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Structure of the Stark recurrence spectrum
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The primary goal of research in “quantum chaos” is to explore the extent to which the methods and natural
intuition of classical mechanics can be used to elucidate the complex and often surprising behavior of large
guantum systems. Much recent work is based on the deep connections between classical(pectmtied
orbits and the quantum spectrum revealed by semiclassical “trace formulas.” These ideas have important
applications in the analysis of the “recurrence spectrum” of Rydberg atoms in strong static electric fields in
which the measured peaks are associated with individual classical periodic orbits. Here we present detailed
experimental measurements of the recurrence spectrum=fdi5—-25, singlet and tripletn=0, 1, helium
Rydberg atoms and we provide a purely quantum-mechanical explanation for the structure of the recurrence
spectrum based on the regularities of the Stark photoabsorption spectrum. This analysis serves to demystify
these(still complex representations of the quantum spectrum; provides new insight into the functional differ-
ences between hydrogen and helium Rydberg atoms in strong fields; and reemphasizes the remarkable corre-
pondence between the classical and quantum theory for these systems.

PACS numbe(s): 32.60+i, 32.80—t, 03.65.Sq

I. INTRODUCTION Kleppner[9,10], Hogervorsf 11,12, and Morgan 13—15.
In these semiclassical “trace formulas,” the classical and

An understanding of the correspondence between classguantum theories provide complementary descriptions of the
cal and quantum mechanics played a key role in the foundasomplex physical systems—each gquantum-mechanical en-
tions of quantum theory and continues to be a subject oérgy level can be associated with a family of classical trajec-
great interest today. It is particularly important for describingtories[2] and regularities in the complex quantum spectrum
the physical behavior of systems that lie at the interface becan often be associated with a single classical perodic or
tween the classical and quantum world, Rydberg atomsglosed orbit3]. Consequently, the classical mechanics may
large molecules, and mesoscopic electronic devices. At thesge used to provide extra insight into the properties of a quan-
new frontiers of scientific research the quantum theOI’y Camum System with a Comp'ex Spectrum, and Converse|y, the
be very complicated and the corresponding classical theory,antum theory(or experiment may provide novel insight
is often chaotic. As a consequence, this resurgence of interegfq the corresponding classical dynamics. This “comple-
in semiclassical physics is often referred to as the study anentarity principle” is the essential foundation for “quan-

“quTé;]”t“m chaos.”  of th ¢ derf 1) studies is t tum chaos” research at this interface between the classical
e primary goal of thesgost-moderri1]) studies is to and quantum worlds.

explore t.he extent tO.WhICh the methods anq natural intuition One important tool for studying this classical-quantum
for classical mechanics can be used to elucidate the complex . . "
correspondence is the experimental measurement of the “re-

and often surprising behavior of large quantum systems.

Much recent theoretical work has built upon the deep conSurrence spectrum” of a Rydberg atom in a strong static

nections between classical periodic or closed orbits and thfi€!d- The usual Zeeman spectrum of a Rydberg atom in a
quantum spectrum developed in the early 1970s b)gtro_ng magn_etlc field or the_ Stark s_pegtrum of a nonhydro-
Gutzwiller [2] and by Berry and Tabof3]. These math- 9€nic atom in a strong static el_ectrlc field is very complex
ematical methods have been developed into practical toolith many avoided level crossings, resembling a bowl of
for detailed calculations of observable properties of physicapPaghetti. However, if the spectrum is measured using
systems(for direct comparison with experimeénby Delos  “scaled spectroscopy” which constrains the level energies to
[4,5], Heller [1,6], and others. In particular, the closed orbit scale with the applied field in such a way as to keep the
theory for the calculation of the photo-absorption spectrunclassical Hamiltonian invariant, then regularities in the com-
of complex, nonintegrable quantum systems, developed bplex spectrum may emerge that can be associated with indi-
Delos and his co-workergt,5], has proven to be a valuable vidual classical periodic orbits.
tool for interpreting the experimental measurements of the For example, in the recent experiments of Keeler and
quantum spectra of Rydberg atoms in strong magnetic anMorgan [13—-15, the scaled energy spectrum,=|E|/\/E
electric fields in the laboratories of Welgd7,8], = const, was measured as a functiomof 1/F* for helium
Rydberg atoms excited to energi&s(with respect to the
zero field-ionization limit in strong static electric fieldf.
*Permanent address: Instituto De Fisica, Universidad De GuanaFhese strange variables are dictated by the scaling properties

juato, Mexico. of the classical Hamiltonian for the Rydberg electron moving
"Present address: Physics Department, University of Wisconsirin a Coulomb field with an applied static field. This scaled
Madison, WI 53706. spectroscopy requires that the laser excitation energy be
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shifted with the applied electric field to keep the scaled en- . , : ydrogen Theory,m=0

ergy e fixed. 330 3 ] = =
When this still complicated, scaled photoabsorption spec- A ==

trum is Fourier transformed with respectipowe get a much 3.00 ==

simpler “recurrence spectrum” in which relatively few € 275 =

peaks appear. Fan=0 hydrogen these lines in the recur- ) =

rence spectrum are readily assigned to the scaled classical 230
actions S, of individual classical orbits that start at the Ry =
nucleus and return to the nucleus. In hydrogen these closed 2.00 A R
orbits are reflected by the Coulomb potential and retrace 00 25 5.0 75 g 100 125 150
their paths completing a periodic orbit. The classical actions
of these “recurring” orbits(and their integer multiples cor- . Helium Experiment, Singlet, m =0, n = 15 to 25
responding to the repetition of these orpitkefine the “re- 3.50 Jeeees bl wﬂg:‘“: =
currence spectrum” that provides a complementary descrip- 325 ! S
tion to the usual energy spectrum. 3.003 %w e

While this program can be carried out numerically for € = )

hydrogen atoms, where there are(nonrelativistig avoided
Stark levels, the experimentally measured recurrence spec-
trum for helium Rydberg atoms provides an interesting op-
portunity to study the effects of the broken Coulomb sym-

metry (due to the core electroras well as the electron-spin 00 25 50 75 100 125 150

interaction(due to Pauli exclusionon the structure of the S

recurrence spectrum and the associated periodic orbits. -\ Helium Experiment, Triplet, m=0, n= 15 to 25
Figure 1 displays the calculated recurrence specfrlbh 2,50 ALl b Al ORI .

for m=0 hydrogen and the measured recurrence spectrum 3253 ]

[14,15 for the m=0 singlet and triplet states of helium Ry- ’ Lo / =

dberg atoms with principle quantum numbers- 15—25. ¢

The strong static fields used in the calculations and experi- 2.75

ments correspond to scaled energies ranging feen3.5 to 2.50

the classical ionization limite=2. Remarkably, all three 595

recurrence spectra are very similar. All three exhibit a series 200 J

of curved lines running from the top to the bottom of the
graph that vary in intensity in distinct bands running from

the lower left to the upper right. In Keeler and Morgan’s FIG. 1. Comparison of then—0 Stark recurrence maps for

previous work 1319, the. lines in t.he _hydrogen regurrence ra/drogen and helium Rydberg atoms in strong static electric fields
spectrum have been assigned to individual classical close

. X o . . -~ With scaled energies, between 3.5 and 2.0 and scaled actid®s,
orbits (and their repetitionsand the rise and fall of intensi- up to 15. These recurrence maps are determined by the Fourier

ties have be_en roughly corre_late_d With the bifurcation _pomtﬁransforms of(a) the calculated hydrogen photoabsorption spectrum
of these orbitgwhere the periodic orbits change stability for n=15-20, (b) the measured photoabsorption for the singlet

The strong similarity between the=0 helium and hy-  pejium states witi=15-25, andc) the measured photoabsorption
drogen “recurrence maps” suggests that the origin of muchor the helium triplet states with=15-25.
of the structure in the helium recurrence maps is the same as
in hydrogen. The most notable differences between hydrogehelium (singlet and triplet spectra[13] for m=1 Rydberg
and helium is the appearance of a new band of enhancestoms shown in Fig. 2 provide even greater challenges to this
intensity in the helium recurrence spectra that appears besemiclassical interpretation of the quantum spectra. The
tween the third and fourth diagonal bafr@ad from left to  overall appearance of the=1 recurrence maps in Fig. 2 is
right) of the hydrogen recurrence map and the comensurat@uch simpler than then=0 maps shown in Fig. 1 with
reduction of the intensity of the third hydrogenic band. fewer bands of enhanced intensity. However, these bands can
These new peaks in the recurrence spectra have been pre longer be directly associated with bifurcations of closed
viously identified with the emergence of core-scattered claserbits since there are no real closed orbits that start from the
sical orbits that lead to contributions from combinations ofnucleus and return because of the angular momentum barrier
the hydrogenic “uphill” and “downhill” periodic orbits in  at the nucleus. Again the hydrogen and helium recurrence
the static electric field10]. Unfortunately, the extension of maps are very similar. The primary differences between hy-
the closed orbit theory to helium atoms is complicated by thedrogen and helium are the regular modulations of the second
fact that there are typically several combination orbits thatand third bands of the helium recurrence maps that are most
may contribute semiclassically to the additional helium lineprominent in the triplet case, Fig(@ [13].
intensities and to the depletion of the hydrogenic line inten- One of the primary goals of this paper will be a return to
sities[14,15|. the guiding “complementarity principle” for this research to
The calculated hydrogen recurrence spectra and measuredarch for the quantum mechanisms that explain the similar-

0.0 2.5 5.0 75 S 10.0 12.5 15.0
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Hydrogen Theory, m=1

0.0 2.5 5.0 7.5 S 10.0 12.5 15.0

7 ~Helium Experiment, Singlet, m=1, n=15to 25
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FIG. 3. The scaled Stark eigenvalues for the hydrogenm
=0, n=10-15 states are plotted as a function of the scaled-energy
I e e R e e b e e parameter— e, ranging from—3.5 to —2.0. The solid curves cor-
0.0 2.5 5.0 7.5 S 100 125 150 respond to “blue”shifted levels and the dashed curves to the “red”
shifted levels. The extremal states for eatlare highlighted to
FIG. 2. Comparison of then=1 Stark recurrence maps for emphasize the periodic spacing.
hydrogen and helium Rydberg atoms in strong static electric fields

with scaled energies, between 3.5 and 2.0 and scaled actid®®s, .+« for both the fine-scale and large-scale structure of the
up to 15. These recurrence maps are determined by the Fourier

transforms ofa) the calculated hydrogen photoabsorption spectrumm:O hydrogen recurrence map shown in Figa)1A com-

for n=15-20, (b) the measured photoabsorption for the Singhs.tparison with the predictions of the semiclassical closed orbit
helium states witm = 15-25, andc) the measured photoabsorption theory illustrates the virtues and limitations of these comple-
for the helium triplet states with=15-25. mentary approaches. Then our analysis is extended to the

_ _ . m=1 case in Sec. lll, where the semiclassical closed orbit
ites and differences between the hydrogen and helium recufneory breaks down. Again our analytical results agree well

rencle spectlrz. Th|§ ?nalys?tlﬁaqitp stlmplte q?antur;ntﬁs W&lith the calculated hydrogem=1 recurrence map as well
as classical descriptions of the intricate structure ot the re; o, experimently measured helium singlet and tripiet
currence maps displayed in Figs. 1 and 2. This complemen-’ :
. . =1 recurrence maps. In Sec. IV, the effects of avoided level

tary approach serves to demystify thdsgll complex rep- : . . : i
resentations of the quantum spectrum. It provides neyyrossings in the helium Stark spectrum are introduced into
insight into the functional differences between hydrogen and4’ analysis of the I_evel periodicities to offer a simple expla-
helium Rydberg atoms in strong fields and reemphasizes tHaation for the key differences between the hydrogen and he-
remarkable correspondence between the classical and qudfit™ m=0 recurrence maps in terms of the avoided cross-
tum theory for these systems. Finally, this work paves thdnds between the helium Stark levels. These differences have
way for the analysis of more ambitious experimental studie®€en previously described in the semiclassical closed orbit
of more complex atomic and molecular Rydberg states irtheory by invoking the contributions of “core scattered”
strong fields. classical orbit§14]. Finally, Sec. V provides a summary of

In Sec. Il, we calculate the scaled Stark spectrum for theour results and discusses remaining puzzles relating to subtle
m=0 states of hydrogen and show that careful analysis oflifferences in the hydrogen and helium=1 recurrence
the periodicities in the scaled photoabsorption spectrum aagnaps.
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FIG. 4. The theoretical photoabsorption oscillator strengths for Te~ea
the hydrogem= 25 Stark manifold at=3.5 are plotted as a func- 0.35 €

tion of w for the m=0 (top) and m=1 (bottom) states. Fom FIG. 5. Th . f the 1D classical uphilt dd hill
=0, the oscillator strengths are peaked near the extremal red and t ’ sa‘(lztlons OI ttted (;asstl.ca Upfbl ghanh own :'d
blue substates and fon= 1 the oscillator strengths are peaked near( ) actions, Eq(4), are plotted as functions efby the heavy soll

the center of the manifolfL6,17). The dotted step functions show and dashed lines, respectively. The thin solid curve shows the

the approximate oscillator strengths used in our analytical calculag’Irnple analytical approximation to the uphill action integal pro-

tions of the scaled hydrogem=0 and 1 recurrence spectra. vided by quantum mechanics, E8). The analytical approximation
for the downhill action is indistinguishable from the exact classical

Il. HYDROGEN RYDBERG ATOMS, m=0 action in this figure.
In atomic units the first-order Stark energy levels in hy-theory. According to the closed orbit theory, when a photon
drogen are is absorbed by the atom in an electric field forming a Ryd-
berg state, the electron initially becomes a near zero-energy
1 3 outgoing Coulomb wave. Beyond a sufficient distance from
—E=—- =+ sn«F, (1) : ; ;
2n¢ 2 the nucleus, this wave propagates semi-classically along

classical trajectories in the combined Coulomb and static
where k=(n;—n,) is the electric quantum number ex- field. The classical trajectories that return to the nucleus pro-
pressed in terms of the parabolic quantum numipgrand  vide opportunities for the electron wave function to interfere
n, defined byn=n;+n,+|m|+1. The scaled Stark ener- with the outgoing wave forming an “atomic interferometer”

giese=|E|/\F, are then determined by that is responsible for the structure in the photoabsorption
spectrum. Each closed orbit and its repetitions contribute an

w? 3 nk oscillatory term to the photoabsorption spectrum. When the
e T WJF 2 w2’ 2) spectrum is recorded at constant scaled energy, the period-

icities inw and the associated peaks in the Fourier transform
wherew=F %4 For a fixed scaled energy the Stark spec- (recurrence spectruntorrespond to the classical actions of
tral lines correspond to discrete valuesiofhat are solutions these closed orbits.
to Eq. (2) for different principal quantum numbers, and Because the oscillator strengths for the photoexcitation of
electric quantum numbers. [In fact, Eq.(2) has four roots, them=0 states are peaked near the extremal states, the clas-
so we must choose the real, positive roetsthat are closest sical scaled actions associated with the periodicities in the
to the field-free valuen+/2e.] Figure 3 displays the “blue” photoabsorption spectrum are well approximated by the
and “red” wlevels as a function of € for n=10-15.(Note  scaled actions of the up- and down- hill orbits parallel to the
that for weak fields corresponding to large valuesepf Z a}(is determined by the scaled, one-dimensional Hamil-
w/\2e converges to the principal quantum numbers tonian
=10-15.) 5
The usual procedure for generating a theoretical recur- = P~
rence spectrum is to associate an amplitude with each energy 2
level that is proportional to the oscillator strengths for the . )
photoexcitation of these excited states from the initial stateWherez=0 andp are scaled position and momentum vari-
Form=0, these oscillator strengths are peaked near the exaPles and the- correspond to the up- and down-hill motion,
tremal levels with an expected distribution of the form respectively. Then, evaluating the the classical scaled actions
siré(x/n) [16,17] shown in Fig. 4(top). Then the recurrence S=(1/2m)[pdz we get
spectrum is generated by numerically performing a Fourier .
transform of these sequences of lines as a functiow &dr Stzifz’ /2(212_ e)dz @)
eache. Figure 1a) displays this weighted Fourier transform mJo z '
of the hydrogenic energy levels from= 15-25 for values of
e from 3.5 to 2. This is the so-called Stark recurrence mapwhere the one-dimensional classical orbits are reflected at the
The semiclassical “closed orbit” theorj4,10] predicts origin and reach a maximum excursioz” = (e
that each of the peaks in the Stark recurrence map corret Je?£4)/2. Although these action integrals can be for-
sponds to the scaled actio8®f closed orbits in the classical mally evaluated in terms of elliptic integral&7], it is more

+z, 3

N| kP
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FIG. 7. Comparison of the modulated fundamental peaks from
the present analysidop) with the calculated hydrogen recurrence
spectrum(bottom for e=3.5. The dashed top curve shows the
predicted envelope for the downhill red states and the solid top
curve shows the envelope for the uphill blue states. Our approxi-
mate analytical results, using the simplified step-function oscillator
strengths shown in Fig. 4, accurately defines the outer edge of the
prominent bands in the recurrence spectrum. A more accurate de-
scription requires the numerical Fourier transform of the photoab-
sorption spectrum described in the Appendix.

The closed orbit theory predicts further that the ampli-
tudes of these peaks are greatly enhanced near “bifurcation”
points where new closed orbits are created from the bifurca-

3.5 ‘--....,..v.._'d_v o M

T T T

o I W W e
%

1 tions of the parallel up- and down-hill orbits as the scaled

| energy is varied. Fom=0 hydrogen Rydberg atoms in a
static electric field, Courtnegt al.[10] have carefully calcu-
lated the classical actions and bifurcation points for closed
electron orbits that start at the nucleus and return. In fact, the
(€,9) loci for these bifurcations provide a good description

of the outer boundaries of the first two enhanced bands of
recurrence peaks and the outer boundaries of the subsequent
bands can also be explained in terms of the harmonics of

25

FIG. 6. (@) The barem=0 recurrence spectrum generated by

periodicities of the extremal red and blue states alone is plotted iII‘hese blfurcathns. )
the S-e plane. The solid curves show the fundamental frequé&cy Much analytical and numerical work has been devoted to

for the blue extremal states and its harmonics, and the dashednderstanding the details of this correspondence; however,
curves show the fundamental frequer8y for the red extremal ~Mathematically speaking, the peaks in the Fourier transform
states and its harmonicg) The modulated bands in the full recur- Simply correspond to the frequencies associated with the pe-
rence spectrum arise from additional intereference of the red andodicities in the scaled Stark spectrum like those highlighted
blue Stark substates. This figure shows the analytical estimates foh Fig. 3. In this paper, we will attempt to identify the origins
the locations of the substate interference bands using a steps periodicities in the scaled Stark spectrum in order to ana-
function oscillator strengths as shown in Fig. 4. This theoretically, tically perform these Fourier transforms. Our Fourier

derived recurrence map successfully describes mqst of the sm halysis of the scaled Stark line spectrum for each value of
and large-scale structure of the hydrogen and helium re(:urrencreesembles the description of a diffraction arating with peri-
maps shown in Fig. (t). When avoided crossings are included in P 9 9 P

the analytical estimates for the extremal Stark level substate spac(,)-d'ca”y spaced slits. This approach provides an alternative,

ings, a new interference barfthdicated by the arrowarises from duantum-mechanical explanation for the locations and am-

the “purple” substates that agrees well with the novel band in thePlitudes of the peaks in the recurrence maps that comple-
measured heliunm=0, recurrence spectrum shown in Fig. 1. ments the closed orbit theory and provides additional insight

into the intricate structure of the quantum energy levels and
their relationship to the classical dynamics.

convenient(and sometimes more accurate simply evalu- . o
t B pY The analysis of the periodicities in the Stark spectrum can

ate the integrals numerically for each valueecds shown in be simolified b idering the limit of | hen. f
Fig. 5. The individual peaks for constaatin the hydrogen ~°€ SIMpliied by COTS' ef,mg the limit of large Then, for
recurrence spectra displayed in Figallcorrespond very M=0 the extremal “blue” state corresponds io=n—1~

closely to integer multiples of these classical scaled actiong N @nd the extremal “red” state, ta=—n+1~-n. In
shown in Fig. 5. these limiting cases, the solutions of EQ) are

053410-5
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W+=n(e+ Je?+3 )mznAa’, (5) W(n,x)=n[e+ Je?+3—3(x/n) ]1’2, (10)
w=n(e+\e-3 )¥=na,. (6)

wherex=n—«x=135...,2n—1.
The extremal levels define the periodic framework for the  First note that the substates near the edge of the Stark
Stark level structure shown in Fig. 3. For fixed values of themapifold have approximately the same periodicities as the
scaled energy, the periodicity of the extremal statésigh- corresponding extremal states. Consider first the blue-shifted
lighted in Fig. 3 and of the adjacent substates should bestates defined by Eq10) with x=1,3,5, ton—1 (if n is

readily apparent. if nis odd. If we fi d differentiate Eq(10
From Egs.(5) and (6) the periods of the “blue” () aYter]nrg;:e(ét ?qus ?heC?{ e Tixx and differentiate Q.0

levels and “red” (=) levels inw are approximatelyA *

=(e+Ve?+3 )2 and A~ =(e+ e?—3 )2 respectively.
These well-defined periodic structures determine much of the
fine structure of the Stark recurrence map. Approximating

these sequences of lines as periodiftinctions, we can use Alnx)=dw(n,x)/dn=d[nw(1x/n)]/dn

the Poisson identity =w(1x/n)—w’(1x/n)(x/n) (11)
E S(w—nAg)= E el 2mWk/Ag (7) sinceAn=1. Expanding Eq(11) for small (x/n) gives
n=-—w k=—o
to instantly perform the Fourier transform to determine the A(n,X)=w(1,00+w'(1,0)(x/n)—w’(1,0(x/n)
fundamental “frequencies” arising from these contributions
to the scaled Stark spectrum. Motivated by the semiclassical +0((x/n)?)

closed orbit analysis, we call these frequencies the ‘“scaled _ 2
actions” S and we see from Eq(7) that the Fourier trans- =W(1,0+0((x/n)%)

form of the extremal Stark lines with respectvowill con- _ 2.2 \12

tribute peaks in the recurrence spectrumpat integer multiples ~(6+ €3 ) ' (12
of the scaled actions Aj; and 1A, shown in Fig. €a). A
comparison of Fig. 1 and Fig(& shows that the fine struc-
ture of the peak locations in the calculated and measure
recurrence maps are well-described by this simple analysis: )-

In a remarkable demonstration of the utility of the appli- Consequently, the Fourier transforms of these periodic
cation of the “reverse” correspondence principle we find ladders of adjacent blue and red substates will add coherently

that this simple quantum-mechanical result for the inversd® the contributions from the extremal states alone. However,

level spacings, Eqg5) and (6) provide excellent analytical these substate ladders are displacediftom the extremal
approximations for the difficult classical action integrals, Eq.States, which introduces a phase shift in the Fourier compo-

(4). In Fig. 5, the analytical expressions for the fundamentanents associated with each family of substates.
quantum frequencies To calculate the coherent contributions of the blue sub-

states we can estimate the near extremal-substate spacings by
evaluating the derivative ofi(n,x) with respect tox in the

hich is the blue extremal-state spacing; , defined by Eq.

Sy =1/Ag =1/ e+ =3 )22 @  limit (x/n)—0,
converge rapidly to the results for the classical action inte-
grals, Eq.(4) with increasinge. ~dw(n,x) -3

Next we show that the large-scale banded structure in the 8y = (13
Stark recurrence map in Fig(a) can be simply described by
the periodicities of the scaled Stark substates. The exterior
framework provided by the extremal states is filled in with a

lattice of substates corresponding to the intermediate valuehen the spacing between adjacent extremal substates (

dx

X:0_4\/62+ 3( e+ \/€2+3 )1/2.

of the electric quantum numbar=n—1n-3,...,—n+3, =135...) isapproximately &, , sinceAx=2, indepen-
—n+1 form=0. The locations of these substates are deterdent of bothn andx. These approximately uniform “phase”
mined by solving differences in the coherent sums of the Fourier components

result in important destructive and constructive interferences,
that depress the strength of some lines in the bare extremal

w? 3 n%1-—x/n) recurrence spectrum in Fig(# and enhance others leading
e W”L 27 w2 © o the large-scale banded structure in Figa)1
Using the Poisson sum formula, E(), for each ladder
for of blue-shifted substates,

053410-6
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2 Sw=nw(L1h)+ > Sw—nw(1,3h)+ 2 Sw—nw(L5h)+ -
~3 Sw-nAg=55)+ 3 SW-NAG~365)+ 2 S(W-nAG-555)+ -
= izmkw=o)/8g 3 gizmk(w=350)/85 3 gizmk(w=555)/8g 4 . ..
k k k

=3 eizwk(w—(sg)/Ag(lJre—izwkzagmg+e—i2nk4agmg+,“) (14)
K

the strength of each of the recurrence spectrum lines dieights of the bare recurrence spectrum depends on both the
scaled action&/A4 can be estimated by the square modulusdistribution of oscillator strengths as a function of the elec-

of the geometric series tric quantum numbek, [sir?(«/n) for m=0] shown in Fig.
_ - _ - 4, as well as the slow variation &f with increasingx. (See
AT (k,e)=|(1+e 12mk2%/8g 4 g 12mk4d 8g 4 .. |2 the appendiy. However, for a rough comparison with the

numerically calculated recurrence spectrum from the Fourier
transform of the scaled-energy Stark spectrum, we have kept
only the extremaN==6 “blue” and “red” substates in each
Stark manifold, assigned them a constant oscillator strength,
and neglected any gradual change in the substate spacings.
Mhese assumptions correspond to the approximate, step-

=sirP(27Nkdy 1Ay )/sin(2mkdy 1Ag), (15

whereN is the number of substates contributing to the co-
herent sumA_ (k, €) is the familiar diffraction grating func-
tion that exhibits strong constructive interference peaks co

. . + + . . 2
respondlng tg integer va_lues &R Sy /A, with a heightN shaped, oscillator strength distribution shown in Fidtop).
and with a width proportional to W o For example, a comparison in Fig. 7 of this analytical
Similar results are obtained from the periodicity _of the astimate of the recurrence spectrum band structop with
substates near the extremal “red” state= —n+1, which  he calculated hydrogen recurrence specttbttom for e

have an approximately constant periodicityvinof A, . In =3 5 shows that this approximate model provides a good
this case the locations of the red substates can be computggscription of the large-scale modulations of the data. The
using Eq.(10) with x=—1,—3,—5,.... Then taking the top graph in Fig. 7 shows the envelope functions for the red

derivative of Eq.(10) with respect to-x we get an estimate and blue substate interferendegshed and solid curves, re-
for the displacements of the extremal red statég 2where  spectively that modulate the bare recurrence specttstick
spectrum defined by the extremal states alone. Sirsge
5 3 (16) =1/2 6, (3.5) =5 andsj =1/2 65 (3.5)=7, the first two
0 4@( e+\e¥-3 )1/2' bands of enhanced recurrence line strength arise from the
diffraction grating functions for the red and blue substates,
These redshifted substates lead to constructive intereferencespectively. Subsequent peaks in the diffraction functions
in the recurrence spectrum for scaled actions correspondingfise from higher harmonics of these substate frequencies.
to integer values ok28,/A, described by the diffraction (As long as the locations of the constructive interference of

grating function the red and blue states are disjoint we need not be concerned
about the additional constructive and destructive interference
A~ (k,e)=sirP(2mNKd8y /Ay )/sinf(2mky 1Aq ), between the red and blue contributions.
a7 In contrast, the classical closed-orbit theory predicts that

the recurrence spectrum is enhanced near the scaled actions
whereN is the number of substates contributing to the co-where the classical up- and down-hill orbits undergo bifur-
herent sum. cations that must be determined from a numerical analysis of

Expressed in terms of the scaled actions, these resonafiis classical nonlinear dynamical syst¢f8]. For e= 3.5,

conditions for constructive interference predict that the barQhe actions of the classical orbits that are closest to bifurca-
recurrence peaks at integer multiples¥f=1/Ag will be  tion points are indicated by the arrows in Fig. 7. Moreover,
enhanced near integer multiples of to account for detailed modulations of the recurrence spec-
trum shown in Fig. 7, the closed-orbit theory must be further
augmented by a uniform approximation for the semiclassical
wave function in the vicinity of the singularity due to the
classical bifurcatiorj19]. Finally, we note that closed-orbit
and suppressed in between. In general, the precise shapethéory offers no simple explanation for the enhanced recur-
the envelope function that describes the modulation of theence peaks near scaled action of zero where there are no

2
sy =1/2/65|= 5\/62i 3(e+Ve?x3)12 (19
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classical bifurcations. However, this enhanced recurrence
strength at small actions is well-described by the diffraction
grating functions from our analytical treatment of the Stark
substate periodicitie@s shown in Fig. ¥

These estimates for the diffraction grating functions gen-
erated by the substate periodicities were used in Rig). 1©
model the modulation of the bare recurrence spectrum in Fig.
6(a). A comparison of the exact recurrence map fio=0
hydrogen in Fig. 1a) with Fig. 6 shows that this simple
analysis of the quantum periodicities provides an excellent
description of both the fine-scale and large-scale structure of
the full recurrence map.

Ill. HYDROGEN RYDBERG ATOMS, m=1

Our approach to analyzing the Stark recurrence spectrum
is easily extended to the description of time=1 hydrogen
spectrum even though there are no closed orbits that start and
end at the nucleus because of the=1 angular momentum
barrier. Because our measured helium recurrence maps, Figs.
2(b) and Zc), are remarkably similar to hydrogen, we will
focus again on the description of the fine-scale and large-
scale structure of the Stark recurrence map in terms of peri-
odicities in the hydrogen photoabsorption spectrum. ifRor
=1 hydrogen the first-order scaled Stark levels are still de-
termined by Eq(10) but nowx=n—«x=2,4,6...,2n—2.

In addition, the oscillator strengths for photo-absorption are 101 N
peaked near the center of the Stark manifold with a distribu- -35 -3 =25 -2
tion proportional to ca§«/n) [16,17] as shown in Fig. 4 -€

(bottom). So we must analyze the periodicities of the scaled

. . FIG. 8. The scaled Stark eigenvaluesfor the hydrogenm
Stark levels near the center of the manifold to determine the:L n=10—15 states are plotted as a function of the scaled energy
structure of the Stark recurrence spectrum.

. parameter— e, ranging from—23.5 to —2.0. The solid curves cor-
For evenn there is one scaled-energy leveli(n,n)  respond to “blue”shifted levels and the dashed curves, to “red”

=ny2¢, with x=n that lies at the center of the Stark mani- shifted levels. The central blue and red states with fixed 8 are

folds and is unperturbed by the applied field as shown in Fighighlighted for eachn to emphasize the periodic spacing.

8. For oddn this center level is missing. Therefore, this

central level will contribute to the amplitude of theyBe  Then the Fourier transforms of these periodic ladders of ad-

frequency(and its harmonigsin the Fourier transform of the jacent blue and red substates will add coherently to generate

scaled Stark spectrum. However, since only a single levethe bare recurrence spectrum displayed in Fig) ®vith

contributes from each evemmanifold, this contribution to peaks at integer multiples of

the recurrence spectrum will be weak.

In contrast, many levels near the center of each manifold S;=1/A7. (21)
will contribute to the fundamental Fourier components. For
eachx the spacing from on@ manifold to the next is ap- However, these substate ladders near the center of the

. . . . : "
proximately constant. For the “blue” states this constantManifold are displaced iw from the extremal states by~

spacing can be determined by differentiating Etp) with ~ Where 8" is estimated by differentiating Eq10) with re-
respect ton for fixed x and then taking the limit ag—n.  SPect tox for fixed n-and taking the limitx—n,
This gives a fundamentah=1, “blue” level spacing of

=2 (22)
8e%+3 a2
Af=—xc—00. (19 . . .
4.\2¢ Similarly, the red substate spacing for=1 is
A similar analysis of the red states for=1 gives -3
51 _4\/5 3/2° (23)
€
2_
1 :E_ (20) These approximately uniform “phase” differences in the co-
4./2¢%2 herent sums of Fourier components result in important de-
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A comparison of Figs. @ and 9b) shows that this
simple analysis of the quantum periodicities provides an ex-
cellent description of then=1 Stark recurrence spectra. In
contrast, there is no semiclassical closed orbit theory for the
m= 1 cas€g20]. The locations of the peaks in the hydrogen
Stark recurrence spectrum do not corespond to the actions of
any real closed orbits and the bands of constructive interfer-
ence are not delimited by the bifurcations of any real classi-
cal trajectories. However, in another remarkable application
of the correspondence principle Mai21] has recently
shown that the low action peaks in tihne=1 Stark recur-
rence spectrum do correspond to the actions of imaginary
classical orbits propagated with complex momd2. This
analytic continuation of semiclassical mechanics to complex
trajectories is worthy of much further study.

IV. HELIUM RYDBERG ATOMS, m=0

Finally, the strong similarity of the recurrence maps for
hydrogen and helium Rydberg atonfshown form=0 in
Fig. 1 and form=1 in Fig. 2 suggests that most of the
regular structure in the spacing of the Stark energy levels
persists in helium. In fact, we know from experimental stud-
ies of the helium Stark photoabsorption spectrum that the

FIG. 9. (a) The barem=1 recurrence spectrum generated by main difference is that the hydrogenic level crossings are
periodicities of the central red and blue states alone. The soligransformed into avoided crossings for helium. Can the
curves correspond to the fundamental frequeBgyfor the blue  gimple inclusion of level repulsion at these crossings account
central states and its harmonics. The dashed curves to the fundﬁjr the main differences between the hydrogen and helium
mental frequency, for the red central states and its harmonibg. recurrence maps? In particular, will this provide a mecha-
The modulated bands in the full recurrence spectrum arise fromys, that enhances the recurrence lines between the third and

additional interferences of the red and blue Stark substates, reSpeﬁ)—urth diagonal bands of hydrogen recurrence map but has

tively. This figure shows the analytical estimates for the locations o . .
X . . - -no observable effect between the first and second primary
the substate interference bands using the step-function oscillator

strengths shown in Fig. 4. This theoretically derived recurrence ma ands? . I . . N
successfully describes most of the the small and large scale struc- Level repulsion will mix Some of the “blue” and red_
ture of the hydrogen and helium recurrence maps shown in Fig. _e_vels. The strongly fepe”'”g levels are no longer associated
with the “red” or “blue” familes of substates preserved by

htge distant levels. In addition, the maximally repelling levels
ill maintain a new spacing that is one half the average of

structive and constructive interferences that depress t
strength of some lines in the bare recurrence spectrum fo\ﬁ o . > ) .
the “red” and “blue” spacings alone. Therefore, maximal

m=1 and enhan thers. ; . .
and enhance others repulsion will lead to new families of‘purple” ) substates

As in them=0 case, the destructive and constructive in- th mean spacinas aporoximately equal to half the average
terference that arises from these substates can be charact&i- P gs app Y €eq 9

ized by simple diffraction grating funcions. When theseSpf‘C'ng of t_he blue_ and “red sub_stat_es alone, 52
modulations of the bare recurrence specturm for both the red 2(|871+]6 |.)' In this case, the .conptr|but|.ons from these
and the blue states are taken into account, we arrive at theoo© levels will be destructive unki2°/A.. is close to an
recurrence map shown in Fig(t9. The corresponding fun- Integer. Therefore, we expect to get a new band of construc-

damental frequencies Af and their harmonics account for tive interference due to the level repulsion that lies between
q the third and fourth hydrogenic bands centered at a scaled

the fine structure in the calculated recurrence spectrum angcti on of
the substate frequencies

. . sP=1/26°=2/(| 5" | +|67]), (25

s; =1/267 1, (24)
while the surrounding hydrogenic bands are diminshed in

and their harmonics describe the bands of enhanced Fouriamplitude. The results of this simple estimate of the effects
amplitude shown in Fig. ®). Since the red and the blue of avoided crossings on the helium Stark recurrence map are
substate frequencies are the same in twe 1 case, the shown in Fig. €c), which agrees very well with the mea-
bands of constructive interference for the red and blue statesured results for both the singlet and triplet statesnef0
coalesce, which accounts for the relative simplicity in ap-helium shown in Figs. (b) and Xc).
pearance of then=1 hydrogen Stark recurrence maps in A careful examination of our helium photoabsorption
Figs. 4a). spectrum supports this simple picture for the origin of the
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FIG. 11. The recurrence spectrum for helimm 20—25(top) is
compared with the more hydrogenic recurrence spectrum for helium
n=15-20(bottom) for e=3.5.

corresponds to a new periodicity in the helium photoabsorp-
tion spectrum.

20.0
FIG. 10. The measured scaled Stark photoabsorption spectrum V. SUMMARY
for m=0 states of helium witm=20-22 ande ranging from 3.5 to We have studied the problem of a Rydberg atom in a
2 showing many avoided crossings. uniform electric field. Using an analysis based on the quan-

) , tum regularities in the scaled Stark photoabsorption spec-
new band of enhanced lines in tine=0 recurrence Spec- yym we can account for much of the fine-scale and large-
trum. Consider, for example, the case «f 3.5 where the  gcale structure of the measured scaled Stark recurrence
new helium bands in the recurrence spectrum in Fig8) 1 spectrum for both hydrogen and helium Rydberg atoms. This
and Xc) are most pronounced near the scaled action of 12h4ysis provides a simplifying description for both tire
which is the value of” predicted by Eq(25). The corre-  _q Yecurrence maps, which have been previously treated
sponding scaled photoabsorption spectrum for helium, SiNgsing the semiclassical closed orbit theory and tive 1

glet n=20-22 is shown in Fig. 10. This complex spectrtum ¢y rrence maps for which the semiclassical closed-orbit
arises from the overlap of the near extremal “red” a”dtheory breaks down.

“blue” levels from adjacent Stark manifolds. In hydrogen,  This paper shows how the structures in the recurrence
these overlapping levels would simply cross without distor-ghactrum arise from the collective interference properties of
tion and the corresponding spacings in the “red” andine |evel periodicities in the quantum photoabsorption spec-
“blue” states would be separately preserved. However, inyym and points out that the key differences between hydro-
helium the nearby levels repel while the distant levels argyen and helium are a direct result of the avoided level cross-
largely undisturbed from their hydrogenic spacings. ings in them=0 helium Stark spectrum. In particular, the
To further test our simple picture for the origin of the ey hand of recurrence peaks in the helium recurrence spec-
helium band, we divided the scaled photoabsorption SpeGi,m that have been previously interpreted as due to contri-
trum into two segments corresponding to low 15-20 and  tions of classical orbits that scatter off of the nonhydro-
high n=20-25. For the lown=15-20, the Stark manifolds yenjc core, are here shown to arise from a new periodicity in

have barely begun to overlap fer=3.5 and so most of the {he Stark spectrum due to large avoided crossings. This re-
“red” and “blue” substates will maintain their hydrogenic

spacing. In contrast, the Stark manifolds for high 75
=20-25 are strongly overlapping and the strong level repul-
sion shown in Fig. 10 should lead to many level spacings 7

that are approximately one half the “red” or “blue” spac-

ings. The corresponding recurrence spectra generated by .
Fourier transforming these two segments of the photoabsorp- 1
tion spectrum are shown in Fig. 11. These results confirm % 6
that for low n=15-20 the recurrence spectrum is largely
hydrogenic. There are two bands of enhanced peaks near the
predicted scaled actiorsg =5 andsg = 7 for the hydrogenic
substate periodicities, E§24), and near the first harmonics

at 2s, =10 and 2, =14. Only a small peak appears be- 64 65 66 67 63 69
tween the two hydrogenic bandss#(3.5)=12. In contrast
the recurrence spectrum for high=20-25 shows a broad
band centered a&°(3.5)=12 with a commensurate decrease FIG. 12. The scaled Stark substate spacing frequency, &2a
in the hydrogenic bands on either sidRote that there is no  function of w for the n=25 manifold increases gradually frosg
preceding band as=6, so this new high frequency band =1/2/8;|~5 tosg =1/2 65 |~7 for e=3.5.

5.5

w
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FIG. 13. () The n=25, m
=0, scaled hydrogen Stark mani-
fold with e=3.5 is displayed as a
stick photoabsorption spectrum
with uniform oscillator strengths.
(b) The direct Fourier transform
of the uniform strength spectrum
in (a8 shows single broad bands
between the minimum and maxi-
mum substate spacing frequen-
cies, s, =5 to sj =7, shown in
Fig. 12 and between their harmon-
ics, 10 and 14(c) Then=25, m
=0, scaled hydrogen Stark mani-
fold is displayed withm=0 oscil-
lator strengths(d) The direct Fou-
rier transform of the m=0
photoabsorption spectrum ifc)
shows the characteristic double
band recurrence structur@) The
n=25, m=1 hydrogen Stark
manifold is displayed withm=1
oscillator strenths(f) The direct
Fourier transform of them=1
photoabsorption spectrum ife)
shows the characteristic single
band recurrence structure.
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sult points to an interesting correspondence between classicalodulations of the second, third, and fourth bands in the
core scattering and quantum avoided crossings that is deser@xperimentaim=1 helium triplet recurrence spectra shown
ing of further study. in Fig. 2(c) that were first observed by Keeler and Morgan

In them=1 case the classical-quantum correspondence iEL3]. (These regular modulations have also been seen in re-
more subtle since real classical closed orbits that start angent measurements and quantum calculations of the sodium
end at the nucleus are excluded by the angular momentum@currence maps by Jones al. [23].) We already have
barrier at the nucleus. Our analysis of the quantum periodistrong indications that these modulations can also be traced
cities in the scaled photo-absorption spectrumnfor 1 still o the avoided crossings in the helium Stark spectrum. For
provides an excellent description of the recurrence maps foa=1, the size of the avoided crossing remains small; how-
both hydrogen and helium. However, the semiclassicabyer, there are dramatic changes in the oscillator strengths of
theory requires qulflcat|on. Several different ;emmlassma{he two avoiding levels that appear to have a significant ef-
approaches to this problem are currently being pursuedect on the structure of the helium recurrence specti4n
First, Robicheaux and Shaj20] have found the heuristic |s there also a correspondence between these features of the
use ofm=0 closed orbits to calculate the=1 recurrence quantum avoided crossings and core-scattered classical or-
spectrum to be surprisingly successful, which suggests thajits in a semiclassical treatment of tire=1 case? These are
straightforward modification of the closed-orbit theory mayfyture challenges that must be met by the quantum and semi-
be in order. Second, Mair21] has shown that the extension cjassical theories as the experiments progress to more com-

of the classical dynamics to include “ghost orbitf?2] can  plicated recurrence spectra of complex atoms and even to
successfully account for features in the recurrence spectrumolecules in strong static fields.

for which there are no real classical orbits. Ultimately, both
of these semiclassical approaches must be reconciled with
the results of our simple analysis of the periodicities of the
guantum photoabsorption spectrum that underly the struc-
tures in the recurrence spectrum. This work was supported by the National Science Foun-

Finally, a further test of both the quantum and semiclas-dation through Grant Nos. PHYS-9732458 and PHYS-
sical analyses will be a simple description of the regular9900746.
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APPENDIX: DIFFRACTION FUNCTIONS FOR GRATINGS
WITH NONUNIFORM SLIT SPACINGS

form of them=0 stick photoabsorption spectrum shown in
Fig. 13c) breaks the diffraction band in Fig. (@ into two
bands and the Fourier transform of thre=1 stick photoab-

ence form=0 and the single bands fan=1 can be easily _sorption spectrum in Fig. 18 contracts the diffraction band
understood by examining the diffraction function for a dif- I Fi9. 13f) to a single narrow band. In both cases, the shape
fraction grating with graduated slit spacings. In a single of the_ envelopes for the recurrence spectrum are a.d|rect
manifold, the spacings of the substates in the scaled Stafieflection of the shape of the photoabsorption oscillator
spectrum are largest near the bottarad) end of the mani-  strengths. These weighted diffraction functions for graduated
fold and decrease gradua”y to the t(mue) end |eading to diffraction gratings provide a more precise definition of the
the increasing substate frequencies shown in Fig. 12. envelope for the constructive and destructive interference in
If we Fourier transform the scaled spectrum for a singlethe m=0 andm=1 Stark recurrence spectra that are in ex-
n=25 manifold with uniform oscillator strength shown in cellent agreement with the band locations and widths in Figs.
Fig. 13@a), this variation in the spacings leads to a diffraction1 and 2.
function with a continuous band of frequencies between the It is interesting to note that this analysis of the diffraction
inverse of the largest spacing to the inverse of the smallestinctions for graduated diffraction gratings, that was origi-
with an additional band at the second harmonics shown irhally motivated by the need for a simple description of the
Fig. 13b). This graduated diffraction grating therefore pro- |arge-scale structure for the experimentally measured Stark
vides a sharp bandpass filter rather than the convention@currence spectra, suggests a novel design for an optical
single-frequency filter provided by equally spaced slits.  gjffraction grating that preferentially scatters or transmits a
Now if we weight the spectrum with the oscillator gpecified band of frequencies—ijust gradually vary the slit

strengths for then=0 andm=1 photoabsorption shown in - gings across the grating to span the desired frequencies.
Fig. 4 (top and bottom, respectivelythen the Fourier trans-
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