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Dark-soliton states of Bose-Einstein condensates in anisotropic traps
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Dark soliton states of Bose-Einstein condensates in harmonic traps are studied both analytically and com-
putationally by the direct solution of the Gross-Pitaevskii equation in three dimensions. The ground and
self-consistent excited states are found numerically by relaxation in imaginary time. The energy of a stationary
soliton in a harmonic trap is shown to be independent of density and geometry for large numbers of atoms.
Large-amplitude field modulation at a frequency resonant with the energy of a dark soliton is found to give rise
to a state with multiple vortices. The Bogoliubov excitation spectrum of the soliton state contains complex
frequencies, which disappear for sufficiently small numbers of atoms or large transverse confinement. The
relationship between these complex modes and the snake instability is investigated numerically by propagation
in real time.

PACS number~s!: 03.75.Fi, 05.45.Yv, 42.50.2p
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I. INTRODUCTION

Numerous experimental studies have confirmed the g
eral validity of the time-dependent Gross-Pitaevskii~GP!
equation@1,2# used to calculate the ground state and exc
tions of various Bose-Einstein condensates of trapped alk
metal atoms@3–5#. To map the spectrum of collective~or
particle-hole! excitations, mean-field linear-response theor
based on the Bogoliubov approximation@6,7# or its finite-
temperature extensions@8,9# have been developed and a
plied to numerous experimental configurations.

The collective excitations are physically distinct fro
self-consistentexcited states of the trapped gas. In the lat
case, the stationary condensate wave function itself may
tain one or more nodes. Indeed, the nonlinear GP equa
supports many well-known self-consistent excitations, s
as vortex states@10–14#, and configurations with bright an
dark solitons@15–19# for attractive as well as repulsive Bos
gases. These contrast quite strongly with the collective e
tations, which are obtained from the linear response of
condensate to an external perturbation.

In the case of a fundamental dark~or black! soliton, the
condensate density vanishes along a nodal surface and
soliton velocity is zero. Such a solution is equivalent to tw
condensates with a phase difference ofp between them,
separated by a thin impenetrable barrier, and is an idea
tion of the nodal structures obtained recently in a tw
component system@20#. Dark optical solitons in nonlinea
dielectric fibers have been actively studied@21# since their
prediction @22# and experimental observation@23–25#; the
recent observation of solitons in trapped Bose gases@26,27#
has provided another striking manifestation of nonline
atom optics@28#.

The stability of stationary dark solitons~also known as
standing waves or kinks! in trapped condensates has been
subject of recent investigations@19#. These states are the
modynamically unstable, since their energies are alw
1050-2947/2000/62~5!/053606~11!/$15.00 62 0536
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higher than the nodeless self-consistent ground state. In
dition, they can be dynamically unstable; in more than o
dimension, an extended dark soliton in an optical fiber w
generally undergo a ‘‘snake deformation,’’ where transve
modulations cause the nodal plane to decay into vorti
@21#. The Bogoliubov excitation spectrum for a kink
known to contain modes with imaginary frequencies a
quasiparticle amplitudes localized in the notch@19#; the
imaginary modes originate from the transfer of the solit
kinetic energy to the collective excitations of the condens
parallel to the nodal plane. However, the explicit connect
between the existence of imaginary excitations and a
namical snake instability remains unclear.

In the present work, the properties and stability of se
consistent excited states of trapped Bose condensates ar
plored further. After a brief description in Sec. II of the fo
malism and techniques employed in the numeri
calculations, the number dependence of the energy of
tionary dark solitons is obtained and discussed in Sec. III
the Thomas-Fermi~TF! limit, corresponding to large con
densates, the energy difference between the kink and n
less ground states is found to be independent of the num
of atoms. In order to better understand this result, the sol
energy is calculated perturbatively around the TF limit us
a boundary-layer approach in Sec IV A. It is shown that t
energy of the soliton state in the TF limit is identical to th
of the ‘‘anomalous mode’’ in the Bogoliubov spectrum. Pe
turbation theory in the weakly interacting limit, carried out
Sec. IV B, demonstrates that this result is particular to la
condensates, however. This perturbative approach also y
significant insight into the criteria for the existence of Bog
liubov excitations with complex frequencies, discussed
Sec. IV C. The relationship between complex modes and
namical instability of the kink is explored in Sec. V. In Se
VI, we explore the possibility of transferring the condensa
into a kink state by a field excitation. The results are su
marized in Sec. VII.
©2000 The American Physical Society06-1
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II. THEORETICAL BACKGROUND

At zero temperature, the dynamics of a single-compon
condensate are governed by the three-dimensional~3D! time-
dependent GP equation:

i
]c~r ,t !

]t
5S 2

1

2
¹21Vtrap~r !1VH~r ,t ! Dc~r ,t !, ~1!

where the confining harmonic potential

Vtrap~r !5
1

2
~x21a2y21b2z2! ~2!

is completely anisotropic in general; in recent experime
on solitons in a Bose condensate@27#, the relevant param
eters werea[vy /vx5A2 andb[vz /vx52. The Hartree
~mean-field! potential is written

VH~r ,t !54ph0uc~r ,t !u2; ~3!

choosing the condensate wave functionc(r ,t) to be normal-
ized to unity yields the strength parameterh05aN0 /dx ,
wherea is the atomic scattering length andN0 is the total
number of atoms. We assume a condensate composed o
atoms, in which casea552aB'2.75 nm in Bohr radiiaB
@29#. The above three equations are written in reduced un
where the length scale isdx5A\/Mvx, the time scale isT
52p/vx , and the energy is given in units of\vx , wherevx
is the angular trap frequency in thex direction andM is the
atomic mass of Na.

The ground and self-consistent excited states of Bo
Einstein condensates are obtained by direct solution of
GP equation in imaginary time (t5 i t ). At each imaginary
time step, the chemical potentialm[^H&/N0 @whereH is the
GP operator on the right side of Eq.~1!# is readjusted in
order to preserve the norm of the wave function. Se
consistent excitations may be found numerically by rel
ation of the GP equation toward equilibrium, subject eith
to special initial conditions~spatial variations of phase o
amplitude@13,30#! or applied constraints~such as orthogo-
nality to the ground state!.

The initial wave function for the imaginary time propag
tion is a Gaussianc(r ,0)5 f (r )exp$21

2(x
21a2y21b2z2)% for

small numbers of atomsN0&105. For larger N0, the
kinetic energy contribution to the total energy becom
negligible, and the initial state is chosen to
proportional to the Thomas-Fermi~TF! expression

f ~r !A~mTF2Vtrap!/4ph0Q~mTF2Vtrap!.

The TF chemical potential ismTF5 1
2 (15abh0)2/5 in units of

\vx and Q(x) is unity whenx is positive and zero other
wise. The choice of initial state has no influence on the fi
result, but can improve the time required for numerical co
vergence. All stationary states without circulation can
classified by their reflection symmetry in thex̂, ŷ, and ẑ
directions. For convenience, wave functions that are odd
der a reflection in one spatial directiona5x,y,z are labeled
pa and are referred to as ‘‘p-wave.’’ Similarly, the
05360
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‘‘ d-wave’’ statesdab , with a,b5x,y,z, have odd reflection
symmetry in two directionsa and b. In order to obtain
p-wave or d-wave states, one may choosef (r )}x,y,z or
f (r )}xy,xz,yz, respectively. Since the nonlinear Ham
tonian~1! commutes with the parity operators, however, p
haps the simplest strategy is to block-diagonalize the
operator according to parity in each direction, and solve
the lowest-energy state in each of the eight parity manifo
For higher-lying stationary configurations, the solution mu
be explicitly orthogonalized to lower-energy states duri
the imaginary time propagation.

We propagate the 3D time-dependent GP equation u
three distinct techniques: a variable step-size Runge-K
~RK! method @31#, second-order differencing~SOD! @32#,
and real-space product formula~RSPF! @33#. In the SOD and
RK methods, the time propagation results from one or
most a few matrix-vector multiplies of the Hamiltonian on
a previously computed vector. The RSPF employs a sp
operator approach which partitions the action of the kine
energy matrix into a succession of 232 matrix operations on
a known vector. It should be noted that all of these tim
propagators are efficiently implemented on distribute
memory massively parallel computers.

The treatment of the kinetic energy operator forms
main difference in the implementation of the propagati
techniques. The SOD and RSPF methods discretize the
netic energy operator using the simplest three-point, cen
finite difference~FD! formula for the second derivative op
erator. In the RK method, the spatial wave function is e
panded in a discrete variable representation~DVR! @34,35#
based on Gauss-Hermite quadrature. The DVR has the
vantage, shared also by the FD method, that the matrix
ments of all local operators are diagonal and equal to th
value on the spatial grid. The DVR kinetic energy operato
dense in each dimension compared with the FD approa
however, it also provides a much more accurate represe
tion of the derivatives than does the simple FD approxim
tion. All of the methods scale formally with the number
spatial grid points, although the prefactor is different f
each. Grids of the order of 2003 points are used in the SOD
and RSPF, while the DVR approach employs approximat
100 functions in each spatial direction.

III. STATIONARY STATES

Using the diffusion form of Eq.~1! for the condensate
wave function, the GP equation relaxes to the stationary s
of interest. The chemical potentialm and free energy pe
particleE[m2 1

2 ^VH&/N0 may be obtained as a function o
the number of atoms, and the results are summarized
Tables I and II. The values of the chemical potential for t
ground state agree to three significant figures with those
ported earlier@35#. The probability densities in thez50
plane forpx anddxy dark soliton condensates withN05210

51024 are shown in Fig. 1. The line nodes, which a
clearly visible as depressions in the condensate den
widen near the surface as the condensate density decre
and the healing length diverges.

If the GP equation is relaxed subject to orthogonality co
6-2
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straints with previous solutions, many additional station
states may be found. The firsts-wave excited state, with
f (r )51 and constrained to be orthogonal to the ground st
has an ellipsoidal nodal surface centered about zero.
excited state withf (r )52x221 and constrained to be or
thogonal to the ground state has two nodal surfaces w
intersect thex axis.

The numerical calculations indicate that the average
ergy per particle for a black soliton is independent of bo
geometry and particle number in the TF limit; this is in co
trast with the energy per particle of an isolated vortex in
cylindrical trap, for example, which varies asDEv
;(5/2R2)ln(R/j), whereR5(15h0)1/5 and j;1/R are, re-
spectively, the mean TF radius and the healing length
units ofdx @12#. For largeN0, the energy differences~both in
the chemical potential and free energy! between thepx and
ground states converge to a constant value of approxima
0.7 in units of\vx . The energy differences of thepy andpz
states are simply scaled bya and b, respectively; i.e., the
soliton energy isDEs'0.7 in units of\vy and\vz . Simi-
larly, the energies of thedab states are approximatelyDEs
'0.7(a1b).

The energy of the black soliton relative to the ground st
is close to the energy\v/A2 of the ‘‘anomalous mode’’ in
the Bogoliubov spectrum of a one-dimensionalp-wave state
in the TF limit @19#. This excitation has positive energy b
negative norm~or vice versa!, and has been associated wi
the oscillation of a dark soliton in the trapped condensat
frequency v/A2 @18,27#. In nonlinear systems, howeve
there is no direct relationship between the energy differen
among self-consistent states and the collective excitat
from these states; for example, the precession frequency~or
anomalous mode! for an isolated vortex in a cylindrical TF
condensate is notDEv /\, but rather3

5 DEv /\ @12#. Indeed,
as shown below, the energy of a black soliton displaced fr
the trap center is always smaller than\v/A2.

IV. PERTURBATIVE ANALYSIS

A. Thomas-Fermi limit

The soliton energy may be calculated using a bounda
layer correction to the TF wave function@18,36#. The px
state requires a plane of nodes atx050, but in principlex0
can take any value since an oscillating dark soliton beco

TABLE I. The chemical potentialm and free energy per particl
E of the ground state~subscript 0) andp-wave dark solitons ori-
ented alongx, y, and z are given as a function of the number
atoms in the condensateN0 in units of \vx .

N0 m0 E0 mx Ex my Ey mz Ez

210 3.57 2.99 4.40 3.87 4.79 4.27 5.36 4.8
212 5.42 4.20 6.20 5.02 6.56 5.40 7.09 5.9
214 8.90 6.59 9.64 7.36 9.98 7.71 10.47 8.2
216 15.13 10.96 15.85 11.70 16.17 12.03 16.63 12.
218 26.10 18.75 26.80 19.47 27.12 19.79 27.57 20.
220 45.28 32.41 45.94 33.10 46.28 33.43 46.72 33.
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black at its classical turning point@18,27#. The condensate
density will have the TF form everywhere except in a sm
region nearx0, where the kinetic energy drives the wav
function to zero.

In order to define a suitable perturbation parameter, i
convenient to further rescale the static GP equation~1!,
where the left side becomesm̃c(rW), as follows: $x,y,z%
5R$x̃,ỹ/a,z̃/b%, m̃5m/\vx5R2/2, h̃05h0ab/R5, and
c25c̃2ab/R3. Now, the normalization of the wave functio
takes the form 4ph̃05*d3r̃ c̃2. For a condensate in the T
limit with a soliton normal to thex axis, one may neglect the
kinetic energy contributions except in thex direction. The
rescaled GP equation then effectively has cylindrical symm
try:

F2
e

2

]2

]x2 1
1

2
r̃ 21c̃22

1

2G c̃50, ~4!

wheree5R24 is small in the TF limit, andr̃ 25 x̃21 ỹ21 z̃2

5 x̃21 r̃2.
In the outer~slowly varying! region, one expandsc̃out

5x01ex11•••. The TF result is recovered to zeroth ord

in e: x056A(12 r̃ 2)/2. Of course, this solution is inconsis
tent with the boundary conditionc̃( x̃5 x̃0)50, implying the
existence of a boundary layer nearx̃; x̃0. In this region, the

outer solution is asymptoticallyx0;6A(12 r̃22 x̃0
2)/2.

TABLE II. The chemical potentialm and free energy per par
ticle E of the ground state~subscript 0) andd-wave dark solitons
with nodes along (x,y), (x,z), and (y,z) are given as a function o
the number of atoms in the condensateN0 in units of \vx .

N0 m0 E0 mx,y Ex,y mx,z Ex,z my,z Ey,z

210 3.57 2.99 5.63 5.16 6.20 5.74 6.60 6.15
212 5.42 4.20 7.33 6.22 7.87 6.77 8.23 7.16
214 8.90 6.59 10.72 8.48 11.21 9.00 11.55 9.3
216 15.13 10.96 16.89 12.77 17.35 13.26 17.67 13.
218 26.10 18.75 27.83 20.51 28.27 20.97 28.59 21.
220 45.28 32.41 46.94 34.12 47.38 34.57 47.73 34.

FIG. 1. The probability densities in thez50 plane for~a! px and
~b! dxy dark soliton states withN521051024 are shown as 2D
contour maps, where radial distances are in scaled trap unitsdx .
Trap parameters arevx5(2p)177 rad/s,a5A2, andb52.
6-3
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For the inner region it is preferable to definex̃[ x̃01dX,
where the boundary-layer thickness isd!1 and uXu@0 are
the regions where the inner and outer solutions must ma
Since the asymptotic behavior of the outer solution is know
the inner wave function may be expanded asc̃ in

56A(12 r̃22 x̃0
2)/2@F01dF11•••#. To lowest order in

d, Eq. ~4! becomes

F e

d2

]2

]X21~12 r̃22 x̃0
2!~12F0

2!GF050. ~5!

The ‘‘distinguished limit’’ giving a nontrivial solution corre
sponds tod5Ae5R22. WhenuXu@0, F0;1 giving a per-
fect asymptotic match. With the substitutionX

5Z/A1
2 (12 r̃22 x̃0

2), Eq. ~5! becomes the well-known
equation for a dark soliton in the continuu
2(1/2)(d2/dZ2)F01F0

32F050, yielding the exact solu-
tion for the inner wave function F0(X)

5tanh@XA 1
2 (12 r̃22 x̃0

2)#.
The uniform solution for the wave function over all spa

may be written asc̃unif5c̃out1c̃ in2c̃over, wherec̃over is the
solution in the overlap regionuXu@0:

c̃unif~ r̃,x̃.
,!57A12 r̃22 x̃2

2
1A12 r̃22 x̃0

2

2

3H tanhFA12 r̃22 x̃0
2

2
R2~ x̃2 x̃0!G61J ,

~6!

where thex̃, andx̃. correspond tox̃, x̃0 andx̃. x̃0, respec-
tively. In principle, the chemical potential may now be fou
directly from the normalization condition 4ph̃0

5*d3r̃ c̃unif
2 . In practice, however, the large number of cro

terms resulting from squaring Eq.~6! makes this unnecessa
ily complicated. Rather, the integral overx̃ is split into three

regions:~i! 2A12 r̃2< x̃< x̃a ( x̃a, x̃0), ~ii ! x̃a< x̃< x̃b ( x̃b

. x̃0) or Xa<X<Xb (Xa→2` and Xb→`), and ~iii ! x̃b

< x̃<A12 r̃2. Since the inner and outer solutions are a
ymptotically equal in the overlap regions, the result can
depend on the particular choices ofx̃a and x̃b . One readily
obtains

h̃05
abh0

R5 5
1

15
2

A2

6R2
~12 x̃0

2!3/2, ~7!

which may be inverted to yield the chemical potential for t
soliton state
05360
h.
,

s

-
t

m̃s5
ms

\vx
5

1

2
~15abh0!2/51

1

A2
~12 x̃0

2!3/2

5m̃TF1
1

A2
~12 x̃0

2!3/2. ~8!

The correction to the chemical potential in the TF limit
1/A2 when the soliton is at the originx̃050, corresponding
to the p-wave state, and is zero when the soliton is at
surface of the cloudx̃051. Sincem5]E/]N, the energy per
particle for the soliton is

Es

N0
5

5

7
mTF1

1

A2
~12 x̃0

2!3/2\vx .

The corrections forx̃050 agree with the numerical val
ues, and are independent of both geometry and numbe
this level of approximation. Physically, the dark soliton ha
constant energy as the number of atoms increases, bec
its area increases asR2 while its width diminishes asj2

;1/R2 @12#. A similar invariant is used as a measure
soliton stability in optical fibers@37#. As the transverse soli
ton confinement becomes more appreciable~i.e., by increas-
ing the frequenciesvy andvz), however, the kinetic energy
in this direction will grow, and the low-order boundary-lay
result will lose its validity.

Two views of a black soliton state defined by Eq.~6! are
shown in Fig. 2. In the first, the density with a soliton di
placed from the origin,x053dx , is shown along thex axis,
and is compared with the TF ground-state solution. The c
densate containing a notch soliton bulges slightly overal
order to conserve the total number of atoms; the radii for

TF and soliton states aredxA2m̃TF and dxA2m̃s, respec-
tively. In the second view, the soliton state is shown a
density plot in thexy plane. The boundary-layer theory t
lowest order captures the divergence of the healing lengt
the vicinity of the cloud surface. In actuality, a displac
soliton would most likely be curved; such a curvature
found for traveling dark solitons@27# and for displaced vor-
tices in rotating trapped condensates@13,14#.

FIG. 2. The boundary-layer approximation~6! for a condensate
containing a soliton atx053dx is shown for N052185262 144
atoms,vx5(2p)177 rad/s,a5A2, andb52. In ~a!, the view is
along thex axis; the solid and dashed lines correspond to the sol
and TF ground states, respectively. In~b!, the soliton state is de-
picted as a density plot in thexy plane, and the box size is 16dx and
11dx in the x andy directions, respectively.
6-4
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B. Low-density limit: Energy differences and anomalous mode

The boundary-layer analysis indicates that the energy
the self-consistentpx state in the TF limit is exactly equal t
the frequency of the anomalous mode in the Bogoliub
spectrum. In order to determine whether this holds for
densities, it is useful to consider the opposite limit of sm
condensates where analytical results can be easily obtai

The perturbation expansion for the time-independent
equation~1! requires expanding the condensate wave fu
tion c5c01lc1 and chemical potentialm̃5m̃01lm̃1 in
powers ofl[4ph0. The normalized unperturbedpx state is

c05S 4ab

p3 D 1/4

xe2(x21ay21bz2)/2 ~9!

and m̃05 1
2 (31a1b). Making use of the readily derived

expression for a purely real condensate wave function

m̃15E d3rc0
45

3

8p
Aab

2p
, ~10!

one immediately obtains the first-order correction to
chemical potential

m'S m̃01
3

2
Aab

2p
h0D \vx . ~11!

The low-lying excitations« may be obtained using th
Bogoliubov equations

~2 1
2 ¹21Vtrap12VH2m̃ !u2VHv5 «̃u,

~12!
~2 1

2 ¹21Vtrap12VH2m̃ !v2VHu52 «̃v,

whereu5u(r ) andv5v(r ). These equations may be writte
in the more convenient form (H01lH1)C5 «̃C, where

H05S 2 1
2 ¹21Vtrap2m̃0 0

0 1
2 ¹22Vtrap1m̃0

D ,

~13!

H15S 2c0
22m̃1 c0

2

2c0
2 m̃122c0

2D , C5S u

v D .

For arbitrary trap anisotropy, there are always two degen
ate modes with energy«̃5«/\vx51 in the unperturbedpx
state; these are the dipole and anomalous modes with p
tive and negative unit norms, respectively:

C15S 1

0D S ab

4p3D 1/4

~2x221!e2(x21ay21bz2)/2, ~14!

C25S 0

1D S ab

p3 D 1/4

e2(x21ay21bz2)/2. ~15!

Note that the ‘‘ground state’’ is thep-wave condensate wav
function given in Eq.~9!. The degeneracy between the
states is lifted by the perturbing HamiltonianH1, and the
05360
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first-order corrections to the eigenvalues follow directly fro
the diagonalization of the resulting nonsymmetricg3g ma-
trix

^C i uH1uC j&, i , j 51,2, . . . ,g, ~16!

where g is the degeneracy. Direct application of Eq.~16!
with g52 yields no finite-number correction for the dipo
mode, as expected, while the energy of the anomalous m
becomes

«a'S 12
1

4
Aab

2p
h0D \vx . ~17!

Evidently, the value of the anomalous mode in thepx state is
not generally equal to the difference~10! in the chemical
potentials between thep-wave ands-wave states,

Dm5S 11
3

2
Aab

2p
h0D \vx . ~18!

Indeed, the perturbative corrections do not even have
same sign.

C. Low-density limit: Complex modes

It is instructive to consider the special case where all
the trapping frequencies are equal,a5b51. In this geom-
etry, according to Ref.@19#, an infinitesimal condensat
number gives rise to pure imaginary frequencies. Assumin
px state, one may definer2[y21z2 and block-diagonalize
the Hamiltonian into states of definite angular moment
Lx5m\. In them50 manifold, in addition to the dipole~14!
and anomalous~15! excitations, there is a third mode wit
«̃51:

C35S 1

0D 1

p3/4
~12r2!e2(x21r2)/2. ~19!

Diagonalizing the resulting 333 matrix ~16!, one again ob-
tains no correction for the dipole mode. The remaining d
generate modes, however, split into complex-conjugate p
with energies

«5F12
1

8A2p
~36 iA7!h0G\vx . ~20!

These results are compared with numerical calculations f
spherical trap in Fig. 3. The numerics are extremely close
the expression~20! for small h0, but show deviations by
h0;0.1.

The corresponding complex eigenvectors both have z
norm*d3r (uui u22uv i u2)[*d3r C i* s3C i50, and satisfy the
boundary conditionsu,v→0 asr→`:

C285C12A2C22
A2

4
~12 iA7!C3 , ~21!
6-5
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C385C12A2C22
A2

4
~11 iA7!C3 . ~22!

The condensate coupling between the axial and radial mo
gives rise to modes with frequencies that arecomplex, rather
than purely imaginary as assumed in@19#. It is important to
note that the existence of complex Bogoliubov excitatio
does not violate the general condition on the quasipart
amplitudes@7#:

~« i2« j* !E d3r ~uj* ui2v j* v i !50. ~23!

If i 5 j and « i is complex, the corresponding particle-ho
eigenfunction must have zero norm.

For any given number of condensate atomsN0 in a cylin-
drically symmetric trap, there is a critical anisotrop
vr /vx5a such that all the Bogoliubov excitations of th
p-wave state become purely real@19#. Indeed, in the limit
N0→0 considered here, anya.1 is sufficient to ensure the
disappearance of the complex modes because the degen
between the anomalous and transverse modes is broke
the anisotropy.

For a,1, complex modes can arise in manym states. In
this regime, there exist numerous additional unpertur
anomalous modes with energy«̃nm512a(2n1m)>0 but
negative norm~sinceu50) that are degenerate with eige
states having energy«̃n8m85a(2n81m8)21[«̃nm and
positive norm (v50). It is interesting to determine if the
nonlinear coupling among these degenerate modes gives
to complex excitations even in the limit of vanishing tran
verse confinement,a→0. Consider them50 manifold and
a51/q with even integerq→`. Degeneracies occur whe
the axial quantum numbers for both theu andv are zero and
the radial numbers arenu5(q/2)1p andnv5(q/2)2p, re-
spectively, where 0<p<(q/2). Whenp5(q/2), the unper-
turbed energy is«̃051, but since the terms in Eq.~16! in-

FIG. 3. The real~solid lines! and imaginary~dashed lines! part
of the complex excitation frequencies form50 are shown as a
function of h05N0a/d0 for a spherical trap. Light and dark line
correspond to analytical~20! and numerical calculations, respe
tively.
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volving C3}Lq
(0)/q! will be smaller than the other terms b

a factor 1/q!, this complex mode vanishes in the limitq
→`. In the opposite limitp50, the unperturbed energy i
«̃050, and the quasiparticle amplitudes become

u5v5
Lq/2

(0)~r/Aq!

p3/4Aq~q/2!!
e2(r2/q1x2)/2

;J0~A2r!e2x2/2, q→`. ~24!

Note that thisu5v solution has evenx symmetry and there-
fore does not correspond to the Goldstone mode. The c
densate wave functionc in Eq. ~9! becomes independent o
r, and the 232 matrix ~16! immediately yields the imagi-
nary eigenvalues

«56 iA3p

2
n0adx

2\vx , ~25!

where n05N0 /V is the condensate density in the syste
volumeV. The same solution is found for all values ofm in
this limit. Thus, even in the absence of transverse confi
ment, the excitation spectrum of thepx state contains com
plex modes, in agreement with the results of Ref.@19#.

Additional insight into the limit of transverse deconfin
ment may be gained by assuming translational invarianc
x̂ and ŷ at the outset. With the axial quantum numbers ze
the unperturbed energies for theu and v become «̃0

u

5 1
2 (ky

u21kz
u2)21 and«̃0

v512 1
2 (ky

v21kz
v2). When these are

degenerate, the off-diagonal couplings are nonzero onl
ky

u5ky
v5ky and kz

u5kz
v5kz , enforcing the condition«̃0

u

5 «̃0
v50 andky

21kz
25k252. Note that the unperturbed en

ergy «050 and relevant wave vectoruku5A2 are the same
as in the infinitely weak trap limit considered above. T
perturbing matrix~16! consists of an infinite number of iden
tical 232 submatrices for a given value ofkx and ky

5A22kx
2. Each submatrix corresponds to a different val

of m in the cylindrical case considered above, and yields
imaginary modes

«k56 iA3p

2
n0adx

2 \2k2

2M
56 iA3p

2
n0adx

2\vx , ~26!

in agreement with the result~25!.
Summarizing the results of this section, in the limit

weak particle interactions or low condensate densities,
have found that the anomalous mode frequency does
correspond to the frequency difference between the exci
and ground-state energies. In addition, solitons are unst
in a sufficiently loose trap. For solitons oriented in the rad
direction of a cylindrically symmetric trap, imaginary eige
values appear in the Bogoliubov excitation spectrum wh
the axial frequency begins to exceed the radial frequen
These modes persist in the limit of vanishing radial confin
ment.
6-6
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V. COMPLEX EXCITATIONS AND SNAKE INSTABILITY

The explicit connection between the existence of exc
tions with complex frequencies and the dynamic instabi
of thep-wave state remains unclear. This ‘‘snake instabilit
is well known in the nonlinear optical community@21#, and
is associated with the undulation of the nodal plane in
radial direction. It has been conjectured that the comp
modes are responsible for the snake instability@19#; how-
ever, these modes have zero norm by definition~23!, so it is
not clear how they can become occupied. It is importa
therefore, to determine if the wavelength of the undulat
matches the spatial dependence of complex modes in
Bogoliubov spectrum, and if the snake instability disappe
when the excitation frequencies become purely real.

The low-lying complex modes for a stationaryp-wave
condensate are determined numerically using the Bogoliu
equations~12!. For ease of computation, the trap is assum
to be cylindrically symmetric,r25y21z2, with the conden-
sate wave function odd under reflection in axial directionx̂.
In Fig. 4 are shown the complex modes in the excitat
spectrum as a function of radial confinement, for a trap w
axial frequencyvx52p350 rad/s containing a condensa
with 104 atoms. All complex modes have even axial pari
For relatively weak trap anisotropyvr /vx[a&3, there are
several complex modes with angular momentum projecti
m50,1,2. As a increases, these modes disappear in t
until only one purely imaginary mode withm51 remains.
Its magnitude reaches a maximum ata'6, and vanishes a
a'10. A similar removal of the imaginary modes can
effected by decreasing the particle number at fixed geome
For a51 andvx/2p550 Hz ~the spherical trap considere
in Fig. 3!, complex eigenvalues exist in the excitation spe

FIG. 4. The real~filled symbols! and imaginary~open symbols!
parts of the low-lying complex excitation frequencies are given a
function of the trap anisotropya[vr /vx for a cylindrically sym-
metric trap, where the condensate is in apx state with 104 atoms
andvx52p350 rad/s. Excitations withm50, 1, and 2 are repre
sented by circles, squares, and diamonds, respectively; the da
line denotes the TF estimate of the anomalous mode.
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trum for 0>N0&5000, and pure imaginary modes begin
appear only whenN0 exceeds approximately 12 000.

For large anisotropya@1, the stability criterion is ex-

pected to be approximatelyac>m̃/2.4 @19#, where m̃
5m/\vx . In the TF approximation,ac>7.6 for the geom-
etry considered above. The larger valueac'10 found here is
likely due to deviations from the TF limit; the radial wav
function approaches a Gaussian when the transverse con
ment is strong. Whena510, the TF chemical potential is
mTF523.88\vx while the actual value is determined to b
m'26.89\vx .

The dynamic stability of dark soliton excited states is
vestigated by propagation of the GP equation inreal time for
an extended period. In the absence of an applied pertu
tion, the self-consistent states should remain absolutely
tionary. In practice, however, numerical noise inherent in
propagation algorithm is magnified by the nonlinearity. A
though the norm and chemical potential are conserved to
part in 1012 and 1015, respectively, during the numerica
propagation, the kink state eventually decays. In order
make contact with the complex excitation frequencies in F
4, we considered the casesa51, 6, and 10. For the first two
cases, the modes with the largest imaginary component
«50.63i\vx and 1.74i\vx ; thep-wave states were found t
decay in real time in approximately 160 ms and 40 ms,
spectively. The third case witha510 remained stable for the
longest propagation time considered, 200 ms. Thus, the
time of thep-wave state appears qualitatively to scale w

FIG. 5. The spatial variation of the mode in the Bogoliub
spectrum with the largest imaginary componente52.16i\vx is
shown for apx-wave condensate containing 105 atoms in a spheri-
cal trap vr /vx51 with vx52p350 rad/s. The axial (r50, x
.0) and radial (x50) dependences of the complexu amplitude are
shown in~a! and ~b!, respectively~note thatc and u are odd and
even in x, respectively, and thatuuu5uvu for this pure imaginary
mode!. The axial dependence of the condensate wave functio
shown for comparison in~a!.

a

hed
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FIG. 6. ~Color! Snapshots of the snake instability are shown for apy-wave condensate containing 105 atoms in a spherical trap with
v52p350 rad/s. Times after the initial formation of the soliton state are 47 ms, 50 ms, and 77 ms for~a!–~c! and~d!–~f!. In ~a!–~c!, the
brightness is proportional to the condensate density, and the images correspond to densities integrated down the line of sight. In~d!–~f!, the
brightness isinverselyproportional to the condensate density, and regions outside the TF sphere are rendered transparent in order to
nodes in the condensate interior; the color corresponds to the phase:f50 through 2p is represented by the sequence red-green-blue-
The view is perpendicular to the nodal plane; prior to the snake instability, the black soliton would appear as a featureless disk.

FIG. 7. ~Color! The breakup of apy state is
shown as a function of time forN05106 atoms,
vx5(2p)14 rad/s,a5A2, andb52. From the
top left to the bottom right in raster order ar
shown timest515 ms through 20 ms in 1 ms
increments after the initial state is formed. Th

view is along ŷ, and the Hamiltonian was con

strained to even parity alongx̂ and ẑ for ease of
computation. The rendering is identical to that
Figs. 6~d!–6~f!. The filamentation is almost en
tirely constrained to the original nodalxz plane.
053606-8
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the inverse of the largest imaginary mode in the excitat
spectrum.

As illustrated in Figs. 5 and 6, there is a close similar
between the spatial variation of the eigenmode with the la
est imaginary component and that of the soliton nodal pl
during the initial decay. For ap-wave state such as the on
considered above but with 105 atoms, the relevant excitatio
is purely imaginary, with an energye52.16i\vx , and uuu
5uvu ~as is the case for all pure imaginary modes!. Figure 5
shows the corresponding radial and axial dependences o
complexu Bogoliubov amplitude. The quasiparticle amp
tudes are highly localized axially, but oscillate radia
within the soliton nodal plane. It is interesting to note th
the imaginary components of the excitation energies ten
decreaseas the number of radial nodes increases; this beh
ior is due to the effective negative kinetic energy of the d
soliton @18#, and is reminiscent of internal waves at the i
terface between layers in stratified fluid mixtures@38#.

In Fig. 6, snaphots of the snake instability are shown fo
py-wave state in a spherical trap@for convenience, the axis
perpendicular to the nodal line is taken to be alongŷ, the
vertical direction in Fig. 6~a!–6~c!#. The GP equation is
solved on a Cartesian mesh with no parity restrictions. A
approximately 40 ms of real-time propagation, the black s
ton begins to undulate. The spatial variations are symme
about they axis, originating near the center and propagat
outwards. The overall shape follows closely that of the la
estu amplitude shown in Fig. 5: the two radial nodes of th
imaginary excitation correspond to stationary points in
soliton bending. At an intermediate time, Fig. 6~e!, the soli-
ton has decayed into two concentric vortex rings whose co
are located at these nodes. The outer vortex ring decays
idly ~by 75 ms! to the condensate surface, where it shrin
considerably, as shown in Fig. 6~f!; the inner ring was found
to remain stable for much longer times. The vortex rings
barely visible in the integrated densities shown in Fig. 6~a!–
6~c!, so we expect the experimental observation of these
triguing features using standard absorption imaging to b
challenge. The decay of the soliton into vortex rings p
duces a large number of density oscillations, which are
quired in order to conserve the total energy of the system
which are undamped in the present formalism. At long tim
these oscillations are most evident at the condensate sur
giving rise to the bright halo in Fig. 6~f!.

It is interesting to investigate the snake instability for p
rameters relevant to recent experiments on dark soliton
trapped condensates@27#. Figure 7 shows the breakup of
black soliton in a completely anisotropic trap containing o
million Na atoms. The undulations are already pronoun
by 12 ms, and radiate outwards from the soliton center
found above. Unlike the spherically symmetric condens
shown in Fig. 6, however, the soliton does not decay i
concentric vortex rings far from its center, but rather into
series of approximately evenly spaced curved vortex line
the direction of weakest confinement~taken to bex̂). The
results imply that the largest imaginary mode in the Bog
liubov excitation spectrum has an energy of;6\vx and has
14 nodes alongx̂. At longer times, the innermost two vorte
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rings make contact with one another, and subsequently
tach into a vortex line and a ring. The simulations indicat
rich dynamics among quantized vortices in these syste
that are only beginning to be explored@39#.

VI. FIELD EXCITATION

Several techniques have been proposed for the exp
mental production of dark solitons in trapped condensa
including adiabatic Raman transitions to thep-wave state
@16#, preparation of the condensate in a superposition of
internal states@17#, collisions between two separate conde
sates@40#, and phase imprinting@41#; the last approach wa
recently implemented experimentally@26,27#. For small par-
ticle interactions, the self-consistent excited states~such as a
p-wave or d-wave condensate with at least one station
dark soliton! approach the noninteracting single-particle e
citations of the harmonic trap. In this regime, it might b
possible to transfer most of the condensate into a sol
state by applying an external field resonant with the ene
difference between the ground and excited self-consis
states.

We have attempted to excite thedxy dark soliton state for
a small condensate containingN051024 atoms in a com-
pletely anisotropic trap, shown in Fig. 1~b!. The field excita-
tion is modeled by a large-amplitude time-dependent spa
perturbation in the GP equation~1! given by Vadd(r ,t)
5A(t)xy cos(vpt), where the amplitudeA(t) is 25% of a
trap energy\vx and includes a smooth turn on and turn o
as a function of time. The probe frequency is set atvp

52.06, which is the separation in chemical potential of t
ground and firstdxy state~cf. Table II!.

The time-dependent probability density in thez50 plane
is shown in Fig. 8 with snapshots att5Tp , 4Tp , 7Tp , and
10Tp , where Tp52p/vp'0.5T. At t5Tp , the wave-
function overlap with the ground state is 0.98 and with t
dxy state is 0.01. Untilt54Tp , the wave-function overlap
with the ground state decreases monotonically to 0.57, w
the overlap with thedxy state increases to a maximum
0.25. Thereafter, as illustrated at timest57Tp and
t510Tp , the wave function overlaps with both the groun
state and this particular dark soliton state decrease. While
perturbing potential is not able to yield adxy state, the last
image in Fig. 8 att510Tp shows the formation of a numbe
of depressions in the probability density at the very edge
the condensate, corresponding to multiple vortices with b
senses of circulation.

The inability of a field excitation to produce dark soliton
in not surprising, in light of the snake instabilities discuss
in Sec. V. Dark solitons are unstable against the formation
vortices under ideal conditions, and are increasingly unsta
in the presence of an external perturbation. Nevertheless
plying a very large amplitude perturbation may be a via
alternative approach for the formation of vortices in syste
6-9
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with much larger condensate densities; this possibility
mains for future work.

VII. CONCLUSIONS

In summary, self-consistent ground and excited states
condensate in an anisotropic harmonic trap are calculate

FIG. 8. The probability density in thez50 plane for the time
evolution of the ground state withN51024 under a time-varying
spatial perturbation is shown as a contour map at~a! t5Tp'0.5T,
~b! t54Tp , ~c! t57Tp , and ~d! t510Tp . Radial distances are in
scaled trap unitsdx , and trap parameters arevx5(2p)177 rad/s,
a5A2, andb52. In ~d!, density minima at the top and bottom
correspond to vortices, those at left and right to antivortices.
v.

th

v

s
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direct solution of the time-dependent GP equation in th
dimensions. The energy of a dark soliton at the center of
trap, relative to the true ground state, is found to be indep
dent of both the number of atoms and the trap geometry
the TF limit, with a value equal to the soliton oscillatio
frequency. In the weakly interacting limit, however, the e
ergy of the anomalous mode does not equal the energy o
dark soliton. In both limits, the low-lying Bogoliubov exci
tation spectrum ofp-wave states is found to contain mod
with complex frequencies, which may be removed by stro
trap confinement in the soliton plane or by decreasing
condensate density. These complex modes are shown to
rise to the snake instability of the solitons observed in re
time propagation of the GP equation. In extended trap ge
etries, the solitons are found to decay into vortex lines a
rings at long times, imposing constraints on the ability
generate and observe these intriguing excitations in cur
experimental geometries.

Note added in proof: Since submission of this manuscrip
the authors became aware of another article@42# addressing
the generation and properties of self-consistent excited st
of a trapped Bose–Einstein condensate.
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