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Trapped ions in laser fields: A benchmark for deformed quantum oscillators
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Some properties of the nonlinear coherent sté&sS), recognized by Vogel and de Matos Filho as dark
states of a trapped ion, are extended to NCS on a circle, for which the Wigner functions are presented. These
states are obtained by applying a suitable displacement op&atas) to the vacuum state. The unity reso-
lutions in terms of the projectotsr,h)(a,h~1|,|a,h"1)(a,h| are presented together with a measure allowing
a resolution in terms ofa,h){a,h|. Dy,(a) is also used for introducing the probability distribution funtion
pan(2) while the existence of a measure is exploited for extendingPtihepresentation to these states. The
weight of thenth Fock state of the NCS relative to a trapped ion with Lamb-Dicke paramgetescillates so
wildly as n grows up to infinity that the normalized NCS fill the open cirgle? in the complexa plane. In
addition, this prevents the existence of a measure including normalizable states only. This difficulty is over-
come by introducing a family of deformations that are rational functions,oéach of them admitting a
measure. By increasing the degree of these rational approximations, the deformation of a trapped ion can be
approximated with any degree of accuracy and the formalism oPttepresentation can be applied.

PACS numbe(s): 32.80.Pj, 42.50.Vk

[. INTRODUCTION In that period, the JCM was at center of the attention for
the study of laser cooling of ions placed in parabolic traps,
The theory of certain one-parametgp deformations of  with the quantized center-of-mass motion of the ion playing
Lie algebras, the so-called quantum groups, has been of gretite role of the boson mode, coupled via the laser to the
interest in the last decade in several areas of physics. In 1980ternal degrees of freedom. In the case of cooling, the op-
Biedenharri1] and McFarlang2] independently defined the eratorA is represented by a combination of some power of
g-analogue coherent state of a deformgdscillator, for  the annihilation operata times a function oh. When some
which Gray and Nelsof] were able to obtain the resolution bosons of the oscillator mode are destroyed, the ion is ex-
of unity. Since then the properties of a class of deformationsited to the upper level from where it decays radiatively.
of the harmonic oscillator were considered by several author€ooling was investigated in Lamb-Dick®] and strong-
(see e.g.[4]). Using classical version of thg-deformed os- sideband 10] limits, that is, for ion excursions small com-
cillator it was found[5] that the oscillator can be considered pared with the radiation wavelength. This study led to the
as conventional nonlinear oscillator with amplitude- discovery of many intriguing effects connected with the non-
dependent frequency. Deformed quantum oscillators are reglassical properties of the field, such as a long-time sensitiv-
resented by dynamical variabl&sA', andN, satisfying the ity to the statistical properties of the radiation fi¢ldl]. For
commutation relations{ A,N,]=A, [AT,N,]=—AT, and example, the mean excitation number of the quantized oscil-
[A,AT]=f(N,), with f(N,) an arbitrary real function of lations of a ion driven by a squeezed field exhibited periodic
N, . All such variables are constructed in terms of single-collapses and revivald 2].
mode field operatotsa, a', anda’a. Deformed oscillators The interest for the vibrational motion of trapped ions was
were necessary{6] to study the Wigner problem of also motivated by the connection between the state of motion
commutation-relations ambiguity in quantum mechanics. and the properties of the fluorescence spefd@14. This
In 1993 Gnugeljet al.[7] observed that the multiphoton link led some experimentalists to look for new nonclassical
interaction of a single-mode laser field with a two-level atomradiation states generated by trapped ions forced into some
is described by deformed-oscillator creation and annihilatiorunusual vibrational states. In analogy to the preparation of
operators that in combination with the pseudospin atomidionclassical states of light in quantum optics, several authors

operatorss, ando_ form the potential examined the preparation of the center-of-mass motion in a
quantum state having no classical counterpart. Worthy ex-
W,c=ATo_+Ac, amples were those of Ciraat al. [15] who considered the
possibility of generating squeezed states of the vibrational
used in the Jaynes-Cummings mod&CM) [8]. motion by irradiating the trapped ion with two standing-

wave light fields of different frequencies and locating the
center of the trap potential at a common node of both waves.

i T
Wherever possible operators will be indicated by simple letters!n all these cases, the nonlinear dependenca ofi a, a’,

except for the addition of a caret when confusion could arise withandn stemmed from the ion motion in the trap potential.
c-number quantities. de Matos Filho and Vogdll6] observed in 1994 that the
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center-of-mass state of a trapped ion driven by a two-modeach Fock state can take values so large to prevent the reso-
laser field decays toward a dark state coincident with a nonlution of unity in terms of normalized NCS. Some approxi-
linear coherent stattNCS) of a deformed oscillator. This mate expressions of the deformation are discussed together
result brought new fuel to the study of deformed oscillatorswith the possibility of using these NCS for representing the
describing different classes of states arising in the trappetpPn statistical state.

ion motion under the action of two or three fields detuned by

multiples of the vibrational frequendgee, e.g.[17] for non- Il. MOTION OF A TRAPPED AND LASER-DRIVEN ION

linear cat states that generalize the even and odd cat states of
[18]). In the wake of this interest attention was paid to the-
oretical models of deformed oscillators, like those connecte
with excited coherent states and binomial stdtEg]. All

We consider an ideal two-level ion of maglsconstrained
move in a three-dimensional harmonic potential. Taking
the principal trap X axis) axis to coincide with the direction
these nonlinear oscillators differ for the deformation functionqf propagation of the d_rlvmg field, one quantum number suf-
h(F tina th inilati o the def q fices to label the vibrational states of the trap. The other two
(n) connecting the annihiiation opera _0 .e elormed  are traced out by summing over the corresponding degrees of

oneA=ah(n). The ancestor of these realizations weredhe freedom.

oscillators characterized by a deformatiorhq(ﬁ) The ion’s internal and external degrees of freedom are

— Jsinh@n)/Asinhx increasing with n. Contrarily, the coupled together by a light fielde'.™*'¢() periodically
trapped ion deformation is a very irregular function mf ~Modulated at the frequenay of the ion trap

taking positive and negative values. What is worse, for some _ eioittiet)

combinations of the Lamb-Dicke parametgt andn it can E(x,t)=£e™ gmix)+Hc,

van@sh_ or become infinite. As a consequence, it is hard tQhere g(t)=g(t+2m/v) is a generally complex periodic
capitalize on the work done for thegoscillator for studying  fynction of frequency and H.c. represents for the Hermitian
Fhe NCS of a trapped ion. In partlcullar, while for thease conjugate. The functiorf(x) stands fore K.X or sinf.x

it has been found a measure resolving the unity, the same I$ 4), respectively, for a progressive or standing wave, with

not exactly true for the ion case. As a consequence, the fok . shased determining the position of the trap potential
malism of the Bargmann spack0], that has been extended WithF:espgfzt to the stangding V\F/)ave. PP

from the Iinea( oscillators to thq. ones, cannot bg applied We will dwell on monochromatigat frequencyw, — (N

exactly to the ion case. In fact, it will be shown in the fol- +1)9]

lowing that this can be done by considering a class of ratio-

nal deformations that approximate to any degree of accuracy g(t) =gl () =e 1N+

the ion deformation. In most experimental cases, the statisti-

cal state of a trapped ion is limited to a finite number of Fockand bichromatic driving fields at frequencies —(N+1)v

states so that these rational deformations may adequately agrd w, , respectively,

proximate the ion deformation. Only in this “weak’” sense is ,

it possible to construct an ion analogue of a Bargmann space, g(t)=g&l ()= " NDt_g

on which the deformed creation and annihilation operators ] o

are represented as multiplication lzyand differentiation ~ With the parameteN taking non-negative integer values, and

with respect te, respectively. an+1 @ complex coefficient depending on the amplitudes of
This paper is dedicated to an extension of the theory ofh€ two waves. _

the usual coherent states to NCS using as examples the de-NOoW, _introducing  the ~ Lamb-Dicke ~parameter;

formation relative to the dark states of trapped ions. We stare %k, /2M#% v we put as usuag™ **=e 7(&% %) |n the

with a single-mode excitation field (Sec. 1), by discussing classical limit,# is large and the absorption or emission of a

some properties of NCS, and introducing a deformed versiophoton will always cause some change in the vibrational

Dy(«) of the displacement operat@Bec. Ill). In Sec. IV, we state of the atom. In the nonclassical Lamb-Dicke limit of

discuss some aspects of the resolution of unity for thesemall , many photons may need to be absorbed or emitted

NCS. The operatoD(«) is used in Sec. V for associating before the atom changes vibrational state. For example, in

the density matrix operatgs to a linear functionapp n(2) the sideband cooling experiment carried out by Diedrich

mapping the test function ex@¢* — a*2) into the expectation et al.[22] the parameter; was equal to 0.06. _

value(Dy(a)), by extending the construction of the antinor- ~ The Hamiltonian for a trapped ion interacting with a

mal probability distribution functiorf21]. The connection bichromatic field can be split in two parts

with the P representation is also briefly examined. Section

VI is dedicated to NCS on a circle, for which the Wigner H=Ho+Hint,

functions are presented. Finally, the last section is dedicate\;‘ilhere Gi=1)

to the dark states, arising when a trapped ion is driven by a

bichromatic laser field. An asymptotic expression of the de- Ho= wyp0at v, 1)

formation and the relative factorial is obtained and its impli-
cation on the convergence of the NCS series is discussed. 4, in the electric dipole approximation,
comes out that it converges only farin a circle of radius

equal to the inverse ofy. On the other hand, the weight of Hini=plo_E*(x,t)+ o, E(X,t)].
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When the Rabi frequenc§, relative to the laser induced
transition between the ion ground and excited levels, is much A= (—i)N*1sin
smaller than the trapping potential frequengya perturba-
tion expansion can be carried out /v, as discussed in \hile for two modes bichromatic driving fields
Ref.[11]. This expansion allows a division into quickly and
slowly varying dens_ity operator _mz_itrix elements, the former AEJZ): frs(naV =y, 1fo(n),
of which can be adiabatically eliminated.

Arresting the calculation to the zeroth order {a/v

¢+(N+1)%)A§}>, 7)

a ~
amounts to applying the rotating wave approximation. This AP =(—i)N*1sin ¢+(N+1)§) fna(n)a ™t
approach can be easily pursued by switching to the interac-
tion picture defined by the unitary operatod,, +sin( ) ays1fo(N). (8)

=exf—i(w_os+vM)t] and retaining in the transformed
Hamiltonian H’_ the time-independent terms together with Il NONLINEAR COHERENT STATES
the slowly varying phase(t) of the laser field,
Coherent states were originally introduced as eigenstates
H' =[A— gp(t)]ger Q(o_A+o A 2) of the annihilation operator for the harmonic oscillat28].
They have been generalizésee[3,4,16,19) by labeling as
with A =w;,— w, the detuning parametef)=e~ 712, the  nonlinear coherent stat¢s,h) the right-hand eigenstates

vibronic Rabi frequency and

Ala,hy=a|a,h) 9
-2 —iv iy
A=e "g(t)f[n(e”a’+e"a)], (3 of operator A of the form
the overbar indicating the time average. A=ah(n) (10
Expanding the factoe "¢ "'a"*¢"'a) in power series in A
aanda', introducing the operator whereh(n) is an operator-valued real function of the number
operator. It is immediate to show that
o) ~ k 2
. (h=m+1)n Li(7) ]
fi(n, 7%) = (= ?)"=kl— , (4 a”
«n.7°) m§=:O (k+1)pmm! (=) (n+1), @ la,hy=Np, , > ———|n) (12)
=0 \nI[h(n)]!

i o —(aT —n(h— n_
with (n—m-+1)p,=(a)"a"=n(n—1)---(n—m+1) and it [h(n)]1=h(0)h(1)---h(n) and normalizing factor
Lﬁ(nz) reducing in the Fock basis to the generalized La-N, ,,

guerre polynomials, we obtain, respectively, for progressive

1
) ) 0 s K Na/,h:—
o e~ Mal eirtay _ o 7]2,22 6k( |l|77) /Eh(|a|z)
K=0 !

. _ o expressed in terms of the entire function
X [fk(n)akelkvt+ (aT)kfk(n)eflkvt]

5 _ ” 1%
© En(v)= 2, n!(Th(n)]!)?2

referred to in the following ak exponential in analogy with
the q exponential used in Ref3].

The deformation function$i(n, %) associated with the
dark states of the trapped ions are represented by the ratio of

n

and standing waves

® RN
sif p(af+a)+ ¢]=e" ﬂ2’2k§_lo ek(k—?)sin( b+k

w

2

X[ akf (N+ k) elkt two Laguerre polynomials of argument equal to the Lamb-
Dicke parameter? so that they vanish or become infinite
+ fk(ﬁ+ k)(ahke k1], (6) for some isolated combinations gf andn. We are obliged

to explicitly assume that this situation does not occur for the
with k a positive integer ane,= % for k=0 ande,=1 oth-  values of? considered.
erwise. In Sec. VII we will obtain an asymptotic expression of the
For progressive(p) and stationary(s) monochromatic weights of the Fock states occurring in the series expansion
waves withg(t)=e'(N*1)"t the operatoA [see Eq(3)]is  of the NCS relative to trapped ions. They take very large and
given by

_ i \N+1
(—in) N+1 2For the sake of notational simplicity we will use the same symbol

(1) — N2
As = TiNg oy nea(mma A for indicating fields of the form(7) and (8).
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very small values for increasing so that these NCS can be Unfortunately,D(«) is unable to displace the deformed op-
normalized only forx inside the circle 1. For convenience eratorA. Alternately, D(«) could be replaced by the unitary
of discussion we shall ignore this problem by restricting ouroperator obtained by replacing in Ed4) a anda' by A and
treatment here to normalized NCS states. AT, respectively, but also this operator does not disphabg

It may be worth noting at this point that many of the the complex quantityr. The difficulties in dealing with ex-
foregoing formulas may be abbreviated by adopting a norponentials of linear combinations 8fandA" originate from
malization different from the conventional one for the coher-the circumstance that their commutator is not aumber.
ent state. Accordingly, we introduce the symitjal;h) for  These problems can be overcome by usmﬁg[see Eq(12)]
the states normalized in the new way, in place of A" and defining the “deformed” version of the

displacement operator as
n

. _n— 1L
||0[,h>— Na,h|aah> 20 \/—[h(n | > Dh(a):exq_ a* A+ aA;):e|a|2/Zefa~k AeaA;
and — ef\a|2/2eaA;ef a*A. (15)
(a;h]|B;hy=En(a* B). Dy (a) shares many properties of the standard opef@or)
as
Since the commutatod AT,A]=nh?(n)—(n+1)h%(n DN a)=Dp(—a)
+1) is not ac number it is worth introducing the operator h h
[19] and
i1 1
A (12) Dh(8)Dr( ) =exp 5 (Ba* = B* a) | Dy(B+ a).
With these alterations, we have However,Dy(«) is not a unitary operator,
Alla;h) = afa:h), Di(a)=Dip(a)=Dyp(~a)
P so that it does not preserve the norm of a state.
ﬁ||a;h>=a—||a;h>, Dy () andDyp(a) displaceA andAT, respectively, byx
da and a*,

d Dn(a)AD(— a)=A—«,
Anlashy=——la;h).

Din(a)ATDyp(—a)=AT—a*, (16)

In addition, andAE by
d

ATlla,hy=h2(n)A]||a,h)= hz(a—) —||a h). (13 Dr(a) Al Dy(—a)=Al —a*. (17)

_ ) ) Accordingly, the NCSa;h) can be obtained by applying
In all the above right-hand side, the operatats, and their  p (4) to the vacuum state,

combination are intended to act on the coefficients of the

Fock states series. |a:h) = |0y = el«”2D, ()| 0).

It should be noticed thak andAE provide a(new) differ-
ent realization of Heisenberg-Weyl algebra, wﬁﬁ playing In conclusion, the NC$a;h) can be obtained by deform-
the role of the adjoint with respect to a new Hermitian prod-ing the usual coherent stdte) by means of the deformation
uct. operator

A. Displacement and deformation operators dn="Dn(a)D(~a), (18)

It is well known that coherent stater) can be also intro- namely,
duced by displacing the Fock vacuum stgig by means of
the operator [a;h)=dy[a).

D(a)=exp —a*a+aal) (14) Although expressed as a product of operators depending on

the complex parameter, d, is independent of. In a Fock
due to its property of displacing the annihilation operator basis, it is diagonal with components equal[tan)]! ~*

by the generally complex quantity, Sinceh(n) does not vanish, as already assumagjs not
singular.
D(a)aD(—a)=a—a. Finally, we note that
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[h(m)]! IV. RESOLUTION OF UNITY
m|D n)=———m|D ny, .
(miDy( )|y [h(n)]! (m[D(a)|n) From the completeness relation of coherent states
so that the matrix representations@fandD;, have the same 1= if |a){a|d?a,
diagonal part. ™

A further remark is that the set of operatdPg(«) con- . ol h
stitutes a Weyl system that does not lead to the canonicdj folows that

guantization for not being unitary. 1 1
1= ;f dy| @)(a|d, td2a= ;J dp, Y a){a|dyd?a.

B. Nonlinear displaced Fock states

In Sec. V, we will use the Fock states displacedyy «) Next, using the relation

[see Eq(27)] A= D() Dlp( ) = (Dyp(@) D(— ) =dl,

| om @) =Dp(a)|m), 19 the above resolution of unity can be expressed in terms of

deformed coherent states
which can be shown with the help of Eq46) and(17) to be

the right eigenstates of the operatoAl a*)(A— 1 [ e ao*
gnt eig p nCa®)(A—a) 1:_f |a,h)(@,h~ Y d%a
=Dp(a)nDp(— a), ) NgnNe,in
efaa*
(Al—a*)(A—a)|om,a,h)=m|on,a,h). :1/7Tf ———|a,h 1) a,h|d?a. (20
N nNg,1/m

Analogously, we can introduce the left eigenstates defined bit goes without saying, that this resolution holds true only if
the NCS relative to the deformatiorts and 1h are both
(thm @, (Af = a*) (A= @) =m(y,a.h], normalizable in the whole complex plane.
For some deformations, anyhow it is possible to obtain a
resolution of unity in terms of projectors of deformed coher-

which are obtained by displacingm| by Dy(-a), ie., ent states, i.e., to find a suitable element of meadprauch
<l//maarh|:<m|ph(_a)' that

It is noteworthy that the left and right displaced Fock
states are mutually orthogonal,

1= [ b e hlas, 21

($m,a,hl@n,a,h)=0 . .
du can be considered as an extension of the measure ele-

for m=n. mentdu=(1/m)e9°d2a [20] for linear oscillators. Since
On the other hand, these states can be also expressed/ifm|a,h){(a,h[n)du must vanish fom=#n, du can be put
the form in the form
t 1 242
H [h(m)]H(AR—a™)™ o du=—my([a%)d,
|(Pm'a" >_ \/W |a, >

wherem,,(x) is a distribution satisfying the set of equations

[h(m)]! (m) . men
= - B 1h1m L
Jmt 2 [ ) (za ) e m) n!([h(n)]!)2=f My ()X dx (22)
(Y, a,h|=(m|Dp(— @) for every integem.
Treatingn=s—1 as a continuous variable, the above re-
(ah| (A—a)™ lation represents a Mellin integral transform,
=(ah| ————
[h(m) ]! Vm! .
a(s)= | “100x 0, 23
1 m 0
[h(m)]! Jmt so that my(x) is the Mellin antitransform of g(s)
=T(s){[h(s—1)]!}2.
where |a,h,m)y=A["a,h) and (a,h,m|=(a,h|A™ stand From the relation(B,h|A™B,h)=pB" it follows that
for the deformed versions of the excited coherent sf@8k  E,(B8* «) is the self-reproducing kernel of threanalogue of
(see alsd24)). the Bargmann spad0], with respect tadu,
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formed quantum linear functional
| 1B @ Paman=pm,
In preparation of the discussion in Sec.VII, it is worth Fh[a]ZTr{pDh(a)}=% P nl-om,ch). (27
remarking that replacing by the deformationgh the rela-

tive measureng(x) is given by In particular, for a diagonal density matri[ «] reduces to
) ) the standardr[ «].
Mgn(X) =B~ “My(B~X). (24 Using the unity resolutio20) Fy[ ] may be rewritten as

This relation can be also used for expressing a thermal den-
sity matrix characterized by Boltzmann weight factors, Fh[a]ze““*lzf expaz* —a*2)pp a(2)d°z, (29
cexp(—Bn) in the form

where

- mp(e??| a|?)
pme?? | T el L

m 2 1 e N _ 1 .
n(lal®) Pra(z)=— mTr{MZ,h)(Z-h )= ;<Z|Ph|2>,
In Ref.[3] it was possible to obtain the resolution of unity zhzh 29

for a q oscillator by deforming both the derivative and the

integral operators while a resolution for the so-called harmowith

nious states was obtained[iB5]. We will see in the follow-

ing that for the trapped ion deformation the measure is a pn=d; pd,

distributional Laplace antitransform that includes non-

normalizable NCS. the deformed density operator. In other worgls,(z) stands
For a deformation approximated by a rational function offor the generalized distribution function of the deformed

n, g(s) corresponds to the ratio of products of gamma func-gensity matrixd,, *pdj,

tions, For extending the definition of the characteristic func-

(a)+s tional F[a]=Tr{pD(a)} to a deformed oscillator, we pay
(b)+s)' (250 the penalty of loosing some properties @f(z). In fact,
pn.a(z) may take, in general, positive and negative values. It
can be regarded as a generalized probability distribution
function as long as the association between operators and
functions is based on antinormal ordering,

I'(a;+s)---T'(ap+9s)

9= Fby+s) T(bgrs)

For A=B the relative antitransform is given by a combina-
tion of generalized hypergeometric functions

(c) ) (C)n---(Cc)
= ((—1)CtD+1y| = n n ~
¢ D((d)’( X = 2 o Tr{pGAAAD}= | pna(2)Ga(z,Z*)d’2,  (30)
n
XX_(_l)n(C+D+1) In particular, for a diagonal density matriyp, o(2)
n! ' . - '
= pa(2) while for p=|w,h){w,h|,
namely[26],
" (== 22D o 2]
A , pha(2)=————exgdz* (w—2)].
a)'—a ' T *
mMy(X) = 21 r ((b))_aﬂ En(W*w)
a " Consequently, transformatid@8) applies if there exists the
1+a,—(b) Fourier transform of exqa*(w—2)]E,(W*2). Analogously,
XgFa-1 g (= D)ABx X, (26) ; e S _1>{[Z( —1)] o ) Jorsy
1+a,—(a)’ working with p=|w,h™"{w,h™!| we arrive at the same

conclusion for exfE* (W—2) |E,-1(w*2). This, in turn, implies
where @)'—a, and @)'—a,—1 stand for the sequences that E,-1(w*z) and Ej(w*z) cannot grow at infinity as

a;—a,,....apn—a, anda;—a,—1,... ax—a,—1, with  quickly as exptz‘).
the exclusions of theth term. We recall that in the coherent state representation of a
bounded operato®, the vanishing ofz|0|z)=0 in a do-
V. EXPANSION OF STATISTICAL STATES main of the complex plane of finite area implies the vanish-

The same reasons that led Sudarsf2 to introduce ing of O itself (see Ref[21]). Sinced,, has been assumed

diagonal coherent states representation to express arbitrai@nsingular, the same theorem holds true (gOy|z), so

states and operators in terms of coherent states, which inthat two deformed density matrices having the same function

special case provides the Glaulferepresentatiofi28], sug-  Pn,a(z) over some area af , must coincide. In conclusion,

gest that we develop expansions in terms of NCS as well. Ed. (29) establishes a one-to-one correspondence between
Following [21] we introduce for a statistical state the de- the operatop and the functiorp, A(2).

053407-6



TRAPPED IONS IN LASER FIELDS: A BENCHMARK . .. PHYSICAL REVIEW /42 053407

When the deformation admits the unity resoluti@i), a o |a|2I(N+1)+2q

density matrix can be represented in several cases By a |Na'h,q|*2:2 5
representation, =0 [I(N+1)+q]'((h{I(N+1)+q}]!)

p= | Put@leniandn, (3)  where

in which P,(«) can be regarded as a generalized probability

distribution function as long as the association between op-[n{|(N+1)+q}]! =h(q)h(N+1+q)- - -h{I(N+1)+q}.
erators and functions is based on normal ordering,

- Such a state can also be expressed as a sum of[BEES
t _
TripGn(A ’A)}_f Pn(a)Gn(a,a®)du.  (32) Eq. (11)]. In fact, by introducing the function®*%)(n) de-
R fined recursively by
Whenp is represented in the form of E(B1) the master

equation ofp can be in many cases transformed in a master

equation forPy. This circumstance becomes particularly h(NFDI(N+1) +q}
valuable in the study of the decay of an excited trapped ion
toward the fundamental dark state. In this case, we are faced, h(g—1)[h{l(N+1)+q}]!
. — h(N+l)( )
for example, with operators of the form h(q)[N{I(N+1)+q—1}]! a),
ATp= | P(a)my(aa*)h?| a— i||oz><a||d2a
P h da| da we have also
J J
e — 2 -_— J— PR—
[ taxal s ~1-aor) N
X{P(a&)my(aa*)}d?a, la,h,N+1,q>=N;,h,qk§=30 (e*)Mae,h(NTD) - (34)

use having been made of H4.3) ExpandingP(a)m,(aa*)

in power series obr™(a*)" we see that ) ) o _
with e=exfi27#/(N+1)] and N;]h’q a normalization coeffi-

cient.
ihz _1_ai) a™(a*)"=mh(—1-m)a™ Y a*)". We have obtained that a NCS coherent state of oktler
da da +1 is decomposed in the sum bf+1 first-order NCS of
complex amplitudese, ae9, ... a(e)N distributed uni-
VI. NONLINEAR COHERENT STATES ON A CIRCLE formly on a circle. These states, referred to as “crystallized

i . cats” in Ref.[30], were introduced for the linear oscillator
The above definition of NCS stgtéwe will call them of 31] in the attempt to generalize the optical Salinger cats
order 1 can be extended to the eigenstates of the operato harmonic oscillators
AhN+1 of a more general formy ., =a""*h(n) [29] and so Using the deformed displacement operator we have also
the equation

Ani1la,h,N+10)=ala,h,N+1q) N
=N’ * ) gk k
with N>0 is considered. |.h.N+10) Na.h.a kgo () ¥ Dpnn(ae |]0).
The eigenstate belonging to the eigenvalue is
N+ 1-fold degenerate ang is an integer ranging from 0 to

N. In terms of Fock states, we have In conclusion, the Hilbert space is the direct sumNbf

+1 spacesH=Ho®H.®---®Hy (q=0,1,...N), each

la,h,N+1g)=N,p, 0 of them having for basis the Fock state§N+1)+q), as
B le(0,...®).

a!(NtD+a For N=1, the fundamental states &f, and , are, re-

x>, ively, the even and odd Sétimger cats. It will b
= SN+ D)+ )] | spectively, the even and o ctinger cats. It v e
SO NN+ h((N+1)+q)] shown in a forthcoming paper that when the radiative damp-

X[I(N+1)+q), (33 ing is negligible, the initial density matrix separate in the
product of two matrices evolving, respectively, toward the
with the normalization factor even and odd Schdinger cats.
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A. Wigner function

The Wigner function[32] relative to these states on a

circle can be shown to be given for a generic intelyery
~ o~ _ inl2
Wy 1(aP)=N2p, , g 1%

xS [V2@- i) e

I’
(_ a)I(N+l)+q

X Thnsall(N+ 1)+ g}

*)I'(N+1)+q

(a
[hnsafl"(N+1)+q} ]!
M@t
[I"(N+1)+q]!

(39

Analogously, for the Husimi-Kanf32] Q function

2

QN+1,q(a 1‘6) =

+ip
= aquhN+l>

%
V2
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FIG. 1. Top and side views of
the Wigner function[Eq. (35)]
relative to linear(@ and nonlinear
(b), (c), (d) even Schrdinger cat
states fora=3.5 (rea) and two
different values of#. (@) =0
(linear casg the two coherent
peaks are almost circularly
shaped, the interference pattern is
axially symmetric along the axis
defined by the center of the coher-
ent peaks{(b) top view, (c) side
view, and (d) air view] =0.5,
the Gaussian peaks are no longer
distinguishable from the circularly
symmetric interference pattern.

QNJrl,q(a!B)
_ N2 —(02+p?)12
_Na,hNH,qe q=+p
aa_iﬁ I(N+1)+q 2
X S \/E
=0 [IIN+1)+q]![hy+{IIN+ 1) +a}]! ]
(36)

with |(q+ip)/\2) a coherent-state vector.

For N=1, these states reduce to evep=0) and odd
(g=1) Schralinger cat§17]. In Ref.[33] the squeezing and
antibunching effects are examined by using the function
h,(n) introduced in[16] for the NCS. We will see in the
following [see Eq.(38)] that the nonlinear cats representing
the dark state of a trapped ion are properly described by the
deformationh,(n; 7%) =L2_,(7?)/[n(n—1)L_»(7?)].

In Fig. 1, we show the Wigner functions for nonlinear
even Schrdinger cats of amplituder=3.5 (rea) and differ-
ent parameterg;. In the linear cas¢ =0, Fig. 1a)], the
quantum interference is localized around the origin. The two
coherent Gaussian peaks are circularly shaped.

For increasingy, the nonlinearity flattens the interference
pattern while the central interference fringes, particularly
their negative part, become more evident. This is essentially

053407-8
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FIG. 2. Top view of the
Wigner function [Eq. (35)] for
three and four NCS states sitting
on the circle.a=3.5(rea) and »
=0.33. This value of the nonlin-
earity » leads to a smooth reshap-
ing of the coherent peaks from a
nearly circular shape to an elliptic
one.

5

due to a reshaping of the coherent contribution peak from ¢he multichromatic excitation of a trapped ion. Using two
Gaussian-like nearly circular shape to an elliptical one withwaves with beat frequency equal to twice the trap frequency
minor axis parallel to the direction connecting the two coher-a “dark resonance” appears in the fluorescence emitted by
ent peaks. These come closer to the origin and the regiotie ion; the ion is placed in a squeezed state. Similar “dark
where the Wigner function is nonzero shrinks notably. states” produced by a bichromatic field with beat frequency
A further increase iny causes the progressive coming equal to the trap frequency were studied by de Matos Filho
closer and closer of the main peaks, while the interferencand Vogel in 1996[16] dentified as nonlinear coherent
fringes become more localized. For highgrthere are some states.
interference fringes spreading over the two coherent peaks. We will consider in the following a beat frequency that is
This phenomenon is dominant for very highvalues[Figs.  a generic multiple of the trap frequeney and the ion dark
1(b),1(c),1(d), »=0.5] where the main peaks come into the state is described by a generalized coherent state on a circle.
interference region and the coherent character of the twtVe will consider a bichromatic field of the type
states forming the cat is no longer distinguishable. The inter-

ference area becomes larger than in the linear case and a Ab,NH:fNH(ﬁ)aN“—aNHfo(ﬁ), (37
circular symmetry of the interference pattern becomes evi-
dent. for which the dark state satisfies the equation
In Fig. 2, we present two NCS on a circle formed by the ~
superposition of three and four NC&# 3.5 andz=0.33). nipN+2(N=N—=1)
att ———————ans1|[Ygand =0,

fo(N—N—1)

VII. DARK STATES .
that is[see Eq(33)]
In 1993 Ciracet al., [15] proposed a scheme for preparing

coherent squeezed states of motion in an ion trap based on | gar) =|ans1,Nne1,N+1,9),

053407-9
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with
LN+l 100

Nl (38)
(N=N)n+1bi-n-1

50
and m m
_ Qy (N+1D)! 0 U{\U ]

-50

e 1(N; 72 =(N+1)!

In short, the dark state is the superpositiorNof 1 non-
linear coherent states that are equidistantly separated from
each other along a circle with modulation factef -100
=exf 2mk/(N+1)]. These states represent the change of the
Schralinger cat states under the influence of the strong non-

linearity of the trapped ion vibrationsee Fig. L 0 200 400 600 800 1000
In particular, ;
hl(ﬁ' )= L%_l _ Lho1—Lj FIG. 3. Asymptotic expression af(\z) versusz [see Eq(41)].

NnLi-q 7°La-1

)2 u(x)=%{—4xIm[Liz(e‘i‘P)+Li2(—ei‘P)]

~ n-2

2= e . .
) TG 9 +RALis(e™1%)~ Lis(~€)])
and Ao X2kl
_Trkzo( 1) —(2k+1)3 cog (2k+1)4x],
_ 92
a’l—lﬂ—l, az——Q—ZF. (41)

. . . . with Li,(z) ==y_,Z“/k" the polylogarithm function. Accord-
Expressing the Laguerre polynomials by their asymptotlcIn to Eq.(41), IN[R2(n,7A)]nl 72 is an illating function
expressionynz?h,(n; %) tends, forn—o , to a function g t0 Eq.(41), In{[h(n,77)}'nt 7} is an oscillating functio

depending on the produat;? only, of Vn#?, with the envelope expanding proportionally to

Jn7?, as shown in Fig. 3. This behavior is confirmed by the
i 2 Inl 77"} plotted in Fig. 4
o , ™ o exact expressions of Jfini(n,7%)]'n p g
vnzhi(n;y )—tar(z\/nn 4)+O(n ). (40

d / 0
Note the oscillating behavior of the eigenvaluggn) / 0
~tarf(2\n7?— wl4)I7?. This circumstance implies that 400
each eigenstate is encompassed by an infinite countable set i m 100 ﬂﬂm

series representation of the relative NCS loses its meaning. -4
The behavior oE£(n) asn— o« has strong implication on the
resolution of unity, as we will see in the following.

As a consequence of E¢0), the logarithm of the facto-
rial [h2(n,7?)]!n! times 7" tends asymptotically to

of eigenstates of slightly different energies. For exceptional 0 U 0 "\JUUU
values ofn, some eigenvalues can vanish. In these cases, the \/ \/ \/ 300 UU U U h

-300

¢
In{Ch2(n: 7)1t 727} % W)

72072 2 5

n:m 8—7:]2J(8/ i In tar‘(%(\/i— 1)) dz+ const 0 . 0
: i "
~ —u(yn7y°)+const, -200 -100
n—oo 7]
FIG. 4. In[h(n,72)]!n! 72"} versusn for 7?=0.01(a), 0.02(b),
whereu(x) is an oscillating entire function 0.1(c), and 0.2(d).
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versusn for »2=0.01,0.02,0.1, and 0.2. 1172— 390+ 34
B

In particular, there exists a countable infinite sequence of ho(n; 7%) =1+ E(ﬁ—2)7/2+ 7
values of nz? for which [h3(n,%?)]!n!?" is close to 3 24
exp(—16yn/m7), so that the NCS can be normalized only 19n3— 9612+ 1597 — 86
for |a 7| less than one. In contrast with the linear coherent + 776+ . (42

states, the NCS relative to a trapped ion fill the open circle 60

1/% in the complex plane. Ag— 0, the domain of existence . . -

tends to the whole complex plane, as for the linear coherent Appro>2<|mat|ng the deformationh,(n) by 1+[(n

states. While these states are normalizeddor inside the ~ —1)/2]7” we have tham(,z/), (x) coincides with the Mel-

unit circle, the scalar product dfr;,h) and|a,,h) is de-  lin antitransform ofl'(s)I"?(2/7°+s—1). Before using Eq.

fined even if one of the numbets; or a, has an arbitrary (26) with A=3, B=0 anda,;=0, a,=a;=2/7"—1, we

modulus as long as the product of the moduli is less thamave to remove the degeneraay=a; by evaluating Eq.

1/%%. A similar situation occurs for the harmonious states(26) for a,—az=e and lettinge—0. Since lim_(I'(e)

[25] described by the deformation functidwn) = 1/\/n. +T'(—e&)— —2 sinh(ye)/e=—2y with y=0.577 21 the Eul-
For generic combinations of vibrational excitation levels€r's constant, then

and parameten?, the ion rovibronic dynamics fully displays

its nonlinear character. An example of this feature has been 5 _ _

seen above in connection with the discussion of the Wigner 32Mn,(X)=T""(az)oF2| ;1—a;1—a;;— 2

functions of some nonlinear Schlinger cats and states on a 2

circle of order 3 and 4. X
—2yI'(—ap)I'(2az)oF 2| ;1,1+a;— —
A. A resolution of unity a
Being that these NCS are restricted to valuesrauch x |
that |an|<1, the Mellin transform(23) reduces to the X 22
2

single-sided Laplace transform

. At the same time, thé exponential reads
g(s)=lim f mp( 7 2e Ye St.
g—0v¢8
v
En(v)= 0F3< Jla+la,+1,; —2) .
Then,g(s) is the right-sided Laplace transform of the distri- a;
butionm, (7 %e"!) and tends asymptotically to the analytic

function exppy 2v(ys7%)] of s in the half-plane Res>1 Expanding the generalized factorigh,(n,7%)]! to the
and is bounded according to second order iny?, the NCS|a,h;) can be expressed as a

TR combination of excited coherent states
g(s)<K e ' 7€,

4 2 7.4
with T a negative infinitesimally small constant akich con-  |@.hy)=| 1+ 7°— 1)l % + 7—7;) ala,1)
stant. Consequentlym,, is a distribution with support
bounded on the left a=T<0 (see Ref[34] corollary 8.4- 7 7', 57" 6
1a). This means that it is necessary to include in the unity | -5ty efla?) - 5e a3 +0(n°).

resolution non-normalizable states of amplitydé¢> » 1.
A better approximation can be obtained by representing

B. Approximate deformations the Laguerre polynomials,_;(#?) by a finite sum of pow-
2
The difficulties in dealing with this deformation can be ers of 7%,
overcome by using approximate deformations. This is justi- K oK
fied by the circumstance that in laser cooling experiments L (UZ)NZ (_1)k(”> 77—=P (n)
one deals with ions occupying a finite number of vibrational " <o k] k! KA
levels.

In particular, when the parametef is not very large, the  so thath,(n; %) [see Eq(39)] can be replaced by a rational
deformationsh, ,(n) can be approximated by a few terms of function
the series expansion

S

N
(P ) =1 e S e o P D Pam i T
~e 7Ps(n—1) e
11n3-2202+130—-2 J,l]l(n+bj)
i 28 (A (43)
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For using the characteristic functigp , we should choose 1 1

A=B, while for introducing theP representatiolA=B. In 08 9 08 (\ b)
particular, Ciraeet al, [10,15 and Blockleyet al, [11] have ' ' \
expanded the exponential of E§) up to second order i, 06 06
their case corresponds fo=B=4. 04 04
If the roots—a; and — b; are not integer, we hayef. Eq. 02 02
(29)] -0 :
_ieoaf @ L[ (@)Fs 0
— 1 1
[hae($)1t="""T 4 ) IT| () 4o 0123 45 0123 45
For this class of deformations, the measure is given by the 1 . ¢) 1{\ d
combination of the generalized hypergeometric functions of 08 08
Eq. (24), subject to the precaution of removing the degen- 06 06
eracy of the coefficients; ,b; . 04 04
In particular, forA=B=1 the Husimi-KanoQ function ' '
(36) relative to the statéz,h) reduces to 02 02
—lw-2%2] __v 2 —|w—2?2 0 0
Quw)ze ™ FH T (@)] = oy Ce 012345 012345
cotlvm) (EW* 2+ 7*w?) |, FIG. 5. Measuran,(x) versusx obtained as a combination of
2 50 Laguerre polynomial§Eq. (44)] and four different values of

, 5 _ . 5 7?=0.015, 0.0156, 0.0158, 0.016.
with v=1/%"+(1/2), w=(i/2)zw* and (=(iez/4v)“".
Consequently, the projectojz,h)(z,h| is represented in gramatic dependence on the Lamb-Dicke paramejer
terms of the undeformed coherent states 4y @presenta-  which measures the degree of departure from the linear case.
tion Conta|n|ng de”VaUVeS Of the Dirac fUnCt|0n Of the Very Th|s beha\/ior is due to the irregu'ar dependence Of the ion
h|gh orderv. This confirms the advantage of USing the rep'deformation function on the Fock state |nm_x

resentation31). With the aim of investigating the possibility of extending
For a finite rank density matrixny(x) can be represented some mathematical tools of the linear coherent state theory
by a finite combination of Laguerre polynomials to NCS a deformed displacement operafg«) has been
Nmax introduced, which, in analogy with the linear one, generates
mh(x)=e‘>‘20 mpLa(X). (44)  the NCS|a,h) by displacing the Fock vacuum stdtey,h)
“

=Dp(a)|0)]. The penalty paid for this extension is the loss
of the unitarity. However, it allows the construction of a
linear functional that can be used for representing density
operators by means of a generalized probability distribution
function p n(2).

The peculiarities of NCS connected with trapped ions be-
In Fig. 5, we have plotted these approximate measure funa@ome evident when the deformation factorial is analyzed for
tions for different values of 7? (=0.015,0.0156, very largen. The weight of thenth Fock state contributing
0.0158,0.016), representing density operators relative to ion® a NCS exhibits an almost periodic behavior by taking very

excited up to the leveh=50. For these values of?, the large and very small values of the orderesfc\"7’, Conse-
inclusion of a larger number of terma% 50) would lead to  quently, the NCS can be normalized only ferfilling the
measures taking negative values. open circle 1# in the complexa plane. In addition, this
behavior prevents the existence of a regular measure for re-
VIl CONCLUSIONS solving the unity. These pathologies mark the difference with
The vibrational steady states of ions placed in a parabolig oscillators whose deformation function is an increasing
trap and driven by bichromatic fields detuned by multiples offunction of n. The NCS with radius less thansi/are com-
the vibrational frequency provide a class of realizations ofplete but their duals have radius This is the same for the
the nonlinear version of the so-called coherent states on laarmonious statg®5].
circle. The most well-known example is that of the nonlinear For extending to these NCS tlirerepresentation formal-
Schralinger cat states. As for the linear case, these states casm, it is necessary to replace the deformation with an ap-
also be decomposed into finite sums of nonlinear coherergroximate one, for which there exists a measure. These ap-
states, which can be considered as the building blocks of theroximate NCS can be constructed in different ways. Two
vibrational wave functions of systems driven by laser fieldsexamples are provided. In the first case, the deformation is
detuned by multiples of the vibrational frequency. represented by a rational function of the occupation number,
This class of states is well described by the Wigner func-obtained by truncating the Laguerre polynomials to some
tion, which has been computed for states on a circle of deerder in»?. By increasing the degree of these rational func-
gree two(catg, three, and four. The relative patterns show ations it is possible to accurately represent the actual defor-

Imposing the conditiori22) for 0O<n=n,,, yields

mn=§ (=)™ HIh(m)]t}2.

n
m
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mation for occupation numbers extending up to infinity. TheGy(z,z*). Another possibility consists in transforming the
respective measures are the Mellin antitransforms of gammdensity matrix master equation to an equivalent equation for
function productg‘((ggg)) and are given by combinations of the P represen_tation. _This problem_ will be addressed in a
generalized hypergeometric functions. In the second cas&)ore systematic way in a forthcoming paper.

the measure is represented by a finite combination of La- Before CO”Cluding, it is remarkable that the deformation
guerre polynomials. In this way it is possible to representused for theg oscillators, the ancestors of the NCS, is based
exactly the factorials up to a given level although it is not  ©n the same transformation used by Hefi88] a century ago
possible to obtain, in general, a positive definite measure. for generalizing the Gauss hypergeometric function.

The NCS can provide a basis for studying the trapped ion
evolution by representing the statistical expectation values of
either antinormalG,(A,Af)) or normal Gy(A,Af) products V..M. thanks the University of Naples “Federico II” for
of A and A] as integrals of the probability distributions kind hospitality and the Russian Foundation for Basic Re-
ph.a(2) or Py(2) times the classical functiorS(z,z*) and  search for the partial support under Project No. 99-02-17753.

ACKNOWLEDGMENTS

[1] L. Biedenharn, J. Phys. 22, L873(1989. Ullmann, J. Opt. Soc. Am. B, 441(1986.

[2] A. MacFarlane, J. Phys. 22, 4581(1989; see also C. P. Sun [15] J. J. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, Phys. Rev.
and H.-C Fujbid. 22, L983 (1989; M. Chaichian and P. Kul- Lett. 70, 556 (1993; J. I. Cirac and P. Zolleripid. 74, 4091
ish, Phys. Lett. B232, 72 (1990. (1995.

[3] R. W. Gray and C. A. Nelson, J. Phys.28, L945(1990; A.  [16] R. L. de Matos Filho and W. Vogel, Phys. Rev.48, 2812
J. Bracken, D. S. McAnally, R. B. Zhang, and M. D. Gould, (1994); 54, 4560(1996.
ibid. 24, 1379 (1991; B. Jurco, Lett. Math. Phys21, 51 [17] S. Mancini, Phys. Lett. 233 291 (1997.

(1992; C. A. Nelson, inSymmetries in Science \ddited by  11g) v/ . Dodonov, I. A. Malkin, and V. I. Man’ko, PhysiceAm-
B. Gruber(Plenum Press, New York, 1993. 563. sterdam 72, 597 (1974

[4] V. 1. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria,[lg] X-G Wang and H-C Fu, e-print quant-ph/9903013.

;hys. Scr..52 528 (1997)% V'SI'. Man {(/(I)left Z/Ie;\)rmé), gnde. [20] V. Bargmann, Commun. Pure Appl. Math4, 187 (1961).
accaria, Insymmetries in science LWIEdied by B. BIUDEE 511 - 1| \ehta and E. C. G. Sudarshan, Phys. RE88 B274

and M. RamekPlenum Press, New York, 1997%. 341. ) ]
[5] V. I. Man’ko, G. Marmo, S. Solimeno, and F. Zaccaria, Int. J. (1965; see also J. R. Klauder, J. Math. Phys177(1964; T.
F. Jordan, Phys. Letil.1, 289 (1964).

Mod. Phys. A8, 3577(1993; Phys. Lett. A176, 173(1993. See - i
[6] R. Lopez-P@a, V. I. Man'ko, and G. Marmo, Phys. Rev. 6, [22] F. Diedrich, J. C. Bergquist, Wayne M. Itano, and D. J. Wine-

1126(1999. land, Phys. Rev. Let62, 403(1989.

[7] 3. Qnugelj, M. Martinis, and V. Mikuta-Martinis, Phys. Lett. [23] G.S. Agarwal and K. Tara, Phys. Rev.48, 492(1991); V. V'_
A 188 347(1994; Phys. Lett. B318 227(1993; Phys. Rev. Dodonov, Ya. A. Korennoy, V. I. Man’ko, and Y.A. Moukhin,
A 50, 1785(1994. Quantum Semiclassic. O, 413(1996.

[8] E. T. Jaynes and F. W. Cummings, Proc. IEEE 89(1963.  [24] S. Sivakumar, e-print quant-ph/9806061.

[9] B. Buck and C. V. Sukumar, Phys. Le&1A, 132(1981); J.  [25] E. C. G. Sudarshan, Int. J. Theor. Ph$2, 1069(1993.
Phys. A17, 885 (1984; V. Buzek, Phys. Rev. A39, 3196  [26] L. J. Slater,Generalized Hypergeometric Functioi€am-
(1989; G. S. Agarwal, J. Opt. Soc. Am. B 480(1985; C. C. bridge University Press, Cambridge, 196Broc. Cambridge
Gerry, Phys. Rev. /37, 2683(1988; C. V. Sukumar and B. Philos. Soc51, 577 (1955.
Buck, Phys. Lett83A, 211(1981); A. S. Shumovsky, Fam Le [27] E. C. G. Sudarshan, Phys. Rev. Léi, 277 (1963.
Kien, and E. I. Aliskenderov, Phys. Lett. 224, 351 (1987). [28] R. J. Glauber, Phys. Re31, 2766(1963.

[10] J. J. Cirac, R. Blatt, P. Zoller, and W. D. Phillips, Phys. Rev. A [29] Jinzuo Sun, Jisuo Wang, and Chuankui Wang, Phys. Rev. A

46, 2668(1992. 44, 3369(1991).

[11] C. A. Blockley and D. F. Walls, Phys. Rev.4V, 2115(1993; [30] O. Castans, R. Lope-Péra, and V. |. Man’ko, J. Russ. Laser
C. A. Blockey, D. F. Walls, and H. Risken, Europhys. Léff, Res.16, 477 (1995.
509 (1992. [31] J. Janszky, P. Domokos, and P. Adam, Phys. Re#8/2213

[12] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, (1994); Ren-Shan Gong, Phys. Lett. 233 297 (1997).
Phys. Rev. Lett.44, 1323 (1980; N. B. Narozhny, J. J. [32] E. Wigner, Phys. Rew0, 749(1932; K. Husimi, Proc. Phys.

Sanchez, and J. H. Eberly, Phys. Rev23 236 (1981); P. Math. Soc. Jpn23, 264 (1940; Y. Kano, J. Math. Phys6,
Meystre and M. S. Zubairy, Phys. Le®9A, 390(1982; C. C. 1913(1965.

Gerry, Phys. Rev. 87, 2683(1988; J. R. Kuklinski and J. L. [33] B. Roy, Phys. Lett. 2249, 25(1998; B. Roy and P. Royibid.
Madajczyk,ibid. 37, 3175(1988. 263 48 (1999.

[13] F. Diedrich and H. Walter, Phys. Rev. Lei8, 203(1987); M. [34] A. H. Zemanian Distribution Theory and Transform Analysis
Schubert, I. Siemers, R. Blatt, W. Neuhauser, and P. E. (McGraw-Hill, New York, 1965.
Toscheck,bid. 68, 3016(1992. [35] E. Heine,Handbuch die Kugelfunctione(1898, quoted by
[14] W. Vogel, J. Phys. B16, 4481 (1983; W. Vogel and Th. Slater(Ref.[26]).

053407-13



