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Kinetic theory of collective excitations and damping in Bose-Einstein condensed gases

U. Al Khawaja and H. T. C. Stoof
Institute for Theoretical Physics, University of Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands
(Received 3 April 2000; published 11 October 2p00

We calculate the frequencies and damping rates of the low-lying collective modes of a Bose-Einstein
condensed gas at nonzero temperature. We use a complex nonlineadigpérequation to determine the
dynamics of the condensate atoms, and couple it to a Boltzmann equation for the noncondensate atoms. In this
manner we take into account both collisions between noncondensate-noncondensate and condensate-
noncondensate atoms. We solve the linear response of these equations, using a time-dependent Gaussian trial
function for the condensate wave function and a truncated power expansion for the deviation function of the
thermal cloud. As a result, our calculation turns out to be characterized by two dimensionless parameters
proportional to the noncondensate-noncondensate and condensate-noncondensate mean collision times. We
find in general quite good agreement with experiment, both for the frequencies and damping of the collective
modes.

PACS numbgs): 03.75.Fi, 03.65.Db, 05.30.Jp, 32.80.Pj

[. INTRODUCTION Refs.[21] and [24], we aim in this paper at interpolating
between the collisionless and hydrodynamic regimes for ex-
The nonzero-temperature dependence of the frequencig&riments below the transition temperature. The authors of
and damping of collective modes in trapped atomic BoseRef.[24] have already performed such an interpolation for a
gases has been investigated extensively both experimentalfjas above the critical temperature by using a Boltzmann
[1-4] and theoretically[5—24]. Above the Bose-Einstein equation with a relaxation time approximation. In contrast,
transition temperature the lowest-lying collective modesthe authors of Refl21] use a collisionless Boltzmann equa-
have been calculated in the collisionless regime using a cokion for the thermal cloud coupled to a time-dependent non-
lisionless Boltzmann equation or Landau-Vlasov equatiorlinear Schrdinger equation for the condensate to consider
with mean-field effects being neglectgtl7], and in the hy- the collisionless dynamics below the critical temperature.
drodynamic regime either by using the conservation laws ofHere, we thus combine these two approaches by using again
hydrodynamicg5] or by using the appropriate quantum ki- the Boltzmann equation and time-dependent nonlinear
netic equatior{6]. In the collisionless regime the frequency Schralinger equation, but now including also the effects of
of the collective mode is large compared to the mean colliinteratomic collisions in the manner as put forward in Refs.
sion frequency, in contrast to the situation in the hydrody{14] and[22]. This implies that we have to add two collision
namic regime. Several papers have also studied the reginierms to the Boltzmann equation. The first collision term
intermediate between the collisionless and hydrodynamic rerepresents collisions between two noncondensate atoms and
gimes by taking into account interatomic collisions the second describes collisions between a condensate and a
[17,23,24, which turn out to mostly lead to mode damping. noncondensate atom. We use for both these collision terms a
These papers have indicated that the experiments were paelaxation time approximation, since this approximation
formed under conditions intermediate between collisionlesseads above the transition temperature to a good agreement
and hydrodynamic(This is particularly true for the experi- with microscopic calculations as well as with experimental
ments performed by Mewest al. [3] and Stamper-Kurn data[24]. Furthermore, for consistency reasons we also have
et al.[4].) For temperatures far below the transition temperato include a damping term in the time-dependent nonlinear
ture the collisionless modes can be described accurately Bychralinger equation, which is due to collisions between the
the time-dependent Gross-Pitaevskii equaf@]. At higher  condensate and noncondensate atoms. As a result our calcu-
temperatures the noncondensate fraction becomes substantation will essentially be characterized by two parameters,
and the modes of the condensate are now coupled to those mamely, 7o, and 71,, denoting the mean collision time for
the thermal cloud. In Ref48,9,11] the temperature depen- collisions between the noncondensate atoms and between
dence of the mode frequencies has been calculated by emmendensate and noncondensate atoms, respectively. Note that
ploying the Popov approximation to include the static meanwe use here the same notation as in RE8]. This will allow
field effects of the noncondensate atoms in the Grossus to investigate the collisionless and hydrodynamic limits
Pitaevskii equation. This was improved later by taking intowith respect to bothr,, and 715, and enable us to fit our
account also the dynamics of the thermal cloud using a rarresults for frequencies and damping with the experimental
dom phase approximatioRPA) [10] or the collisionless data.
Boltzmann equatiori21]. For the hydrodynamic regime a  To solve the complicated nonlinear dynamics of the gas,
two-fluid model has been developed in Rdfs4,15. More-  we employ a Gaussian trial function for the wave function of
over, the theory of Zaremba, Griffin, and Nikufii4] was the condensate atoms with three complex time-dependent
improved later by the same authors to include collisions bevariational parameters. For the thermal cloud we use a dis-
tween condensate and noncondensate afd8is tribution function that incorporates deviations from the Bose-
Using a combination of two previous papers, namelyEinstein distribution function. The deviation function is a
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truncated power expansion in the momenta and coordinatesumber density of the noncondensate atonis equals

of the atoms. Our system of coupled equations is then ag='(r,t) 4’ (r,t)), where the brackets represent the averaging
sembled from the Euler-Lagrange equations for the variagyer the nonequilibrium density matrix. Substituting this

tional parameters in the condensate wave function and fror}rbrm for f//(r t) in the equation of motion and averaging, we
all the linear and quadratic moments of the Boltzmann equagy~in ' '

tion for the distribution function of the noncondensate atoms.
The solution of the linearized version of this system of ad(r,1) ( %2y 2

coupled equations results in a dispersion relation that gives i# >m + V(1) +gn(r,t)+2gn’(r,t)
the frequencies and damping of the coupled modes in terms
of 75, and 7y,. Although we restrict our calculation to the
axially symmetric traps used in the experiments, the gener- —iR(r,t)
alization to fully anisotropic traps is straightforward.

The rest of this paper is organized as follows. In the ”eXWhereR(r,t) is given by

section we present the theoretical details of our calculation.

ot

D(r,t), 4

Specifically, we write down the time-dependent nonlinear R(r t)=—g(<[b’(r P (r ))YD*(r,1)
Schralinger equation for the condensate wave function and ’ ’ ' ’
the linearized Boltzmann equation for the thermal cloud, and +(z}'fr,t)z}’(r,t)@’(r,t)))/@(r,t). (5)

show how to treat the two collision terms in a relaxation time

approximation. In Sec. Il A we present our trial functions for ~ Next, the quantum Boltzmann equation can be derived by
the condensate wave function and noncondensate distribwriting an equation of motion for the distribution function of
tion function and in Sec. Il B we discuss how we obtain thethe noncondensate atonfiép,r,t). This is usually done by
equilibrium state of the gas around which we have to expangyyiting f(p,r,t) as a Wigner transform qfl}’zr’,t);b’(r7t)>

to find the collective modes. In Sec. Il we present the re-ang then determining the time evolutionfdp,r,t) from the
sulting dispersion relation and discuss its collisionless angquation of motion in Eq(1) [18,22,28. In the Hartree-Fock

hydrodynamic limits. We then compare our results with ex-pproximation the resulting Boltzmann equation takes the
periment. We end in Sec. IV by summing up our main con-form

clusions.

Il. COUPLED DYNAMICS OF THE CONDENSATE AND S TVE- VimVE- V[ f=Cod f]+Cid ], (6)
THE THERMAL CLOUD

r)(yhereczz is the contribution to the rate of changefafue to

linear Schrdinger equation and the quantum BoltzmannCOIIISIOnS between noncondensate atoms, willl is the

equation can both be derived starting from the equation O?;ontnbunon due to collisions between the condensate and
motion [11,18,22 the noncondensate atoms. The eneEgp,r,t) of the non-

condensate atoms is in this approximation giver{ 2/

It has been shown that the coupled time-dependent no

y 2¢2
LAy (Y

- T V() + g (r,t) d(r,b) | g(r,t), E(p,r,t)=p?/2m+Ve*{(r)+2gn(r,t), (7

(1) wheren=n.+n’ is the total density.

_ _ R _ In Ref.[18] explicit forms of the two collision terms have
for the Heisenberg field operatgi(r,t). Here,g is the effec-  peen written down as follows:

tive two-body interaction, which is given in terms of the
scattering lengtta and the atomic mass asg=4ma%?/m. 292
The external potential we take here is a harmonic potential of C24 f]1= Wf dpzf dp3f dpsS(p+p2—pP3—Pa)
the general form
X S(E+E,—E3—E,)

1
V() = S m(wix?+ wiy?+ wsz?), ) X[(L4F)(L+fp) Fafa— Fio(1+F5)(1+F9)] (8)

wherew; is the characteristic frequency of the trap in tte and

direction. To obtain the time-dependent nonlinear Schro

~ 29°n
dinger equation we writg/(r,t) as C,df]= %%j dplf dpzj dps
Pr)=a(r,0)+¢'(r,0), () X 8(MVg+py—Pa—Ps3)
whered(r,t) is the appropriate nonequilibrium expectation X O(E.+E{—E,—Ej)

value of /(r,t) and the operatog’(r,t) describes the non- T S(D=D0)— S(D— D) — S(p—
condensate atoms. The number density of condensate atoms [o(p=pu) = 8(P=p2) = 6(p—P3)]
ne(r,t) is related tod(r,t) by n.(r,t)=|®(r,t)|?> while the X[(L+f)ffa—f(1+1)(1+F3)]. (9
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HereE.(r,t) andv,(r,t) are the local energy and velocity of associated with the collision processes exactly. In the case of
the condensate atomk; is a shorthand foE(p;,r,t), and C,,, which represents collisions between the noncondensate
similarly f, is a shorthand fof (p;,r,t). As is shown in Ref. atoms, the number of atoms in the thermal cloud, their total
[18], the conservation of the total number of atoms relatesnomentum, and their total kinetic energy should all be con-
the collision termC,, in the Boltzmann equation to the served. In our ansatz faf, terms such ag? andxp, should
damping termR(r,t) in the complex nonlinear Schdimger  therefore not be affected by such collisions since they corre-

equation as spond to two collision invariants, namely, the number of
atoms and the total momentum in tledirection, respec-
dp tively. On the other hand, terms such giswill be affected
2ng(r HR(r.1)= f (Zﬂ)sclz[f]' (10 by collisions since it is only the supf=pZ+ p3+pZ which

is conserved during the collision process. Therefore, we can

The coupled equations given in Edd), (6), and(10) in  write the following expression for the linear operai®s,
principle fully determine the dynamics of the Bose-Einstein[20,24:
condensed gas in the Hartree-Fock approximation. Since the
dynamics of the thermal cloud is experimentally only impor- 1 [ (g=p%3),  ¢i=pZ.p5.p3,
tant for temperatures which are larger or comparable to the  Cad ¢i]=—— 0 . (15

. A . ) 22| 0, otherwise,

mean-field interactions we believe the phonon character of
the lowest-lying states in the thermal cloud does not play an

. where 75, is @ mean collision time for the noncondensate-
important role and we do not need to use the Popov approxi-

) o . noncondensate atomic collisions. Note that in this expression
mation at first instance. Nevertheless, these equations are t {p?]=0, ensuring the conservation of the total kinetic
complicated to be solved exactly and some approximation is’? P ' 9

energy.
called for. . ..
For C4,, which represents collisions between the conden-

sate and the noncondensate atoms, the number of atoms is
not conserved, since the collision process involves transport

For the noncondensate atoms we start by linearizing thef atoms back and forth from the condensate into the thermal
Boltzmann equation in small deviations of the distributioncloud. This statement means mathematically that the zeroth
function around its equilibrium value, namely, moment ofC,, i.e., [dpC,,, does not vanish in contrast to

the case ofC,, where fdpC,,=0. As a first attempt to as-
f(p,r,t)=fO(p,r) +fO(p,n[1+FO(p,r) Jys(p,r,1), sociate with C;, a mean collision time 7, for
1D noncondensate-condensate atomic collisions, we may write

Cpx1/71,. However, we observe from Ed9) that C;,
«n¢(r). This dependence on.(r) requires us to assign to

A. Trial functions

wheref(®)(p,r) is the equilibrium distribution function given

b "
y 71, @ position dependence that follows fram(r) as
fO(p,r)=(expl[E(p,r) —ullkgT}-1)"1 (12 "
1 1 n(r
Here u is the chemical potential arlg; is Boltzmann'’s con- ) = 7140) Ne(0)’ (16)
stant. As a result the linearized Boltzmann equation takes the
form

where 715,(0) and n,(0) are the noncondensate-condensate
J mean atomic collision time and condensate density at the
—+V,E-V,—V.E-V,|[y=Cof ] +Cify]. (13 center of the trap, respectively. Generaltyy(0) may, just
dt as 75,, also have temperature dependence. By multiplying

It is shown in Ref[24] that for an uncondensed gas a trial and dividing 1#4,(r) by 7:g we can thus tak€,, as obeying
function for ,r,t) of the form

P(p,r,t) 2gng(1)
Clzoc o A y (17)

=A%+ Bixpy+ Cipi+Asy°+ Boypy

+Copj+Agz’+B3zp,+ Caps, (14 where we introduced the dimensionless constant
whereA;(t), B;(t), andC;(t) are nine time-dependent func- A
tions, is appropriate to describe the low-lying collisionless 4= —
breathing modes with frequencie®2, some of which have 2gn¢(0) 710)
been observed experimentally. We will therefore assume the

above expansion to be also reasonably accurate below tHgis form for Cy; is convenient for a reason that becomes
critical temperature. For the collision integrals, and C, clear lateron in this section. It should be emphasized here
we use a relaxation time approximation. In such an approxithat the dimensionless parameters the second free param-
mation one associates these collision integrals to mean relagter in our phenomenological calculation. The first dimen-
ation times. However, the approximate expressionstgy ~ sionless parameter being alt,, where w=73/wjw,ws.

and C,, should still take into account the conservation lawsTherefore, the collisionless and hydrodynamic regimes, as

(18
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well as the intermediate regime, will be described by only The second set involves the equations of motion for the
these two parameters. Finally, we make the relation betweeronstantsA;, B;, andC;. It is obtained from taking appro-

C., and a precise by taking priate moments of the Boltzmann equation in E3). In
5 s 2 detail, the moments are calculated by multiplying this equa-
2gn(r) (4i—=p3),  ¢i=px.py.Pz, tion by f(®(p,r) and the various components ¢fin Eq.
Cilil=—a 9 ﬁc i, i=x2 Y47 (14), and then integrating over andr. This results in nine

equations of motion. In combination with the previous 6
19 ones, we thus have 15 coupled equations of motion. The
(19 coupling is provided on the one hand by the mean-field in-

This completes our description of the treatment of the therieraction Zjn:n" and the imaginary damping teriiRn in

mal cloud. Next we have to consider the condensate. the condensate energy functiorigl in Eq. (21), and on the
It is known that a time-dependent Gaussian ansatz for thether hand, by the contributionga, to the Hartree-Fock

condensate wave function gives the correct frequencies ¢fnergyE in Eq. (7) and theC;, collision term in the Boltz-

the lowest modes at zero temperat[2é—29. Furthermore, mann equation.

the Gaussian ansatz has also been used in[REf.for the

whole temperature range below the transition temperature B. Equilibrium

and leads to rather good agreement with experiment. There-

f lov h . G . tz for th Finally, it is important to note that linearization of the
ore, we employ here again a aussian ansatz for the Wav@quations of motion of the condensate is obligatory to be
function of the condensate. It has the following form:

consistent with the equations of motion of the noncondensate
4 [8NDbob part which are_(_;llr_eady linearized. Therefore_, we need to cal-
d(r,t)= [SNe 1f3 2r-3r extl — (byx2+b,y2+ bsz?)], cula_t_e t_he eqU|I|br|u_m state of the gas. Ir_l principle, to obtain
T equilibrium properties we should minimize the free energy
(20 F=Ex— TS, whereE,y is the total energy an&is the en-

) . tropy of the gas, with respect to some variational parameters
whereb,, by, andbs are complex time-dependent varia- that characterize the widths of the condensate and the ther-
tional parameters anldy, , by, andbg, are their real parts, mga) cloud. However, a simplified estimate of the total energy
re_specnvely. Similarly, we denote the imaginary parts, whichynq the entropy contribution to the free energy above the
will appear later on, aby;, by, andbg; . The prefactor of  transition temperature shows that for the experimental con-
®(r,t) guarantees its normalizatiofidr|®(r,t)|> to be itions of interest the former is dominant over the later. This
equal to the number of condensate atds simplified estimate can be made by using a one-parameter

To obtain the first set of our coupled equations of motion,gayssian ansatz for the thermal cloud density, namély
we start by writing down the energy functional that corre- .. exp(—x%/R?), whereR is the radius of the cloud. It turns
sponds to the nonlinear Schilinger equation in Eq(4), oyt that in the Thomas-Fermi limit the entropy contribution

namely, to the free energy is of orddeT In »*°, where y=N'"a/a,
2V |2 1, . N’ is the total number of atoms in the thermal cloud, and
Ec[P] :f dr[TJFVeXt”ﬁ 79(ng+4ncn’) —iRn, a= V#/mw is the harmonic oscillator length, while the total
(21) energy contribution is of ordekgTy?®. Therefore, ify>1
the entropy contribution is much less than the total energy
with n.=|®|2. We evaluate this energy functional using the contribution.
expression fob from Eq.(20), and by noting that the den- As we shall see in the next section, the experiments were
sity of the thermal cloud performed with a temperature-dependent total number of at-
oms ranging from about 6000 atoms at zero temperature to
. f approximately 40 000 atoms at the transition temperature. If
_f (2m)3 (p.r.b), (22) we extend this simple estimate to temperatures below the
transition temperature it turns out that the conditigr 1 is
and the damping terrR(r,t) can be calculated using Eqgs. satisfied only for high temperatures but not for low tempera-
(10) and(19). We notice here thatiR(r,t)n, turns out to  tures since the number of thermal atoms becomes small.
be proportional to the Hartree-Fock interaction term in Eq.However, this condition is then no longer important since the
(21), with a proportionality constant equals teia. This  free energy of the thermal cloud at such temperatures is
explains the reason for writinG,, as in Eq.(17). The equa- small compared to the condensate energy. Therefore, we will
tions of motion for the condensate dynamics are now thén the following only minimize the total energg, with
Euler-Lagrange equations resulting from varying the La-fespect to the variational parameters of the condensate and
grangian the thermal cloud. To be able to calcul&g, we assume that
the distribution function of the noncondensate atoms has the
same form of that of a noninteracting gas but with varying
spatial widths that effectively take into account the mean-
field effects of both the noncondensate and condensate at-
with respect to the 6 variational parametégs andby; . oms. This effective distribution function is written as

0, otherwise.

1 d d
=Zj * _p—Pp—DPF | —
L zlhf dr(CI) ﬁtq) (D&tq) EJJ®P] (23
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£0)— LA
of keT R R: R?

-1
—11 , (29 400 |

p(pZ/Zm—,u x2 y? 7
exp —————+

3

whereR;, R,, andR; are the widths of the noncondensate
cloud in the three directions. It should be mentioned here that
due to the presence of the condensate a “dimple” exists at
low temperatures in the noncondensate density profile. As is
clear from Eq.(24) we neglect this dimple for two reasons:
The first is because we are interested mainly in the high-
temperature region where the experiments are performed and 10.0
the dimple is small. The second reason is that, as argued by
Bijlsma and Stoof21], this dimple produces two competing T
effects on the frequency shifts. The first effect is to increase 0.0 02 o4 0.6 08 10
the effective mass of the condensate and thus to reduce the T/Maee

mode frequency. The other effect is to lower the mean-field

interactions which increases the frequency. The total energy FIG. 1. The measured total number of atoNs (squaresand

30.0

20.0

N,,(10%), N(10°)

is now a function of six variational parameters the number of condensate atoiNs (circles. The dashed lines are
a polynomial fit in powers of/ Tgec to the experimental data . The
Eiot= Etot(b(l?) ,b(Z?) ,bg?) \R1,R5,R3), (25 solid lines represent a fit thl,; only and using foiN, the relation
Ne=Nif 1— (T/Tged)?]. The solid line fit ofN,, is shifted slightly
whereb(?, b{?  andb{?) are the equilibrium values df;,,  downwards in order to get better agreement with the dataNfor

b,,, andbg,, respectively. The equilibrium is obtained by The measured points were taken from Hei.

minimizing this energy with respect to these variational pa-

rameters. condensate aton$,, are measured in the temperature range
The results of such a minimization will be shown in the T/Tgec=0.48 t0 T/Tgec=1.0, where Tgec is the Bose-

next section, where we present the dispersion relation thdtinstein transition temperature. These measurements can be

results from solving the above-described system of 15 lineareasily fitted with polynomials inT/Tggc as shown by the

ized coupled equations of motion. We discuss also the collidashed line in Fig. 1. An extrapolation of such a fit to tem-

sionless and hydrodynamic limits of these results. peratures below 0.48gc leads, however, to nonphysical
situations. In particular, the two curves fig,; andN, cross
IIl. THE DISPERSION RELATION: FREQUENCIES at least once before reaching zero temperature. We overcome
AND DAMPING RATES this problem by fitting onlyN,, with the experimental data,

and then usindN.= N 1— (T/Tgec)?] in analogy with the

Our calculation accounts, in fully anisotropic traps, forideal gas relatioN.=N{1— (T/Tgeo)’] [5]. We note here
nine modes of the gas. In axially symmetric traps this numthat we have restricted ourselves to fit the data with a for-
ber reduces to six modes. These are the in-phase and out-gfula that is similar to the ideal gas formula but with a dif-
phase combinations of the two monopoie<0) modes and  ferent exponent for the temperature dependence that is re-
one quadrupoleng=2) mode of both the condensate and thegarded as our fitting parameter. We find that an exponent
thermal cloud. Here we denote with the projection of the equal to 2 gives the best fit. Although the precise value of the
angular momentum of the mode along the axis of symmetrgxponent is not obvious to us, the fact that it is less than 3 is
of the trap[2]. We focus in this paper on the two lowest- physically reasonable since interactions tend to deplete the
lying m=0 and m=2 modes observed experimentally. It condensate. Figure 1 shows with the solid line the results of
turns out that for the experimentally relevant temperaturehis slightly less accurate fit. It should be noted that using the
range, the in-phasen=0, and m=2 modes correspond ideal gas relation will grossly overestimate all the experi-
mostly to oscillations of the thermal cloud, whereas the outmental points ofN, for T/Tgec>0.7. It turns out that the
of-phase modes are mostly condensate oscillations. Thereifference between the calculated frequencies using the less
fore, we shall often refer in this paper to the in-phase modeaccurate fit from those calculated using the best fit are much
as the thermal cloud or noncondensate modes and the out-agfmaller than the uncertainties in the measured frequencies for
phase modes as the condensate modes. Although our calatte experimental range of temperatures. This is shown in Fig.
lation provides results for another, higher-lying, monopole2. Since we want to show also results for the complete tem-
mode, we shall not discuss it further here. Moreover, weperature interval from zero g, we employ from now on
emphasize that throughout the following we perform our cal-always the former fit, i.e., the solid lines in Fig. 1.
culations for parameters taken from the experiments of Jin Before starting with calculating the frequencies and
etal.[2], i.e., with 8'Rb atoms in an axially symmetric trap damping rates of the collective modes, we show in Fig. 3 the
with anisotropy ratiows/w;= wz/w,= 8. result of the minimization of the total energy that is required

In that particular experiment the measurements were peto obtain the equilibrium conditions of the gas, as described
formed with a temperature-dependent total number of atomin the previous section. We plot the equilibrium widths of
as a result of the loss of atoms during evaporative coolingboth condensate and noncondensate clouds as a function of
The total number of atombl,, as well as the number of temperature. We notice from this figure that at zero tempera-
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21 y g - y y We can also see in this figure that at the transition tempera-
ture the radial width of the condensate is slightly larger than
the ideal gas one. This slight expansion is caused by the
presence of the thermal cloud, whose mean-field interaction
has the effect of slightly reducing the spring constants of the
effective trapping potential. Finally, we notice that at all tem-
peratures the thermal widths are larger than the condensate
ones, indicating that the condensate mean-field expels out the
thermal cloud.

Returning to the problem of the collective mode frequen-
cies and damping, we start by neglecting collisions between
the condensate and noncondensate atoms, which means that
a=0. In this case the dispersion relation turns out to have
the following general structure:

o./o,

1.1

0.4 0:5 0:6 0:7 0:8 0:9 1.0
LA™Y i 0[P 072)2+i1PQw 7y~ P]=0, (26)

_ Fl(i). 2. CoIhsmgless frequgnmes fm:(;:O, i.e., with n1<_)hcolll—|_OI l_WhereP(O), Pl(O)’ andP(Ho) are sixth order polynomials 2
sions between con ensatg and noncon ensate atoms. The solid lings: .1 21 all be factorized as
correspond to the approximate fit to the total and condensate num-

ber of atoms as shown by the solid lines in Fig. 1. The dashed lines 6

correspond t_o our be_st fitin the tgmperature mtervgl as is given by p(CO): H (w2_ w%k), (27)
the dashed lines in Fig. 1. The points are the experimental measure- k=1

ments for them=0 andm=2 condensate mod¢2]. The labels of

the theoretical curves in terms of the valuesroére shown in Fig. 6

4, PO=T] (w?-w?d), (29)

ture and at the transition temperature we obtain rather goo%nd
estimates for the widths of the condensate and therma

clouds. At zero temperature, where the thermal cloud is ab- 6
sent, we observe that the radial width of the condensate P&O)=H (wZ_Q,ak)_ (29)
equals approximately&, a result that is consistent with the k=1

familiar property that due to the mean-field interactions the
equilibrium condensate width is larger than the ideal gagiere, @ck, @nc, and oy, k=123, are temperature-
resulta,. The axial width, which is roughly 42 of the dependent collisionless, intermediate, and hydrodynamic fre-
. 1 . . . o O
radial width, is suppressed due to the anisotropy of the tragJuéncies, respectively. The superscriptsPig, P{®), and
P indicate the value ofr. The general structure of this

10.0 . . . . dispersion relation agrees with the result of Rg3,24

condensate cloud widths 0 above the transition temperature, where this dispersion rela-

e

----- noncondensate cloud widths -~ tion was studied in detail. Particularly, it was shown that
’ damping rates calculated using this relation agree in order of

magnitude with experiments and numerical calculations.

The collisionless regime is defined by the condition
wTy>1. Therefore, we find from Eq26) that the collision-
less frequencies arec,. In the hydrodynamic limitw 75,
<1, and the hydrodynamic frequencies asg,. Note that
we use the word hydrodynamic here to denote that the ther-
mal cloud is in the hydrodynamic regime thougl+0 and
there are therefore no collisions between condensate and
axial noncondensate atoms. In a sense this regime is thus precisely
0.0 . . . . the limit discussed by Nikuni, Zaremba, and Griffih8].

0.0 0.2 0.4 0.6 0.3 10 Using the experimental parameters we calculate these fre-
quencies for the whole temperature range belyc. In

FIG. 3. The equilibrium widths of the condensate and nonconf9- 4 We present the results of this calculation for the
densate clouds in the axially symmetric trap of Rl In refer- =0 andm=2 modes together with the experimental data. In
ence to the text, the radial width of the noncondensate cloud ighis figure the collisionless curves agree with those of Bi-
R;(=R,), and the axial width ifR;. For the condensate cloud, the jlsma and Stoof21] for T/Tggc>0.2, which is not surpris-
radial width is (D{?9) ¥4 =(2b{’)~12] and the axial width is ing since we use similar ansatz functions. The discrepancy
(2b) =2 as can be seen from E@5). All lengths here are for T/Tgec<0.2 is due to the different ways of treating the
scaled to the harmonic oscillator lengah= (%/mw4) 2. equilibrium state.

8.0 |

6.0 |

widths(a,)

40 |

radial

20
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w./o,, 0,/o,

" 0.0 0.2 04 0.6 0.8 1.0

T/ eee ' ' olo,
FIG. 4. Collisionlesgsolid curve$ and hydrodynami¢dashed FIG. 5. Damping rate; versus frequency, for noncondensate

curves collective mode frequencies far=0. The curves are la- oscillations, aff =0.79Tgec for =0 anda=0.25. The two points
beled in terms of the values ai and the phase difference between correspond to the experimentally observed frequency and damping
the condensate and thermal oscillatighs(a) m=0, =0, (b) m rate of the thermal cloud oscillation.
=2, 6=0,(c) m=0, 0=, (d) m=2, 6=m.
- . two experimental points corresponding to time=0 andm
Above the transition temperature, the explanation of the_ 2 modes of the noncondensate oscillation. In this figure,

mode damping was based on the fact that the measured frgqe right end of the curves represent the collisionless regime
guencies were less than the theoretical collsionless frequen=—

cies. This shift in frequency is then interpreted to be due t 3722>1) and the left end 'S_ the hydrodynamic regime
the fact that the system is shifted from the collisionless re{@722<1). Therefore, the location where the dashed curves
gime towards the hydrodynamic regime. Collisional dampingntérsect with the horizontal axis can al_so be seenin Fig. 4 at
associated with this shift was calculated and compared to the=0-79Teec. For the experimental point corresponding to
experimental damping. It is clear from Fig. 4 that below thethe monopole mode, the error bars _do not intersect with the
transition temperature this kind of explanation is not pos-dashed curve ¢=0), but they do with the solid curveq
sible, since most of the experimental points are not located 0-25) indicating that a nonzero value of is needed to
between the collisionless and hydrodynamic curves. account for the experimental damping. This indicates that
To investigate the possibility that this damping might beconde_nsate-noncondensate atomic colll_szlons are m_al_nly re-
due to the condensate-noncondensate atomic collisions, wonsible for the observed damping of this mode. This is less
now study the effect of these collisions by takingto be clear for the quadrupole mode although the experimental

nonzero. For nonzera the dispersion relation takes the gen- data is certainly not inconsistent with this conclusion.
eral form Next we show in Fig. 6 at the same temperature both the

Pl(k)ak) W7o 10 |

_S pMigk_o. (30) T

We note that thé&c=0 term in this expression corresponds to < o5 |
Eq. (26), wherea was indeed taken to be zero. Frequencies ’
and damping rates can now be obtained by writingin

terms of a real and imaginary parts= o, +iw;, and then

inserting this expression in the last equation. In general, one
obtains expressions fas, and w; in terms ofw7,, and «.

We start our discussion of the frequencies and damping 0.0 .
rates forT/Tggc=0.79, since at this temperature the experi- 1.0 1.2
ment provides data for both the condensate and nonconden-
sate oscillations. We present the results of our cal_culgtion for FIG. 6. Damping rate; versus frequency, of condensate and
them=0 andm=2 mOd(E‘ of the thermal cloud in Fig. 5, noncondensate oscillations Bt 0.79T g, for @ changing from O
where we have eliminated r,, and plottedw; as a function to 0.25 in steps of 0.025. The two points correspond to the experi-
of w, for a=0 anda=0.25. On the same plot we show the mental measurements of the condensate oscillation.

g
3

m=0

22

®, /o,
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condensate as well as the noncondensate0 and m=2
modes for values o ranging from 0 to 0.25. The effect of

«a on the noncondensate modes is a slight shift and rotatior
of the curves but their general structure is roughly preserved
This can be seen more clearly in Fig. 5. The effectobn

the condensate modes is much larger, it gives rise to a larg

upward shift for the whole curve. The effect ©f,, on these
curves becomes smaller for larger valuesrofvhich can be
seen by noting that the radius of the small semicircles be-
comes smaller for larger values af Again, we see that a
nonzero value ofx provides sufficient damping to account
for the experimental observations. However, there is a dis-
crepancy between our calculation and the experiment in the
value of the frequency of thev==0 mode, since our calcula- [
tion predicts w/w,~1.68+0.4, whereas the experimental g 0.100 f
data give a frequency of about 205 This discrepancy was ¢ 3

also present in the calculations of Ref$0,21] and is dis- ~ 0.010

cussed in Ref[21]. The authors of the last reference sug- 3

gested that a possible reason for this discrepancy may be th: 0.001 : . . L
the observed mode is in fact an in-phase=0 mode (the 0.45 0.65 0.85
upper solid curve in Fig. ¥rather than an out-of-phase one. T/ TBEC

This suggestion was based on calculating the oscillator
strengths of the in-phase and out-of-phase 0 modes. It
turned out that it is indeed possible experimentally to excit
both modes simultaneously in the temperature raige
~0.25Tgec to T~0.5Tggc. Although the calculation in Ref.
[21] was performed in the collisionless limit, where there is
no damping, we expect that with damping this argument re
mains qualitatively correct.

For the rest of the experimental points we can, in prin-
ciple, explain the data using a two-parameter fit, namely Lo :
with @ andw,,. In fact, the collisions between atoms from to th_e large uncertainties m_the ex_perlmer_ltal data.
the condensate with those from the thermal cloud are the Finally, we want to mention an Interesting feature of the
main cause of damping in the condensate modes, and we CH}]—pha}se and out-of-phase=0 mpdes Wh'c.h can a_lready be
even explain the data using a one-parameter fit, namely, On?}een in Fig. 4 al/Tgegc~0.05. It is the familiar anticrossing

FIG. 7. Fitting all the experimental data on the mode frequen-
cies and damping rates with a single temperature-dependent func-
Sion «. At low temperature the saturation in the curve folis an
artifact of the fitting.

solved by a reinterpretation of the observed mode, as ex-
plained previously. Finally, the temperature behaviowah

Fig. 7 indicate thate obeys a power law in temperature.
However, an accurate estimate of the exponent is lacking due

; o o ; dency of these modes obtained also by Bijlsma and Stoof
a, by assuming that the system is in the collisionless regim n : : ;
With respect towy, i.e., @r,,> 1. We perform this calcu- 21] and Zarembeat al.[18]. It is more dramatic here than in

: : . : . these two papers due to the presence of the new parameter
lation by using a function(T/Tgec) that gives the best fit This behavior can be seen in Fig. 8 where we see the two

for the experimental damping rates. In Fig. 7 we plot the ;
function a(T/Tggc) and the resulting temperature-dependentmOdeS“ come ’(,:Iose to each o_ther and eventually intersect at
frequencies and damping rates. This figure contains the mair’ M€ critical” values ofa twice.

results of this paper. First of all we notice that now, with a

nonzerow, we obtain better agreement with the experimental IV. CONCLUSION

data for the quadrupole mode frequencies than before where

« was taken to be zero. This can be seen by comparing this We have extended the method of calculating collisional
figure with Fig. 4. We note also that, depending on the valuglamping, used previously above the Bose-Einstein conden-
of a, the mode frequency may shift upwards or downwards_sation transition temperatu[23,24], to below the transition

By comparing Fig. 4 with Fig. 7 for the mode frequenciestemperature. Furthermore, we have included the effect of
one can C|ear|y see that for temperatures below approxil:loncondensate-condensate collisions. By Comparing with ex-
mately 0.6 gec the theoretical curves are shifted upwards,periment, we conclude that it is presumably this collision
whereas for the higher temperatures the curves are shiftgfocess which is mainly responsible for the observed damp-
downwards, in the end giving rise to the good agreement ofng. Our theory provides a general dispersion relation that
the quadrupole mode with experiment. Secondly, we notic&ives complex mode frequencies at a certain temperature as a
that the same functioa(T/Tggc) also gives a good fit for function of two dimensionless parameters, namely) 734

the damping rates of both the monopole and quadrupoland «, that characterize the noncondensate-noncondensate
modes. There is still a discrepancy between our predictionand noncondensate-condensate atomic collisions, respec-
and the experimental findings for the frequencies of theively. Our results for the fully collisionless frequencies
monopole mode at higher temperatures, but this may be reagree with those of Ref21] for most of the temperature

053602-8
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0=0.0005 0=0.002 0=0.0025
| A | A 1 4
0=0.01 0=0.026 0=0.028
i: H
0.4 [— I f J =l
0=0.03 0=0.04 P 0=0.05
~_ i i H J
8 0 0 .
0.0 l .
1.2 2.2

®, /o,
FIG. 8. Damping ratew; versus frequency, of condensate and noncondensate oscillation§=20.79T g with a changing from
0.0005 to 0.05. The four curves in each plot correspond to the in-phase and out-offph@sandm=2 modes which are also shown in

Fig. 6. The present figure corresponds to the region in Fig. 6 where the in-phase and out-ofipitaseodes come close to each other. One
can see here that the anticrossing feature of thesartw® modes is not only present at=0 [21] but also for nonzero values of.

range below the transition temperature. Tine=0 andm  croscopic calculation for the inhomogeneous experimental
=2 hydrodynamic frequencies are, to the best of our knowl-conditions of interest would be very desirable and is left for
edge, calculated here below the transition temperature for thieiture work.
first time. We obtain a rather good agreement with the experimental
At present we have not carried out a microscopic calcutesults for the mode frequencies and damping rates apart
lation of the mean collision times,, and 7;,<a ™1, which  from the discrepancy for then=0 out-of-phase mode for
are treated as phenomenological parameters here with tie>0.7Tgec. While the experiment shows an upward shift in
possibility to investigate the intermediate regime with re-the frequency with respect to its zero temperature value, we
spect to either of the two collision processes. However, thg@redict a downward shift. Resolution of this discrepancy
homogeneous calculations of Zaremba, Nikuni, and Griffinseems to require more accurate experimental data, which will
[18] indicate that the functiom(T/Tgeo) that we have ob- also provide decisive comparison with the theory presented
tained from a fit to the experimental data, has the correchere.
order of magnitude and qualitatively also the correct tem-
perature dependence. Approaching the transition temperature ACKNOWLEDGMENTS
from below, the microscopic calculation of the latter work
gives rise to a divergent mean collision rate. It can be argued The authors would like to thank Michiel Bijlsma, Chris
that the source of this divergency is at least partially due tdethick, and Henrik Smith for useful suggestions and re-
the use of a two-body matrix instead of the many-bodly  marks. This work is supported by the Stichting Fundamen-
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