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Optimization of photorefractive two-wave mixing by accounting for material anisotropies:
KNbO3 and BaTiO3
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Nonlinear Optics Laboratory, Swiss Federal Institute of Technology, ETH Ho¨nggerberg HPF, 8093 Zu¨rich, Switzerland

~Received 11 April 2000; published 11 October 2000!

The influence of the anisotropy of the effective dielectric constant, effective electro-optic effect, drift mo-
bility, and photoexcitation cross section on the photorefractive two-wave mixing gain and speed are analyzed
in detail. Theoretical expressions that include all these influences and that are valid for the single-level band
model are reported. They can give the necessary guidance for optimizing the interaction geometries and the
extrinsic crystal properties for systems based on two- and four-wave mixing or self-pumped phase conjugation.
Concrete examples are given for KNbO3 and BaTiO3, where all possible two-beams interaction geometries are
analyzed in the plane of maximum photorefractive nonlinearity (bc andac plane, respectively!. It is shown
that, besides the dielectric constant and the electro-optic effect, also the anisotropy of the photoexcitation with
respect to wave polarization plays a major role and strongly influences the optimum geometry, allowing
potentially very large enhancement of the exponential gain. Corrections to the standard expressions for pho-
torefractive two-wave mixing amplification in the depleted pump regime are also given. They apply in the case
of asymmetric incidence and/or under the presence of anisotropic photoexcitation.

PACS number~s!: 42.40.Pa, 42.70.Nq, 42.70.Mp
-
tio

o
e

ar
he
ca
in
p

rs
w
th
ys
he
ie
,
re

ria
rg
th
es

ive

i-
re
ry
si

to
v
g
lo

ys-
or-

pti-
all

py.
ec-
ling
en-

rs

he
-
e-
rap
c-

his
ies
to

the
ef-
e-
is

ci-
n is
ef-
ve
oth

ect
re-

he
the
I. INTRODUCTION

The photorefractive effect@1,2# can be viewed as a com
bination of three physical processes: charge photoexcita
charge transport, and the electro-optic effect. Upon inhom
geneous illumination of a photorefractive material the form
two processes give rise to an inhomogeneous bulk ch
distribution, which is then translated into a modulation of t
refractive index by the latter effect. The physical and opti
material properties of inorganic and organic materials
volved in the above processes are often strongly anisotro
Three important kinds of anisotropy can be identified. Fi
the magnitude of the electro-optic effect and of the lo
frequency dielectric constant depend on the direction of
internal space-charge field and, specially in inorganic cr
tals, is strongly affected by mechanical coupling within t
material. Second, charge transport, i.e., carrier mobilit
can differ significantly for different drift directions. Finally
photoexcitation cross sections can be anisotropic with
spect to wave polarization. All these anisotropic mate
properties influence either the magnitude of the cha
modulation being created or the speed of its formation, or
coupling of the charge modulation to the optical properti
or a combination of these effects.

Many of the most common applications of photorefract
materials, such as phase conjugation@3#, dynamic holo-
graphic interferometry@4#, or laser beam combining@5# rely
directly or indirectly on a two-wave mixing process. Optim
zation of the performance for a given material usually
quires finding an optimum beam interaction geomet
which, obviously, also depends on the intrinsic or extrin
anisotropic parameters of the material.

In this work we discuss in detail the effects on the pho
refractive performance, i.e., on the photorefractive two-wa
mixing gain, response time, and sensitivity, that are brou
about by material anisotropies. The expressions given be
1050-2947/2000/62~5!/053803~12!/$15.00 62 0538
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can be used for any nonoptically active photorefractive cr
tal. Detailed practical examples are given for the two imp
tant crystals KNbO3 and BaTiO3, whose properties are fully
characterized. Earlier works concerned with geometry o
mization of these two crystals did not take into account
possible sources of material anisotropies@6–8# and none of
them considered the effect of the photoexcitation anisotro
In addition, several of the relevant material parameters n
essary to characterize the amount of piezoelectric coup
and the charge transport anisotropy have been experim
tally determined with high precision in the last few yea
@9–13#. In KNbO3 and BaTiO3 the optimum configurations
for two-wave mixing are with the interacting beams in t
crystallographicbc plane andac plane, respectively. There
fore we limit our discussions to all possible interaction g
ometries in these planes. It is shown that for a given t
concentration, the geometry giving maximum gain is a fun
tion of the anisotropy of the photoexcitation constant. T
property can be used, for example, for identifying geometr
with large gain but small linear scattering from the pump
the signal beam.

The paper is constructed as follows. In Sec. II we treat
dependence of the effective static dielectric constant and
fective scalar electro-optic coefficient on the interaction g
ometries. The angular dependence of the drift mobility
discussed in Sec. III, while the anisotropy of the photoex
tation and its important influence on the charge modulatio
analyzed in Sec. IV. Section V discusses the combined
fects of all these anisotropies on photorefractive two-wa
mixing. The undepleted and depleted pump regimes are b
analyzed in detail. Finally Sec. VI discusses the eff
brought about by the anisotropies on the photorefractive
sponse time and two-wave mixing sensitivity.

II. STATIC DIELECTRIC CONSTANT AND
ELECTRO-OPTIC EFFECT

It is well known that the static dielectric tensor and t
electro-optic tensor are of anisotropic nature for most of
©2000 The American Physical Society03-1
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GERMANO MONTEMEZZANI PHYSICAL REVIEW A 62 053803
point groups, to whom the major photorefractive crystals
long. This anisotropy is obvious and, to our knowledge, i
taken into account in all works aimed at optimizing photo
fractive geometries. However, as pointed out by several
searchers@14–17#, the magnitude of the effective dielectr
constant and electro-optic coefficient being active in a p
ticular experiment does not depend only on this primary t
sor properties. The mechanical state of the crystal also p
a major role. It could be shown that, in general, an elec
optic crystal containing a sinusoidal electric-field grati
modulation is neither in a mechanically free, nor in a m
chanically totally clamped state. In fact, some of the poss
local mechanical relaxation in response to the periodic e
tric field are allowed, while others are clamped. As a con
quence the magnitude of the dielectric response results f
a combination of several contributions involving the piez
electric effect and the material elasticity. To calculate
electro-optic response also the elasto-optic properties sh
be added to the picture.

Following Ref.@16# the effective scalar dielectric consta
«e f f that relates the amplituder0 of the sinusoidally modu-
lated space-charge density to the amplitudeEsc,0 of the
modulated space-charge electric field is calculated as

«e f f5
r0

«0KEsc,0
5K̂ i K̂ jF« i j

S1
1

«0
ei jkAkl

21Bl G , ~1!

where summation over equal indexes is assumed, andAkl
21 is

the inverse matrix of

Alk[Clmkn
E K̂mK̂n , ~2!

the vectorBl is defined as

Bl[eplqK̂pK̂q , ~3!

and the other quantities areK̂ i , the Cartesian componenti of
the unit vector parallel to the grating vectorKW ; « i j

S , the
clamped static dielectric tensor;«0, the permittivity of
vacuum;ei jk , the piezoelectric stress tensor; andClmkn

E , the
elastic stiffness tensor at constant electric field. For a kno
grating directionK̂ the change in the refractive index ellip
soid may be expressed in terms of an effective second-
electro-optic tensorr i j

e f f @9# and of the scalar amplitudeEsc

as

DS 1

n2D
i j

[r i j
e f fEsc , ~4!

wherer i j
e f f is calculated as@16#

r i j
e f f5r i jk

S Kk̂1pi jkl8E Kl̂Akm
21Bm , ~5!

with r i jk
S being the clamped~third-rank! electro-optic tensor

and pi jkl8E being the modified elasto-optic tensor at const
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electric field, this tensor contains also the roto-optic con
butions @18#. In a given experimental configuration one
rather interested in a scalar effective electro-optic coeffici
r e f f . This quantity is proportional to the refractive inde
modulation Dn seen by the two interacting waves and
defined as

r e f f[di
Ŝr i j

e f fdj
P̂ , ~6!

wheredP̂ (dŜ) are the unit vectors pointing in the directio
of the electric displacement~polarization! for the interacting
pump~P! and signal~S! wave, respectively. The relationshi
betweenr e f f and two-wave mixing gain coefficientG will be
given below, while the relationship with the diffraction effi
ciency for Bragg-diffraction experiments can be found
Ref. @19#.

As it appears evident from Eqs.~1!, ~2!, ~3!, and ~5!, a
large number of material constants must be known in or
to calculate the active value of«e f f and r e f f . For the mate-
rials KNbO3 and BaTiO3 the whole set of dielectric, elastic
electro-optic, piezoelectric, and elasto-optic constant
been determined@9,10#. Throughout this paper the expecte
performance characteristics of these two materials will
described for all possible two-wave interaction angles in
optimum incidence plane~the bc plane for KNbO3, the ac
plane for BaTiO3). Figure 1 shows the convention taken f
the angles of interaction. The anglesaS andaP are internal
to the crystal and represent the angles between the w
vector kW of the signal and pump waves and the crystal
graphica axis (BaTiO3) or b axis (KNbO3). Since the larg-
est electro-optic coefficients are accessed only forp polariza-
tion of the waves, we consider here only this situation. T
case ofs polarization is much less interesting and gives s
nificantly smaller gains in our two crystals.

Figure 2 shows a contour plot giving the effective sca
electro-optic coefficientr e f f for the bc-plane interaction in
KNbO3 as calculated from Eqs.~2!, ~3!, ~5!, and ~6!. The
values are calculated for the wavelengthl5515 nm using
the material data given in@20#. The thick lines connect points
for which the effective electro-optic coefficient vanish
while the positions of the peak values are indicated by
angles. Solid contour lines connect points with a posit

FIG. 1. Angle convention used in this work. All angles are
the ac (BaTiO3) or bc crystal plane (KNbO3) and are internal to
the crystal.
3-2
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OPTIMIZATION OF PHOTOREFRACTIVE TWO-WAVE . . . PHYSICAL REVIEW A 62 053803
value of the represented quantity, while dashed contour l
indicate negative values. The shadowed areas indicate a
lar regions which, as a result of Snellius law, cannot be
rectly accessed from air in a crystal with the surfaces
perpendicular to the crystallographicb andc axes. However,
these regions may be accessed for other crystal cuts o
using external wedges. For instance, by cutting a cry
sample under 45° with respect to the crystallographic a
the whole shadowed area is accessible. Note that the ma
tude of r e f f and the contour lines shape differ significan
from the expected values in the case where the mecha
coupling effects included in Eqs.~2!, ~3!, ~5!, and~6! would
have been neglected.

From Fig. 2 it appears evident that a few symmetry o
erations apply to such a diagram. First of all the diagram
invariant upon point symmetry on each of the four poin
(aP ,aS)5(290°,290°), (90°,290°), (290°,90°), or
(90°,90°). Executing these point symmetry operations c
responds in the laboratory frame to a rotation of the cry
by 180° around the crystallographicc axis ~exchange ofb
with 2b), which leaves the effects unchanged. The ot
symmetry operation is an inversion of all values upon po
symmetry on the central point (aP ,aS)5(0°,0°). This sym-
metry operation corresponds to a rotation of the crystal
180° around theb axis (a axis for BaTiO3), i.e., to a switch
of the direction of the polarc axis which reverses the sign o
the optical nonlinearity. Note that the inversion with resp
to mirroring at the main diagonal seen in Fig. 2~exchange of
angles between pump and signal wave! is not a general sym

FIG. 2. Contour plot of the scalar effective electro-optic coe
cient r e f f @Eq. ~6!# for each possible two-wave interaction geome
(ap ,as) in the bc plane of KNbO3. Shadowed regions correspon
to internal angles which are not accessible from air with a conv
tional crystal cut along the three crystallographic axes. The con
line distance is 50 pm/V, dashed lines represent negative va
and the thick solid line connects points withr e f f50. Triangles
denote the position of local or global maxima or minim
~italic values!.
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metry operation and does not hold for all quantities that w
be discussed in this work.

By making use of the symmetries discussed above all
dundant information can be eliminated and the size of
diagram of Fig. 2 can be reduced by a factor of 4. As
example, Fig. 3 shows the reduced contour plot diagram
r e f f , this time for theac plane of BaTiO3. A scalar electro-
optic coefficient of the order of 800 pm/V can be access
even for conventional crystal cuts. In Fig. 3 the anglesap
andaS have been chosen to vary in the intervals@0°,180°#
and @290°,90°#, respectively. This choice will be main
tained for the rest of this work. In this representation
conventional geometries for which the grating vectorKW is
parallel to thec axis are found along the diagonal connecti
the points (90°,290°) and (0°,0°). All geometries with the
two beams exactly counterpropagating are found along
diagonal connecting the points (90°,290°) and (180°,0°),
with the grating vector turning from thec to thea ~or b) axis
while proceeding along the line. Along the diagonal conne
ing the points (180°,0°) and (90°,90°) the grating vec
points along thea(b) axis and no electro-optic coupling ex
ists. Finally, along the last side diagonal@(0°,0°) to
(90°,90°)] the grating vector always vanishes and so d
the effective scalar electro-optic coefficient.

As seen in Eq.~1! the effective dielectric constant de
pends only on the direction of the grating vectorK̂, and not
on the individual polarization vectors of the two interactin
waves. Therefore, in a diagram such as the one of Fig
besides for small corrections due to birefringence, the c
tour lines for«e f f are all essentially parallel to the diagon
going from top left to bottom right. Keeping that in mind w

-
ur
s,

FIG. 3. Contour plot of the scalar effective electro-optic coe
cient r e f f @Eq. ~6!# for each possible two-wave interaction geome
(ap ,as) in the ac plane of BaTiO3. Reduced representation con
taining all nonredundant information~see text!. The contour line
distance is 100 pm/V. For the meaning of shadows and spe
symbols see Fig. 2.
3-3
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GERMANO MONTEMEZZANI PHYSICAL REVIEW A 62 053803
choose to plot the values of«e f f in a conventional diagram
while we move solely along the main diagonal~from left
bottom to top-right! in Fig. 3. This is shown in Fig. 4 for
both crystals under consideration. An extremely strong
pendence of the dielectric constant on the interaction ge
etry is evident. For completeness the top axes in Fig. 4 g
also the angular directionu of the corresponding grating vec
tor K̂ for the two crystals. These axes are slightly nonline
with respect to the bottom one as a result of the mate
birefringence.

III. CARRIER DRIFT MOBILITY

In general, in anisotropic materials the carrier drift velo
ity vector vW is not necessarily parallel to the electric fieldEW
driving the charges and the two quantities are related b
tensorial drift mobility vW 5mJ•EW . In photorefractive experi-
ments performed in ideal infinitely large crystals any cha
movement in a direction perpendicular to the grating vec
K̂ does not lead to charge separation because the light en
is homogeneous along such directions. Therefore one is
terested only in the component of the drift velocity paral
to the modulated fieldEW , i.e., parallel toK̂. The scalar~par-
allel! effective drift mobilitym uu can then be easily calculate
as

m uu5 K̂ •mJ• K̂ 5mcS cos2 u1
ma,b

mc
sin2 u D , ~7!

where the second equality holds for our specifically cons
ered geometries and the angleu is defined as in Fig. 4.

FIG. 4. Effective dielectric constant«e f f @Eq. ~1!# measured
along the main diagonal~bottom left to top right! of a diagram such
as the one of Fig. 3 for BaTiO3 ~solid curve! and KNbO3 ~dotted
curve!. The values of«e f f remain essentially constant by movin
away from the main diagonal in normal direction@i.e., «e f f(ap

6b,as7b).«e f f(ap ,as)]. The top axis shows the grating angleu
defined in the inset.
05380
-
-

e

r
al

-

a

e
r
rgy
n-
l

-

The ratiosma,b /mc of the carrier mobilities active in a
photorefractive experiment are best determined using h
graphic techniques as performed in Refs.@11–13# for
BaTiO3 and KNbO3. Using the most recent data for hole
conducting BaTiO3 and electron- and hole-conductin
KNbO3 reported in@13#, the ratiom uu /mc is plotted in Fig. 5
in the same kind of representation employed for Fig. 4.
both crystals the mobility is largest for a drift direction pe
pendicular to the polar axis. In BaTiO3 the maximum mobil-
ity ratio reaches a factor of 20. Note that while the absol
values of the effectively observed mobility may be infl
enced by trapping effects and the observation time scale
ratio between the mobility in different directions is not.

IV. PHOTOEXCITATION CONSTANT

In doped photorefractive crystals photoexcitation is
general an extrinsic property of the material. It is not unco
mon that the probability for a carrier to be photoexcited
the conduction or valence band depends on the polariza
of the incident photons. If such a dependence exists,
complex amplitudeEsc,0 of the modulated photoinduced in
ternal electric fieldEW sc(rW)5K̂Esc,0 exp(iKW rW) is strongly influ-
enced and differs significantly from what would be expec
on the base of the light intensity distribution@21#. This is
because it is the modulationm of the photoexcited free car
riers and not the light intensity modulation that drives t
formation of the space-charge field. For two interacti
beams for which the electric field vectors have the fo

eWS(rW,t)[ES(rW)eŜ exp@i(kWS•rW2vt)2aSẑ•rW# ~signal wave! and

eW P(rW,t)[EP(rW)eP̂ exp@i(kWP•rW2vt)2aPẑ•rW# ~pump wave!, the
photoexcited free carriers modulation is expressed as@19#

FIG. 5. Normalized componentm uu /mc @Eq. ~7!# of the drift
mobility which is parallel to the grating vectorK̂. The curves are
for hole-conducting BaTiO3 ~solid curve!, hole-conducting KNbO3
~dotted curve!, and electron-conducting KNbO3 ~dashed curve!. As
in Fig. 4, the values are for a cut along the main diagonal o
contour profile diagram such as the one of Fig. 3. It holds t
m uu /mc(ap6b,as7b).m uu /mc(ap ,as).
3-4



OPTIMIZATION OF PHOTOREFRACTIVE TWO-WAVE . . . PHYSICAL REVIEW A 62 053803
m~rW !5
2ES~rW !EP* ~rW !@eŜ

•kJ•eP̂#e2(aS1aP) ẑ•rW

uEP~rW !u2@eP̂
•kJ•eP̂#e22aPẑ•rW1uES~rW !u2@eŜ

•kJ•eŜ#e22aSẑ•rW
, ~8!
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whereẑ is a unit vector normal to the entrance surface of
beams in the crystal andaS and aP are the amplitude ab
sorption constants for the two waves as measured along
direction @19#. The second-rank tensorkJ describes the an
isotropy of the photoexcitation process and is related to
absorptive part of the dielectric tensor, i.e., to the symme

imaginary part«9J of the complex material dielectric tenso

«J5«8J1 i«9J . It is defined as

kkl[fkl~«9!kl , ~9!

where the quantitiesfkl describe the light polarization de
pendence of the quantum efficiency, that is, the probab
that an absorbed photon of given polarization produce
photoexcited mobile carrier. Note that in Eq.~9! no summing
over equal indices is performed. Note also that the photo
cited free-carrier modulation~8! is obtained by evaluating
the modulation of the optical energy density

w~rW !5w0 Re@11m exp~ iKW rW !#, ~10!

which is dissipated in a useful way for the process of inter
i.e., is used to generate movable free carriers. The qua
w(rW) is expressed as

w~rW !5
1

2
«0@eW~rW !•kJ•eW* ~rW !#, ~11!

where «0 is the permittivity of vacuum andeW (rW)5eWS(rW)
1eW P(rW) is the complex amplitude of the total optical electr
field obtained by the coherent superposition of the signal
pump wave.

As we will see in the next section, an anisotropy of t
photoexcitation process, i.e., an anisotropy of the tensokJ,
has a dramatic effect on the value of the exponential g
coefficient G in photorefractive two-wave mixing exper
ments.

V. PHOTOREFRACTIVE TWO-WAVE MIXING

Under the slowly varying amplitude approximation th
coupled-wave equations describing the interaction betw
the signal~S! and the pump wave~P! in a photorefractive
two-wave mixing process in anisotropic materials are@19#

¹W ES•ûS5
k0

4nSgS
@2 iRmEPẼsc,0e

(aS2aP) ẑ•rW#, ~12a!

¹W EP•ûP5
k0

4nPgP
@2 iRm* ESẼsc,0* e(aP2aS) ẑ•rW#,

~12b!
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whereR[nS
2nP

2gSgPr e f f , andnS (nP) are the refractive in-
dex seen by the signal~pump! waves, respectively,gS

[eŜ
•dŜ andgP[eP̂

•dP̂ are projection factors,r e f f is given
by Eq.~6!, ûS (ûP) are unit vectors in direction of the Poyn
ting vectors of the wavesSandP, respectively,k052p/l is
the free space wave vector for the wavelengthl, and Ẽsc,0

[ Esc,0 /m5Ẽsc,r1 iẼsc,i is the complex amplitude of the
first Fourier component of the internal space-charge fi
normalized by the modulationm. Its real partẼsc,r corre-
sponds to the component of the space-charge field bein
phase with the energy density distribution~10!, while the
imaginary partẼsc,i is thep/2 out-of-phase component. F
nally, the remaining quantitiesES , EP , m, ẑ, aP , andaS in
Eq. ~12! were defined in Sec. IV.

A. Undepleted pump approximation

In the undepleted pump approximation the ener
of the pump wave is always much larger than the o

of the signal wave, i.e.,uEPu2@eP̂
•kJ•eP̂#exp(22aPẑ•rW)

@uESu2@eŜ
•kJ•eŜ#exp(22aSẑ•rW). In this case equations~12! de-

scribing the evolution of the signal-wave amplitude tran
forms to

¹W ES•ûS5
k0R

4nSgS

eŜ
•kJ•eP̂

eP̂
•kJ•eP̂

@Ẽsc,i2 iẼsc,r #ES , ~13!

which can be easily solved forES leading to

ES~ ẑ•rW5d!5ES0e(G/2)deidd, ~14!

or

ueWSu~ ẑ•rW5d!5ueWS0ue(G/22aS)d, ~15!

whereES0 andeWS0 are the corresponding incident amplitud
at the positionẑ•rW50; here it is assumed that the entran
surface~surface where the waveS starts interacting withP)
contains the coordinates origin. The two-wave mixing exp
nential gainG and the phase coupling factord in Eq. ~14! are
given by

G5
2p

l

nSnP
2

cosuS
gP

eŜ
•kJ•eP̂

eP̂
•kJ•eP̂

r e f fẼsc,i , ~16!

and

d52
p

l

nSnP
2

cosuS
gP

eŜ
•kJ•eP̂

eP̂
•kJ•eP̂

r e f fẼsc,r , ~17!
3-5
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GERMANO MONTEMEZZANI PHYSICAL REVIEW A 62 053803
where cosuS5ẑ•ûS is the cosine of the angle between t
Poynting vector and the surface normal. As seen in Eq.~16!
the exponential gain depends on the photoexcitation an

ropy through the factor (eŜ
•kJ•eP̂/eP̂

•kJ•eP̂). If the tensorkJ
is sufficiently anisotropic, by choosing appropriate geo
etries this factor can become very large with respect to
thus giving an enhancement of the two-wave mixing ga
The dependence of the gain on the factor accounting for
photoexcitation anisotropy has been confirmed experim
tally using dichroic KNbO3 @21#.

In order to predict the magnitude ofG andd in a particu-
lar geometry the knowledge of the values ofẼsc,i andẼsc,r is
necessary. In the undepleted pump approximation, the m
lation m is always small and the space-charge field amplitu
is linearly proportional tom. Therefore the normalized am
plitudes Ẽsc,i and Ẽsc,r do not depend at all onm in this
regime. Here we limit our considerations to the predictio
of the simplest and most recognized photorefractive mo
that considers a single defect level and a single carrier t
@22#. Under the assumptions of a negligible photogalva
effect~which is usually the case in most KNbO3 and BaTiO3
samples! and assuming that no external electric field is a
plied, the normalized space-charge field amplitudeẼsc,0 is
@22#

Ẽsc,056 i
EqED

Eq1ED
, ~18!

and thereforeẼsc,r50 under these assumptions. In Eq.~18!
the 1 sign holds for hole conduction and the2 sign holds
for electron charge transport. The real trap-limited fieldEq
and diffusion-limited field ED are defined as Eq

[(e/«0«e f fuKW u)Ne f f and ED[uKW ukBT/e, wheree is the el-
ementary charge,kB is the Boltzmann constant,T is the ab-
solute temperature,Ne f f is the effective density of traps, an
«e f f is given by Eq.~1!. Equation~18! predicts the space
charge field amplitude in most photorefractive materials i
satisfactory way and will be used here to visualize the g
metrical dependence of the gainG. Several refined model
that describe better the space-charge formation in spe
situations or in specific crystal samples have been reporte
literature, for a review see for instance Ref.@23#. Note that
effects such as electron-hole competition or multiple def
levels usually tend to decrease the space-charge field stre
and, given a trap density, Eq.~18! can be viewed as an uppe
bound for the space-charge field amplitude.

In order to visualize the dependence of the exponen
gain G in KNbO3 and BaTiO3 on the geometrical arrange
ment and on the anisotropy of the tensorkJ we use the same
kind of contour plot representation as in Fig. 3. Using E
~16! and ~18! in Figs. 6~a!–6~c! we plot the KNbO3 gain
contour plot diagrams fork22/k3351 ~isotropic case!,
k22/k3350.1, andk22/k335100, respectively. Figures 7~a!–
7~c! show the same for BaTiO3. In each case the effectiv
number of traps is chosen to beNe f f51017 cm23 and hole
conduction is assumed. The gain plotted here is given
unit length along the Poynting vector direction; that is,
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FIG. 6. Contour plot of the exponential gainG cosus @Eq. ~ 16!#
for p-polarized beams in thebc plane of KNbO3. ~a! Isotropic
photoexcitation, k22/k3351; ~b! anisotropic photoexcitation
k22/k3350.1; ~c! k22/k335100. The contour line distance i
20 cm21. Effective density of trapsNe f f51017 cm23. For the
meaning of shadows and special symbols see Fig. 2.
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FIG. 7. Contour plot of the exponential gainGcosus @Eq. ~16!#
for p-polarized beams in theac plane of BaTiO3. ~a! Isotropic
photoexcitation,k11/k33[k22/k3351; ~b! anisotropic photoexcita-
tion k11/k3350.1; ~c! k11/k335100. The contour line distance i
20 cm21. Effective density of trapsNe f f51017 cm23.
05380
corresponds toG cosus @see Eq.~16!#. In this way, the rep-
resentation becomes independent from a specific crystal
From Figs. 6 and 7 it becomes evident that the gain la
scape is dramatically modified by the anisotropy of the p
toexcitation constant. The position of the maximum gain
the diagram moves by changing the parameterk22/k33;
some of the mountains grow, while others decrease in hei
For k22/k33@1 the optimum condition is found for a pum
beam propagating under an angleap close to 0°, that is
nearly perpendicular to thec axis. In contrast, fork22/k33
!1 the optimum is for a pump beam nearly parallel toc.

It is worth noticing that by assuming an initial light sca
tering distribution, the representations of Figs. 6 and 7 can
used to qualitatively predict the structure of light fanning
well as optimum configurations for various phase conju
tion schemes. For a rigorous treatment, however, the kno
edge of the two-wave mixing gain alone is not sufficie
because grating competition effects have to be taken
account. A detailed discussion of each individual experim
tal scheme spreads the aim of this paper. We would also
to mention that the above contour diagrams can be ea
extended to interaction planes other than thebc or ac plane,
repectively. As an example, the experimentally observ
enigmatic fanning distribution observed in BaTiO3 is found
to be a direct consequence of the piezoelectric-photoela
coupling and its anisotropy@24#.

It is also interesting to look at the evolution of the max
mum possible gain in any geometry as a function of
anisotropy parameterk22/k33. This is depicted in Fig. 8 for
both crystals and two different values for the trap density
is evident that the isotropic case represents a kind of wo
case situation, the maximum gain can be enhanced dram
cally both by decreasing or increasing the ratiok22/k33 away
from 1. Note that each point in Fig. 8 corresponds to a d
ferent position of the maximum in the landscape diagram
is also worth noting that, despite the fact that BaTiO3 has a

FIG. 8. Maximum exponential gainGcosus as a function of the
photoexcitation anisotropy parameterk22/k33. Each point was de-
termined by finding the peak value over all possible two-wave m
ing interaction geometries.
3-7
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maximum scalar electro-optic coefficient almost three tim
larger than KNbO3 ~Figs. 2 and 3!, the maximum gains are
not significantly higher in this crystal~Fig. 8!. This is be-
cause of the much larger dielectric constant of BaTiO3 ~Fig.
4! that prevents reaching a very high space-charge fieldẼsc,0
in some of the geometries where the anisotropy factor in
~16! is big.

For applications, one interesting regime is the one wh
the pump and signal wave propagate perpendicular to e
other because in this regime linear scattering from the pu
beam as well as detrimental beam fanning can be minimiz
This situation corresponds to the main diagonal in Figs
and 7. Unfortunately, in the absence of photoexcitation
isotropy the gain is very small in such geometries, as see
the node line in Figs. 6~a! and 7~a! that runs essentially alon
the main diagonal. This node line is given by the conditi

eŜ
•kJ•eP̂50 and is substantially modified by the anisotro

of kJ @see, e.g., Figs. 6~b! and 6~c!#, thus potentially allowing
us to also obtain large gains in this interesting kind of geo
etry. This is shown in Fig. 9 where the gain coefficient
KNbO3 is plotted forkW s'kW p in the same kind of diagram a
in Figs. 4 and 5 fork22/k3351, 0.1, and 10. Note that th
situation for BaTiO3 is fully analogous.

B. Pump depletion

If the initial intensity ratio between the pump and sign
wave is too low and the gain-length productGd is large
enough the pump wave can be significantly depleted du
the two-wave mixing interaction. This situation is more co
plex than the one found in the weak signal regime. In or
to determine the spatial evolution of the signal and pu
waves one has then to rely in most cases on a nume
integration of the coupled equations~12!. An example is
when the two beams enter the crystal from surfaces wh
are not parallel to each other, in which case the surface
mal vectorsẑsÞẑp and the wavesS and P are no longer

FIG. 9. Exponential gainGcosus in KNbO3 for geometries for

which ks
W'kp

W . Dotted curves are fork22/k3350.1, solid curves are
for k22/k3351 ~isotropic case!, and dashed curves are fo
k22/k33510. Ne f f51017 cm23.
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homogeneous in a direction perpendicular to the correspo
ing surface normal. It should also be remarked that fo
general geometry the absorption constantsas andap for the
two waves normally differ from each other~this statement is
true even in fully isotropic materials as long as the inter
tion geometry is not symmetric with respect to the surfa
normal!; therefore also in this case the coupled wave eq
tions may be integrated numerically.

For simplicity we consider here explicitly only case
where the two waves enter the crystal from a common s
face or from opposite parallel surfaces. We define the1z
direction as being parallel to the direction of the normal
the incidence surface for theS wave @ ẑ[ẑs5(0,0,1)#. Fur-
thermore, we assume that the absorption is moderate (asd
'0, apd'0 with d being the interaction length!, so that we
can neglect the absorption terms in the coupled wave eq
tions ~12!.

1. Transmission gratings

Transmission gratings are characterized by the condi
cosuScosuP.0; both beams enter the crystal from a com
mon face. By multiplying Eq.~12a! by Es* nsgs and Eq.~12b!
by Ep* npgp and inserting the modulation ratio~8! we obtain

d

dz
I S̃5G

I S̃ I P̃

GIS̃1I P̃

, ~19a!

d

dz
I P̃52G

I S̃ I P̃

GIS̃1I P̃

, ~19b!

where we have assumedEsc,05 iEsc,i andG is the same ex-
ponential gain constant given in Eq.~16!. We recall that the
light intensities for the waves are given byI 5cEE* ng with

c being the speed of light. The intensitiesI S̃[I S cosuS and

I P̃[I P cosuP appearing in Eqs.~19! correspond to the pro
jections of the Poynting vectors along the surface normaẑ
and give the energy flow per unit area through a surf
parallel to the input surface. The constantG depends on the
geometry of interaction and is defined as

G5
nPgP cosuP~eŜ

•kJ•eŜ!

nSgS cosuS~eP̂
•kJ•eP̂!

. ~20!

By summing Eqs.~19a! and~19b! one recognizes that th

total projected energy flow is conserved, that isI S̃1I P̃[I 0̃ is

a constant. Therefore we havedIS̃ /I S̃1@G/(I 0̃2I S̃)#dIS̃
5Gdz. Integration of this equation with the boundary co

ditions I S̃(z50)5I S0̃ , I P̃(z50)5I P0̃ proper of the trans-
mission grating geometry leads to the solution

x~z!5x0eGz, ~21!

where
3-8
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x~z![
I S̃~z!

@ I P̃~z!#G
[b~z!@ I P̃~z!#12G, ~22!

andx05x(z50)5(I S0̃ /I P0̃)I P0̃
12G[b0I P0̃

12G . Therefore
x is a modified intensity ratio which forG51 reduces to the
conventional intensity ratiob5I S̃ /I P̃ . The evolution of the
signal and pump wave intensities can then be expressed

I S̃~z!5I S0̃

11b0
21

11b0
21S I P̃

I P0̃
D 12G

e2Gz

~23!

and

I P̃~z!5I P0̃

11b0

11b0S I P̃

I P0̃
D G21

eGz

. ~24!

In the absence of photoexcitation anisotropy and for a ne
symmetric incidence of signal and pump beams the factoG
is always very close to 1. In this case Eqs.~23! and ~24!
reduce to the well known conventional expressions deri
for the isotropic case in symmetric configurations@25#. Note
that for the case of transmission gratings considered here
factor G is bound to be positive because the tensorkJ con-
tains only positive elements. We note also that, although
strong anisotropies the factorG may depart significantly
from 1, in the above equations the influence of the te
(I P̃ /I P0̃)6(12G) on the beam intensities is still weaker tha
the one given by the exponential term. However, the corr
tions brought about by this term are not negligible. The sa
ration of the amplified signal beam to its maximum value
slower for G.1, and faster forG,1 than for the caseG
51. This can be seen in Fig. 10 whereI S̃(z)/(I S0̃1I P0̃) and
I P̃(z)/(I S0̃1I P0̃) are plotted for different values ofG and for
a common value of the gainG. It is worth noticing that in the
saturation region the depleted pump wave intensity decre
as I P̃(z1Dz)5I P̃(z)exp(2GDz/G), as can be clearly recog
nized in Fig. 10. To get an impression of the possible ra
for the quantityG in a typical transmission geometry we ma
take first the example of a BaTiO3 cut along the crystallo-
graphic axes and with both interacting beams entering
sample from air through thea face of the crystal. Consider
ing all possible two-beam interaction geometries in suc
configuration we have 0.936,G,1.07 for k22/k3351,
0.944,G,1.06 for k22/k3350.1, and 0.43,G,2.30 for
k22/k33510. The ranges for KNbO3 in the same kind of
geometry are very similar. For crystals cut under 45° to
crystallographic axes,G varies betweenGmin'0.25 and
Gmax'4 for bothk22/k3350.1 andk22/k33510.

2. Reflection gratings

In this case the signal and pump wave enter from oppo
surfaces and one has cosuScosuP,0. The coupled wave
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equations~12! can be brought again exactly in the form~19!
if one allows one of the two projected intensities to ta
negative values. If we choose the signal wave to propag
towards positivez and the pump wave to propagate towar
the negativez axis, then I S̃(z).0 and I P̃(z),0. Such a
negative intensity value reflects the fact that the energy fl
for the pump wave is in a direction which is opposite wi
respect to the considered surface orientation~vector ẑ).
Therefore the conserved quantity is still the sum of t
~signed! intensities and the solution of the coupled equatio
~19! is still of the form given by Eqs.~21! and ~22!. How-
ever, the exponentG @still defined by~20!#, is now bound to
be a negative number. For a plate of thicknessL the bound-
ary values are now given atz50 for the signal wave, and a
z5L for the pump wave. Using these boundary values
Eqs. ~21! and ~22! and reintroducing a positive intensit
uI P̃(z)u52I P̃(z) for the pump wave one can easily find th
expressions for the transmitted intensitiesI S̃(z5L) and
uI P̃(z50)u, that is

I S̃~L !5I S̃~0!
11ub0u21

11ub0u21U I P̃~0!

I P̃~L !
U12uGu

e2GL

~25!

and

uI P̃u~0!5uI P̃u~L !
11ub0u

11ub0uU I P̃~0!

I P̃~L !
UuGu21

eGL

, ~26!

which are in full analogy to Eqs.~23! and~24!. The intensity
ratio ub0u is defined here asub0u[I S̃(0)/uI P̃u(L) and differs

FIG. 10. Signal wave amplification and pump wave depletion
a function of the propagation distancez in transmission geometry

The normalized intensitiesI S̃(z)/(I S0̃1I P0̃) and I P̃(z)/(I S0̃1I P0̃)
are plotted according to Eqs.~23! and~24! for G520 cm21 and the
three values of the factorG @Eq. ~20!# given in the box.
3-9
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GERMANO MONTEMEZZANI PHYSICAL REVIEW A 62 053803
from the definition used for transmission gratings. F
samples cut along the dielectric axes, symmetric interac
geometries, and in the absence of photoexcitation anisotr
we haveG521. In this case the two above expressio
reduce to the well-known conventional relationships@26#.
The correcting factoruI P̃(0)/I P̃(L)u6(12uGu) brings about a
similar influence on the output intensities as in the case
transmission gratings discussed above. Figure 11 show
example of theG dependence of the signal and pump outp
intensities as obtained by solving the above transcen
equation. For fixed gain coefficientG an exponentG closer
to 0 leads again to faster saturation.

VI. RESPONSE TIME AND SENSITIVITY

The photorefractive response time depends on severa
trinsic and extrinsic material parameters and on the ave
photoconductivity of the material. The latter is a function
the power of the interacting beams and of the tensorkJ de-
scribing the photoexcitation. In the simplest band transp
model and in absence of applied electric fields the respo
time is expressed as@22,1#

t5
«0«e f f

emn0

11K2/Ke
2

11K2/K0
2

, ~27!

where m is the scalar mobility in direction of the gratin
vector KW ~modulus K), K0[(e2Ne f f /«0«e f fkBT)1/2 is the
Debye wave vector, andKe[(e/kBTmtR)1/2 is the in-
verse diffusion length withtR being the free-carrier recom
bination time. The average density of free carriersn0 can be
written as a function of the amplitudes of the two interacti
waves@21#. In the case where the pump wave is not deple
we have n0}uEPu2(eP̂•kJ•eP̂)tR . Therefore the dielectric
time tdie[(«0«e f f /emn0) does depend on the light powe

FIG. 11. Transmitted signal@ I S̃(L)# and pump intensity@ I P̃(0)#
for reflection grating two wave mixing as a function of the expon
G. G521 corresponds to a fully symmetric and isotropic geo
etry. Parameters: gain coefficientG520 cm21; sample thickness

L50.2 cm; input intensitiesI S̃(0)51, I P̃(L)5100.
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on the polarization of the light waves and on the photoex
tation anisotropy through the free carrier densityn0, in addi-
tion it depends also on the direction of the grating vectorK̂
through the effective dielectric constant«e f f and the mobility
m. For the response timet additional dependencies on th
grating directionK̂ are brought about through the quantiti
K0 andKe .

As an example, in Figs. 12~a! and 12~b! we show the

t
-

FIG. 12. Contour plot of the inverse photorefractive respon
time 1/t @Eq. ~27!# for p-polarized beams in theac plane of
BaTiO3 ~undepleted pump!. ~a! Isotropic photoexcitation,k11/k33

51; ~b! anisotropic photoexcitationk11/k33510; The contour lines
are at the indicated logarithmic distances. Parameters: effec
density of trapsNe f f51017 cm23, the inverse diffusion length in
the c direction Ke

21510 nm. The values of 1/t are normalized to
the inverse dielectric time 1/tdie for a grating pointing along thec
axis @51/t(ap5as50°)#.
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predicted behavior of the inverse response time for hole c
ductive BaTiO3. The dielectric and mobility anisotropies a
taken from Refs.@10# and@13#, respectively, while the effec
tive number of traps and the diffusion length~for the charge
movement along the c axis! are chosen asNe f f

51017 cm23 andKe
21510 nm, respectively . We assume

be in the undepleted pump regime so that the photocon
tivity is induced uniquely by the pump beam. Figure 12~a! is
for k11/k3351. The fastest response is predicted
(aP ,aS)5(180°,0°). This is for two reasons. On one ha
the response is faster for counterpropagating than for
propagating beam geometries because in hole conduc
BaTiO3 the diffusion length is short@1#, and thereforeKe
.K0 @see~27!#. On the other hand the position of the pr
dicted maximum of 1/t corresponds to a counterpropagati
geometry with wave vectorK̂ parallel to thea axis, which is
favored with respect to other geometries@such as (aP ,aS)
5(90°,290°) with K̂i c axis# because the large increase
mobility for charge movement alonga overcomes the disad
vantage of a larger effective dielectric constant. Figure 12~b!
is for k11/k33510. In this case the photoconductivity
larger for geometries having the pump wave polarized
proximately along thea axis (aP'90°) and the maximum is
observed for a geometry for which the pump and signal w
are propagating nearly perpendicularly. Note that in the t
graphs, the absolute values of the inverse response timet
are normalized to the inverse dielectric time 1/tdie(K̂uuc) for
a wave vector parallel to thec axis. They are important only
to judge the possible dynamic range of the response t
among all possible interaction geometries. As might ha
been expected, the dynamic range increases in the ca
anisotropic photoexcitation.

There are several possible definitions for the photorefr
tive sensitivity. Most of them measure the change per u
time of the refractive index or some related quantity such
the square root of the diffraction efficiency. For instance
common definition isSn[1/I (]Dn/]t) evaluated at the time
t50 @1#, with I being the incident light intensity. In the usu
isotropic case the sensitivitySn reaches its maximum if the
pump and signal wave have equal intensities, because in
case the refractive index change modulationDn is largest. It
has to be noted that the sensitivitySn cannot be significantly
improved by an anistropy of the tensorkJ. The modulation
depthm @Eq. ~8!# cannot exceed the value of 1 and therefo
the limiting physical process is basically the same as the
acting for the isotropic case. Another quantity which is p
portional to the material sensitivity is given by the ratioG/t
between the exponential two-wave mixing gain and the
sponse time@27#. It can easily be shown that for crysta
following the simplest band model this measure is equiva
to the sensitivitySn , provided that the photoexcitation tens
is isotropic. In contrast, in the anisotropic case signific
deviations can be expected. As an example Fig. 13 shows
contour plots of the two-wave mixing sensitivityG/t, again
for hole conducting BaTiO3 and with the same paramete
used for Fig. 12. As before, the data in Figs. 13~a! and 13~b!
are calculated for the undepleted pump regime and are
malized to a common dielectric relaxation timetdie(K̂uuc)
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for a grating inc-direction. By comparing Figs. 13~a! and
13~b! the effect of the anisotropy of the photoexcitation te
sor is readily visible. It should be noted that the sensitiv
can also be used to predict initial fanning directions at
onset of the illumination.

VII. CONCLUSIONS

We have discussed in detail the effects of the anisotrop
of the dielectric constant, electro-optic effect, drift mobilit
and photoexcitation cross section on photorefractive tw
wave mixing. The example of the crystals KNbO3 and

FIG. 13. Contour plot of the sensitivityG cosus /t for
p-polarized beams in theac plane of BaTiO3 ~undepleted pump!.
~a! k11/k3351; ~b! k11/k33510. Parameters:Ne f f51017 cm23,
Ke

21(K̂uuc)510 nm. The values are normalized to a common
verse dielectric time 1/tdie for a grating pointing along thec axis
@51/t(ap5as50°)#.
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BaTiO3 in the interaction plane of maximum photorefracti
nonlinearity has shown clearly that the optimum geomet
for maximum gain, shortest response time, or largest se
tivity are strongly dependent on all these anisotropies. T
anisotropy of the photoexcitation process, often overloo
in the past, is shown to have a particularly strong influen
It allows us to obtain large gains even for geometries
. J

.

P

nd
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which the interacting beams propagate nearly perpend
larly. Even though we have focused our attention on KNb3

and BaTiO3, the expressions reported here apply to ev
nonoptically active photorefractive crystal as well. Ther
fore, upon determination of all necessary material para
eters, the extension of this work to other materials is straig
forward.
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