PHYSICAL REVIEW A, VOLUME 62, 053606
Dark-soliton states of Bose-Einstein condensates in anisotropic traps
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Dark soliton states of Bose-Einstein condensates in harmonic traps are studied both analytically and com-
putationally by the direct solution of the Gross-Pitaevskii equation in three dimensions. The ground and
self-consistent excited states are found numerically by relaxation in imaginary time. The energy of a stationary
soliton in a harmonic trap is shown to be independent of density and geometry for large numbers of atoms.
Large-amplitude field modulation at a frequency resonant with the energy of a dark soliton is found to give rise
to a state with multiple vortices. The Bogoliubov excitation spectrum of the soliton state contains complex
frequencies, which disappear for sufficiently small numbers of atoms or large transverse confinement. The
relationship between these complex modes and the snake instability is investigated numerically by propagation
in real time.

PACS numbgs): 03.75.Fi, 05.45.Yv, 42.56.p

[. INTRODUCTION higher than the nodeless self-consistent ground state. In ad-
dition, they can be dynamically unstable; in more than one
Numerous experimental studies have confirmed the gerdimension, an extended dark soliton in an optical fiber will
eral validity of the time-dependent Gross-PitaevsKiP) generally undergo a “snake deformation,” where transverse
equation[1,2] used to calculate the ground state and excitamodulations cause the nodal plane to decay into vortices
tions of various Bose-Einstein condensates of trapped alkal[21]. The Bogoliubov excitation spectrum for a kink is
metal atomg3-5]. To map the spectrum of collectiv®r  known to contain modes with imaginary frequencies and
particle-hol¢ excitations, mean-field linear-response theoriegjuasiparticle amplitudes localized in the notgh9]; the
based on the Bogoliubov approximati¢®,7] or its finite-  imaginary modes originate from the transfer of the soliton
temperature extensiori8,9] have been developed and ap- kinetic energy to the collective excitations of the condensate
plied to numerous experimental configurations. parallel to the nodal plane. However, the explicit connection
The collective excitations are physically distinct from between the existence of imaginary excitations and a dy-
self-consistenéxcited states of the trapped gas. In the lattemamical snake instability remains unclear.
case, the stationary condensate wave function itself may con- In the present work, the properties and stability of self-
tain one or more nodes. Indeed, the nonlinear GP equatiotonsistent excited states of trapped Bose condensates are ex-
supports many well-known self-consistent excitations, suclplored further. After a brief description in Sec. Il of the for-
as vortex stateg10—-14, and configurations with bright and malism and techniques employed in the numerical
dark solitond15-19 for attractive as well as repulsive Bose calculations, the number dependence of the energy of sta-
gases. These contrast quite strongly with the collective excitionary dark solitons is obtained and discussed in Sec. Ill. In
tations, which are obtained from the linear response of théhe Thomas-Ferm{TF) limit, corresponding to large con-
condensate to an external perturbation. densates, the energy difference between the kink and node-
In the case of a fundamental dafbr black soliton, the less ground states is found to be independent of the number
condensate density vanishes along a nodal surface and tbhéatoms. In order to better understand this result, the soliton
soliton velocity is zero. Such a solution is equivalent to twoenergy is calculated perturbatively around the TF limit using
condensates with a phase difference mofbetween them, a boundary-layer approach in Sec IV A. It is shown that the
separated by a thin impenetrable barrier, and is an idealizaenergy of the soliton state in the TF limit is identical to that
tion of the nodal structures obtained recently in a two-of the “anomalous mode” in the Bogoliubov spectrum. Per-
component systerfi20]. Dark optical solitons in nonlinear turbation theory in the weakly interacting limit, carried out in
dielectric fibers have been actively studiggll] since their  Sec. IV B, demonstrates that this result is particular to large
prediction[22] and experimental observatid23—-25; the  condensates, however. This perturbative approach also yields
recent observation of solitons in trapped Bose g§28627]  significant insight into the criteria for the existence of Bogo-
has provided another striking manifestation of nonlineariubov excitations with complex frequencies, discussed in
atom opticq 28]. Sec. IV C. The relationship between complex modes and dy-
The stability of stationary dark soliton@lso known as namical instability of the kink is explored in Sec. V. In Sec.
standing waves or kinksn trapped condensates has been theVl, we explore the possibility of transferring the condensate
subject of recent investigatiojd9]. These states are ther- into a kink state by a field excitation. The results are sum-
modynamically unstable, since their energies are alwaysarized in Sec. VII.
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Il. THEORETICAL BACKGROUND “d-wave” statesd,,;, with a,8=X,y,z, have odd reflection
r]%ymmetry in two directionsy and 8. In order to obtain
p-wave or d-wave states, one may choo$fr)«x,y,z or
dependent GP equation: f(r)ocxy,xz,yz, respec_:tively. Sir_wce the nonlinear Hamil-
tonian(1) commutes with the parity operators, however, per-
(1.t 1 haps the simplgst strategy ﬁs to bloqk—diggonalize the GP
i promid b §V2+Vtrap(r)+VH(r,t) g(r,t), Q) operator according to parity in each direction, and solve for
the lowest-energy state in each of the eight parity manifolds.
For higher-lying stationary configurations, the solution must
be explicitly orthogonalized to lower-energy states during
1 the imaginary time propagation.
Virad 1) = §(X2+ a’y*+ B2z%) 2 We propagate the 3D time-dependent GP equation using
three distinct techniques: a variable step-size Runge-Kutta
is completely anisotropic in general; in recent experiment$RK) method[31], second-order differencingSOD) [32],
on solitons in a Bose condensd®7], the relevant param- &nd real-space product formulBSPF [33]. In the SOD and

eters wereazwy/wx=\/§ and 8=w,/w,=2. The Hartree RK methods, the time propagation results from one or at
(mean-field potential is written most a few matrix-vector multiplies of the Hamiltonian onto

a previously computed vector. The RSPF employs a split-
Vy(r,t)=4mqo|e(r,0)|% ©) operator approach which partitions the action of the kinetic
energy matrix into a succession 0k2 matrix operations on
choosing the condensate wave functipfr,t) to be normal- a known vector. It should be noted that all of these time
ized to unity yields the strength parametgg=aN,/d,, propagators are efficiently implemented on distributed-
wherea is the atomic scattering length amd, is the total memory massively parallel computers.
number of atoms. We assume a condensate composed of NaThe treatment of the kinetic energy operator forms the
atoms, in which casa=52ag~2.75 nm in Bohr radiiag main difference in the implementation of the propagation
[29]. The above three equations are written in reduced unitdechniques. The SOD and RSPF methods discretize the ki-
where the length scale = \%/Mw,, the time scale iF netic energy operator using the simplest three-point, central
=27l w,, and the energy is given in units by, , wherew, finite difference(FD) formula for the second derivative op-
is the angular trap frequency in tixedirection andM is the ~ erator. In the RK method, the spatial wave function is ex-
atomic mass of Na. panded in a discrete variable representatibiR) [34,35
The ground and self-consistent excited states of BosePased on Gauss-Hermite quadrature. The DVR has the ad-
Einstein condensates are obtained by direct solution of th¥antage, shared also by the FD method, that the matrix ele-
GP equation in imaginary timer&it). At each imaginary ments of all local operators are diagonal and equal to their
time step, the chemical potentiak=(H)/Ng [whereH is the value on the spatial grid. The DVR kinetic energy operator is
GP operator on the right side of E¢L)] is readjusted in dense in each dimension compared with the FD approach;
order to preserve the norm of the wave function. Self-however, it also provides a much more accurate representa-
consistent excitations may be found numerically by relaxtion of the derivatives than does the simple FD approxima-
ation of the GP equation toward equilibrium, subject eithertion. All of the methods scale formally with the number of
to special initial conditiongspatial variations of phase or spatial grid points, although the prefactor is different for
amplitude[13,30) or applied constraintssuch as orthogo- each. Grids of the order of 28@oints are used in the SOD
nality to the ground staje and RSPF, while the DVR approach employs approximately
The initial wave function for the imaginary time propaga- 100 functions in each spatial direction.
tion is a Gaussiany(r,0)= f(r)exp{— 3(*+ a?y*+ 22! for
smal! numbers of atomsNo= 10°. For larger Ng, the Ill. STATIONARY STATES
kinetic energy contribution to the total energy becomes
negligible, and the initial state is chosen to be Using the diffusion form of Eq(1) for the condensate

At zero temperature, the dynamics of a single-compone
condensate are governed by the three-dimensi@@ltime-

where the confining harmonic potential

proportional to the Thomas-Ferr(irF) expression wave function, the GP equation relaxes to the stationary state
of interest. The chemical potentiad and free energy per
f(r)V(ure— Virap 147 1760 (1= Virap) - particleE= u—3(Vy4)/Ny may be obtained as a function of

the number of atoms, and the results are summarized in
The TF chemical potential igte=3(15aB7,)%*in units of  Taples | and II. The values of the chemical potential for the
fiwy, and ©(X) is unity whenx is positive and zero other- ground state agree to three significant figures with those re-
wise. The choice of initial state has no influence on the finaported earlier[35]. The probability densities in the=0
result, but can improve the time required for numerical CoNplane forp, andd,, dark soliton condensates withy = 21°
vergence. All stationary states without circulation can be=1024 are shown in Fig. 1. The line nodes, which are
classified by their reflection symmetry in the y, andz  clearly visible as depressions in the condensate density,
directions. For convenience, wave functions that are odd unwiden near the surface as the condensate density decreases
der a reflection in one spatial directia= x,y,z are labeled and the healing length diverges.
p, and are referred to as p‘wave.” Similarly, the If the GP equation is relaxed subject to orthogonality con-
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TABLE I. The chemical potentigk and free energy per particle
E of the ground statésubscript 0) andg-wave dark solitons ori-
ented alongx, y, andz are given as a function of the number of
atoms in the condensaldy, in units of i w, .
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TABLE II. The chemical potentiap and free energy per par-
ticle E of the ground statésubscript 0) andl-wave dark solitons
with nodes alongX,y), (x,z), and {/,z) are given as a function of
the number of atoms in the condensBlgin units of i w, .

No Mo Eo Mex Ex My Ey Mz E. No o Eo Mxy Exy mxz Exz  myz Eys

210 357 299 440 387 479 427 536 485 200 357 299 563 516 6.20 574 6.60 6.15
212 542 420 6.20 502 656 540 7.09 595 2 542 420 733 622 787 6.77 823 7.16
214 890 6.59 964 7.36 998 7.71 1047 823 2™ 890 659 10.72 848 11.21 9.00 1155 9.35
216 1513 1096 15.85 11.70 16.17 12.03 16.63 12522 1513 10.96 16.89 12.77 17.35 13.26 17.67 13.59
218 26.10 18.75 26.80 19.47 27.12 19.79 27.57 20.252' 26.10 18.75 27.83 20.51 28.27 20.97 28.59 21.29
220 4528 32.41 4594 33.10 46.28 33.43 46.72 33.882%° 4528 32.41 46.94 34.12 47.38 3457 47.73 34.90

straints with previous solutions, many additional stationaryblack at its classical turning poiii.8,27. The condensate

states may be found. The firstwave excited state, with

density will have the TF form everywhere except in a small

f(r)=1 and constrained to be orthogonal to the ground statgegion nearx,, where the kinetic energy drives the wave
has an ellipsoidal nodal surface centered about zero. Thiginction to zero.

excited state withf(r)=2x>—1 and constrained to be or-

In order to define a suitable perturbation parameter, it is

thogonal to the ground state has two nodal surfaces whicbonvenient to further rescale the static GP equatibn

intersect thex axis.

The numerical calculations indicate that the average en-_
ergy per particle for a black soliton is independent of both
geometry and particle number in the TF limit; this is in con-

where the left side becomegy(r), as follows: {x,y,z}
RIX.y/a,ZIB}, u=plhw,=R32, 75,=mn.aB/R® and
#?="9?aBIR®. Now, the normalization of the wave function

trast with the energy per particle of an isolated vortex in atakes the form 47,=[d® ¥?. For a condensate in the TF

cylindrical trap, for example, which varies adE,
~(5/2R?)In(R/¢), where R=(157,)'® and é~1/R are, re-

limit with a soliton normal to thex axis, one may neglect the
kinetic energy contributions except in thedirection. The

spectively, the mean TF radius and the healing length ifescaled GP equation then effectively has cylindrical symme-

units ofd, [12]. For largeN,, the energy difference®oth in
the chemical potential and free enerdyetween thep, and

ground states converge to a constant value of approximately

0.7 in units off.w, . The energy differences of thg, andp,
states are simply scaled hy and B, respectively; i.e., the
soliton energy iIsAEg~0.7 in units ofhw, andf w,. Simi-
larly, the energies of thd ,; states are approximatelyE,
~0.7(a+ B).

The energy of the black soliton relative to the ground state

is close to the energfw/+2 of the “anomalous mode” in
the Bogoliubov spectrum of a one-dimensiopalave state

try:

€ 3

~. 1.
— r2 2 T |7—
2&—Xz+2r +lﬂ 2(# 0, (4)

wheree=R"* is small in the TF limit, and2=x?+y?+7?
=x%+p%

In the outer(slowly varying region, one expandgy,
=xotex1t---. The TF result is recovered to zeroth order
ine xo==* (1-7?)/2. Of course, this solution is inconsis-

in the TF limit [19]. This excitation has positive energy but tent with the boundary conditiof(x=X,) =0, implying the

negative normor vice versg and has been associated with
the oscillation of a dark soliton in the trapped condensate at

frequency w/\2 [18,27. In nonlinear systems, however,

existence of a boundary layer near'x,. In this region, the

V(1=p2=X3)/2.

outer solution is asymptotically,~ =+

there is no direct relationship between the energy differences

among self-consistent states and the collective excitation:

from these states; for example, the precession frequéarcy
anomalous modefor an isolated vortex in a cylindrical TF
condensate is nakE, /%, but rather:AE, /4 [12]. Indeed,

as shown below, the energy of a black soliton displaced fro

the trap center is always smaller thaw/+/2.

IV. PERTURBATIVE ANALYSIS

A. Thomas-Fermi limit

m

> <
wy w

X I

B B

29 29

£ =R

3 B

BN EN
= <
5.0 50 50 50

0.0 0.0
x (units of d) x (units of d,)

The soliton energy may be calculated using a boundary- F|G. 1. The probability densities in thze=0 plane for(a) p, and

layer correction to the TF wave functidi8,36. The p,
state requires a plane of nodesxgt=0, but in principlexg

(b) dyy dark soliton states wittN=21°=1024 are shown as 2D
contour maps, where radial distances are in scaled trap dyits

can take any value since an oscillating dark soliton becomeSrap parameters are,=(27)177 rad/sa=+2, andg=2.
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For the inner region it is preferable to defiRe=xy+ 56X, 0.5
where the boundary-layer thicknessds1 and|X|>0 are 2 04
the regions where the inner and outer solutions must match é‘ 0.3

g

Since the asymptotic behavior of the outer solution is known, i 65

the inner wave function may be expanded af,

~ = )
=+\(1-p2=X3) /2 Do+ 6D, +---]. To lowest order in > 0.1
5, Eq. (4) becomes O e 4 o002 4E B

x (units of d)

e P - ~ (a) (b)
7 et (L=PP X0 (1= 09| ®e=0. (5 o

FIG. 2. The boundary-layer approximati¢®) for a condensate
containing a soliton ak,=3d, is shown forNy=2%=262 144
o . o o ) atoms,w,=(27)177 rad/s,a= 2, and=2. In (a), the view is
The “distinguished limit” giving a nontrivial solution corre-  3jong thex axis; the solid and dashed lines correspond to the soliton
sponds tos=\'e=R 2. When|X|>0, ®,~1 giving a per- and TF ground states, respectively. (i, the soliton state is de-
fect asymptotic match. With the substitutionX  picted as a density plot in they plane, and the box size is dgand
=7/ %(1_;2_"{(3), Eq. (5) becomes the well-known 11d, in the x andy directions, respectively.
equation for a dark soliton in the continuum

3 _ A ~ 1 1 ~
- (1/2)(d*/dZ%) Do+ cpo—d>0—0, yielding tht_a exact solu- MS:};‘_S — 5(15C¥B770)2/5+ —(1—x%)3’2
tion for the inner wave function ®y(X) Wy J2
=tanfXy3(1~p?~X5)]. 1
The uniform sglutionjor th~e wave function over all space = et T(l_%)g&' ®)
may be written aﬂ/unif: 'r//out+ in— 1/’over’ W}‘]er(:*";zfoveriS the 2
solution in the overlap regiofX|>0: The correction to the chemical potential in the TF limit is
1/\/2 when the soliton is at the origix,=0, corresponding
== == to the p-wave state, and is zero when the soliton is at the
Dl pXS)=F \/1_p X \/1_p —%o surface of the cloudo=1. Sincex=9E/dN, the energy per
unif 57 2 2 particle for the soliton is
1-p2-%3 . - Es S 1 7213
x{tan?‘{ TRZ(X—XO) =17, N_o:7MTF+ E(l—xo) Zﬁwx.
©) The corrections fox,=0 agree with the numerical val-

ues, and are independent of both geometry and number at
~ _ -~ ~ ~ o~ this level of approximation. Physically, the dark soliton has a
where thex- andx.. correspond t&x<\xo andx>Xo, réSpec-  constant energy as the number of atoms increases, because
tively. In principle, the chemical potential may now bejound its area increases @2 while its width diminishes as:?
directly from the normalization condition 7, ~1/R? [12]. A similar invariant is used as a measure of
= [d% 2. In practice, however, the large number of crosssoliton stability in optical fiber$37]. As the transverse soli-

terms resulting from squaring E€5) makes this unnecessar- ton confinement becomes more appreciabee, by increas-

. . . ~ . ing the frequencie®, andw,), however, the kinetic energy
lly complicated. Rather, the integral overs split into three i, %,i¢jirection will grow, and the low-order boundary-layer

regions: (i) — V1—p?<X<xX, (Xa<Xo), (i) Xa=<x=X, (X,  result will lose its validity.
>Xo) or Xg=<X=<X, (Xz— — and X,—), and (i) X, Two views of a black soliton state defined by E6) are

<x< /—1_;2. Since the inner and outer solutions are aS_shown in Fig. 2. In the first, the density with a soliton dis-

. : . laced from the originxg=3d,, is shown along the axis,
ymptotically equal in the overlap regions, the result cannof;nd is compared with the TF ground-state solution. The con-

depend on the particular choicesf andx, . One readily  gensate containing a notch soliton bulges slightly overall in
obtains order to conserve the total number of atoms; the radii for the
TF and soliton states aré,\2u7¢ and dX\/ZT,uS, respec-
B 12 tively. In the. second view, the soliton state is shown as a
Fo= 5”0 _-_N= 1_;((2))3/2, (7) density plot in thexy pIane.. The boundary—layer. theory to
R 15 6R? lowest order captures the divergence of the healing length in
the vicinity of the cloud surface. In actuality, a displaced
soliton would most likely be curved; such a curvature is
which may be inverted to yield the chemical potential for thefound for traveling dark solitong27] and for displaced vor-
soliton state tices in rotating trapped condensafé8,14.
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B. Low-density limit: Energy differences and anomalous mode first-order corrections to the eigenvalues follow directly from

The boundary-layer analysis indicates that the energy off’® diagonalization of the resulting nonsymmegis g ma-
the self-consistenp, state in the TF limit is exactly equal to X
the frequency of the anomalous mode in the Bogoliubov
spectrum. In order to determine whether this holds for all
densities, it is useful to consider the opposite limit of small . . S
condensates where analytical results can be easily obtainekﬁ’.,hereg IS 'ghe deger.1e'racy. Direct apphqatlon of E(d,@)

The perturbation expansion for the time-independent GRVIth 9=2 yields no finite-number correction for the dipole
equation(1) requires expanding the condensate wave funcMode. as expected, while the energy of the anomalous mode

. . L~ o~ ~ becomes
tion &= y+ Ny, and chemical potentigh= ug+Au, in

<\I,||Hl|q,]>! |,J:1,2,g, (16)

powers ofA =41 7,. The normalized unperturbgg state is 1 [apB
4aB| V4 . 8a~(1_z\lﬁ7]o)ﬁwx- 7
= —(x“+ay“+ Bz9)/2
o _773_) xe 9

Evidently, the value of the anomalous mode in fhestate is
and 7.o=2(3+ a+B). Making use of the readily derived Not generally equal to the differen¢&0) in the chemical
expression for a purely real condensate wave function ~ Potentials between the-wave ands-wave states,

~—fd3 s_ 3\ [eP 10 pu=| 14228, 1h 18
H1= "=g- N2, (10 m= 5\ 5, 70| hox. (18
one immediately obtains the first-order correction to thendeed, the perturbative corrections do not even have the
chemical potential same sign.
~ 3
u=~\ o+ E\lgno)ﬁwx. (11 C. Low-density limit: Complex modes

It is instructive to consider the special case where all of
The low-lying excitationse may be obtained using the the trapping frequencies are equak- 8=1. In this geom-

Bogoliubov equations etry, according to Ref[19], an infinitesimal condensate
~ _ number gives rise to pure imaginary frequencies. Assuming a
(=3 V%4 Vyagt 2V — p)u—Vyv = e, p, State, one may defing?=y?+z? and block-diagonalize
(120  the Hamiltonian into states of definite angular momentum
(= 32+ Vyapt 2V — w)v—Vyu=—¢v, L,=m. In them=0 manifold, in addition to the dipol€l4)

) _ and anomalougl5) excitations, there is a third mode with
whereu=u(r) andv=uv(r). These equations may be written T=1:

in the more convenient formHy+\H,)¥ =¥, where

( _%V2+Vtrap_;‘10 0
0 %Vz_vtrap'l"llo

l 1 2 2
_ 2 a2+ A2
‘1'3—(0)773/4(1 p2)e 0C+pAI2 (19)

HO:

(13) Diagonalizing the resulting 8 3 matrix (16), one again ob-
u tains no correction for the dipole mode. The remaining de-
) generate modes, however, split into complex-conjugate pairs

(21113_211 5
Hl:

2 ~ ’ '
—¥o =245 v with energies
For arbitrary trap anisotropy, there are always two degener- 1
ate modes with energy=¢/hw,=1 in the unperturbeg, e=|1- ——(3%i\7) 7o |hwy. (20
state; these are the dipole and anomalous modes with posi- 8v2m

tive and negative unit norms, respectively: _ _ _
These results are compared with numerical calculations for a

1\[ ap\¥* ) ot ay 2 spherical trap in Fig. 3. The numerics are extremely close to
V=l o)\ 77 (X~ De ’ .+ (14 the expressior(20) for small 7,, but show deviations by
7]0"‘01
o\[aB\¥ , , The corresponding complex eigenvectors both have zero
\Pzz(l)(—3 e~ (XFay A2 (15 norm fd3 (|u;|?—|vi|)=[d% ¥ oW, =0, and satisfy the
. boundary conditionsi,v —0 asr—:
Note that the “ground state” is thp-wave condensate wave 2
function given in Eqg.(9). The degeneracy between these P _Ne
states is lifted by the perturbing Hamiltonid#,, and the Wy= -2, g1 NT)Ws, (21)
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1.000 ' ‘ ‘ - 0.015 volving W 3L {?/q! will be smaller than the other terms by
a factor 1¢!, this complex mode vanishes in the lint
//:, —, In the opposite limip=0, the unperturbed energy is
/:// £0=0, and the quasiparticle amplitudes become
0.995 | L 1 0.010
) ///’/ ) L((q%(P/ \/a) 2 2
[ d E —yp=———=e (p1a+x2)/2
Z A = 7 a(q/2)!
0.990 | A { 0.005
rd
~35(\2p)e P, gsce. (24
//
0.085 e ‘ ‘ ‘ . 0.000 Note that thisu=v solution has ever symmetry and there-
~70.00 0.02 0.04 0.06 0.08 0.10 fore does not correspond to the Goldstone mode. The con-
N=Nyald, densate wave functiorr in Eq. (9) becomes independent of

p, and the X2 matrix (16) immediately yields the imagi-

FIG. 3. The realsolid lineg and imaginary(dashed linespart nary eigenvalues

of the complex excitation frequencies far=0 are shown as a

function of 5o=Nga/d, for a spherical trap. Light and dark lines 3
correspond to analytical20) and numerical calculations, respec- o= i —Wnoadzhw (25)
tively. ="V X1l Wy

) J2 _ where ng=Ngy/V is the condensate density in the system
V=T, —\2W,— T(1+l\/7)‘1’3- (22)  volumeV. The same solution is found for all values rofin
this limit. Thus, even in the absence of transverse confine-

The condensate coupling between the axial and radial modégent, the excitation spectrum of tipg; state contains com-
gives rise to modes with frequencies that eoeplexrather ~ Plex modes, in agreement with the resuilts of Ref].
than purely imaginary as assumed[i89]. It is important to Additional insight into the limit of transverse deconfine-
note that the existence of complex Bogoliubov excitationglent may be gained by assuming translational invariance in
does not violate the general condition on the quasiparticl andy at the outset. With the axial quantum numbers zero,

amplituded7]: the unperturbed energies for the and v become}
=3(ky2+ k%) — 1 andef=1-5(ki?+Ki?). When these are
(gi_gj*)J d3r(u]*ui—v}*vi)=0. (23) degenerate, the off-diagonal couplings are nonzero~only if
ky=ky=k, and ky=k;=k,, enforcing the conditioneg
If i=] ande; is complex, the corresponding particle-hole =£5=0 andk§+ k?=k?=2. Note that the unperturbed en-
eigenfunction must have zero norm. ergy £,=0 and relevant wave vectdk|= 2 are the same

For any given number of condensate atdisin a cylin-  as in the infinitely weak trap limit considered above. The
drically symmetric trap, there is a critical anisotropy perturbing matrix16) consists of an infinite number of iden-
w,/wy=a such that all the Bogoliubov excitations of the tical 2X2 submatrices for a given value & and k,
p-wave state become purely refdl9]. Indeed, in the limit =.,/2—k2. Each submatrix corresponds to a different value

No—0 considered here, any>1 is sufficient to ensure the of min the cylindrical case considered above, and yields the
disappearance of the complex modes because the degeneragaginary modes

between the anomalous and transverse modes is broken by

the anisotropy. 3 72K2 3
For «<1, complex modes can arise in mamystates. In g= =i \ITnOadim: *i \ITnOadfﬁwx, (26)
this regime, there exist numerous additional unperturbed

anomalous modes with energy,,=1—a(2n+m)=0 but

negative norm(sinceu=0) that are degenerate with eigen- in agreement with the resu(5).

i ~ ~ Summarizing the results of this section, in the limit of
states having energy, m=a(2n’+m’)—1=enn and ek particle interactions or low condensate densities, we
positive norm ¢=0). It is interesting to determine if the nave found that the anomalous mode frequency does not
nonlinear coupling among these degenerate modes gives riggrespond to the frequency difference between the excited-
to complex excitations even in the limit of vanishing trans- 5 ground-state energies. In addition, solitons are unstable
verse confinemeniz— 0. Consider then=0 manifold and i, 5 sufficiently loose trap. For solitons oriented in the radial
a=1/q with even integelg— . Degeneracies occur when girection of a cylindrically symmetric trap, imaginary eigen-
the axial quantum numbers for both thendv are zero and  y3jyes appear in the Bogoliubov excitation spectrum when
the radial numbers ane,=(a/2)+p andn,=(a/2)—p, re-  the axial frequency begins to exceed the radial frequency.
spectively, where &p=(q/2). Whenp=(q/2), the unper-  These modes persist in the limit of vanishing radial confine-
turbed energy iso=1, but since the terms in E@l6) in- ment.
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FIG. 4. The realfilled symbolg and imaginary(open symbols (units of d)
parts of the low-lying complex excitation frequencies are given as a p {unils ol &,
function of the trap anisotropy=w,/w, for a cylindrically sym-
metric trap, where the condensate is ip,astate with 10 atoms spectrum with the largest imaginary component2.167% o, is

and v, =2mx 50 rad/s. Excitations witm=0, 1, and 2 are repre- g,y for ap,-wave condensate containing®18toms in a spheri-
sented by circles, squares, and diamonds, respectively; the dashggl trap w, lw,=1 With w =2mx50 rad/s. The axial d=0,x

. - P X X . 1
line denotes the TF estimate of the anomalous mode. >0) and radial ¢=0) dependences of the compleamplitude are

shown in(a) and (b), respectively(note thaty andu are odd and
V. COMPLEX EXCITATIONS AND SNAKE INSTABILITY even inx, respectively, and thgu|=|v| for this pure imaginary

- . . .._mode. The axial dependence of the condensate wave function is
The explicit connection between the existence of excitas

. . : T - ““shown for comparison ia).

tions with complex frequencies and the dynamic instability

of the p-wave state remains unclear. This “snake instability”

is well known in the nonlinear optical communifg1], and  trum for 0=Ny=5000, and pure imaginary modes begin to
is associated with the undulation of the nodal plane in theappear only whem, exceeds approximately 12 000.

radial direction. It has been conjectured that the complex For large anisotropyy>1, the stability criterion is ex-
modes are responsible for the snake instabllitg]; how-  pected to be approximatelyr.=7/2.4 [19], where %
ever, these modes have zero norm by definit@), soitis = /%0, . In the TF approximationg,=7.6 for the geom-
not clear how they can become occupied. It is importantetry considered above. The larger vatue= 10 found here is
therefore, to determine if the wavelength of the undulationyjikely due to deviations from the TF limit; the radial wave
matches the spatial dependence of complex modes in thgnction approaches a Gaussian when the transverse confine-
Bogoliubov spectrum, and if the snake instability disappeargnent is strong. Wherv=10, the TF chemical potential is

when the excitation frequencies become purely real. wre=23.88iw, while the actual value is determined to be
The low-lying complex modes for a stationapywave ~26.8% w, .

condensate are determined numerically using the Bogoliubov The dynamic stability of dark soliton excited states is in-
equation_s(lz_). For ease of pomputation, the trap is assumecbestigated by propagation of the GP equationeial time for

to be cylindrically symmetricp=y?+2?, with the conden-  an extended period. In the absence of an applied perturba-
sate wave function odd under reflection in axial directcon tion, the self-consistent states should remain absolutely sta-
In Fig. 4 are shown the complex modes in the excitationtionary. In practice, however, numerical noise inherent in the
spectrum as a function of radial confinement, for a trap withpropagation algorithm is magnified by the nonlinearity. Al-
axial frequencyw,=2mXx50 rad/s containing a condensate though the norm and chemical potential are conserved to one
with 10* atoms. All complex modes have even axial parity. part in 162 and 16° respectively, during the numerical
For relatively weak trap anisotropy,/w,=a=<3, there are  propagation, the kink state eventually decays. In order to
several complex modes with angular momentum projectionsnake contact with the complex excitation frequencies in Fig.
m=0,1,2. As « increases, these modes disappear in turn}, we considered the cases-1, 6, and 10. For the first two
until only one purely imaginary mode witthn=1 remains. cases, the modes with the largest imaginary component are
Its magnitude reaches a maximumeat 6, and vanishes at £=0.637% w, and 1.74% w, ; the p-wave states were found to
a~10. A similar removal of the imaginary modes can bedecay in real time in approximately 160 ms and 40 ms, re-
effected by decreasing the particle number at fixed geometrgpectively. The third case witta=10 remained stable for the
For a=1 andw,/27m=50 Hz (the spherical trap considered longest propagation time considered, 200 ms. Thus, the life-
in Fig. 3), complex eigenvalues exist in the excitation spec-time of thep-wave state appears qualitatively to scale with

FIG. 5. The spatial variation of the mode in the Bogoliubov
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FIG. 6. (Color) Snapshots of the snake instability are shown fqu,avave condensate containing®1itoms in a spherical trap with
w=2m7X50 rad/s. Times after the initial formation of the soliton state are 47 ms, 50 ms, and 77 tas-foy and(d)—(f). In (a)—(c), the
brightness is proportional to the condensate density, and the images correspond to densities integrated down the line @) sighttHa
brightness isnverselyproportional to the condensate density, and regions outside the TF sphere are rendered transparent in order to visualize
nodes in the condensate interior; the color corresponds to the phasg:through 27 is represented by the sequence red-green-blue-red.

The view is perpendicular to the nodal plane; prior to the snake instability, the black soliton would appear as a featureless disk.

FIG. 7. (Color) The breakup of g, state is
shown as a function of time fdd,=10° atoms,
w,=(27)14 rad/s,a= 2, and=2. From the
top left to the bottom right in raster order are
shown timest=15 ms through 20 ms in 1 ms
increments after the initial state is formed. The
view is alongy, and the Hamiltonian was con-
strained to even parity alongandz for ease of
computation. The rendering is identical to that of
Figs. d)—6(f). The filamentation is almost en-
tirely constrained to the original nodak plane.
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the inverse of the largest imaginary mode in the excitatiorrings make contact with one another, and subsequently de-

spectrum. tach into a vortex line and a ring. The simulations indicate a
As illustrated in Figs. 5 and 6, there is a close similarityrich dynamics among quantized vortices in these systems

between the spatial variation of the eigenmode with the largthat are only beginning to be explorgg9].

est imaginary component and that of the soliton nodal plane

during the initial decay. For p-wave state such as the one

considered above but with 1@toms, the relevant excitation

is purely imaginary, with an energy=2.16%w,, and|u|

=|v| (as is the case for all pure imaginary moddsgure 5 VI. FIELD EXCITATION

shows the corresponding radial and axial dependences of the

complexu Bogoliubov amplitude. The quasiparticle ampli-

tudes are highly localized axially, but oscillate radially udi diabati o
within the soliton nodal plane. It is interesting to note thatNcluding adiabatic Raman transitions to thevave state

the imaginary components of the excitation energies tend tbLCl: Preparation of the condensate in a superposition of two
decreases the number of radial nodes increases; this behayitérnal state$17], collisions between two separate conden-
ior is due to the effective negative kinetic energy of the dark>!€940], and phase imprintinf#1]; the last approach was
soliton [18], and is reminiscent of internal waves at the in- Fécently implemented experimenta[|6,27). For small par-
terface between layers in stratified fluid mixtuf&s]. ticle interactions, the self—consstgnt excited stasegh as a

In Fig. 6, snaphots of the snake instability are shown for &>-wave ord-wave condensate with at least one stationary
p,-wave state in a spherical trdfor convenience, the axis dark soliton approach the noninteracting single-particle ex-
perpendicular to the nodal line is taken to be al(inghe C|tat|pns of the harmonic trap. In this regime, it might t_)e
vertical direction in Fig. €)—6(c)]. The GP equation is possible to trgnsfer most of the condensate_mto a soliton
solved on a Cartesian mesh with no parity restrictions. AfteState by applying an external field resonant with the energy
approximately 40 ms of real-time propagation, the black solidifference between the ground and excited self-consistent
ton begins to undulate. The spatial variations are symmetrigtates.
about they axis, originating near the center and propagating \We have attempted to excite tdg, dark soliton state for
outwards. The overall shape follows closely that of the larga small condensate containiid,=1024 atoms in a com-
estu amplitude shown in Fig. 5: the two radial nodes of this pletely anisotropic trap, shown in Fig(ld. The field excita-
imaginary excitation correspond to stationary points in thetion is modeled by a large-amplitude time-dependent spatial
soliton bending. At an intermediate time, Figep the soli-  perturbation in the GP equatiofl) given by Vau{r,t)
ton has decayed into two concentric vortex rings whose cores: A(t)xy cos(,t), where the amplitudé\(t) is 25% of a
are located at these nodes. The outer vortex ring decays rafjap energyf w, and includes a smooth turn on and turn off
idly (by 75 ms to the condensate surface, where it shrinksas a function of time. The probe frequency is setagt
considerably, as shown in Fig(f the inner ring was found - o6, which is the separation in chemical potential of the
to remal_n_stab_le for _much longer times. The vortex rings aryround and firstl,, state(cf. Table 1.
barely visible in the mtegrate_d densities shovv_n in Fig)6 _ The time-dependent probability density in the 0 plane
6(c), so we expect the experimental observation of these in-

N . R - Is shown in Fig. 8 with snapshots &t T,, 4T,, 7T,, and
triguing features using standard absorption imaging to be 40T, where T.=2m/w.~05T. At t=T.  the wave
p: P p Yol L B

challenge. The decay of the soliton into vortex rings pro- ] | . .
duces a large number of density oscillations, which are re[unctlon oyerlap with _the ground state is 0'98. and with the
y State is 0.01. Untit=4T,, the wave-function overlap

quired in order to conserve the total energy of the system ang% . :
which are undamped in the present formalism. At long times\,"”th the ground state decreases monotonically to 0.57, while

these oscillations are most evident at the condensate surfadB® overlap with thed,, state increases to a maximum of
giving rise to the bright halo in Fig. (6. 0.25. Thereafter, as illustrated at times=7T, and

It is interesting to investigate the snake instability for pa-t=10T,, the wave function overlaps with both the ground
rameters relevant to recent experiments on dark solitons itate and this particular dark soliton state decrease. While the
trapped condensat¢27]. Figure 7 shows the breakup of a perturbing potential is not able to yielddj, state, the last
black soliton in a completely anisotropic trap containing oneimage in Fig. 8 at= 10T, shows the formation of a number
million Na atoms. The undulations are already pronounceaf depressions in the probability density at the very edge of
by 12 ms, and radiate outwards from the soliton center athe condensate, corresponding to multiple vortices with both
found above. Unlike the spherically symmetric condensatgenses of circulation.
shown in Fig. 6, however, the soliton does not decay into The inability of a field excitation to produce dark solitons
concentric vortex rings far from its center, but rather into ajn not surprising, in light of the snake instabilities discussed
series of approximately evenly spaced curved vortex lines ify sec. V. Dark solitons are unstable against the formation of
the direction of weakest confinemefiaken to bex). The  vortices under ideal conditions, and are increasingly unstable
results imply that the largest imaginary mode in the Bogo4n the presence of an external perturbation. Nevertheless, ap-
liubov excitation spectrum has an energy-e6#.w, and has  plying a very large amplitude perturbation may be a viable
14 nodes along. At longer times, the innermost two vortex alternative approach for the formation of vortices in systems

Several techniques have been proposed for the experi-
mental production of dark solitons in trapped condensates,
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5.0
5.0

direct solution of the time-dependent GP equation in three
dimensions. The energy of a dark soliton at the center of the
trap, relative to the true ground state, is found to be indepen-
dent of both the number of atoms and the trap geometry in
the TF limit, with a value equal to the soliton oscillation
frequency. In the weakly interacting limit, however, the en-
ergy of the anomalous mode does not equal the energy of the
dark soliton. In both limits, the low-lying Bogoliubov exci-
tation spectrum op-wave states is found to contain modes
with complex frequencies, which may be removed by strong
trap confinement in the soliton plane or by decreasing the
condensate density. These complex modes are shown to give
rise to the snake instability of the solitons observed in real-
time propagation of the GP equation. In extended trap geom-
etries, the solitons are found to decay into vortex lines and
rings at long times, imposing constraints on the ability to
generate and observe these intriguing excitations in current
experimental geometries.
Note added in proofSince submission of this manuscript,
the authors became aware of another ar{idl® addressing
the generation and properties of self-consistent excited states
FIG. 8. The probability density in the=0 plane for the time of a trapped Bose—Einstein condensate.
evolution of the ground state witN=1024 under a time-varying
spatial perturbation is shown as a contour magapt=T,~0.5T,
(b) t=4T,, () t=7T,, and(d) t=10T,. Radial distan'():es are in ACKNOWLEDGMENTS
scaled trap unitsl,, and trap parameters auwg,=(2m)177 rads, The authors are grateful to G. M. Bruun, P. Colarusso, P.
a=y2, andp=2. In (d), density minima at the top and bottom S Julienne, W. P. Reinhardt, and J. Simsarian for stimulating
correspond to vortices, those at left and right to antivortices. discussions, and to P. Ketcham for his assistance in generat-
ing the color figures. This work was supported in part by the
with much larger condensate densities; this possibility reNational Science FoundatidM.S.P) and by the U.S. Office
mains for future work. of Naval ResearckD.L.F. and C.W.QO. Part of the compu-
tational work was carried out at the National Energy Re-
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