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The influence of the anisotropy of the effective dielectric constant, effective electro-optic effect, drift mo-
bility, and photoexcitation cross section on the photorefractive two-wave mixing gain and speed are analyzed
in detail. Theoretical expressions that include all these influences and that are valid for the single-level band
model are reported. They can give the necessary guidance for optimizing the interaction geometries and the
extrinsic crystal properties for systems based on two- and four-wave mixing or self-pumped phase conjugation.
Concrete examples are given for KNp@nd BaTiO;, where all possible two-beams interaction geometries are
analyzed in the plane of maximum photorefractive nonlineatity éndac plane, respectively It is shown
that, besides the dielectric constant and the electro-optic effect, also the anisotropy of the photoexcitation with
respect to wave polarization plays a major role and strongly influences the optimum geometry, allowing
potentially very large enhancement of the exponential gain. Corrections to the standard expressions for pho-
torefractive two-wave mixing amplification in the depleted pump regime are also given. They apply in the case
of asymmetric incidence and/or under the presence of anisotropic photoexcitation.

PACS numbeps): 42.40.Pa, 42.70.Nq, 42.70.Mp

[. INTRODUCTION can be used for any nonoptically active photorefractive crys-
tal. Detailed practical examples are given for the two impor-
The photorefractive effedtl,2] can be viewed as a com- tant crystals KNb@ and BaTiQ, whose properties are fully

bination of three physical processes: charge photoexcitatiofgharacterized. Earlier works concerned with geometry opti-

charge transport, and the electro-optic effect. Upon inhomoMization of these two crystals did not take into account all
ossible sources of material anisotropiés-8] and none of

eneous illumination of a photorefractive material the former ; S .
9 . rap . them considered the effect of the photoexcitation anisotropy.
two processes give rise to an inhomogeneous bulk char

distributi hich is th lated | dulati fth addition, several of the relevant material parameters nec-
Istribution, which is then translated Into @ modulation of theggqary to characterize the amount of piezoelectric coupling

refractive index by the latter effect. The physical and opticalang the charge transport anisotropy have been experimen-
material properties of inorganic and organic materials in+ally determined with high precision in the last few years
volved in the above processes are often strongly anisotropi¢9—13]. In KNbO; and BaTiQ the optimum configurations
Three important kinds of anisotropy can be identified. Firstfor two-wave mixing are with the interacting beams in the
the magnitude of the electro-optic effect and of the low-crystallographidoc plane andac plane, respectively. There-
frequency dielectric constant depend on the direction of théore we limit our discussions to all possible interaction ge-
internal space-charge field and, specially in inorganic crysometries in these planes. It is shown that for a given trap

tals, is strongly affected by mechanical coupling within theGoncentration, the geometry giving maximum gain is a func-
tion of the anisotropy of the photoexcitation constant. This

material. Second, charge transport, i.e., carrier mobilities . o, .
9 b property can be used, for example, for identifying geometries

can d|ffer. S|gn|f|cantly for @fferent drift dlre_ct|ons.. F'”"?‘”V’ with large gain but small linear scattering from the pump to
photoexcitation cross sections can be anisotropic with ehe signal beam

spect to wave polarization. All these anisotropic material  The paper is constructed as follows. In Sec. Il we treat the
properties influence either the magnitude of the charggiependence of the effective static dielectric constant and ef-
modulation being created or the speed of its formation, or th@ective scalar electro-optic coefficient on the interaction ge-
coupling of the charge modulation to the optical propertiesometries. The angular dependence of the drift mobility is
or a combination of these effects. discussed in Sec. Ill, while the anisotropy of the photoexci-
Many of the most common applications of photorefractivetation and its important influence on the charge modulation is
materials, such as phase conjugatii8], dynamic holo- analyzed in Sec. IV. Section V discusses the combined ef-
graphic interferometry4], or laser beam combininid] rely ~ fects of all these anisotropies on photorefractive two-wave
directly or indirectly on a two-wave mixing process. Optimi- Mixing. The undepleted and depleted pump regimes are both
zation of the performance for a given material usually re-8nalyzed in detail. Finally Sec. VI discusses the effect
quires finding an optimum beam interaction geometry,brought about by the anisotropies on the photorefractive re-
which, obviously, also depends on the intrinsic or extrinsicSPONse time and two-wave mixing sensitivity.
anisotropic parameters of the material. IIl. STATIC DIELECTRIC CONSTANT AND
In this work we discuss in detail the effects on the photo- ELECTRO-OPTIC EEFECT
refractive performance, i.e., on the photorefractive two-wave
mixing gain, response time, and sensitivity, that are brought It is well known that the static dielectric tensor and the
about by material anisotropies. The expressions given belowlectro-optic tensor are of anisotropic nature for most of the

1050-2947/2000/68)/05380312)/$15.00 62 053803-1 ©2000 The American Physical Society



GERMANO MONTEMEZZANI PHYSICAL REVIEW A 62 053803

point groups, to whom the major photorefractive crystals be- AC
long. This anisotropy is obvious and, to our knowledge, it is kS
taken into account in all works aimed at optimizing photore- K

Up

fractive geometries. However, as pointed out by several re-

searcher$14-17, the magnitude of the effective dielectric

constant and electro-optic coefficient being active in a par-

ticular experiment does not depend only on this primary ten- kp

sor properties. The mechanical state of the crystal also plays

a major role. It could be shown that, in general, an electro-

optic crystal containing a sinusoidal electric-field grating

modulation is neither in a mechanically free, nor in a me- » gorb

chanically totally clamped state. In fact, some of the possible

local mechanical relaxation in response to the periodic elec- FIG. 1. Angle convention used in this work. All angles are in

tric field are allowed, while others are clamped. As a consethe ac (BaTiO;) or bc crystal plane (KNb@) and are internal to

guence the magnitude of the dielectric response results froihe crystal.

a combination of several contributions involving the piezo-

electric effect and the material elasticity. To calculate theelectric field, this tensor contains also the roto-optic contri-

electro-optic response also the elasto-optic properties shoulitions[18]. In a given experimental configuration one is

be added to the picture. rather interested in a scalar effective electro-optic coefficient
Following Ref.[16] the effective scalar dielectric constant refs. This quantity is proportional to the refractive index

getf that relates the amplitude, of the sinusoidally modu- modulationAn seen by the two interacting waves and is

lated space-charge density to the amplituglg., of the  defined as

modulated space-charge electric field is calculated as

reff—d|S ﬁffdp (6)
Po

o il
goKEsco b

1
Eeff= + _eijkAkllBI} () ~ o~ _ o —

€o whered® (dS) are the unit vectors pointing in the direction
of the electric displacemeffpolarization) for the interacting
pump(P) and signalS) wave, respectively. The relationship
betweerr .¢; and two-wave mixing gain coefficiet will be
given below, while the relationship with the diffraction effi-
ciency for Bragg-diffraction experiments can be found in
Ref.[19].

As it appears evident from Eq¢l), (2), (3), and (5), a
large number of material constants must be known in order
to calculate the active value @f.¢; andr.¢;. For the mate-
rials KNbO; and BaTiQ the whole set of dielectric, elastic,
electro-optic, piezoelectric, and elasto-optic constant has

where summation over equal indexes is assumedAgtds
the inverse matrix of

AIKECIEmanmKna (2)

the vectorB, is defined as

Bi= eplquKq’ (€©))

and the other quantities aka the Cartesian compone’nof

the unit vector parallel to the grating vecté; sﬁ', the

clamped static dielectric tensog, the permittivity of
vacuum;e;j , the piezoelectric stress tensor; aDf,, . the

been determinefd,10]. Throughout this paper the expected
performance characteristics of these two materials will be
described for all possible two-wave interaction angles in the
optimum incidence planéhe bc plane for KNbQ, the ac

elastic stiffness tensor at constant electric field. For a knowmplane for BaTiQ). Figure 1 shows the convention taken for
grating directionk the change in the refractive index ellip- the angles of interaction. The angleg and ap are internal
soid may be expressed in terms of an effective second-rarto the crystal and represent the angles between the wave

electro-optic tensor{'" [9] and of the scalar amplitudg.
as

1
A(F) =rfEs, @
ij

wherer " is calculated a$16]

I’eff_rlijk—i_ p|]kIKAkmBma (5)

vector k of the signal and pump waves and the crystallo-
graphica axis (BaTiQ) or b axis (KNbG;). Since the larg-
est electro-optic coefficients are accessed onlyfoolariza-
tion of the waves, we consider here only this situation. The
case ofs polarization is much less interesting and gives sig-
nificantly smaller gains in our two crystals.

Figure 2 shows a contour plot giving the effective scalar
electro-optic coefficient .¢; for the bc-plane interaction in
KNbO; as calculated from Eq<2), (3), (5), and (6). The
values are calculated for the wavelengtk-515 nm using
the material data given ir20]. The thick lines connect points
for which the effective electro-optic coefficient vanishes

with rl]k being the clampedthird-rank electro-optic tensor \yhile the positions of the peak values are indicated by tri-
and p”kI being the modified elasto-optic tensor at constantangles. Solid contour lines connect points with a positive
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FIG. 2. Contour plot of the scalar effective electro-optic coeffi-  FIG. 3. Contour plot of the scalar effective electro-optic coeffi-
cientrq¢¢ [Eq. (6)] for each possible two-wave interaction geometry cientr . [Eq. (6)] for each possible two-wave interaction geometry
(ap,as) inthebc plane of KNbQ. Shadowed regions correspond (ap,aq) in the ac plane of BaTiQ. Reduced representation con-
to internal angles which are not accessible from air with a conventaining all nonredundant informatiofsee text The contour line
tional crystal cut along the three crystallographic axes. The contoudlistance is 100 pm/V. For the meaning of shadows and special
line distance is 50 pm/V, dashed lines represent negative valuesymbols see Fig. 2.
and the thick solid line connects points with{;=0. Triangles
denote the position of local or global maxima or minima

(italic values. metry operation and does not hold for all quantities that will

be discussed in this work.

value of the represented quantity, while dashed contour Iineg By making use of the symmetries discussed above all re-

indicate negative values. The shadowed areas indicate ang gndant |r}f(|):r_mat2|on cag be (;ehmga;ed afnd the ?'Ze :f the
lar regions which, as a result of Snellius law, cannot be di2!2gram of Fig. 2 can be reduced by a factor of 4. As an

rectly accessed from air in a crystal with the surfaces cuf*@mMPle, Fig. 3 shows the reduced contour plot diagram for

perpendicular to the crystallographiandc axes. However, 'eff: this time for theac plane of BaTiQ. A scalar electro-
these regions may be accessed for other crystal cuts or tgpt'c coefficient of the order of 800 pm/V can be accessed
using external wedges. For instance, by cutting a crystafVen for conventional crystal cuts. In Fig. 3 the angigs
sample under 45° with respect to the crystallographic axe@"d s have been chosen to vary in the intervies,180°
the whole shadowed area is accessible. Note that the magiind [ —90%,90%, respectively. This choice will be main-
tude of ros; and the contour lines shape differ significantly tained for the rest of this work. In this representation all
from the expected values in the case where the mechanicePnventional geometries for which the grating vecdtoris
coupling effects included in Eq&2), (3), (5), and(6) would  parallel to thec axis are found along the diagonal connecting
have been neglected. the points (90°;-90°) and (0°,0°). All geometries with the
From Fig. 2 it appears evident that a few symmetry op-two beams exactly counterpropagating are found along the
erations apply to such a diagram. First of all the diagram igliagonal connecting the points (96°90°) and (180°,0°),
invariant upon point symmetry on each of the four pointswith the grating vector turning from theto thea (or b) axis
(ap,as)=(—90°,—90°), (90°~—90°), (—90°,90°), or While proceeding along the line. Along the diagonal connect-
(90°,90°). Executing these point symmetry operations coring the points (180°,0°) and (90°,90°) the grating vector
responds in the laboratory frame to a rotation of the crystapoints along thea(b) axis and no electro-optic coupling ex-
by 180° around the crystallographicaxis (exchange ob  ists. Finally, along the last side diagon{0°,0°) to
with —b), which leaves the effects unchanged. The othe{90°,90°)] the grating vector always vanishes and so does
symmetry operation is an inversion of all values upon pointthe effective scalar electro-optic coefficient.
symmetry on the central points ,as) = (0°,0°). This sym- As seen in Eq(1) the effective dielectric constant de-
metry operation corresponds to a rotation of the crystal byends only on the direction of the grating veckorand not
180° around thd axis (a axis for BaTiQ), i.e., to a switch  on the individual polarization vectors of the two interacting
of the direction of the polat axis which reverses the sign of waves. Therefore, in a diagram such as the one of Fig. 3,
the optical nonlinearity. Note that the inversion with respectbesides for small corrections due to birefringence, the con-
to mirroring at the main diagonal seen in Figiekchange of  tour lines foreq¢; are all essentially parallel to the diagonal
angles between pump and signal waigenot a general sym- going from top left to bottom right. Keeping that in mind we
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. . . FIG. 5. Normalized componeni /u. [EQ. (7)] of the drift
FIG. 4. Effective dielectric constants; [Eq. (1)] measured  mopility which is parallel to the grating vectdt. The curves are
along the main diagondbottom left to top rightof a diagram such ¢, hole-conducting BaTiQ(solid curve, hole-conducting KNb@
as the one of Fig. 3 for BaTip(solid curve and KNbQ, (dotted  (gotted curv and electron-conducting KNeQdashed curve As
curve. The values ofe ¢ remain essentially constant by moving Fig. 4, the values are for a cut along the main diagonal of a
away fr_om the main diagonal in normal directi¢ne., seri(ap  contour profile diagram such as the one of Fig. 3. It holds that
ig,as+_ﬁ):s?ff(ap ,ag)]. The top axis shows the grating angle el ap® Brag® B) =y | oy ).
defined in the inset.
The ratiosu, ,/u. of the carrier mobilities active in a
choose to plot the values ef.;; in a conventional diagram photorefractive experiment are best determined using holo-
while we move solely along the main diagori@om left  graphic techniques as performed in Refd1-13 for
bottom to top-righk in Fig. 3. This is shown in Fig. 4 for BaTiO; and KNbG,. Using the most recent data for hole-
both crystals under consideration. An extremely strong deeonducting BaTiQ and electron- and hole-conducting
pendence of the dielectric constant on the interaction geomkNbOs reported in[13], the ratiow / u is plotted in Fig. 5
etry is evident. For completeness the top axes in Fig. 4 givén the same kind of representation employed for Fig. 4. In
also the angular directiof of the corresponding grating vec- both crystals the mobility is largest for a drift direction per-
tor K for the two crystals. These axes are slightly nonlineapendicular to the polar axis. In BaTi@he maximum mobil-
with respect to the bottom one as a result of the materiaity ratio reaches a factor of 20. Note that while the absolute

birefringence. values of the effectively observed mobility may be influ-
enced by trapping effects and the observation time scale, the
Il. CARRIER DRIFT MOBILITY ratio between the mobility in different directions is not.
In general, in anisotropic materials the carrier drift veloc- IV. PHOTOEXCITATION CONSTANT

ity vector v is not necessarily parallel to the electric figkd

o - In doped photorefractive crystals photoexcitation is in
dnwng the .charge.s. anﬁd trle EWO quantities arg related .by %eneral an extrinsic property of the material. It is not uncom-
tensorial drift mobilityv=/z-E. In photorefractive experi- mon that the probability for a carrier to be photoexcited to

ments performed in ideal infinitely large crystals any charggpe conduction or valence band depends on the polarization
movement in a direction perpendicular to the grating vectolys the incident photons. If such a dependence exists, the

K does not lead to charge separation because the light energgmplex amplitudeE,. o of the modulated photoinduced in-
is homogeneo_us along such directions. Therefor_e one is in[érnal electric fieloC:SC(F)=I2ESCoeXpQKF) is strongly influ-
terested only in the c9mponent of theAdnft velocity IC)ara”e'enced and differs significantly from what would be expected
to the modulated field, i.e., parallel toK. The scala(par-  on the base of the light intensity distributig@1]. This is
allel) effective drift mobility  can then be easily calculated pecause it is the modulatian of the photoexcited free car-

as riers and not the light intensity modulation that drives the
formation of the space-charge field. For two interacting
MH:’K\.;;’K\:MC co2 o+ X0t g , @) tjez{ms for which the eekfctric fieloj Yectors have the form
Ke es(r,t)EES(r)gsexr[i(kgr—wt)—aS§~r] (signal wave and
where the second equality holds for our specifically considep(r,t)=Ep(r)e” exdi(ke:r —wt)—apl-r] (pump wave, the
ered geometries and the angles defined as in Fig. 4. photoexcited free carriers modulation is expressefl &k
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2E((F)ES(F)[eS & ePle(estap)l'T
m(r)= ®

|Ep(r)|7[e"- k- ePle 2P T+ |Eg(r)|2[ €% &~ e%]e2estT

where{ is a unit vector normal to the entrance surface of thevhereR=nanzgsger e1, andns (np) are the refractive in-
beams in the crystal ands and ap are the amplitude ab- dex seen by the signalpump waves, respectivelygs
sorption constants for the two waves as measured along thise®. d° andgp=e’- d” are projection factors,.; is given
direction [19]. The second-rank tensd describes the an- by Eq.(6), Us (Up) are unit vectors in direction of the Poyn-

isotropy of the photoexcitation process and is related to thfﬁng vectors of the waveS andP, respectivelyko=27/\ is

absorptive part of the dielectric tensor, i.e., to the symmetric ~
P part 0 y the free space wave vector for the wavelengthandEg

imaginary parts” of the complex material dielectric tensor _ E..o/M=Eqq, +iEs, is the complex amplitude of the

g&=¢'+ig". Itis defined as first Fourier component of the internal space-charge field
_ " ) normalized by the modulatiom. Its real partEsc’r corre-
K= bl sponds to the component of the space-charge field being in

where the quantitieg,, describe the light polarization de- Phase with the energy density distributi¢t0), while the

pendence of the quantum efficiency, that is, the probabiliymaginary partEs; is the =/2 out-of-phase component. Fi-
that an absorbed photon of given polarization produces aally, the remaining quantitiSs, Ep, m, {, @p, andagin
photoexcited mobile carrier. Note that in E§) no summing Eg. (12) were defined in Sec. IV.

over equal indices is performed. Note also that the photoex-

cited free-carrier modulatio8) is obtained by evaluating A. Undepleted pump approximation

the modulation of the optical energy density In the undepleted pump approximation the energy

of the pump wave is always much larger than the one
of the signal wave, i.e.,|EP|2[éB-E’éﬁ]exp(—ZaPZof)
yvhic_h is dissipated in a useful way for the process of interes_t>|Es|2[eS. i-e’lexp(—2agl ). In this case equationd?2) de-
i.e., is used to generate movable free carriers. The quanti®ycribing the evolution of the signal-wave amplitude trans-

W(r)=w,Reg 1+mexp(iKr)], (10

W(F) is expressed as forms to
R T kR €5 %€
W(r)=seo[e(r)-&-e*(r)], 11 T Ecfe=—0 " ~ " " [E. . _iE
(r)=5eol &(r) (r] 11 VEsg Og 4nsgséi’?_él\j[ESQ, iEgcr]Es, (13
where g, is the permittivity of vacuum and(r) = es(r) which can be easily solved fdg leading to
+ep(r) is the complex amplitude of the total optical electric . .
field obtained by the coherent superposition of the signal and Eq({-r=d)=Ege2del % (14
pump wave.
As we will see in the next section, an anisotropy of the OrF
photoexcitation process, i.e., an anisotropy of the te@sor U . e
has a dramatic effect on the value of the exponential gain |egl({-r=d)=|eg|eT 2791, (15)
coefficientI" in photorefractive two-wave mixing experi- R
ments. whereEg, andeg, are the corresponding incident amplitudes
at the position-r=0; here it is assumed that the entrance
V. PHOTOREFRACTIVE TWO-WAVE MIXING surface(surface where the wav@starts interacting withP)

contains the coordinates origin. The two-wave mixing expo-

Under the slowly varying amplitude approximation the nential gainl” and the phase coupling factéiin Eq. (14) are
coupled-wave equations describing the interaction betweegjyen py

the signal(S and the pump wavéP) in a photorefractive

two-wave mixing process in anisotropic materials @] -3

_ 2 nsnlz:; e-- ;? eP E 16
> ~ 0 . - P - A\ Cosasgp él\jigél\: reff AR ( )
VES'Us:4n g [_|RmEpESC'Oe(“57“P)§'r], (129

e and
VEp- U o iRM* EE* elap—aglr 2 3 e P
VEP.UP:4n [_IRm ESESC,Oe P ]1 . o nSnP e -k-e -
PP o=- X [} gp D o p reffE'sc,rv (17)
(12b) CoSts™ eP. % e
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where co¥s={-Us is the cosine of the angle between the
Poynting vector and the surface normal. As seen in(E6).
the exponential gain depends on the photoexcitation anisot-

ropy through the factoref. i ePle’ F’) If the tensorik
is sufficiently anisotropic, by choosmg appropriate geom-
etries this factor can become very large with respect to 1,
thus giving an enhancement of the two-wave mixing gain.
The dependence of the gain on the factor accounting for the
photoexcitation anisotropy has been confirmed experimen-
tally using dichroic KNbQ [21].

In order to predict the magnitude bfand é in a particu-

lar geometry the knowledge of the valueskaf,; andEs, is
necessary. In the undepleted pump approximation, the modu-
lation mis always small and the space-charge field amplitude
is linearly proportional tan. Therefore the normalized am-

plitudes Eq.; and Es, do not depend at all om in this
regime. Here we limit our considerations to the predictions
of the simplest and most recognized photorefractive model
that considers a single defect level and a single carrier type
[22]. Under the assumptions of a negligible photogalvanic
effect(which is usually the case in most KNg@nd BaTiQ
sample$ and assuming that no external electric field is ap-

plied, the normalized space-charge field amplittﬁi@)o is
[22]

(18

and thereforeEScr 0 under these assumptions. In E8)

the + sign holds for hole conduction and tke sign holds

for electron charge transport. The real trap-limited field

and diffusion-limited field E, are defined asE,
=(elegeerK|)Ness and Ep=|K|kgT/e, wheree is the el-
ementary chargekg is the Boltzmann constant, is the ab-
solute temperaturd\¢; is the effective density of traps, and
€eff IS given by Eq.(1). Equation(18) predicts the space-
charge field amplitude in most photorefractive materials in a
satisfactory way and will be used here to visualize the geo-
metrical dependence of the gaih Several refined models
that describe better the space-charge formation in specific
situations or in specific crystal samples have been reported in
literature, for a review see for instance REI3]. Note that
effects such as electron-hole competition or multiple defect
levels usually tend to decrease the space-charge field strength
and, given a trap density, E(L8) can be viewed as an upper
bound for the space-charge field amplitude.

In order to visualize the dependence of the exponential
gainI" in KNbO; and BaTiQ on the geometrical arrange-
ment and on the anisotropy of the tengowe use the same
kind of contour plot representation as in Fig. 3. Using Eqgs.
(16) and (18) in Figs. Ga)—6(c) we plot the KNbQ gain

PHYSICAL REVIEW A 62 053803

Kzz/ K33 = 1

; T[1/cm];

0 ' 45 90 135 ' 180
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og[deg]
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|
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90 | 7}7;/ QO7\ \. } .// !

-45 ?

135 180
©) ap [deg]

contour plot diagrams fork,,/k33=1 (isotropic casg FIG. 6. Contour plot of the exponential gdincosé, [Eq. ( 16)]
K22l k33=0.1, andk,p/ k33= 100, respectively. Figured&—  for p-polarized beams in théc plane of KNbQ. (a) Isotropic
7(c) show the same for BaTiQ In each case the effective photoexcitation, «,,/xs3=1; (b) anisotropic photoexcitation
number of traps is chosen to B&=10'" cm 2 and hole  x,,/k55=0.1; (C) Kpp/kas=100. The contour line distance is
conduction is assumed. The gain plotted here is given pex0 cmi!. Effective density of trapfNgs =10 cm 3. For the
unit length along the Poynting vector direction; that is, it meaning of shadows and special symbols see Fig. 2.
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FIG. 7. Contour plot of the exponential galicosd; [Eq. (16)]
for p-polarized beams in thac plane of BaTiQ. (a) Isotropic
photoexcitation 11/ k33= K2,/ k33= 1; (b) anisotropic photoexcita-
tion kq1/k33=0.1; (c) k11/Kk33=100. The contour line distance is
20 cm L. Effective density of trapese=10" cm™3.
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FIG. 8. Maximum exponential gaiiicos); as a function of the
photoexcitation anisotropy parametes,/k33. Each point was de-
termined by finding the peak value over all possible two-wave mix-
ing interaction geometries.

corresponds td’ cosé; [see Eq.(16)]. In this way, the rep-
resentation becomes independent from a specific crystal cut.
From Figs. 6 and 7 it becomes evident that the gain land-
scape is dramatically modified by the anisotropy of the pho-
toexcitation constant. The position of the maximum gain in
the diagram moves by changing the parametes/«s3;
some of the mountains grow, while others decrease in height.
For ky5/ k333>1 the optimum condition is found for a pump
beam propagating under an angig close to 0°, that is
nearly perpendicular to the axis. In contrast, fork,,/ k33

<1 the optimum is for a pump beam nearly paralletto

It is worth noticing that by assuming an initial light scat-
tering distribution, the representations of Figs. 6 and 7 can be
used to qualitatively predict the structure of light fanning as
well as optimum configurations for various phase conjuga-
tion schemes. For a rigorous treatment, however, the knowl-
edge of the two-wave mixing gain alone is not sufficient
because grating competition effects have to be taken into
account. A detailed discussion of each individual experimen-
tal scheme spreads the aim of this paper. We would also like
to mention that the above contour diagrams can be easily
extended to interaction planes other than ltleeor ac plane,
repectively. As an example, the experimentally observed
enigmatic fanning distribution observed in BaEi® found
to be a direct consequence of the piezoelectric-photoelastic
coupling and its anisotropj24].

It is also interesting to look at the evolution of the maxi-
mum possible gain in any geometry as a function of the
anisotropy parametet,,/ k33. This is depicted in Fig. 8 for
both crystals and two different values for the trap density. It
is evident that the isotropic case represents a kind of worst-
case situation, the maximum gain can be enhanced dramati-
cally both by decreasing or increasing the ratig/ k33 away
from 1. Note that each point in Fig. 8 corresponds to a dif-
ferent position of the maximum in the landscape diagram. It
is also worth noting that, despite the fact that Bafi@as a
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6[deg] homogeneous in a direction perpendicular to the correspond-
T 427 225 0 225 45 675 90 1125 1373 ing surface normal. It should also be remarked that for a
E 7 ' . ' ' ' ' ] general geometry the absorption constaniseind «,, for the
T B0F ] two waves normally differ from each othéhis statement is
& aof I’ \\ ] true even in fu!ly isotropic ma.teria_ls as long as the interac-
§ E \ PN tion geometry is not symmetric with respect to the surface
= 20 '3' \___\ e ‘\5 norma); therefore also in this case the coupled wave equa-
£ o SS RPAd \ tions may be integrated numerically.
8 ; - 3 For simplicity we consider here explicitly only cases
< 0p e, ] where the two waves enter the crystal from a common sur-
"qE: -a0b g face or from opposite parallel surfaces. We define te
S . p i ] direction as being parallel to the direction of the normal to
g %% KNbO; 7 the incidence surface for tt@wave[{=Z.=(0,0,1)]. Fur-
tu -800' — e 1'80 thermore, we assume that the absorption is moderatd (

~0, apd~0 with d being the interaction lengthso that we
can neglect the absorption terms in the coupled wave equa-
tions (12).

0p = 0 + 90 [deg]

FIG. 9. Exponential gaii’cosds in KNbO; for geometries for
which kL k,. Dotted curves are fok,,/ks5=0.1, solid curves are
for kpy/k33=1 (isotropic casg and dashed curves are for
Kool k33=10. Nggr= 107 cm™3, Transmission gratings are characterized by the condition

€0sf5c0shp>0; both beams enter the crystal from a com-
maximum scalar electro-optic coefficient almost three timesnon face. By multiplying Eq(12a by EZ n.gs and Eq.(12b)
larger than KNbQ@ (Figs. 2 and B the maximum gains are by E;npgp and inserting the modulation rat{8) we obtain
not significantly higher in this crystalFig. 8). This is be-

1. Transmission gratings

cause of the much larger dielectric constant of BaTiBig. d ~ IN |~
4) that prevents reaching a very high space-chargeﬁggg 4z lg=T %, (193
in some of the geometries where the anisotropy factor in Eq. z Glstlp
(16) is big.

For applications, one interesting regime is the one where d ~ e
the pump and signal wave propagate perpendicular to each —lp=-T =", (19b)
other because in this regime linear scattering from the pump dz Glg+lp

beam as well as detrimental beam fanning can be minimized.

This situation corresponds to the main diagonal in Figs. §yhere we have assumét o=iE.; andl is the same ex-
and 7. Unfortunately, in the absence of photoexcitation anponential gain constant gi\}en in E@.G). We recall that the
isotropy the gain is very small in such geometries, as seen byght intensities for the waves are given by cEE* ng with
the node line in Figs.®) and 7a) that runs essentially along ¢ beina the speed of liaht. The intensiti%el cosée and
the main diagonal. This node line is given by the condition=."¢""9 P : g. ' S S

5. %.eP=0 and is substantially modified by the anisotropy! PE,I p COSOp appearing in Egs(19) correspond to the pro-
of i [see, e.g., Figs.(B) and Gc)], thus potentially allowing Jectloqs of the Poynting vectors a[ong the surface norénal
us to also obtain large gains in this interesting kind of geom@nd give the energy flow per unit area through a surface
etry. This is shown in Fig. 9 where the gain coefficient in Parallel to the input surface. The consta@htiepends on the

KNbOs; is plotted forksL K, in the same kind of diagram as geometry of interaction and is defined as
in Figs. 4 and 5 fork,,/k33=1, 0.1, and 10. Note that the o~
situation for BaTiQ is fully analogous. G Npgp COSHp(eS- K- e%)

(k) (20)
NsgsCosfg(e™ - k-e

B. Pump depletion sOs S

If the initial intensity ratio between the pump and signal By summing Eqs(199 and(19b) one recognizes that the

wave is too low and the gain-length producd is large  oiq) projected energy flow is conserved, thatg&ﬁsﬁ is

enough the pump wave can be significantly depleted durin ~ ~ ~ o~ T~
the tv?o—wavg mifing interaction. Tﬁis situati¥3n ispmore com—% constant. Therefore we ha@IS/I.SJF[G/(lO_lS)]dlS
plex than the one found in the weak signal regime. In orderzrdz' INntegranorj\gf tﬂs equatum/wnh the boundary con-
to determine the spatial evolution of the signal and pumgitions I5(z=0)=1gy, 1p(z=0)=1py proper of the trans-
waves one has then to rely in most cases on a numericalission grating geometry leads to the solution

integration of the coupled equatiori2). An example is

when the two beams enter the crystal from surfaces which x(2)=x0e"%, (22)

are not parallel to each other, in which case the surface nor-
mal vectors{s#{, and the wavesS and P are no longer where
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(2) ~ s . —
X(2)=—<——=B@lp(2)]""°, (22) ey <
[| P(Z)] N e T
~ ~ ~ ~ P wﬁ‘”‘”‘“"""‘“--..,__’_«
and X():)((Z: 0): (l SO/I po)l pol_GEﬁol pol_G . Therefore | AN 7 T
x is a modified intensity ratio which fd&=1 reduces to the s + Sy T
conventional intensity rati@=15/1p. The evolution of the 3
signal and pump wave intensities can then be expressed as g 101g E
%“ Parameter G :
~ —~ 1485t ~ -—- 041
lS(Z):ISO /I\z 1-G (23) — 1
= T 2 U L N 10
1+ B4 1( :) e !?
I PO 102 . | | -
and 0.0 0.6 0.8 1.0
z[em]
~ ~ 1+ 8o . S .
In(2) =1 _ (24) FIG. 10. Signal wave amplification and pump wave depletion as
P PO ﬁ G-1 a function of the propagation distanzen transmission geometry.
1+Bo| = el? The normalized intensitiebg(z)/(1 s+ 1 po) and 1s(z)/(1gp+1po)
I po are plotted according to Eq3) and(24) for '=20 cni ! and the

three values of the factdd [Eq. (20)] given in the box.
In the absence of photoexcitation anisotropy and for a nearly
symmetric incidence of signal and pump beams the faBtor equationg12) can be brought again exactly in the foft®)
is always very close to 1. In this case E¢83) and (24)  if one allows one of the two projected intensities to take
reduce to the well known conventional expressions derivegegative values. If we choose the signal wave to propagate
for the isotropic case in symmetric configuratig@s]. Note  towards positivez and the pump wave to propagate towards
that for the case of transmis_s!on gratings considerfd here tr{ﬁe negativez axis, thenINS(z)>O and ﬁ(z)<0. Such a
factor G is bound to be positive because the tenBoron-  haqative intensity value reflects the fact that the energy flow
tains only positive elements. We note also that, although fof, "0 pump wave is in a direction which is opposite with
strong anisotropies the factd® may depart significantly espect to the considered surface orientatigactor 2)

frgmrwl’ ilr(11_t2<)e above equatlpns tk_u_e mfluer?ce of the ter herefore the conserved quantity is still the sum of the
(Ip/1po) ™" on the beam intensities is still weaker than (jgneq intensities and the solution of the coupled equations
the one given by the exponential term. However, the Correcryg) js still of the form given by Egs(21) and (22). How-
tions brought about by this term are not negligible. The satUayer, the exponer® [still defined by(20)], is now bound to
ration of the amplified signal beam to its maximum value isyq 4 negative number. For a plate of thicknegse bound-
slower forG>1, and faster foG<1 than for the cas& 5 \alues are now given at=0 for the signal wave, and at
=1. This can be seen in Fig. 10 wheig2z)/(Iso+1po) and  z=L for the pump wave. Using these boundary values in
Ip(2)/(15+ 1 pp) are plotted for different values @& and for ~ Egs. (21) and (22) and reintroducing a positive intensity
a common value of the gain. It is worth noticing that in the |ﬁ(z)| = —’|Np(z) for the pump wave one can easily find the
satgration regicIl the depleted pump wave intensity decreas%§(pressions for the transmitted intensitieN§(z= L) and
aslp(z+Az)=1p(2)exp(-T'AZG), as can be clearly recog- I~(2=0)| that is

nized in Fig. 10. To get an impression of the possible rangé P ’

for the quantityG in a typical transmission geometry we may 14| 2
take first the example of a BaTiCrut along the crystallo- E(L)Z];(O) — 0 (25)
graphic axes and with both interacting beams entering the I5(0) 16l
sample from air through tha face of the crystal. Consider- 1+|Bo| Y= e 't
ing all possible two-beam interaction geometries in such a Ip(L)
configuration we have 0.936G<1.07 for kpy/k33=1,
0.944<G<1.06 for k,,/k33=0.1, and 0.43G<2.30 for and
K99/ k33=10. The ranges for KNbQin the same kind of
geometry are very similar. For crystals cut under 45° to the ~ ~ 1+Bol
crystallographic axesG varies betweenG,;~0.25 and [1p[(0)=]Ip[(L) N (26)
Gmaxm4 for both K22/K33:O.1 andK22/K33: 10. 1+ |BO| ;EL) eFL
P

2. Reflection gratings

In this case the signal and pump wave enter from opposit#hich are in full analogy to Eq$23) and(24). The intensity
surfaces and one has ofg0s#p<0. The coupled wave ratio|B,| is defined here alBy|=15(0)/|Ip|(L) and differs
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FIG. 11. Transmitted sign@INs(L)] and pump intensit{/ﬁ(O)]

for reflection grating two wave mixing as a function of the exponent
G. G=—1 corresponds to a fully symmetric and isotropic geom-

etry. Parameters: gain coefficieht=20 cni!; sample thickness
L=0.2 cm; input intensitie$5(0)=1, I p(L)=100.

from the definition used for transmission gratings. For

samples cut along the dielectric axes, symmetric interaction
geometries, and in the absence of photoexcitation anisotropy,
we haveG=—1. In this case the two above expressions 45

reduce to the well-known conventional relationshj2$].
The correcting factotl p(0)/15(L)|**~I®D brings about a
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| BaTiO3 ; 1/t [arb. units]; «;j/x33 =1 |

o [deg]

| BaT|03 ; 1 [arb. units] ; Ki1/x33 =10 |

215

similar influence on the output intensities as in the case of
transmission gratings discussed above. Figure 11 shows an
example of theG dependence of the signal and pump output
intensities as obtained by solving the above transcendent

equation. For fixed gain coefficiefit an exponenG closer
to O leads again to faster saturation.

VI. RESPONSE TIME AND SENSITIVITY

The photorefractive response time depends on several in-

0 45 90 135 180

trinsic and extrinsic material parameters and on the average op[deg]

photoconductivity of the material. The latter is a function of

the power of the interacting beams and of the teriéate-

FIG. 12. Contour plot of the inverse photorefractive response

scribing the photoexcitation. In the simplest band transporfine 1/ [Eq. (27)] for p-polarized beams in thac plane of
model and in absence of applied electric fields the responsgaTio, (undepleted pump (a) Isotropic photoexcitationky;/ kss

time is expressed 422,1]

_ E0Ceff 1+ KZ/Kg

T— ] (27)
eung 1+K?/K32

where u is the scalar mobility in direction of the grating
vector K (modulusK), Ko=(e2Ng¢i/eoeerkaT)Y? is the
Debye wave vector, and.=(e/kgTu7g)*? is the in-
verse diffusion length withrg being the free-carrier recom-
bination time. The average density of free carriggan be

=1; (b) anisotropic photoexcitatior;,/ x33=10; The contour lines

are at the indicated logarithmic distances. Parameters: effective
density of trapsNq¢ ;=10 cm3, the inverse diffusion length in
the ¢ direction K =10 nm. The values of /are normalized to

the inverse dielectric time 14 for a grating pointing along the
axis[ = Ur(ap=as=0°)].

on the polarization of the light waves and on the photoexci-
tation anisotropy through the free carrier densigy in addi-
tion it depends also on the direction of the grating ve&tor
through the effective dielectric constang;; and the mobility

written as a function of the amplitudes of the two interactingu. For the response time additional dependencies on the

waves[21]. In the case where the pump wave is not depletegyrating directionk are brought about through the quantities
we havengx|Ep|?(ep- K-ep)7r. Therefore the dielectric K, andK,.

time 74i.=(eoces/€1Ng) does depend on the light power,

As an example, in Figs. 18 and 12Zb) we show the
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predicted behavior of the inverse response time for hole con-
ductive BaTiQ. The dielectric and mobility anisotropies are
taken from Refs[10] and[13], respectively, while the effec-
tive number of traps and the diffusion lendfor the charge
movement along thec axis) are chosen asNg¢s
=10 cm 2 andK =10 nm, respectively . We assume to 45-
be in the undepleted pump regime so that the photoconduc-
tivity is induced uniquely by the pump beam. Figuregdds

for kq1/k33=1. The fastest response is predicted for
(ap,ag)=(180°,0°). This is for two reasons. On one hand
the response is faster for counterpropagating than for co-
propagating beam geometries because in hole conducting
BaTiO; the diffusion length is shoifl], and thereforeK,

>K, [see(27)]. On the other hand the position of the pre- 45T = T
dicted maximum of 1# corresponds to a counterpropagating T
geometry with wave vectd parallel to thea axis, which is 1 Q’
favored with respect to other geometrissich as &p, ag) 904 ‘A . _ I
=(90°,—90°) with K|| ¢ axis] because the large increase in 0 45 90 135 180
mobility for charge movement alorggovercomes the disad- (a) ap[deg]

vantage of a larger effective dielectric constant. FiguréojL2
is for xy1/k33=10. In this case the photoconductivity is |BaTiOg ; I [arb. units] ; ;u/%33= 10 |
larger for geometries having the pump wave polarized ap- ’ N VIIIVANN VI//
proximately along the axis (ap~90°) and the maximum is \,
observed for a geometry for which the pump and signal wave )
are propagating nearly perpendicularly. Note that in the two
graphs, the absolute values of the inverse response time 1/
are normalized to the inverse dielectric timedld(K||c) for

a wave vector parallel to theaxis. They are important only

to judge the possible dynamic range of the response time
among all possible interaction geometries. As might have
been expected, the dynamic range increases in the case of
anisotropic photoexcitation.

There are several possible definitions for the photorefrac-
tive sensitivity. Most of them measure the change per unit
time of the refractive index or some related quantity such as
the square root of the diffraction efficiency. For instance, a A&
common definition isS,= 1/ (3An/dt) evaluated at the time 904 N \
t=0 [1], with | being the incident light intensity. In the usual . 0 45 90
isotropic case the sensitivity, reaches its maximum if the (b) ap[deg]
pump and signal wave have equal intensities, because in this
case the refractive index change modulatiomis largest. It
has to be noted that the sensitiviy cannot be significantly (@ K1s/xgr=1: (b) K1yl 10. ParametersNy— 104 cm
improved by an anistropy of the tens& The modulation K*1(1}A<1||c)33= 10 nm Tlrlne \3/2|ues' are normalizlezfto A common in-
depthm[Eg. (8)] cannot exceed the value of 1 and therefore ¢ : S . o _
the limiting physical process is basically the same as the on\[éfri/e d'elfcmf gine ¥eie for a grating pointing along the axis
acting for the isotropic case. Another quantity which is pro-- m(ap=as=07)].
portional to the material sensitivity is given by the rakibr

|BaTi03 ; I/t [arb. units] ; «y1/x33 =1

o [deg]
i

135 180

FIG. 13. Contour plot of the sensitivityl’ cosé/r for

p-polarized beams in thac plane of BaTiQ (undepleted pump
—3

h ial . : h for a grating inc-direction. By comparing Figs. 18 and
between the exponential two-wave mixing gain and the e 3y e effect of the anisotropy of the photoexcitation ten-
sponse timg[27]. It can easily be shown that for crystals g, jg readily visible. It should be noted that the sensitivity

following the simplest band model this measure is equivalent,, 4155 be used to predict initial fanning directions at the
to the sensitivityS,,, provided that the photoexcitation tensor <ot of the illumination.

is isotropic. In contrast, in the anisotropic case significant
deviations can be expected. As an example Fig. 13 shows the
contour plots of the two-wave mixing sensitivity/ 7, again

for hole conducting BaTi@and with the same parameters  We have discussed in detail the effects of the anisotropies
used for Fig. 12. As before, the data in Figs(dand 13b)  of the dielectric constant, electro-optic effect, drift mobility,
are calculated for the undepleted pump regime and are nognd photoexcitation cross section on photorefractive two-
malized to a common dielectric relaxation timgo(K||c) wave mixing. The example of the crystals KNpG@nd

VII. CONCLUSIONS
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BaTiO; in the interaction plane of maximum photorefractive which the interacting beams propagate nearly perpendicu-
nonlinearity has shown clearly that the optimum geometriesarly. Even though we have focused our attention on KibO
for maximum gain, shortest response time, or largest sensand BaTiQ, the expressions reported here apply to every
tivity are strongly dependent on all these anisotropies. Th@onoptically active photorefractive crystal as well. There-
anisotropy of the photoexcitation process, often overlookedore, upon determination of all necessary material param-
in the past, is shown to have a particularly strong influenceeters, the extension of this work to other materials is straight-
It allows us to obtain large gains even for geometries forforward.
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