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Bose condensates at high angular momenta
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We exploit the analogy with the quantum HafQH) system to study weakly interacting bosons in a
harmonic trap. For @&-function interaction potential the “yrast” states with=N(N—1) are degenerate, and
we show how this can be understood in terms of Haldane exclusion statistics. We present spectra for four and
eight particles obtained by numerical and algebraic methods, and demonstrate how a more general hard-core
potential lifts the degeneracies on the yrast line. The exact wave functioMs=fdr are compared with trial
states constructed from composite fermid@s$), and the possibility of using CF states to study the low
region at highN is discussed.

PACS numbeps): 03.75.Fi, 05.30.Jp, 73.40.Hm

The close relation between high angular momentum statefermionic techniques could be useful foras low asN, i.e.,
of a condensate afeaklyinteracting hard core bosohts—3]  for the so-called single vortex state. Although we will return
and the quantum HallQH) effect was recently pointed out to this point at the end of the paper, we shall for now, with-
[4—6]. The essential observation is that the weak interactiomut any further apologies, consider the theoretical problem of
limit allows for a two-dimensional description of the boson understanding the regioN(N—1)<L<2N(N—1) of the
system in terms of lowest Landau levglLL ) wave func-  yrast line.
tions [4], just as for a QH system, and they are both de- The simplest model for a hard-core interaction is a delta
scribed by wave functions containing powers of thefunction potential. We thus consider a modeNbvinteracting
Laughlin-Jastrow factofl; -;(z —z;), wherez is the com-  spinless bosons in a harmonic trap of strengthn the limit
plex coordinate of théth particle. As pointed out by Cooper of weak interaction, this may be rewrittgd] as a two-
and Wilkin [6], the two systems can in fact be mapped ontodimensional lowest Landau levélLL) problem in the ef-
each other by a standard Leinaas-Myrheim transformatiofiective “magnetic” field Bes=2mw with the Hamiltonian
[7], attaching an odd number of units of statistical flux totaking the form
each particle.
This enables us to use both intuition and techniques from
the QH system to study rotating Bose condensates. In this H=wlL+g> &(ri—r)) (1)
paper, we shall mainly discuss the angular momentum region =
N(N—1)<L=<2N(N-1), where the ground state corre- .
sponding to as-function two-body interaction is degenerate. (A =1), whereL=X;l;=L is the total angular momentum.
We explicitly show how these degeneracies can be underthe single-particle states spanning our Hilbert space are
stood via a mapping to a system of free anyons in the LLL,770,=(2'"17l!) “V%! exp(~zz/4) with z=\2mw(x+iy).
and then show how the degeneracy is broken by a more In Figs. 1 and 2 we show the interaction energy, in units
general short-range potential containing derivatives of deltaf g/47 as a function of the total angular momentuufor
functions. We also make a detailed comparison between aN=4, L<20, andN=8, 30<L<56, respectively. The
gebraically calculated exact wave functions and trial waveamany-body states are obtained from Lanczos diagonalization
functions formed from so-called compact states of compositsuitable for large and relatively sparse matri¢&6]. The
fermions, a construction orginally due to Jain and Kawamurdock space is spanned by single-particle states that are char-
[8]. In particular, we will emphasize the importance of aacterized only by the positive qguantum numbkrsrhere 0
certain class of wave functions where the polynomial part is<sl<L. (Similar exact diagonalization studies have recently
translationally invariant. been reported ifi6] and[11].) We note the following prop-
Although for computational reasons we have results onlyerties in the many-body spectra: Since increasing the angular
for few particlesN=4, 6, and 8, it is clear that some of our momentum spreads out the particles in space, the yrast en-
results, like the degeneracy structure of the yrast line, holergy, i.e., the lowest possible interaction energy for giken
for any N. We also believe that many features of the resultsdecreases with increasing For each state in the spectrum,
for the CF wave functions will generalize to highsr there exists a set of “daughter states” with higher values of
Since the flux attachment changes the angular momentuin, having exactly the sam@nteraction energy as the origi-
by mN(N—1)/2, wherem is the number of fluxes attached, nal state. These daughters are simply center-of-mass excita-
the boson-fermion mapping would apparently only be usefutions of the original states, thus having the same many-body
for studying angular momenta that are out of reach of presertorrelationg 12].
experimentd9] (which are limited to the strong interaction For L=N(N—1) there are zero energy states, which can
regime and_~N). However, there are some indications thatbe understood by noting that any wave function of the form
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1 YrastLine o_g_g § § i ! g ! ! ! ! =12(=L,), 13, and 14. TheL=12 andL =13 states are non-
o 1 degenerate, whereds= 14 has degeneracy 2.
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is known[13-15 that anyons in the LLL obey Haldane’s
. . . . fractional exclusion statisticES [16], and following Ref.
0 5 10 15 20 [13], one can use this knowledge to construct the allowed
Angular Momentum L many-body states for giveN andL as angular momentum

excitations of the Laughlin-like state at=N(N—1). Ac-
FIG. 1. Many-body spectra di=4 weakly interacting bosons cording to the definition of FES, each particle in the system
in a harmonic trap fol.<20. The dashed line connects the yrast blocks =2 single-particle states, and many-particle states
states with total angular momenturh are constructed by occupy-
ing single-particle states, with a minimum distancenof 2
5 between each pair of occupied levéfsr an example, see
W(21,2;, . .. *ZN):L[ (z2—2)°S(21,22, ... 28), (2) Fig. 3. The number of allowed configurations then gives the
. degeneracy of the state for a given
Table | shows the degeneracies of some of the states on
the N=4 yrast line, as obtained from the anyon mapping,
and they are in exact agreement with our numerical results.
This construction implicitly uses the fact that all the
! . . . eigenstates on the yrast line far>N(N—1) contain the
At L=N(N—1) there is a unique state with zero Interac'\]astrow factoil;_j(z —zj)z, so the degeneracies can also be

tion energy corresponding &(z,,z;, ... .zy) =1, while the ¢\, 4 o5 vhe number of ways one can distribMte= L — L
states at highdkr typically are degenerate. The systematics of'tlnits of angular momentum amomgparticles 0
In )

these d_egeneracies can be understood by a mapping_ For a more general hard-core potential, Exe 0 states on
anyons in the lowest Landau level. The essential observatm{?1 ’

is that the wave function§2) describe anyons in the LLL
with statistics parameter=2 [13] (in general, the statistics
parameter is given by the exponent of the Jastrow factor

where S(z1,25, .. .,zy) IS a symmetric polynomial in the
z's, has zero interaction energy. Since the fadtior(z
—zj)2 contributes an angular momentutry=N(N—1),
states of the typ€2) exist forL=L,,.

e yrast line abové =N(N—1) are no longer degenerate.
To demonstrate this point and study how the degeneracy is
broken, we add a potential of the form

; V=c,V26%(z—2')+¢c,V*6%(z—2'), €)
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that was originally used by Trugman and Kivelsdt®?] in
the context of the fractional QH effect. The termV?26%(z
—Z2'") does not contribute to the interaction energy for fully
symmetric states, whereas tiés5%(z—z') term gives small
corrections to the spectra in Figs. 1 anda the percent
! g ] level for the parameters used in the inset of Fig. 4, where we
: ‘ I ! | E ! ! « show regularized forms of the potentidly and(3)].
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We have examined how the potenti@) splits up the

LN ] . . .
degeneracies of the zero interaction energy yrast states, by
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NP 3 4 B\
O prorersmrm s e q TABLE |. Degeneracyd of the lowestL excitations above the
Laughlin state foN=4.

30 35 40 45 50 55 60
Angular Momentum L L 12 13 14 15 16 17 18 19 20

FIG. 2. As Fig. 1, but foN=8 and 36<L=<56, showing only d 1 1 2 3 5 6 9 11 15
the 100 lowest eigenvalues

053604-2



BOSE CONDENSATES AT HIGH ANGULAR MOMENTA PHYSICAL REVIEW A62 053604

6 " " " " ' ' " cusps, i.e., states that are followed by a “plateau” in the
R yrast line, are always in the Tl subspace.
5[ AN o r o The algebraic diagonalization used here is limited in prac-
“\\ R tice to smaller particle numbers and angular momenta than
4 L S S the numerical scheme used in Figs. 1 and 2. However, the
_ \ o e s s g present approach has the advantage that it provides explicit,
2 3 ‘\\ N analytic expressions for the eigenfunctions, in terms of sym-
N | * ‘ * ‘ 3 metric polynomials. This gives some additional insight into
i ot \\ [ - the structure of the yrast states, and in particular the region
\ : below the single vortex in the case of a pure delta function
1t m \ . . interaction. Bertsch and Papenbrddi] recently proposed
it WL ¥ and numerically tested the following form for the yrast states
0 A . at 2<L=<N,
12 14 16 18 20 22 24 26
Angular Momentum L Y (z)= z (Zpl—zc)(zpz—zc)- . -(ZpL—ZC).
P1<Po<---<pL
FIG. 4. Yrast spectrum fd=4 and 12<L <26, for a repulsive 5)

potential V45%(z—z'). Translation invariant eigenstates are de-

noted by diamonds, whereas the crosses denote center-of-mass &@r the special case of the single vortex stateN, this

citations. Inset: Delta function potenti@egularized as a Gaussjan Wwave function was first proposed by Wilkin, Gunn, and

and a potential including the term®), with ¢;=0.023 andc, Smith [4]. Eq. (5) is just the symmetric ponnomieﬂL(Ei),

=0.000 08. We see that the latter more closely resembles a haite | the stat¢0 ... 1...0 (with the 1 in theLth place, in

sphere potential. the notation of Eq.4) (without the Jastrow factor in the
present case of a pure delta function interagtidiis state is

exact algebraic diagonalization, using computer algebra, pagis state in the TI subspace for a#R<N. In the cases
Here we have directly used the for(®), and systematically \yhere this is thenly basis statel(=2,3 forN=3), it is thus

exploited that for a giverL, all states corresponding 10 o igys that Eq(5) is exact. Furthermore, performing the
center-of-mass excitations of lowdr-eigenstates are or- algebraic diagonalization up to=N for N=4 andN=6

thogonal to'the subspacg of.“nevy” states. Thg Iattgr SUb'vve have confirmed that even when the translation invariant
space consists of translation invaridt) polynomials, i.e.,

, ) ) ) » subspace is spanned by more than one basis vector, the basis
functions invariant under a simultaneous, constant shift

. - state(5) is always an exact eigenstate.
—z;+a of all the coordinate12]. Following Trugman and We now turn to a study of a class of wave functions that

Kivelson [12], we have used a basis constructed from el-5n he constructed in analogy with the so-called Jain states
ementary symmetric functions,. For givenN andL, the  {or the fractional quantum Hall effefL7]. The main idea is
basis consists of all possible combinations to map the strongly interacting LLL bosons to weakly inter-
acting composite fermions by attaching an odd nunmhexf
[kiky- - .kn>zs';1(zi)s';2(’zi). . 'SEN(EN)H (z—12))?, flux quanta to each particle. Trial wave functions with angu-
i< lar momentumL are thus constructed as noninteracting fer-
(4) mionic wave functions with angular momentuni
—m/2N(N—1), multiplied by m Jastrow factors and pro-

N - —
such that>,_;nk,=L—Lgy. Note that, forn=2, we have jected onto the LLL,

introduced the new variables=z,—z., with z. the center-
of-mass coordinate,=(Xz)/N. The basis states spanning _
the TI subspace are identified as those wifk 0. The di- =" fez )]l (z—z)™|. (6)
agonalization is thus performed within this subspace only, =)

which reduces the matrix dimension substantially. The "“Here, f is a Slater determinant consisting of single-particle
sulting spectrum foN=4, with the coefficient, in Eq. (3) F 9 gle-p

set equal to 1, is shown in Fig. 4. wave functionsnm(z,z)ocz'L'n(zz/Z), wheren is the Landau
We notice the close similarity between Figs. 1 and 4. Inlevel index (= —n), andL,, a generalized Laguerre polyno-

both cases, the yrast line passes through the same numberrofal.

steps, with the same step lengths,Lais increased byN(N Originally used for the homogeneous states relevant for

—1), to the point where the yrast energy becomes zero. Athe fractional QHE, wave functions of the ty(@® were later

the pointL=2N(N—1), the zero-energy yrast state is again€mployed to describe inhomogeneous systems such as quan-

nondegenerate and of the Laughlin type, i.8,.;(z  tum dots[8,18,19 and recently by Cooper and Wilki] to

—zj)“, whereas the subsequent yrast states have degeneﬁiUdy the bosonic yrast I|_nes for.up to 10 particles in the case

cies corresponding to FES with statistics parameter4. ~ Of @ pure delta function interaction.

Including even higher derivative terms in the repulsive po- In short, the LLL projection in Eq(6) amounts to the

tential would subsequently split up the higher regions of theaeplacementz;—24g; in the polynomial part of the wave

yrast line. Finally, note that the yrast states corresponding tfunction. However, there are several ways of doing this in
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practice, and we shall compare the different projection meth- TABLE II. Overlaps between trial and exact yrast wave func-
ods when constructing trial wave functions for the yrasttions for N=4, O<L<12 and a pure delta function interaction,
states in Figs. 1 and 4. The most straightforward way is ta!sing projection methods lla anddee text

replace thez's with derivatives in the final polynomial, ob-
tained after multiplying out the Slater determinant and the
Jastrow factors and moving als to the left. In practice, this lla 1 1 1 0944 0.962 1 0.997 1
method is applicable only for small particle numbers, whenl 1 1 1 0980 0980 1 0.997 1
the number of derivatives involved is not too large. We shall
refer to this method as “method 1.”

0 2 3 4 6 7 8 12

Alternatively, noting thaf17] NICFM can give a good description of the energy spectrum,
a question that was already discussed in some detail
~ o~ [8,18,19.
izt M e s-function potential In this case we have calculated the
M1 M2 1—[ ap_ | Mr M2 Jain wave functiong6) corresponding to all compact states
: o4 (zi—z)™=| | . , for N=4, 0<L<12, taking m=1 and using projection

_ _ method lla f=1). If there are two compact states with the

N1 N2 N1 TIN2 sameL, we use the one with the lowest CF effective energy.
(7)  In Table Il, we show the overlap with the exact algebraic

wave functions. A “1” indicates that the wave functions are
identical. For comparison we have also included the overlaps
with the wave functions corresponding to projection method
I. (For some cases these were previously given by Cooper
and Wilkin [6].) We note thatall the compact states have
very large overlap with the exact eigenstates. That the CF
wave function is exact fok = 2,3 is a simple consequence of
the TI property and that there is only one state in the TI
subspace at thede values. That thd.=7 state comes out

where 7;; = 7,(z; ,z;) and 7;;= 7;(z; ,zj)Hk;tj(zj—zk)p, one
can first absorb @ Jastrow factors in the Slater determinant,
and then project entry by entry. Since the wave functi®n
contains an odd numben of Jastrow factors, one finally has
to compensate by multiplying the resulting polynomial by
Hi<,-(zi—zj)m*2". We shall refer to this as method Il and
use it as follows; for a delta function interaction, where the

wave function containmy=1 Jastrow factor, it is appropriate . L .
exact is more surprising, and we have no good explanation

to usep=1 (method 113. Note that this meandividing the for this. It would be interesting to pursue the exact diagonal-
Slater determinant by one Jastrow factor. As the latter can e IS LW : gtop gor
ization to higheiN in order to see if there are other nontrivial

factorized from any fully antisymmetric polynomial, and we . .
: : : : F states that are exact. We also note that the direct projec-
are using computer algebra for all manipulations, this pose on (method ) does slightly better than method 1.

4o 1 H _
no problem. In the case of tfe"-potential, the Jain con V4s-function potential Here we calculated the Jain wave

struction will involve absorbingn=3 flux quanta in the . .
wave function, and we shall compare projection with 1 functions (6) corresponding to aII,_ lowest CF—ene_rgy, com-
' pact states foN=4, 12<L <24 takingm=3 and using pro-

(method Ila andp=2 (method I1h. [Note that method lla is jection methods llagg=1) and IIb (o=2). For comparison,

in a sense trivial, since it relates the wave functionk ahd
AT : we also used method I. In Table Ill, we show the overlap
L+N(N—1) by multiplication with two Jastrow factors. ith the exact algebraic wave functions. We again note that
We have already stressed the significance of the T g ons. Yve ag
a fthe compact statdgxceptlL = 17 with projection method

subspace—these are the states that determine the shape ave very large overlap with the exact eigenstates, and that
the yrast line. It is very appealing that there is a special set (()f y larg P 9 ’

the stateg6) that are in this subspace, namely the so-calle ”c:r Izh:e 1;’#;’8:? (r:oF'es(’fﬁct)?l ';23};3: %\r/guggestﬁget' igonr]na%ar—
compact state$8] that are characterized by having theh 9 Proj ’ Y,

. . but not all cases they give identical results. In particular, one
_ _ | max y
!Tandaunlevel occupied fro,= —n tol,=1, . without any should note that methods | and IIb do not reproduce the exact
holes.” In the context of the QH effect, the important prop-

erty of the compact states is that they are homogeneous. wave function forl.=12,14,15 where the Tl subspace is
When describing quantum dots using the noninteracting
composite fermion modeNICFM), one can show that CF TABLE Ill. Overlaps between trial and exact yrast wave func-
candidates for the cusp states must be comf@ictand the tions forN=4, 12sL§24, qsing two different projection meth.ods
same line of arguments was later used for bosdr&e). (see tex)__ The asterisk indicates that the=17 andL =19 Jain
From the point of view of the wave functions, the importanceStateswhich correspond to the lowest TI statese not yrast states,
of the compact states is that they are in the TI subspace, arfyit € higher in energy than the CM excitation of the previdus
it is rather remarkable thdor all L where a compact state state. Note that projection method lla gives zerolfor 17,
can be constructed, the one with the lowest CF energy has
large overlap with the lowest exact state in the Tl subspace
This is true, independent of whether or not the state is ala 1 1 1 0.988 0.910 0.993 0.986 1
ground state, i.e., corresponds to a cusp in the yrast line. Inb 0.938 0.910 0988 0990 1 0.910 0.993 0986 1
the following discussion, we shall only be concerned with;  0.993 0.970 0.998 0.990 0.591 0.906 0.993 0.986 1
the wave functions, and will not discuss whether or not the

12 14 15 6 17 18 19 20 24
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nondegenerate. This means that these projections give wave N
functions that are not in the space of states given by(&q. Y —N= E (-1)"z
The same effect is even more striking far=17, where n=1

method 1lb gives the exact wave function, whereas direcks opposed to the CB wave function in RE5], Eq. (8) is
projection(method ) gives a rather poor overlap, indicating not exact, and we have not been able to caICLante the overlap

that a large com.ponen'.[ is not in the supspéﬁ)e with the exact wave function for generdl. Although the
Finally, we briefly discuss the experimentally more rel- ~N? derivatives make it difficult to evaluate this function
\3\\//i(’likr;:1 gﬁfjeezfn#Onvs:;gué%rmrgggt;gf&gé) Igpgriggﬁ]io for largeN, it can easily be handled in integrals of the form
construct trial states with angular momerita n(N—m) [T;d%, exp(~1/22,zz)1(z) i -y by partial integrations.
with n andm nonnegative integers. In particular, they found Alternatlve[y, one can use prOjec_tlon Met_hod I, Wh?‘re Fhe
that the single-vortex CB staten1,m=0) exactly repro- Wave function becomes a determlnapt of linear comblnatlorjs
of elementary symmetric polynomials. In both cases, it

duces the exact wave functioh). Here, we comment on the . : .
possibility to use CF wave functions for the single vortexShOUk_j be possible to compare with the exact wave function
(5) using Monte Carlo methods.

state atL = N. Rather surprisingly, the overlaps between the
CF and the exact wave functidp) tend to getlarger with We are very grateful to B. Mottelson for introducing us to
increasing particle number, at least upNe-10[6]. It thus  the physics of rotating Bose condensates, and for numerous
seems worthwhile to use the CF approach to construct trigftuitful discussions. We also wish to thank M. Manninen, G.
wave functions for the single vortex for generdl The  Kavoulakis, and R. K. Bhaduri for discussions and M. Ko-
single vortex CF state is in fact unique, if one demands thagkinen for giving advice on the numerical work. This work
in addition to being compact, it should also have minimalwas financially supported by the Academy of Finland, the
CF cyclotron energy. The relevant Slater determinant isSwedish Natural Science Research Council, the TMR pro-
formed from the single-particle states, _, for n=N gram of the European Community under Contract No.
-2, N—1,...,0, andzyy,, and, using projection method I, ERBFMBICT972405, the “Bayerische Staatsministerium
the resulting wave function takes the following rather com-fur Wissenschaft, Forschung und Kunst,” and the NOR-

I1 (ak—aoi[[j (z-7). (8

n
k<I;k,1#n

pact form; DITA Nordic project “Confined electronic systems.”
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