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Bose condensates at high angular momenta
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We exploit the analogy with the quantum Hall~QH! system to study weakly interacting bosons in a
harmonic trap. For ad-function interaction potential the ‘‘yrast’’ states withL>N(N21) are degenerate, and
we show how this can be understood in terms of Haldane exclusion statistics. We present spectra for four and
eight particles obtained by numerical and algebraic methods, and demonstrate how a more general hard-core
potential lifts the degeneracies on the yrast line. The exact wave functions forN54 are compared with trial
states constructed from composite fermions~CF!, and the possibility of using CF states to study the lowL
region at highN is discussed.

PACS number~s!: 03.75.Fi, 05.30.Jp, 73.40.Hm
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The close relation between high angular momentum st
of a condensate ofweaklyinteracting hard core bosons@1–3#
and the quantum Hall~QH! effect was recently pointed ou
@4–6#. The essential observation is that the weak interac
limit allows for a two-dimensional description of the boso
system in terms of lowest Landau level~LLL ! wave func-
tions @4#, just as for a QH system, and they are both d
scribed by wave functions containing powers of t
Laughlin-Jastrow factor) i , j (zi2zj ), wherezi is the com-
plex coordinate of thei th particle. As pointed out by Coope
and Wilkin @6#, the two systems can in fact be mapped on
each other by a standard Leinaas-Myrheim transforma
@7#, attaching an odd number of units of statistical flux
each particle.

This enables us to use both intuition and techniques fr
the QH system to study rotating Bose condensates. In
paper, we shall mainly discuss the angular momentum reg
N(N21)<L<2N(N21), where the ground state corre
sponding to ad-function two-body interaction is degenerat
We explicitly show how these degeneracies can be un
stood via a mapping to a system of free anyons in the L
and then show how the degeneracy is broken by a m
general short-range potential containing derivatives of d
functions. We also make a detailed comparison between
gebraically calculated exact wave functions and trial wa
functions formed from so-called compact states of compo
fermions, a construction orginally due to Jain and Kawam
@8#. In particular, we will emphasize the importance of
certain class of wave functions where the polynomial par
translationally invariant.

Although for computational reasons we have results o
for few particles,N54, 6, and 8, it is clear that some of ou
results, like the degeneracy structure of the yrast line, h
for any N. We also believe that many features of the resu
for the CF wave functions will generalize to higherN.

Since the flux attachment changes the angular momen
by mN(N21)/2, wherem is the number of fluxes attached
the boson-fermion mapping would apparently only be use
for studying angular momenta that are out of reach of pres
experiments@9# ~which are limited to the strong interactio
regime andL;N). However, there are some indications th
1050-2947/2000/62~5!/053604~5!/$15.00 62 0536
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fermionic techniques could be useful forL as low asN, i.e.,
for the so-called single vortex state. Although we will retu
to this point at the end of the paper, we shall for now, wi
out any further apologies, consider the theoretical problem
understanding the regionN(N21)<L<2N(N21) of the
yrast line.

The simplest model for a hard-core interaction is a de
function potential. We thus consider a model ofN interacting
spinless bosons in a harmonic trap of strengthv. In the limit
of weak interaction, this may be rewritten@4# as a two-
dimensional lowest Landau level~LLL ! problem in the ef-
fective ‘‘magnetic’’ field Be f f52mv with the Hamiltonian
taking the form

H5vL1g(
i , j

d2~r i2r j ! ~1!

(\51), whereL[( i l i5Lz is the total angular momentum
The single-particle states spanning our Hilbert space
h0,l5(2l 11p l !) 21/2zl exp(2z̄z/4) with z5A2mv(x1 iy).

In Figs. 1 and 2 we show the interaction energy, in un
of g/4p as a function of the total angular momentumL for
N54, L<20, and N58, 30<L<56, respectively. The
many-body states are obtained from Lanczos diagonaliza
suitable for large and relatively sparse matrices@10#. The
Fock space is spanned by single-particle states that are c
acterized only by the positive quantum numbersl, where 0
< l<L. ~Similar exact diagonalization studies have recen
been reported in@6# and @11#.! We note the following prop-
erties in the many-body spectra: Since increasing the ang
momentum spreads out the particles in space, the yrast
ergy, i.e., the lowest possible interaction energy for givenL,
decreases with increasingL. For each state in the spectrum
there exists a set of ‘‘daughter states’’ with higher values
L, having exactly the same~interaction! energy as the origi-
nal state. These daughters are simply center-of-mass ex
tions of the original states, thus having the same many-b
correlations@12#.

For L>N(N21) there are zero energy states, which c
be understood by noting that any wave function of the fo
©2000 The American Physical Society04-1
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c~z1 ,z2 , . . . ,zN!5)
i , j

~zi2zj !
2S~z1 ,z2 , . . . ,zN!, ~2!

where S(z1 ,z2 , . . . ,zN) is a symmetric polynomial in the
zi ’s, has zero interaction energy. Since the factor) i , j (zi
2zj )

2 contributes an angular momentumL05N(N21),
states of the type~2! exist for L>L0.

At L5N(N21) there is a unique state with zero intera
tion energy corresponding toS(z1 ,z2 , . . . ,zN)51, while the
states at higherL typically are degenerate. The systematics
these degeneracies can be understood by a mappin
anyons in the lowest Landau level. The essential observa
is that the wave functions~2! describe anyons in the LLL
with statistics parametera52 @13# ~in general, the statistics
parameter is given by the exponent of the Jastrow factor!. It

FIG. 1. Many-body spectra ofN54 weakly interacting bosons
in a harmonic trap forL<20. The dashed line connects the yra
states

FIG. 2. As Fig. 1, but forN58 and 30<L<56, showing only
the 100 lowest eigenvalues
05360
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is known @13–15# that anyons in the LLL obey Haldane’
fractional exclusion statistics~FES! @16#, and following Ref.
@13#, one can use this knowledge to construct the allow
many-body states for givenN and L as angular momentum
excitations of the Laughlin-like state atL5N(N21). Ac-
cording to the definition of FES, each particle in the syst
blocks a52 single-particle states, and many-particle sta
with total angular momentumL are constructed by occupy
ing single-particle states, with a minimum distance ofa52
between each pair of occupied levels~for an example, see
Fig. 3!. The number of allowed configurations then gives t
degeneracy of the state for a givenL.

Table I shows the degeneracies of some of the state
the N54 yrast line, as obtained from the anyon mappin
and they are in exact agreement with our numerical resu

This construction implicitly uses the fact that all th
eigenstates on the yrast line forL.N(N21) contain the
Jastrow factor) i , j (zi2zj )

2, so the degeneracies can also
found as the number of ways one can distributeM5L2L0
units of angular momentum amongN particles.

For a more general hard-core potential, theE50 states on
the yrast line aboveL5N(N21) are no longer degenerate
To demonstrate this point and study how the degenerac
broken, we add a potential of the form

V5c1¹2d2~z2z8!1c2¹4d2~z2z8!, ~3!

that was originally used by Trugman and Kivelson@12# in
the context of the fractional QH effect. The term;¹2d2(z
2z8) does not contribute to the interaction energy for fu
symmetric states, whereas the¹4d2(z2z8) term gives small
corrections to the spectra in Figs. 1 and 2@at the percent
level for the parameters used in the inset of Fig. 4, where
show regularized forms of the potentials~1! and ~3!#.

We have examined how the potential~3! splits up the
degeneracies of the zero interaction energy yrast states

t

FIG. 3. FES construction of yrast states forN54, L
512(5L0), 13, and 14. TheL512 and L513 states are non
degenerate, whereasL514 has degeneracy 2.

TABLE I. Degeneracyd of the lowestL excitations above the
Laughlin state forN54.

L 12 13 14 15 16 17 18 19 20

d 1 1 2 3 5 6 9 11 15
4-2
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BOSE CONDENSATES AT HIGH ANGULAR MOMENTA PHYSICAL REVIEW A62 053604
exact algebraic diagonalization, using computer alge
Here we have directly used the form~2!, and systematically
exploited that for a givenL, all states corresponding t
center-of-mass excitations of lowerL-eigenstates are or
thogonal to the subspace of ‘‘new’’ states. The latter s
space consists of translation invariant~TI! polynomials, i.e.,
functions invariant under a simultaneous, constant shifzi
→zi1a of all the coordinates@12#. Following Trugman and
Kivelson @12#, we have used a basis constructed from
ementary symmetric functionssn . For givenN and L, the
basis consists of all possible combinations

uk1k2•••kn&[s1
k1~zi !s2

k2~ z̃i !•••sN
kN~ z̃N!)

i , j
~zi2zj !

2,

~4!

such that(n51
N nkn5L2L0. Note that, forn>2, we have

introduced the new variablesz̃i[zi2zc , with zc the center-
of-mass coordinatezc5((zi)/N. The basis states spannin
the TI subspace are identified as those withk150. The di-
agonalization is thus performed within this subspace on
which reduces the matrix dimension substantially. The
sulting spectrum forN54, with the coefficientc2 in Eq. ~3!
set equal to 1, is shown in Fig. 4.

We notice the close similarity between Figs. 1 and 4.
both cases, the yrast line passes through the same numb
steps, with the same step lengths, asL is increased byN(N
21), to the point where the yrast energy becomes zero
the pointL52N(N21), the zero-energy yrast state is aga
nondegenerate and of the Laughlin type, i.e.,) i , j (zi
2zj )

4, whereas the subsequent yrast states have dege
cies corresponding to FES with statistics parametera54.
Including even higher derivative terms in the repulsive p
tential would subsequently split up the higher regions of
yrast line. Finally, note that the yrast states correspondin

FIG. 4. Yrast spectrum forN54 and 12<L<26, for a repulsive
potential ¹4d2(z2z8). Translation invariant eigenstates are d
noted by diamonds, whereas the crosses denote center-of-mas
citations. Inset: Delta function potential~regularized as a Gaussian!
and a potential including the terms~3!, with c150.023 andc2

50.000 08. We see that the latter more closely resembles a
sphere potential.
05360
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cusps, i.e., states that are followed by a ‘‘plateau’’ in t
yrast line, are always in the TI subspace.

The algebraic diagonalization used here is limited in pr
tice to smaller particle numbers and angular momenta t
the numerical scheme used in Figs. 1 and 2. However,
present approach has the advantage that it provides exp
analytic expressions for the eigenfunctions, in terms of sy
metric polynomials. This gives some additional insight in
the structure of the yrast states, and in particular the reg
below the single vortex in the case of a pure delta funct
interaction. Bertsch and Papenbrock@11# recently proposed
and numerically tested the following form for the yrast sta
at 2<L<N,

cL~zi !5 (
p1,p2,•••,pL

~zp1
2zc!~zp2

2zc!•••~zpL
2zc!.

~5!

For the special case of the single vortex stateL5N, this
wave function was first proposed by Wilkin, Gunn, an
Smith @4#. Eq. ~5! is just the symmetric polynomialsL( z̃i),
i.e., the stateu0 . . . 1 . . . 0& ~with the 1 in theLth place!, in
the notation of Eq.~4! ~without the Jastrow factor in the
present case of a pure delta function interaction!. This state is
a basis state in the TI subspace for all 2<L<N. In the cases
where this is theonly basis state (L52,3 forN>3), it is thus
obvious that Eq.~5! is exact. Furthermore, performing th
algebraic diagonalization up toL5N for N54 andN56,
we have confirmed that even when the translation invar
subspace is spanned by more than one basis vector, the
state~5! is always an exact eigenstate.

We now turn to a study of a class of wave functions th
can be constructed in analogy with the so-called Jain st
for the fractional quantum Hall effect@17#. The main idea is
to map the strongly interacting LLL bosons to weakly inte
acting composite fermions by attaching an odd numberm of
flux quanta to each particle. Trial wave functions with ang
lar momentumL are thus constructed as noninteracting f
mionic wave functions with angular momentumL
2m/2N(N21), multiplied by m Jastrow factors and pro
jected onto the LLL,

cL5PS f F~zi ,z̄i !)
i , j

~zi2zj !
mD . ~6!

Here, f F is a Slater determinant consisting of single-partic
wave functionshn,l(z,z̄)}zlLn

l ( z̄z/2), wheren is the Landau
level index (l>2n), andLn

l a generalized Laguerre polyno
mial.

Originally used for the homogeneous states relevant
the fractional QHE, wave functions of the type~6! were later
employed to describe inhomogeneous systems such as q
tum dots@8,18,19# and recently by Cooper and Wilkin@6# to
study the bosonic yrast lines for up to 10 particles in the c
of a pure delta function interaction.

In short, the LLL projection in Eq.~6! amounts to the
replacementz̄i→2] i in the polynomial part of the wave
function. However, there are several ways of doing this

ex-

rd
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practice, and we shall compare the different projection me
ods when constructing trial wave functions for the yra
states in Figs. 1 and 4. The most straightforward way is
replace thez̄’s with derivatives in the final polynomial, ob
tained after multiplying out the Slater determinant and
Jastrow factors and moving allz̄’s to the left. In practice, this
method is applicable only for small particle numbers, wh
the number of derivatives involved is not too large. We sh
refer to this method as ‘‘method I.’’

Alternatively, noting that@17#

U h11 h12 •••

h21 h22 •••

A A A

hN1 hN2 •••

U)i , j
~zi2zj !

2p5U h̃11 h̃12 •••

h̃21 h̃22 •••

A A A

h̃N1 h̃N2 •••

U ,

~7!

whereh i j [h i(zj ,z̄j ) andh̃ i j [h i(zj ,z̄j ))kÞ j (zj2zk)
p, one

can first absorb 2p Jastrow factors in the Slater determina
and then project entry by entry. Since the wave function~6!
contains an odd numberm of Jastrow factors, one finally ha
to compensate by multiplying the resulting polynomial
) i , j (zi2zj )

m22p. We shall refer to this as method II an
use it as follows; for a delta function interaction, where t
wave function containsm51 Jastrow factor, it is appropriat
to usep51 ~method IIa!. Note that this meansdividing the
Slater determinant by one Jastrow factor. As the latter ca
factorized from any fully antisymmetric polynomial, and w
are using computer algebra for all manipulations, this po
no problem. In the case of the¹4d-potential, the Jain con
struction will involve absorbingm53 flux quanta in the
wave function, and we shall compare projection withp51
~method IIa! andp52 ~method IIb!. @Note that method IIa is
in a sense trivial, since it relates the wave functions atL and
L1N(N21) by multiplication with two Jastrow factors.#

We have already stressed the significance of the
subspace—these are the states that determine the sha
the yrast line. It is very appealing that there is a special se
the states~6! that are in this subspace, namely the so-cal
compact states@8# that are characterized by having thenth
Landau level occupied froml n52n to l n5 l n

max without any
‘‘holes.’’ In the context of the QH effect, the important prop
erty of the compact states is that they are homogeneous

When describing quantum dots using the noninterac
composite fermion model~NICFM!, one can show that CF
candidates for the cusp states must be compact@8#, and the
same line of arguments was later used for bosons@18,6#.
From the point of view of the wave functions, the importan
of the compact states is that they are in the TI subspace,
it is rather remarkable thatfor all L where a compact state
can be constructed, the one with the lowest CF energy h
large overlap with the lowest exact state in the TI subspa
This is true, independent of whether or not the state i
ground state, i.e., corresponds to a cusp in the yrast line
the following discussion, we shall only be concerned w
the wave functions, and will not discuss whether or not
05360
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NICFM can give a good description of the energy spectru
a question that was already discussed in some de
@8,18,19#.

d-function potential: In this case we have calculated th
Jain wave functions~6! corresponding to all compact state
for N54, 0<L<12, taking m51 and using projection
method IIa (p51). If there are two compact states with th
sameL, we use the one with the lowest CF effective ener
In Table II, we show the overlap with the exact algebra
wave functions. A ‘‘1’’ indicates that the wave functions a
identical. For comparison we have also included the overl
with the wave functions corresponding to projection meth
I. ~For some cases these were previously given by Coo
and Wilkin @6#.! We note thatall the compact states hav
very large overlap with the exact eigenstates. That the
wave function is exact forL52,3 is a simple consequence o
the TI property and that there is only one state in the
subspace at theseL values. That theL57 state comes ou
exact is more surprising, and we have no good explana
for this. It would be interesting to pursue the exact diagon
ization to higherN in order to see if there are other nontrivi
CF states that are exact. We also note that the direct pro
tion ~method I! does slightly better than method II.

¹4d-function potential: Here we calculated the Jain wav
functions ~6! corresponding to all, lowest CF-energy, com
pact states forN54, 12<L<24 takingm53 and using pro-
jection methods IIa (p51) and IIb (p52). For comparison,
we also used method I. In Table III, we show the overl
with the exact algebraic wave functions. We again note t
all the compact states~exceptL517 with projection method
I! have very large overlap with the exact eigenstates, and
for L517,19, the CF state is not the ground state. Comp
ing the different projection methods, we see that in ma
but not all cases they give identical results. In particular, o
should note that methods I and IIb do not reproduce the e
wave function forL512,14,15 where the TI subspace

TABLE II. Overlaps between trial and exact yrast wave fun
tions for N54, 0<L<12 and a pure delta function interaction
using projection methods IIa and I~see text!.

L 0 2 3 4 6 7 8 12

IIa 1 1 1 0.944 0.962 1 0.997 1
I 1 1 1 0.980 0.980 1 0.997 1

TABLE III. Overlaps between trial and exact yrast wave fun
tions for N54, 12<L<24, using two different projection method
~see text!. The asterisk indicates that theL517 andL519 Jain
states~which correspond to the lowest TI states! are not yrast states
but lie higher in energy than the CM excitation of the previousL
state. Note that projection method IIa gives zero forL517.

L 12 14 15 16 17* 18 19* 20 24

IIa 1 1 1 0.988 0.910 0.993 0.986 1
IIb 0.938 0.910 0.988 0.990 1 0.910 0.993 0.986
I 0.993 0.970 0.998 0.990 0.591 0.906 0.993 0.986
4-4
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nondegenerate. This means that these projections give w
functions that are not in the space of states given by Eq.~2!.
The same effect is even more striking forL517, where
method IIb gives the exact wave function, whereas dir
projection~method I! gives a rather poor overlap, indicatin
that a large component is not in the subspace~2!.

Finally, we briefly discuss the experimentally more re
evant case of low angular momenta,L;N. In Ref. @5#,
Wilkin and Gunn used a compositeboson~CB! approach to
construct trial states with angular momentaL5n(N2m)
with n andm nonnegative integers. In particular, they fou
that the single-vortex CB state (n51,m50) exactly repro-
duces the exact wave function~5!. Here, we comment on th
possibility to use CF wave functions for the single vort
state atL5N. Rather surprisingly, the overlaps between t
CF and the exact wave function~5! tend to getlarger with
increasing particle number, at least up toN510 @6#. It thus
seems worthwhile to use the CF approach to construct
wave functions for the single vortex for generalN. The
single vortex CF state is in fact unique, if one demands t
in addition to being compact, it should also have minim
CF cyclotron energy. The relevant Slater determinant
formed from the single-particle stateshn,2n for n5N
22, N21, . . . ,0, andh01, and, using projection method
the resulting wave function takes the following rather co
pact form:
int

tt.

is.

in

m
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cL5N5 (
n51

N

~21!nzn )
k, l ;k,lÞn

~]k2] l !)
i , j

~zi2zj !. ~8!

As opposed to the CB wave function in Ref.@5#, Eq. ~8! is
not exact, and we have not been able to calculate the ove
with the exact wave function for generalN. Although the
;N2 derivatives make it difficult to evaluate this functio
for largeN, it can easily be handled in integrals of the for
*) id

2zi exp(21/2( i z̄izi) f ( z̄i)cL5N by partial integrations.
Alternatively, one can use projection Method II, where t
wave function becomes a determinant of linear combinati
of elementary symmetric polynomials. In both cases,
should be possible to compare with the exact wave func
~5! using Monte Carlo methods.
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