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Kinetic theory of collective excitations and damping in Bose-Einstein condensed gases
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We calculate the frequencies and damping rates of the low-lying collective modes of a Bose-Einstein
condensed gas at nonzero temperature. We use a complex nonlinear Schro¨dinger equation to determine the
dynamics of the condensate atoms, and couple it to a Boltzmann equation for the noncondensate atoms. In this
manner we take into account both collisions between noncondensate-noncondensate and condensate-
noncondensate atoms. We solve the linear response of these equations, using a time-dependent Gaussian trial
function for the condensate wave function and a truncated power expansion for the deviation function of the
thermal cloud. As a result, our calculation turns out to be characterized by two dimensionless parameters
proportional to the noncondensate-noncondensate and condensate-noncondensate mean collision times. We
find in general quite good agreement with experiment, both for the frequencies and damping of the collective
modes.

PACS number~s!: 03.75.Fi, 03.65.Db, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

The nonzero-temperature dependence of the frequen
and damping of collective modes in trapped atomic Bo
gases has been investigated extensively both experimen
@1–4# and theoretically@5–24#. Above the Bose-Einstein
transition temperature the lowest-lying collective mod
have been calculated in the collisionless regime using a
lisionless Boltzmann equation or Landau-Vlasov equat
with mean-field effects being neglected@17#, and in the hy-
drodynamic regime either by using the conservation laws
hydrodynamics@5# or by using the appropriate quantum k
netic equation@6#. In the collisionless regime the frequenc
of the collective mode is large compared to the mean co
sion frequency, in contrast to the situation in the hydrod
namic regime. Several papers have also studied the reg
intermediate between the collisionless and hydrodynamic
gimes by taking into account interatomic collision
@17,23,24#, which turn out to mostly lead to mode dampin
These papers have indicated that the experiments were
formed under conditions intermediate between collisionl
and hydrodynamic.~This is particularly true for the experi
ments performed by Meweset al. @3# and Stamper-Kurn
et al. @4#.! For temperatures far below the transition tempe
ture the collisionless modes can be described accuratel
the time-dependent Gross-Pitaevskii equation@25#. At higher
temperatures the noncondensate fraction becomes subst
and the modes of the condensate are now coupled to tho
the thermal cloud. In Refs.@8,9,11# the temperature depen
dence of the mode frequencies has been calculated by
ploying the Popov approximation to include the static me
field effects of the noncondensate atoms in the Gro
Pitaevskii equation. This was improved later by taking in
account also the dynamics of the thermal cloud using a
dom phase approximation~RPA! @10# or the collisionless
Boltzmann equation@21#. For the hydrodynamic regime
two-fluid model has been developed in Refs.@14,15#. More-
over, the theory of Zaremba, Griffin, and Nikuni@14# was
improved later by the same authors to include collisions
tween condensate and noncondensate atoms@18#.

Using a combination of two previous papers, nam
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Refs. @21# and @24#, we aim in this paper at interpolatin
between the collisionless and hydrodynamic regimes for
periments below the transition temperature. The authors
Ref. @24# have already performed such an interpolation fo
gas above the critical temperature by using a Boltzma
equation with a relaxation time approximation. In contra
the authors of Ref.@21# use a collisionless Boltzmann equ
tion for the thermal cloud coupled to a time-dependent n
linear Schro¨dinger equation for the condensate to consid
the collisionless dynamics below the critical temperatu
Here, we thus combine these two approaches by using a
the Boltzmann equation and time-dependent nonlin
Schrödinger equation, but now including also the effects
interatomic collisions in the manner as put forward in Re
@14# and@22#. This implies that we have to add two collisio
terms to the Boltzmann equation. The first collision te
represents collisions between two noncondensate atoms
the second describes collisions between a condensate a
noncondensate atom. We use for both these collision term
relaxation time approximation, since this approximati
leads above the transition temperature to a good agreem
with microscopic calculations as well as with experimen
data@24#. Furthermore, for consistency reasons we also h
to include a damping term in the time-dependent nonlin
Schrödinger equation, which is due to collisions between t
condensate and noncondensate atoms. As a result our c
lation will essentially be characterized by two paramete
namely,t22 and t12, denoting the mean collision time fo
collisions between the noncondensate atoms and betw
condensate and noncondensate atoms, respectively. Note
we use here the same notation as in Ref.@18#. This will allow
us to investigate the collisionless and hydrodynamic lim
with respect to botht22 and t12, and enable us to fit ou
results for frequencies and damping with the experimen
data.

To solve the complicated nonlinear dynamics of the g
we employ a Gaussian trial function for the wave function
the condensate atoms with three complex time-depen
variational parameters. For the thermal cloud we use a
tribution function that incorporates deviations from the Bos
Einstein distribution function. The deviation function is
©2000 The American Physical Society02-1
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truncated power expansion in the momenta and coordin
of the atoms. Our system of coupled equations is then
sembled from the Euler-Lagrange equations for the va
tional parameters in the condensate wave function and f
all the linear and quadratic moments of the Boltzmann eq
tion for the distribution function of the noncondensate atom
The solution of the linearized version of this system
coupled equations results in a dispersion relation that g
the frequencies and damping of the coupled modes in te
of t22 and t12. Although we restrict our calculation to th
axially symmetric traps used in the experiments, the gen
alization to fully anisotropic traps is straightforward.

The rest of this paper is organized as follows. In the n
section we present the theoretical details of our calculat
Specifically, we write down the time-dependent nonline
Schrödinger equation for the condensate wave function a
the linearized Boltzmann equation for the thermal cloud, a
show how to treat the two collision terms in a relaxation tim
approximation. In Sec. II A we present our trial functions f
the condensate wave function and noncondensate dist
tion function and in Sec. II B we discuss how we obtain t
equilibrium state of the gas around which we have to exp
to find the collective modes. In Sec. III we present the
sulting dispersion relation and discuss its collisionless
hydrodynamic limits. We then compare our results with e
periment. We end in Sec. IV by summing up our main co
clusions.

II. COUPLED DYNAMICS OF THE CONDENSATE AND
THE THERMAL CLOUD

It has been shown that the coupled time-dependent n
linear Schro¨dinger equation and the quantum Boltzma
equation can both be derived starting from the equation
motion @11,18,22#

i\
]ĉ~r ,t !

]t
5S 2

\2
“

2

2m
1Vext~r !1gĉ†~r ,t !ĉ~r ,t ! D ĉ~r ,t !,

~1!

for the Heisenberg field operatorĉ(r ,t). Here,g is the effec-
tive two-body interaction, which is given in terms of th
scattering lengtha and the atomic massm asg54pa\2/m.
The external potential we take here is a harmonic potentia
the general form

Vext~r !5
1

2
m~v1

2x21v2
2y21v3

2z2!, ~2!

wherev i is the characteristic frequency of the trap in thei th
direction. To obtain the time-dependent nonlinear Sch¨-
dinger equation we writeĉ(r ,t) as

ĉ~r ,t !5F~r ,t !1ĉ8~r ,t !, ~3!

whereF(r ,t) is the appropriate nonequilibrium expectatio
value of ĉ(r ,t) and the operatorĉ8(r ,t) describes the non
condensate atoms. The number density of condensate a
nc(r ,t) is related toF(r ,t) by nc(r ,t)5uF(r ,t)u2 while the
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number density of the noncondensate atomsn8 equals

^ĉ8†
(r ,t)ĉ8(r ,t)&, where the brackets represent the averag

over the nonequilibrium density matrix. Substituting th
form for ĉ(r ,t) in the equation of motion and averaging, w
obtain

i\
]F~r ,t !

]t
5S 2

\2
“

2

2m
1Vext~r !1gnc~r ,t !12gn8~r ,t !

2 iR~r ,t ! DF~r ,t !, ~4!

whereR(r ,t) is given by

R~r ,t !52g~^ĉ8~r ,t !ĉ8~r ,t !&F* ~r ,t !

1^ĉ8†
~r ,t !ĉ8~r ,t !ĉ8~r ,t !&!/F~r ,t !. ~5!

Next, the quantum Boltzmann equation can be derived
writing an equation of motion for the distribution function o
the noncondensate atomsf (p,r ,t). This is usually done by
writing f (p,r ,t) as a Wigner transform of̂ĉ8†

(r 8,t)ĉ8(r ,t)&
and then determining the time evolution off (p,r ,t) from the
equation of motion in Eq.~1! @18,22,26#. In the Hartree-Fock
approximation the resulting Boltzmann equation takes
form

F] f

]t
1“pE•“ r2“ rE•“pG f 5C22@ f #1C12@ f #, ~6!

whereC22 is the contribution to the rate of change off due to
collisions between noncondensate atoms, whileC12 is the
contribution due to collisions between the condensate
the noncondensate atoms. The energyE(p,r ,t) of the non-
condensate atoms is in this approximation given by@21#

E~p,r ,t !5p2/2m1Vext~r !12gn~r ,t !, ~7!

wheren5nc1n8 is the total density.
In Ref. @18# explicit forms of the two collision terms hav

been written down as follows:

C22@ f #5
2g2

~2p!5\7E dp2E dp3E dp4d~p1p22p32p4!

3d~E1E22E32E4!

3@~11 f !~11 f 2! f 3f 42 f f 2~11 f 3!~11 f 4!# ~8!

and

C12@ f #5
2g2nc

~2p!2\4E dp1E dp2E dp3

3d~mvc1p12p22p3!

3d~Ec1E12E22E3!

3@d~p2p1!2d~p2p2!2d~p2p3!#

3@~11 f 1! f 2f 32 f 1~11 f 2!~11 f 3!#. ~9!
2-2
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KINETIC THEORY OF COLLECTIVE EXCITATIONS . . . PHYSICAL REVIEW A 62 053602
HereEc(r ,t) andvc(r ,t) are the local energy and velocity o
the condensate atoms,Ei is a shorthand forE(pi ,r ,t), and
similarly f i is a shorthand forf (pi ,r ,t). As is shown in Ref.
@18#, the conservation of the total number of atoms rela
the collision termC12 in the Boltzmann equation to th
damping termR(r ,t) in the complex nonlinear Schro¨dinger
equation as

2nc~r ,t !R~r ,t !5E dp

~2p!3
C12@ f #. ~10!

The coupled equations given in Eqs.~4!, ~6!, and~10! in
principle fully determine the dynamics of the Bose-Einste
condensed gas in the Hartree-Fock approximation. Since
dynamics of the thermal cloud is experimentally only impo
tant for temperatures which are larger or comparable to
mean-field interactions we believe the phonon characte
the lowest-lying states in the thermal cloud does not play
important role and we do not need to use the Popov appr
mation at first instance. Nevertheless, these equations ar
complicated to be solved exactly and some approximatio
called for.

A. Trial functions

For the noncondensate atoms we start by linearizing
Boltzmann equation in small deviations of the distributi
function around its equilibrium value, namely,

f ~p,r ,t !5 f (0)~p,r !1 f (0)~p,r !@11 f (0)~p,r !#c~p,r ,t !,
~11!

wheref (0)(p,r ) is the equilibrium distribution function given
by

f (0)~p,r !5„exp$@E~p,r !2m#/kBT%21…21. ~12!

Herem is the chemical potential andkB is Boltzmann’s con-
stant. As a result the linearized Boltzmann equation takes
form

F ]

]t
1“pE•“ r2“ rE•“pGc5C22@c#1C12@c#. ~13!

It is shown in Ref.@24# that for an uncondensed gas a tr
function for c(p,r ,t) of the form

c5A1x21B1xpx1C1px
21A2y21B2ypy

1C2py
21A3z21B3zpz1C3pz

2, ~14!

whereAi(t), Bi(t), andCi(t) are nine time-dependent func
tions, is appropriate to describe the low-lying collisionle
breathing modes with frequencies 2v i , some of which have
been observed experimentally. We will therefore assume
above expansion to be also reasonably accurate below
critical temperature. For the collision integralsC22 and C12
we use a relaxation time approximation. In such an appro
mation one associates these collision integrals to mean re
ation times. However, the approximate expressions forC22
andC12 should still take into account the conservation la
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associated with the collision processes exactly. In the cas
C22, which represents collisions between the nonconden
atoms, the number of atoms in the thermal cloud, their to
momentum, and their total kinetic energy should all be co
served. In our ansatz forc, terms such asx2 andxpx should
therefore not be affected by such collisions since they co
spond to two collision invariants, namely, the number
atoms and the total momentum in thex direction, respec-
tively. On the other hand, terms such aspx

2 will be affected
by collisions since it is only the sump25px

21py
21pz

2 which
is conserved during the collision process. Therefore, we
write the following expression for the linear operatorC22
@20,24#:

C22@c i #52
1

t22
H ~c i2p2/3!, c i5px

2 ,py
2 ,pz

2 ,

0, otherwise,
~15!

where t22 is a mean collision time for the noncondensa
noncondensate atomic collisions. Note that in this express
C22@p2#50, ensuring the conservation of the total kine
energy.

For C12, which represents collisions between the cond
sate and the noncondensate atoms, the number of atom
not conserved, since the collision process involves trans
of atoms back and forth from the condensate into the ther
cloud. This statement means mathematically that the ze
moment ofC12, i.e.,*dpC12, does not vanish in contrast t
the case ofC22 where*dpC2250. As a first attempt to as
sociate with C12 a mean collision time t12 for
noncondensate-condensate atomic collisions, we may w
C12}1/t12. However, we observe from Eq.~9! that C12
}nc(r ). This dependence onnc(r ) requires us to assign to
t12 a position dependence that follows fromnc(r ) as

1

t12~r !
5

1

t12~0!

nc~r !

nc~0!
, ~16!

where t12(0) and nc(0) are the noncondensate-condens
mean atomic collision time and condensate density at
center of the trap, respectively. Generally,t12(0) may, just
as t22, also have temperature dependence. By multiply
and dividing 1/t12(r ) by \g we can thus takeC12 as obeying

C12}a
2gnc~r !

\
, ~17!

where we introduced the dimensionless constant

a5
\

2gnc~0!t12~0!
. ~18!

This form for C12 is convenient for a reason that becom
clear lateron in this section. It should be emphasized h
that the dimensionless parametera is the second free param
eter in our phenomenological calculation. The first dime
sionless parameter being 1/v̄t22 where v̄5A3 v1v2v3.
Therefore, the collisionless and hydrodynamic regimes,
2-3
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U. AL KHAWAJA AND H. T. C. STOOF PHYSICAL REVIEW A62 053602
well as the intermediate regime, will be described by o
these two parameters. Finally, we make the relation betw
C12 anda precise by taking

C12@c i #52a
2gnc~r !

\ H ~c i2p2/3!, c i5px
2 ,py

2 ,pz
2 ,

c i , c i5x2,y2,z2,

0, otherwise.
~19!

This completes our description of the treatment of the th
mal cloud. Next we have to consider the condensate.

It is known that a time-dependent Gaussian ansatz for
condensate wave function gives the correct frequencie
the lowest modes at zero temperature@27–29#. Furthermore,
the Gaussian ansatz has also been used in Ref.@21# for the
whole temperature range below the transition tempera
and leads to rather good agreement with experiment. Th
fore, we employ here again a Gaussian ansatz for the w
function of the condensate. It has the following form:

F~r ,t !5A4 8Ncb1rb2rb3r

p3
exp@2~b1x21b2y21b3z2!#,

~20!

where b1 , b2, and b3 are complex time-dependent vari
tional parameters andb1r , b2r , andb3r are their real parts
respectively. Similarly, we denote the imaginary parts, wh
will appear later on, asb1i , b2i , andb3i . The prefactor of
F(r ,t) guarantees its normalization*dr uF(r ,t)u2 to be
equal to the number of condensate atomsNc .

To obtain the first set of our coupled equations of motio
we start by writing down the energy functional that corr
sponds to the nonlinear Schro¨dinger equation in Eq.~4!,
namely,

Ec[F] 5E dr F\2u“Fu2

2m
1Vextnc1

1

2
g(nc

214ncn8)2 iRncG
~21!

with nc5uFu2. We evaluate this energy functional using t
expression forF from Eq. ~20!, and by noting that the den
sity of the thermal cloud

n85E dp

~2p!3
f ~p,r ,t !, ~22!

and the damping termR(r ,t) can be calculated using Eq
~10! and ~19!. We notice here that2 iR(r ,t)nc turns out to
be proportional to the Hartree-Fock interaction term in E
~21!, with a proportionality constant equals to2 ia. This
explains the reason for writingC12 as in Eq.~17!. The equa-
tions of motion for the condensate dynamics are now
Euler-Lagrange equations resulting from varying the L
grangian

L5
1

2
i\E dr S F*

]

]t
F2F

]

]t
F* D2Ec@F# ~23!

with respect to the 6 variational parametersbkr andbki .
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The second set involves the equations of motion for
constantsAi , Bi , andCi . It is obtained from taking appro
priate moments of the Boltzmann equation in Eq.~13!. In
detail, the moments are calculated by multiplying this eq
tion by f (0)(p,r ) and the various components ofc in Eq.
~14!, and then integrating overp and r . This results in nine
equations of motion. In combination with the previous
ones, we thus have 15 coupled equations of motion.
coupling is provided on the one hand by the mean-field
teraction 2gncn8 and the imaginary damping termiRnc in
the condensate energy functionalEc in Eq. ~21!, and on the
other hand, by the contribution 2gnc to the Hartree-Fock
energyE in Eq. ~7! and theC12 collision term in the Boltz-
mann equation.

B. Equilibrium

Finally, it is important to note that linearization of th
equations of motion of the condensate is obligatory to
consistent with the equations of motion of the noncondens
part which are already linearized. Therefore, we need to
culate the equilibrium state of the gas. In principle, to obt
equilibrium properties we should minimize the free ener
F5Etot2TS, whereEtot is the total energy andS is the en-
tropy of the gas, with respect to some variational parame
that characterize the widths of the condensate and the t
mal cloud. However, a simplified estimate of the total ene
and the entropy contribution to the free energy above
transition temperature shows that for the experimental c
ditions of interest the former is dominant over the later. T
simplified estimate can be made by using a one-param
Gaussian ansatz for the thermal cloud density, namelyn8
} exp(2x2/R2), whereR is the radius of the cloud. It turns
out that in the Thomas-Fermi limit the entropy contributio
to the free energy is of orderkBT ln g3/5, whereg5N8a/ā,
N8 is the total number of atoms in the thermal cloud, a

ā5A\/mv̄ is the harmonic oscillator length, while the tot
energy contribution is of orderkBTg2/5. Therefore, ifg@1
the entropy contribution is much less than the total ene
contribution.

As we shall see in the next section, the experiments w
performed with a temperature-dependent total number of
oms ranging from about 6000 atoms at zero temperatur
approximately 40 000 atoms at the transition temperature
we extend this simple estimate to temperatures below
transition temperature it turns out that the conditiong@1 is
satisfied only for high temperatures but not for low tempe
tures since the number of thermal atoms becomes sm
However, this condition is then no longer important since
free energy of the thermal cloud at such temperature
small compared to the condensate energy. Therefore, we
in the following only minimize the total energyEtot with
respect to the variational parameters of the condensate
the thermal cloud. To be able to calculateEtot we assume tha
the distribution function of the noncondensate atoms has
same form of that of a noninteracting gas but with varyi
spatial widths that effectively take into account the mea
field effects of both the noncondensate and condensate
oms. This effective distribution function is written as
2-4
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KINETIC THEORY OF COLLECTIVE EXCITATIONS . . . PHYSICAL REVIEW A 62 053602
f eff
(0)5FexpS p2/2m2m

kBT
1

x2

R1
2

1
y2

R2
2

1
z2

R3
2D 21G21

, ~24!

whereR1 , R2, andR3 are the widths of the noncondensa
cloud in the three directions. It should be mentioned here
due to the presence of the condensate a ‘‘dimple’’ exists
low temperatures in the noncondensate density profile. A
clear from Eq.~24! we neglect this dimple for two reason
The first is because we are interested mainly in the hi
temperature region where the experiments are performed
the dimple is small. The second reason is that, as argue
Bijlsma and Stoof@21#, this dimple produces two competin
effects on the frequency shifts. The first effect is to incre
the effective mass of the condensate and thus to reduce
mode frequency. The other effect is to lower the mean-fi
interactions which increases the frequency. The total ene
is now a function of six variational parameters

Etot5Etot~b1r
(0) ,b2r

(0) ,b3r
(0) ,R1 ,R2 ,R3!, ~25!

whereb1r
(0) , b2r

(0) , andb3r
(0) are the equilibrium values ofb1r ,

b2r , and b3r , respectively. The equilibrium is obtained b
minimizing this energy with respect to these variational p
rameters.

The results of such a minimization will be shown in th
next section, where we present the dispersion relation
results from solving the above-described system of 15 line
ized coupled equations of motion. We discuss also the c
sionless and hydrodynamic limits of these results.

III. THE DISPERSION RELATION: FREQUENCIES
AND DAMPING RATES

Our calculation accounts, in fully anisotropic traps, f
nine modes of the gas. In axially symmetric traps this nu
ber reduces to six modes. These are the in-phase and ou
phase combinations of the two monopole (m50) modes and
one quadrupole (m52) mode of both the condensate and t
thermal cloud. Here we denote withm the projection of the
angular momentum of the mode along the axis of symme
of the trap@2#. We focus in this paper on the two lowes
lying m50 and m52 modes observed experimentally.
turns out that for the experimentally relevant temperat
range, the in-phasem50, and m52 modes correspond
mostly to oscillations of the thermal cloud, whereas the o
of-phase modes are mostly condensate oscillations. Th
fore, we shall often refer in this paper to the in-phase mo
as the thermal cloud or noncondensate modes and the ou
phase modes as the condensate modes. Although our c
lation provides results for another, higher-lying, monop
mode, we shall not discuss it further here. Moreover,
emphasize that throughout the following we perform our c
culations for parameters taken from the experiments of
et al. @2#, i.e., with 87Rb atoms in an axially symmetric tra
with anisotropy ratiov3 /v15v3 /v25A8.

In that particular experiment the measurements were
formed with a temperature-dependent total number of ato
as a result of the loss of atoms during evaporative cool
The total number of atomsNtot , as well as the number o
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condensate atomsNc , are measured in the temperature ran
T/TBEC.0.48 to T/TBEC.1.0, whereTBEC is the Bose-
Einstein transition temperature. These measurements ca
easily fitted with polynomials inT/TBEC as shown by the
dashed line in Fig. 1. An extrapolation of such a fit to te
peratures below 0.48TBEC leads, however, to nonphysica
situations. In particular, the two curves forNtot andNc cross
at least once before reaching zero temperature. We overc
this problem by fitting onlyNtot with the experimental data
and then usingNc5Ntot@12(T/TBEC)2# in analogy with the
ideal gas relationNc5Ntot@12(T/TBEC)3# @5#. We note here
that we have restricted ourselves to fit the data with a f
mula that is similar to the ideal gas formula but with a d
ferent exponent for the temperature dependence that is
garded as our fitting parameter. We find that an expon
equal to 2 gives the best fit. Although the precise value of
exponent is not obvious to us, the fact that it is less than
physically reasonable since interactions tend to deplete
condensate. Figure 1 shows with the solid line the result
this slightly less accurate fit. It should be noted that using
ideal gas relation will grossly overestimate all the expe
mental points ofNc for T/TBEC.0.7. It turns out that the
difference between the calculated frequencies using the
accurate fit from those calculated using the best fit are m
smaller than the uncertainties in the measured frequencie
the experimental range of temperatures. This is shown in
2. Since we want to show also results for the complete te
perature interval from zero toTBEC, we employ from now on
always the former fit, i.e., the solid lines in Fig. 1.

Before starting with calculating the frequencies a
damping rates of the collective modes, we show in Fig. 3
result of the minimization of the total energy that is requir
to obtain the equilibrium conditions of the gas, as describ
in the previous section. We plot the equilibrium widths
both condensate and noncondensate clouds as a functio
temperature. We notice from this figure that at zero tempe

FIG. 1. The measured total number of atomsNtot ~squares! and
the number of condensate atomsNc ~circles!. The dashed lines are
a polynomial fit in powers ofT/TBEC to the experimental data . Th
solid lines represent a fit toNtot only and using forNc the relation
Nc5Ntot@12(T/TBEC)2#. The solid line fit ofNtot is shifted slightly
downwards in order to get better agreement with the data forNc .
The measured points were taken from Ref.@2#.
2-5
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ture and at the transition temperature we obtain rather g
estimates for the widths of the condensate and ther
clouds. At zero temperature, where the thermal cloud is
sent, we observe that the radial width of the condens
equals approximately 2a1, a result that is consistent with th
familiar property that due to the mean-field interactions
equilibrium condensate width is larger than the ideal g
result a1. The axial width, which is roughly 1/l1/2 of the
radial width, is suppressed due to the anisotropy of the t

FIG. 2. Collisionless frequencies fora50, i.e., with no colli-
sions between condensate and noncondensate atoms. The solid
correspond to the approximate fit to the total and condensate n
ber of atoms as shown by the solid lines in Fig. 1. The dashed l
correspond to our best fit in the temperature interval as is given
the dashed lines in Fig. 1. The points are the experimental mea
ments for them50 andm52 condensate modes@2#. The labels of
the theoretical curves in terms of the values ofm are shown in Fig.
4.

FIG. 3. The equilibrium widths of the condensate and nonc
densate clouds in the axially symmetric trap of Ref.@2#. In refer-
ence to the text, the radial width of the noncondensate clou
R1(5R2), and the axial width isR3. For the condensate cloud, th
radial width is (2b1r

(0))21/2@5(2b2r
(0))21/2# and the axial width is

(2b3r
(0))21/2, as can be seen from Eq.~25!. All lengths here are

scaled to the harmonic oscillator lengtha15(\/mv1)1/2.
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We can also see in this figure that at the transition temp
ture the radial width of the condensate is slightly larger th
the ideal gas one. This slight expansion is caused by
presence of the thermal cloud, whose mean-field interac
has the effect of slightly reducing the spring constants of
effective trapping potential. Finally, we notice that at all tem
peratures the thermal widths are larger than the conden
ones, indicating that the condensate mean-field expels ou
thermal cloud.

Returning to the problem of the collective mode freque
cies and damping, we start by neglecting collisions betw
the condensate and noncondensate atoms, which mean
a50. In this case the dispersion relation turns out to ha
the following general structure:

iv@PC
(0)~vt22!

21 iPI
(0)vt222PH

(0)#50, ~26!

wherePC
(0) , PI

(0) , andPH
(0) are sixth order polynomials inv2

which can all be factorized as

PC
(0)5)

k51

6

~v22vCk
2 !, ~27!

PI
(0)5)

k51

6

~v22v Ik
2 !, ~28!

and

PH
(0)5)

k51

6

~v22vHk
2 !. ~29!

Here, vCk , vHk , and v Ik , k51,2,3, are temperature
dependent collisionless, intermediate, and hydrodynamic
quencies, respectively. The superscripts inPC

(0) , PI
(0) , and

PH
(0) indicate the value ofa. The general structure of thi

dispersion relation agrees with the result of Refs.@23,24#
above the transition temperature, where this dispersion r
tion was studied in detail. Particularly, it was shown th
damping rates calculated using this relation agree in orde
magnitude with experiments and numerical calculations.

The collisionless regime is defined by the conditi
vt22@1. Therefore, we find from Eq.~26! that the collision-
less frequencies arevCk . In the hydrodynamic limitvt22
!1, and the hydrodynamic frequencies arevHk . Note that
we use the word hydrodynamic here to denote that the t
mal cloud is in the hydrodynamic regime thougha50 and
there are therefore no collisions between condensate
noncondensate atoms. In a sense this regime is thus prec
the limit discussed by Nikuni, Zaremba, and Griffin@18#.
Using the experimental parameters we calculate these
quencies for the whole temperature range belowTBEC. In
Fig. 4 we present the results of this calculation for them
50 andm52 modes together with the experimental data.
this figure the collisionless curves agree with those of
jlsma and Stoof@21# for T/TBEC.0.2, which is not surpris-
ing since we use similar ansatz functions. The discrepa
for T/TBEC,0.2 is due to the different ways of treating th
equilibrium state.
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KINETIC THEORY OF COLLECTIVE EXCITATIONS . . . PHYSICAL REVIEW A 62 053602
Above the transition temperature, the explanation of
mode damping was based on the fact that the measured
quencies were less than the theoretical collsionless freq
cies. This shift in frequency is then interpreted to be due
the fact that the system is shifted from the collisionless
gime towards the hydrodynamic regime. Collisional damp
associated with this shift was calculated and compared to
experimental damping. It is clear from Fig. 4 that below t
transition temperature this kind of explanation is not p
sible, since most of the experimental points are not loca
between the collisionless and hydrodynamic curves.

To investigate the possibility that this damping might
due to the condensate-noncondensate atomic collisions
now study the effect of these collisions by takinga to be
nonzero. For nonzeroa the dispersion relation takes the ge
eral form

S (
k50

9

PC
(k)akD ~vt22!

21 i S (
k50

8

PI
(k)akDvt22

2 (
k50

7

PH
(k)ak50. ~30!

We note that thek50 term in this expression corresponds
Eq. ~26!, wherea was indeed taken to be zero. Frequenc
and damping rates can now be obtained by writingv in
terms of a real and imaginary parts,v5v r1 iv i , and then
inserting this expression in the last equation. In general,
obtains expressions forv r andv i in terms ofv̄t22 anda.

We start our discussion of the frequencies and damp
rates forT/TBEC50.79, since at this temperature the expe
ment provides data for both the condensate and noncon
sate oscillations. We present the results of our calculation
the m50 andm52 modes of the thermal cloud in Fig. 5
where we have eliminatedv̄t22 and plottedv i as a function
of v r for a50 anda50.25. On the same plot we show th

FIG. 4. Collisionless~solid curves! and hydrodynamic~dashed
curves! collective mode frequencies fora50. The curves are la-
beled in terms of the values ofm and the phase difference betwee
the condensate and thermal oscillationsu: ~a! m50, u50, ~b! m
52, u50, ~c! m50, u5p, ~d! m52, u5p.
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two experimental points corresponding to them50 andm
52 modes of the noncondensate oscillation. In this figu
the right end of the curves represent the collisionless reg
(v̄t22@1) and the left end is the hydrodynamic regim
(v̄t22!1). Therefore, the location where the dashed cur
intersect with the horizontal axis can also be seen in Fig.
T50.79TBEC. For the experimental point corresponding
the monopole mode, the error bars do not intersect with
dashed curve (a50), but they do with the solid curve (a
50.25) indicating that a nonzero value ofa is needed to
account for the experimental damping. This indicates t
condensate-noncondensate atomic collisions are mainly
sponsible for the observed damping of this mode. This is l
clear for the quadrupole mode although the experime
data is certainly not inconsistent with this conclusion.

Next we show in Fig. 6 at the same temperature both

FIG. 5. Damping ratev i versus frequencyv r for noncondensate
oscillations, atT50.79TBEC for a50 anda50.25. The two points
correspond to the experimentally observed frequency and dam
rate of the thermal cloud oscillation.

FIG. 6. Damping ratev i versus frequencyv r of condensate and
noncondensate oscillations atT50.79TBEC, for a changing from 0
to 0.25 in steps of 0.025. The two points correspond to the exp
mental measurements of the condensate oscillation.
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U. AL KHAWAJA AND H. T. C. STOOF PHYSICAL REVIEW A62 053602
condensate as well as the noncondensatem50 and m52
modes for values ofa ranging from 0 to 0.25. The effect o
a on the noncondensate modes is a slight shift and rota
of the curves but their general structure is roughly preserv
This can be seen more clearly in Fig. 5. The effect ofa on
the condensate modes is much larger, it gives rise to a l

upward shift for the whole curve. The effect ofv̄t22 on these
curves becomes smaller for larger values ofa, which can be
seen by noting that the radius of the small semicircles
comes smaller for larger values ofa. Again, we see that a
nonzero value ofa provides sufficient damping to accou
for the experimental observations. However, there is a
crepancy between our calculation and the experiment in
value of the frequency of them50 mode, since our calcula
tion predicts v/v1'1.6860.4, whereas the experiment
data give a frequency of about 2.05v1. This discrepancy was
also present in the calculations of Refs.@10,21# and is dis-
cussed in Ref.@21#. The authors of the last reference su
gested that a possible reason for this discrepancy may be
the observed mode is in fact an in-phasem50 mode~the
upper solid curve in Fig. 4! rather than an out-of-phase on
This suggestion was based on calculating the oscilla
strengths of the in-phase and out-of-phasem50 modes. It
turned out that it is indeed possible experimentally to exc
both modes simultaneously in the temperature rangeT
'0.25TBEC to T'0.5TBEC. Although the calculation in Ref
@21# was performed in the collisionless limit, where there
no damping, we expect that with damping this argument
mains qualitatively correct.

For the rest of the experimental points we can, in pr
ciple, explain the data using a two-parameter fit, name
with a andv̄t22. In fact, the collisions between atoms fro
the condensate with those from the thermal cloud are
main cause of damping in the condensate modes, and we
even explain the data using a one-parameter fit, namely,
a, by assuming that the system is in the collisionless reg
with respect tov̄t22, i.e., v̄t22@1. We perform this calcu-
lation by using a functiona(T/TBEC) that gives the best fi
for the experimental damping rates. In Fig. 7 we plot t
functiona(T/TBEC) and the resulting temperature-depend
frequencies and damping rates. This figure contains the m
results of this paper. First of all we notice that now, with
nonzeroa, we obtain better agreement with the experimen
data for the quadrupole mode frequencies than before w
a was taken to be zero. This can be seen by comparing
figure with Fig. 4. We note also that, depending on the va
of a, the mode frequency may shift upwards or downwar
By comparing Fig. 4 with Fig. 7 for the mode frequenci
one can clearly see that for temperatures below appr
mately 0.6TBEC the theoretical curves are shifted upward
whereas for the higher temperatures the curves are sh
downwards, in the end giving rise to the good agreemen
the quadrupole mode with experiment. Secondly, we no
that the same functiona(T/TBEC) also gives a good fit for
the damping rates of both the monopole and quadrup
modes. There is still a discrepancy between our predicti
and the experimental findings for the frequencies of
monopole mode at higher temperatures, but this may be
05360
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solved by a reinterpretation of the observed mode, as
plained previously. Finally, the temperature behavior ofa in
Fig. 7 indicate thata obeys a power law in temperature
However, an accurate estimate of the exponent is lacking
to the large uncertainties in the experimental data.

Finally, we want to mention an interesting feature of t
in-phase and out-of-phasem50 modes which can already b
seen in Fig. 4 atT/TBEC'0.05. It is the familiar anticrossing
tendency of these modes obtained also by Bijlsma and S
@21# and Zarembaet al. @18#. It is more dramatic here than in
these two papers due to the presence of the new parameta.
This behavior can be seen in Fig. 8 where we see the
modes come close to each other and eventually interse
some ‘‘critical’’ values ofa twice.

IV. CONCLUSION

We have extended the method of calculating collisio
damping, used previously above the Bose-Einstein cond
sation transition temperature@23,24#, to below the transition
temperature. Furthermore, we have included the effec
noncondensate-condensate collisions. By comparing with
periment, we conclude that it is presumably this collisi
process which is mainly responsible for the observed da
ing. Our theory provides a general dispersion relation t
gives complex mode frequencies at a certain temperature
function of two dimensionless parameters, namely, 1/v̄t22
and a, that characterize the noncondensate-nonconden
and noncondensate-condensate atomic collisions, res
tively. Our results for the fully collisionless frequencie
agree with those of Ref.@21# for most of the temperature

FIG. 7. Fitting all the experimental data on the mode frequ
cies and damping rates with a single temperature-dependent f
tion a. At low temperature the saturation in the curve fora is an
artifact of the fitting.
2-8
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FIG. 8. Damping ratev i versus frequencyv r of condensate and noncondensate oscillations atT50.79TBEC with a changing from
0.0005 to 0.05. The four curves in each plot correspond to the in-phase and out-of-phasem50 andm52 modes which are also shown i
Fig. 6. The present figure corresponds to the region in Fig. 6 where the in-phase and out-of-phasem50 modes come close to each other. O
can see here that the anticrossing feature of these twom50 modes is not only present ata50 @21# but also for nonzero values ofa.
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range below the transition temperature. Them50 and m
52 hydrodynamic frequencies are, to the best of our kno
edge, calculated here below the transition temperature fo
first time.

At present we have not carried out a microscopic cal
lation of the mean collision timest22 and t12}a21, which
are treated as phenomenological parameters here with
possibility to investigate the intermediate regime with
spect to either of the two collision processes. However,
homogeneous calculations of Zaremba, Nikuni, and Gri
@18# indicate that the functiona(T/TBEC) that we have ob-
tained from a fit to the experimental data, has the corr
order of magnitude and qualitatively also the correct te
perature dependence. Approaching the transition tempera
from below, the microscopic calculation of the latter wo
gives rise to a divergent mean collision rate. It can be arg
that the source of this divergency is at least partially due
the use of a two-bodyT matrix instead of the many-bodyT
matrix for the binary collision potential and therefore that t
latter should be used for an accurate calculation, which h
ever, becomes much more involved. Nevertheless such a
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croscopic calculation for the inhomogeneous experime
conditions of interest would be very desirable and is left
future work.

We obtain a rather good agreement with the experime
results for the mode frequencies and damping rates a
from the discrepancy for them50 out-of-phase mode fo
T.0.7TBEC. While the experiment shows an upward shift
the frequency with respect to its zero temperature value,
predict a downward shift. Resolution of this discrepan
seems to require more accurate experimental data, which
also provide decisive comparison with the theory presen
here.
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