IDIAIII\I ;2N MN | (B7) -
' Ty [ Tri  Tpy Similarly, Eq.(B2) reduces toii=1)
where i cosd
G o)l o=~ ——h{(ksr) Aj(w), (B23)
Kee Hpo1yeH = KeHiH
M ¢+~ KeH g H (4 1)f
pr= - p , (B8) dlrh{P(kqr
kf+1JffH(f+1)f_kaffH(f+1)f G(glza)(l',l",w)h,ﬁo: |j|n0 [ d( 3 )] ( )
ar r
/ / B24
w o Keead(renyrder —Kedgpd(raays (B9) (B24)
Ff— ’ ! !
Kesad o aytH e —Ked oo yeH s GYIr,r" )] 0=0. (B25)
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APPENDIX C: DERIVATION OF EQ. (63)

For an atom at the cavity center amsbriented dipole,
from Eqgs.(46) and (B23)—(B25), we derive

Fr(rra,0p)=0(p~?), (Cy
k2w sing
Fo(r'rA,wA):_ﬂ—ep
0.
X f “dao IM[ A (0)e'“"'®] {(wp— )
0
+0(p7?), (C2
F¢(I’,I’A,wA)=0. (C3)

Recalling the relatior/(x)=i/(x+i0), we perform thew
integration in Eq(C2) to obtain

PHYSICAL REVIEW A 62 053804

F dw IM[A X ©)e'“"*] {(wp— )
0

1

_L“

2

{AB(w)el“rle—c.c}

de w—(wa+i0)

—im A (wp) e A", (C4
where we have (approximately replaced Ai(w) by
A¥(w,), extended the lower limit of the integral te o,

and applied contour-integration techniques. Combining Egs.
(45), (46), (62), and (C1)—(C4), it is not difficult to prove
that

| A (wp)]?

We=hoy— A
A1+ ReC3¥ w,)

(CH

Taking into account that the free-space vallg=rw, is
obtained by settingd =1 andC33=0, Eq.(C5) just yields
Eq. (63.
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