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Trapped ions in laser fields: A benchmark for deformed quantum oscillators
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Some properties of the nonlinear coherent states~NCS!, recognized by Vogel and de Matos Filho as dark
states of a trapped ion, are extended to NCS on a circle, for which the Wigner functions are presented. These
states are obtained by applying a suitable displacement operatorDh(a) to the vacuum state. The unity reso-
lutions in terms of the projectorsua,h&^a,h21u,ua,h21&^a,hu are presented together with a measure allowing
a resolution in terms ofua,h&^a,hu. Dh(a) is also used for introducing the probability distribution funtion
rA,h(z) while the existence of a measure is exploited for extending theP representation to these states. The
weight of thenth Fock state of the NCS relative to a trapped ion with Lamb-Dicke parameterh, oscillates so
wildly as n grows up to infinity that the normalized NCS fill the open circleh21 in the complexa plane. In
addition, this prevents the existence of a measure including normalizable states only. This difficulty is over-
come by introducing a family of deformations that are rational functions ofn, each of them admitting a
measure. By increasing the degree of these rational approximations, the deformation of a trapped ion can be
approximated with any degree of accuracy and the formalism of theP representation can be applied.

PACS number~s!: 32.80.Pj, 42.50.Vk
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I. INTRODUCTION

The theory of certain one-parameter~q! deformations of
Lie algebras, the so-called quantum groups, has been of g
interest in the last decade in several areas of physics. In 1
Biedenharn@1# and McFarlane@2# independently defined th
q-analogue coherent state of a deformedq oscillator, for
which Gray and Nelson@3# were able to obtain the resolutio
of unity. Since then the properties of a class of deformati
of the harmonic oscillator were considered by several auth
~see e.g.,@4#!. Using classical version of theq-deformed os-
cillator it was found@5# that the oscillator can be considere
as conventional nonlinear oscillator with amplitud
dependent frequency. Deformed quantum oscillators are
resented by dynamical variablesA, A†, andNA satisfying the
commutation relations@A,NA#5A, @A†,NA#52A†, and
@A,A†#5 f (NA), with f (NA) an arbitrary real function of
NA . All such variables are constructed in terms of sing
mode field operators1 a, a†, anda†a. Deformed oscillators
were necessary@6# to study the Wigner problem o
commutation-relations ambiguity in quantum mechanics.

In 1993 Črnugelj et al. @7# observed that the multiphoto
interaction of a single-mode laser field with a two-level ato
is described by deformed-oscillator creation and annihilat
operators that in combination with the pseudospin ato
operatorss1 ands2 form the potential

WJC5A†s21As1

used in the Jaynes-Cummings model~JCM! @8#.

1Wherever possible operators will be indicated by simple lette
except for the addition of a caret when confusion could arise w
c-number quantities.
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In that period, the JCM was at center of the attention
the study of laser cooling of ions placed in parabolic tra
with the quantized center-of-mass motion of the ion play
the role of the boson mode, coupled via the laser to
internal degrees of freedom. In the case of cooling, the
eratorA is represented by a combination of some power
the annihilation operatora times a function ofn. When some
bosons of the oscillator mode are destroyed, the ion is
cited to the upper level from where it decays radiative
Cooling was investigated in Lamb-Dicke@9# and strong-
sideband@10# limits, that is, for ion excursions small com
pared with the radiation wavelength. This study led to t
discovery of many intriguing effects connected with the no
classical properties of the field, such as a long-time sens
ity to the statistical properties of the radiation field@11#. For
example, the mean excitation number of the quantized os
lations of a ion driven by a squeezed field exhibited perio
collapses and revivals@12#.

The interest for the vibrational motion of trapped ions w
also motivated by the connection between the state of mo
and the properties of the fluorescence spectra@13,14#. This
link led some experimentalists to look for new nonclassi
radiation states generated by trapped ions forced into s
unusual vibrational states. In analogy to the preparation
nonclassical states of light in quantum optics, several auth
examined the preparation of the center-of-mass motion
quantum state having no classical counterpart. Worthy
amples were those of Ciracet al. @15# who considered the
possibility of generating squeezed states of the vibratio
motion by irradiating the trapped ion with two standin
wave light fields of different frequencies and locating t
center of the trap potential at a common node of both wav
In all these cases, the nonlinear dependence ofA on a, a†,
and n̂ stemmed from the ion motion in the trap potential.

de Matos Filho and Vogel@16# observed in 1994 that the
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center-of-mass state of a trapped ion driven by a two-m
laser field decays toward a dark state coincident with a n
linear coherent state~NCS! of a deformed oscillator. This
result brought new fuel to the study of deformed oscillat
describing different classes of states arising in the trap
ion motion under the action of two or three fields detuned
multiples of the vibrational frequency~see, e.g.,@17# for non-
linear cat states that generalize the even and odd cat stat
@18#!. In the wake of this interest attention was paid to th
oretical models of deformed oscillators, like those connec
with excited coherent states and binomial states@19#. All
these nonlinear oscillators differ for the deformation functi
h(n̂) connecting the annihilation operatora to the deformed
oneA5ah(n̂). The ancestor of these realizations were thq

oscillators characterized by a deformationhq(n̂)

5Asinh(ln̂)/n̂sinhl increasing with n. Contrarily, the
trapped ion deformation is a very irregular function ofn,
taking positive and negative values. What is worse, for so
combinations of the Lamb-Dicke parameterh2 andn it can
vanish or become infinite. As a consequence, it is hard
capitalize on the work done for theq oscillator for studying
the NCS of a trapped ion. In particular, while for theq case
it has been found a measure resolving the unity, the sam
not exactly true for the ion case. As a consequence, the
malism of the Bargmann spaces@20#, that has been extende
from the linear oscillators to theq ones, cannot be applie
exactly to the ion case. In fact, it will be shown in the fo
lowing that this can be done by considering a class of ra
nal deformations that approximate to any degree of accu
the ion deformation. In most experimental cases, the stat
cal state of a trapped ion is limited to a finite number of Fo
states so that these rational deformations may adequatel
proximate the ion deformation. Only in this ‘‘weak’’ sense
it possible to construct an ion analogue of a Bargmann sp
on which the deformed creation and annihilation operat
are represented as multiplication byz and differentiation
with respect toz, respectively.

This paper is dedicated to an extension of the theory
the usual coherent states to NCS using as examples the
formation relative to the dark states of trapped ions. We s
with a single-mode excitation fieldA ~Sec. II!, by discussing
some properties of NCS, and introducing a deformed vers
Dh(a) of the displacement operator~Sec. III!. In Sec. IV, we
discuss some aspects of the resolution of unity for th
NCS. The operatorDh(a) is used in Sec. V for associatin
the density matrix operatorr̂ to a linear functionalrA,h(z)
mapping the test function exp(az*2a*z) into the expectation
value^Dh(a)&, by extending the construction of the antino
mal probability distribution function@21#. The connection
with the P representation is also briefly examined. Sect
VI is dedicated to NCS on a circle, for which the Wign
functions are presented. Finally, the last section is dedic
to the dark states, arising when a trapped ion is driven b
bichromatic laser field. An asymptotic expression of the
formation and the relative factorial is obtained and its imp
cation on the convergence of the NCS series is discusse
comes out that it converges only fora in a circle of radius
equal to the inverse ofh. On the other hand, the weight o
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each Fock state can take values so large to prevent the
lution of unity in terms of normalized NCS. Some approx
mate expressions of the deformation are discussed toge
with the possibility of using these NCS for representing t
ion statistical state.

II. MOTION OF A TRAPPED AND LASER-DRIVEN ION

We consider an ideal two-level ion of massM constrained
to move in a three-dimensional harmonic potential. Tak
the principal trap (x axis! axis to coincide with the direction
of propagation of the driving field, one quantum number s
fices to label the vibrational states of the trap. The other t
are traced out by summing over the corresponding degree
freedom.

The ion’s internal and external degrees of freedom
coupled together by a light fieldEeivLt1 iw(t) periodically
modulated at the frequencyn of the ion trap

E~x,t !5EeivLt1 iw(t)g~ t ! f ~x!1H.c.,

where g(t)5g(t12p/n) is a generally complex periodic
function of frequencyn and H.c. represents for the Hermitia
conjugate. The functionf (x) stands fore2 ikLx or sin(kLx
1f), respectively, for a progressive or standing wave, w
the phasef determining the position of the trap potenti
with respect to the standing wave.

We will dwell on monochromatic@at frequencyvL2(N
11)n]

g~ t !5gN11
(1) ~ t !5e2 i (N11)nt

and bichromatic driving fields at frequenciesvL2(N11)n
andvL , respectively,

g~ t !5gN11
(2) ~ t !5e2 i (N11)nt2aN11 ,

with the parameterN taking non-negative integer values, an
aN11 a complex coefficient depending on the amplitudes
the two waves.

Now, introducing the Lamb-Dicke parameterh

5\kL /A2M\n we put as usuale2 ikx5e2 ih(av
†

1av). In the
classical limit,h is large and the absorption or emission o
photon will always cause some change in the vibratio
state of the atom. In the nonclassical Lamb-Dicke limit
small h, many photons may need to be absorbed or emi
before the atom changes vibrational state. For example
the sideband cooling experiment carried out by Diedr
et al. @22# the parameterh was equal to 0.06.

The Hamiltonian for a trapped ion interacting with
bichromatic field can be split in two parts

H5H01Hint ,

where (\51)

H05v12s31nn̂, ~1!

and, in the electric dipole approximation,

Hint5`@s2E* ~x,t !1s1E~x,t !#.
7-2
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When the Rabi frequencyV, relative to the laser induce
transition between the ion ground and excited levels, is m
smaller than the trapping potential frequencyn, a perturba-
tion expansion can be carried out inV/n, as discussed in
Ref. @11#. This expansion allows a division into quickly an
slowly varying density operator matrix elements, the form
of which can be adiabatically eliminated.

Arresting the calculation to the zeroth order inV/n
amounts to applying the rotating wave approximation. T
approach can be easily pursued by switching to the inte
tion picture defined by the unitary operatorUrw

5exp@2i(vLs31nn̂)t# and retaining in the transforme
Hamiltonian H8 the time-independent terms together w
the slowly varying phasew(t) of the laser field,

H85@D2ẇ~ t !#s31V~s2A1s1A†! ~2!

with D5v122vL the detuning parameter,V5e2h2/2`E the
vibronic Rabi frequency and

A5e2h2/2g~ t ! f @h~e2 inta†1einta!#, ~3!

the overbar indicating the time average.
Expanding the factore2 ih(e2 inta†1einta) in power series in

a anda†, introducing the operator

f k~ n̂,h2!5 (
m50

`
~ n̂2m11!m

~k11!mm!
~2h2!m5k!

Ln̂
k
~h2!

~ n̂11!k

, ~4!

with (n̂2m11)m5(a†)mam5n̂(n̂21)•••(n̂2m11) and
Ln̂

k(h2) reducing in the Fock basis to the generalized L
guerre polynomials, we obtain, respectively, for progress

e2 ih(e2 inta†1einta)5e2h2/2(
k50

`

ek

~2 ih!k

k!

3@ f k~ n̂!akeiknt1~a†!kf k~ n̂!e2 iknt#

~5!

and standing waves

sin@h~a†1a!1f#5e2h2/2(
k50

`

ek

~2h!k

k!
sinS f1k

p

2 D
3@akf k~ n̂1k!eiknt

1 f k~ n̂1k!~a†!ke2 iknt#, ~6!

with k a positive integer andek5 1
2 for k50 andek51 oth-

erwise.
For progressive~p! and stationary~s! monochromatic

waves withg(t)5e2 i (N11)nt the operatorA @see Eq.~3!# is
given by

Ap
(1)5

~2 ih!N11

~N11!!
f N11~ n̂,h2!aN11,
05340
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As
(1)5~2 i !N11sinS f1~N11!

p

2 DAp
(1) , ~7!

while for two modes bichromatic driving fields

Ap
(2)5 f N11~ n̂!aN112aN11f 0~ n̂!,

As
(2)5~2 i !N11sinS f1~N11!

p

2 D f N11~ n̂!aN11

1sin~f!aN11f 0~ n̂!. ~8!

III. NONLINEAR COHERENT STATES

Coherent states were originally introduced as eigenst
of the annihilation operator for the harmonic oscillator@23#.
They have been generalized~see@3,4,16,19#! by labeling as
nonlinear coherent statesua,h& the right-hand eigenstates

Aua,h&5aua,h& ~9!

of operators2 A of the form

A5ah~ n̂! ~10!

whereh(n̂) is an operator-valued real function of the numb
operator. It is immediate to show that

ua,h&5Nh,a (
n50

`
an

An! @h~n!#!
un& ~11!

with @h(n)#! 5h(0)h(1)•••h(n) and normalizing factor
Nh,a

Na,h5
1

AEh~ uau2!

expressed in terms of the entire function

Eh~v !5 (
n50

`
vn

n! ~@h~n!#! !2

referred to in the following ash exponential in analogy with
the q exponential used in Ref.@3#.

The deformation functionsh(n,h2) associated with the
dark states of the trapped ions are represented by the rat
two Laguerre polynomials of argument equal to the Lam
Dicke parameterh2 so that they vanish or become infinit
for some isolated combinations ofh2 andn. We are obliged
to explicitly assume that this situation does not occur for
values ofh2 considered.

In Sec. VII we will obtain an asymptotic expression of th
weights of the Fock states occurring in the series expan
of the NCS relative to trapped ions. They take very large a

2For the sake of notational simplicity we will use the same sym
A for indicating fields of the form~7! and ~8!.
7-3
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very small values for increasingn, so that these NCS can b
normalized only fora inside the circle 1/h. For convenience
of discussion we shall ignore this problem by restricting o
treatment here to normalized NCS states.

It may be worth noting at this point that many of th
foregoing formulas may be abbreviated by adopting a n
malization different from the conventional one for the coh
ent state. Accordingly, we introduce the symbolia;h& for
the states normalized in the new way,

ia;h&5Na,h
21 ua,h&5 (

n50

`
an

An! @h~n!#!
un&

and

^a;hib;h&5Eh~a* b!.

Since the commutator@A†,A#5n̂h2(n̂)2(n̂11)h2(n̂
11) is not ac number it is worth introducing the operato
@19#

Ah
†5

1

h~ n̂!
a†. ~12!

With these alterations, we have

Aia;h&5aia;h&,

n̂ia;h&5a
]

]a
ia;h&,

Ah
†ia;h&5

]

]a
ia;h&.

In addition,

A†ia,h&5h2~ n̂!Ah
†ia,h&5h2S a

]

]a D ]

]a
ia,h&. ~13!

In all the above right-hand side, the operatorsa,]a and their
combination are intended to act on the coefficients of
Fock states series.

It should be noticed thatA andAh
† provide a~new! differ-

ent realization of Heisenberg-Weyl algebra, withAh
† playing

the role of the adjoint with respect to a new Hermitian pro
uct.

A. Displacement and deformation operators

It is well known that coherent stateua& can be also intro-
duced by displacing the Fock vacuum stateu0& by means of
the operator

D~a!5exp~2a* a1aa†! ~14!

due to its property of displacing the annihilation operatoa
by the generally complex quantitya,

D~a!aD~2a!5a2a.
05340
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Unfortunately,D(a) is unable to displace the deformed o
eratorA. Alternately,D(a) could be replaced by the unitar
operator obtained by replacing in Eq.~14! a anda† by A and
A†, respectively, but also this operator does not displaceA by
the complex quantitya. The difficulties in dealing with ex-
ponentials of linear combinations ofA andA† originate from
the circumstance that their commutator is not ac number.
These problems can be overcome by usingAh

† @see Eq.~12!#
in place ofA† and defining the ‘‘deformed’’ version of the
displacement operator as

Dh~a!5exp~2a* A1aAh
†!5euau2/2e2a* AeaAh

†

5e2uau2/2eaAh
†
e2a* A. ~15!

Dh(a) shares many properties of the standard operatorD(a)
as

D h
21~a!5Dh~2a!

and

Dh~b!Dh~a!5expF1

2
~ba* 2b* a!GDh~b1a!.

However,Dh(a) is not a unitary operator,

D h
†~a!5D1/h

21~a!5D1/h~2a!

so that it does not preserve the norm of a state.
Dh(a) andD1/h(a) displaceA andA†, respectively, bya

anda* ,

Dh~a!ADh~2a!5A2a,

D1/h~a!A†D1/h~2a!5A†2a* , ~16!

andAh
† by a*

Dh~a!Ah
†Dh~2a!5Ah

†2a* . ~17!

Accordingly, the NCSua;h& can be obtained by applying
Dh(a) to the vacuum state,

ia;h&5eaAh
†
u0&5euau2/2Dh~a!u0&.

In conclusion, the NCSia;h& can be obtained by deform
ing the usual coherent stateia& by means of the deformation
operator

dh5Dh~a!D~2a!, ~18!

namely,

ia;h&5dhia&.

Although expressed as a product of operators depending
the complex parametera, dh is independent ofa. In a Fock
basis, it is diagonal with components equal to@h(n)#! 21.
Sinceh(n) does not vanish, as already assumed,dh is not
singular.

Finally, we note that
7-4
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^muDh~a!un&5
@h~m!#!

@h~n!#!
^muD~a!un&,

so that the matrix representations ofD andDh have the same
diagonal part.

A further remark is that the set of operatorsDh(a) con-
stitutes a Weyl system that does not lead to the canon
quantization for not being unitary.

B. Nonlinear displaced Fock states

In Sec. V, we will use the Fock states displaced byDh(a)
@see Eq.~27!#

uwm ,a,h&5Dh~a!um&, ~19!

which can be shown with the help of Eqs.~16! and~17! to be
the right eigenstates of the operator (Ah

†2a* )(A2a)

5Dh(a)n̂Dh(2a),

~Ah
†2a* !~A2a!uwm ,a,h&5muwm ,a,h&.

Analogously, we can introduce the left eigenstates defined

^cm ,a,hu~Ah
†2a* !~A2a!5m^cm ,a,hu,

which are obtained by displacinĝmu by Dh(2a), i.e.,
^cm ,a,hu5^muDh(2a).

It is noteworthy that the left and right displaced Fo
states are mutually orthogonal,

^cm ,a,huwn ,a,h&50

for mÞn.
On the other hand, these states can be also express

the form

uwm ,a,h&5
@h~m!#! ~Ah

†2a* !m

Am!
ua,h&

5
@h~m!#!

Am!
(

n
S m

n D ~2a* !m2nua,h,m&,

^cm ,a,hu5^muDh~2a!

5^a,hu
~A2a!m

@h~m!#!Am!

5
1

@h~m!#!Am!
(

n
S m

n D ~2a!m2n^a,h,mu,

where ua,h,m&5Ah
†mua,h& and ^a,h,mu5^a,huAm stand

for the deformed versions of the excited coherent states@23#
~see also@24#!.
05340
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IV. RESOLUTION OF UNITY

From the completeness relation of coherent states

15
1

pE ua&^aud2a,

it follows that

15
1

pE dhua&^audh
21d2a5

1

pE dh
21ua&^audhd2a.

Next, using the relation

dh
215D~a!D1/h

† ~a!5„D1/h~a!D~2a!…†5d1/h
† ,

the above resolution of unity can be expressed in terms
deformed coherent states

15
1

pE e2aa*

Na,hNa,1/h
ua,h&^a,h21ud2a

51/pE e2aa*

Na,hNa,1/h
ua,h21&^a,hud2a. ~20!

It goes without saying, that this resolution holds true only
the NCS relative to the deformationsh and 1/h are both
normalizable in the whole complexa plane.

For some deformations, anyhow it is possible to obtai
resolution of unity in terms of projectors of deformed cohe
ent states, i.e., to find a suitable element of measuredm such
that

15E ia,h&^a,hidm, ~21!

dm can be considered as an extension of the measure
ment dm5(1/p)e2uau2d2a @20# for linear oscillators. Since
*^mia,h&^a,hin&dm must vanish formÞn, dm can be put
in the form

dm5
1

p
mh~ uau2!d2a,

wheremh(x) is a distribution satisfying the set of equation

n! ~@h~n!#! !25E mh~x!xndx ~22!

for every integern.
Treatingn5s21 as a continuous variable, the above r

lation represents a Mellin integral transform,

g~s!5E
0

`

f ~x!xs21dx, ~23!

so that mh(x) is the Mellin antitransform of g(s)
5G(s)$@h(s21)#! %2.

From the relation^b,huAmub,h&5bm it follows that
Eh(b* a) is the self-reproducing kernel of theh analogue of
the Bargmann space@20#, with respect todm,
7-5
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E uEh~b* a!u2amdm5bm,

In preparation of the discussion in Sec.VII, it is wor
remarking that replacingh by the deformationbh the rela-
tive measurembh(x) is given by

mbh~x!5b22mh~b22x!. ~24!

This relation can be also used for expressing a thermal d
sity matrix characterized by Boltzmann weight factorsrnn
}exp(2bn) in the form

r̂5e2bE mh~e2buau2!

mh~ uau2!
ia,h&^a,hidm.

In Ref. @3# it was possible to obtain the resolution of uni
for a q oscillator by deforming both the derivative and th
integral operators while a resolution for the so-called harm
nious states was obtained in@25#. We will see in the follow-
ing that for the trapped ion deformation the measure i
distributional Laplace antitransform that includes no
normalizable NCS.

For a deformation approximated by a rational function
n, g(s) corresponds to the ratio of products of gamma fu
tions,

g~s!5
G~a11s!•••G~aA1s!

G~b11s!•••G~bB1s!
[GS ~a!1s

~b!1sD . ~25!

For A>B the relative antitransform is given by a combin
tion of generalized hypergeometric functions

CFDS ~c!

~d!
;~21!C1D11xD 5(

n

~c1!n•••~cC!n

~d1!n•••~dD!n

3
xn

n!
~21!n(C1D11),

namely@26#,

mh~x!5 (
m51

A

GS ~a!82am

~b!2am
D

3BFA21S 11am2~b!

11am2~a!8
;~21!A1BxD xam, ~26!

where (a)82am and (a)82am21 stand for the sequence
a12am , . . . ,aA2am and a12am21, . . . ,aA2am21, with
the exclusions of themth term.

V. EXPANSION OF STATISTICAL STATES

The same reasons that led Sudarshan@27# to introduce
diagonal coherent states representation to express arb
states and operators in terms of coherent states, which
special case provides the GlauberP representation@28#, sug-
gest that we develop expansions in terms of NCS as we

Following @21# we introduce for a statistical state the d
05340
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formed quantum linear functional

Fh@a#5Tr$r̂Dh~a!%5(
m

rmn̂ nu.wm ,a,h&. ~27!

In particular, for a diagonal density matrixFh@a# reduces to
the standardF@a#.

Using the unity resolution~20! Fh@a# may be rewritten as

Fh@a#5eaa* /2E exp~az* 2a* z!rh,A~z!d2z, ~28!

where

rh,A~z!5
1

p

e2zz*

Nz,hNz,h21

Tr$r̂uz,h&^z,h21u%5
1

p
^zur̂huz&,

~29!

with

r̂h5dh
21r̂dh

the deformed density operator. In other words,rh,A(z) stands
for the generalized distribution function of the deform
density matrixdh

21r̂dh .
For extending the definition of the characteristic fun

tional F@a#5Tr$r̂D(a)% to a deformed oscillator, we pa
the penalty of loosing some properties ofrA(z). In fact,
rh,A(z) may take, in general, positive and negative values
can be regarded as a generalized probability distribu
function as long as the association between operators
functions is based on antinormal ordering,

Tr$r̂GA~A,Ah
†!%5E rh,A~z!GA~z,z* !d2z, ~30!

In particular, for a diagonal density matrixrh,A(z)
5rA(z) while for r̂5uw,h&^w,hu,

rh,A~z!5
1

p

Eh~w* z!

Eh~w* w!
exp@z* ~w2z!#.

Consequently, transformation~28! applies if there exists the
Fourier transform of exp@z* (w2z)#Eh(w*z). Analogously,
working with r̂5uw,h21&^w,h21u we arrive at the same
conclusion for exp@z* (w2z)#Eh21(w*z). This, in turn, implies
that Eh21(w* z) and Eh(w* z) cannot grow at infinity as
quickly as exp(zz* ).

We recall that in the coherent state representation o
bounded operatorÔ, the vanishing of̂ zuÔuz&50 in a do-
main of the complex plane of finite area implies the vanis
ing of Ô itself ~see Ref.@21#!. Sincedh has been assume
nonsingular, the same theorem holds true for^zuÔhuz&, so
that two deformed density matrices having the same func
rh,A(z) over some area ofz , must coincide. In conclusion
Eq. ~29! establishes a one-to-one correspondence betw
the operatorr̂ and the functionrh,A(z).
7-6
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When the deformation admits the unity resolution~21!, a
density matrix can be represented in several cases byP
representation,

r̂5E Ph~a!ia,h&^a,hidm, ~31!

in which Ph(a) can be regarded as a generalized probab
distribution function as long as the association between
erators and functions is based on normal ordering,

Tr$r̂GN~A†,A!%5E Ph~a!GN~a,a* !dm. ~32!

When r̂ is represented in the form of Eq.~31! the master
equation ofr̂ can be in many cases transformed in a mas
equation for Ph . This circumstance becomes particular
valuable in the study of the decay of an excited trapped
toward the fundamental dark state. In this case, we are fa
for example, with operators of the form

A†r̂5E P~a!mh~aa!!h2S a
]

]a D ]

]a
ia&^aid2a

52E ia&^ai
]

]a
h2S 212a

]

]a D
3$P~a!mh~aa* !%d2a,

use having been made of Eq.~13! ExpandingP(a)mh(aa* )
in power series ofam(a* )n we see that

]

]a
h2S 212a

]

]a Dam~a* !n5mh2~212m!am21~a* !n.

VI. NONLINEAR COHERENT STATES ON A CIRCLE

The above definition of NCS states~we will call them of
order 1! can be extended to the eigenstates of the opera
AN11 of a more general formAN115aN11h(n̂) @29# and so
the equation

AN11ua,h,N11,q&5aua,h,N11,q&

with N.0 is considered.
The eigenstate belonging to the eigenvaluea is

N11-fold degenerate andq is an integer ranging from 0 to
N. In terms of Fock states, we have

ua,h,N11,q&5Na,h,q

3(
l 50

`
a l (N11)1q

A~ l ~N11!1q!! @h~ l ~N11!1q!#!

3u l ~N11!1q&, ~33!

with the normalization factor
05340
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uNa,h,qu225(
l 50

` uau2l (N11)12q

@ l ~N11!1q#! „@h$ l ~N11!1q%#! …2
,

where

@h$ l ~N11!1q%#! 5h~q!h~N111q!•••h$ l ~N11!1q%.

Such a state can also be expressed as a sum of NCS@see
Eq. ~11!#. In fact, by introducing the functionh(N11)(n) de-
fined recursively by

h(N11)$ l ~N11!1q%

5
h~q21!@h$ l ~N11!1q%#!

h~q!@h$ l ~N11!1q21%#!
h(N11)~q!,

we have also

ua,h,N11,q&5Na,h,q8 (
k50

N

~e* !qkuaek,h(N11)&, ~34!

with e5exp@i2p/(N11)# and Na,h,q8 a normalization coeffi-
cient.

We have obtained that a NCS coherent state of ordeN
11 is decomposed in the sum ofN11 first-order NCS of
complex amplitudesa, aeq, . . . ,a(eq)N distributed uni-
formly on a circle. These states, referred to as ‘‘crystalliz
cats’’ in Ref. @30#, were introduced for the linear oscillato
@31# in the attempt to generalize the optical Schro¨dinger cats
of harmonic oscillators.

Using the deformed displacement operator we have a

ua,h,N11,q&5Na,h,q8 S (
k50

N

~e* !qkD h(N11)~aek!D u0&.

In conclusion, the Hilbert space is the direct sum ofN
11 spacesH5H0% H1% •••% HN (q50,1, . . .N), each
of them having for basis the Fock statesul (N11)1q&, as
l P(0, . . . ,̀ ).

For N51, the fundamental states ofH0 andH1 are, re-
spectively, the even and odd Schro¨dinger cats. It will be
shown in a forthcoming paper that when the radiative dam
ing is negligible, the initial density matrix separate in th
product of two matrices evolving, respectively, toward t
even and odd Schro¨dinger cats.
7-7
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FIG. 1. Top and side views o
the Wigner function @Eq. ~35!#
relative to linear~a! and nonlinear
~b!, ~c!, ~d! even Schro¨dinger cat
states fora53.5 ~real! and two
different values ofh. ~a! h50
~linear case!, the two coherent
peaks are almost circularly
shaped, the interference pattern
axially symmetric along the axis
defined by the center of the cohe
ent peaks;@~b! top view, ~c! side
view, and ~d! air view# h50.5,
the Gaussian peaks are no long
distinguishable from the circularly
symmetric interference pattern.
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A. Wigner function

The Wigner function@32# relative to these states on
circle can be shown to be given for a generic integerN by

WN11~ q̃,p̃!5Na,hN11 ,q
2 e2uq1 ipu2

3(
l l 8

@A2~ q̃2 i p̃ !# ( l 82 l )(N11)

3
~2a! l (N11)1q

@hN11$ l ~N11!1q%#!

3
~a* ! l 8(N11)1q

@hN11$ l 8~N11!1q%#!

3
Ll (N11)1q

( l 82 l )(N11)~2~ q̃21 p̃2!!

@ l 8~N11!1q#!
. ~35!

Analogously, for the Husimi-Kano@32# Q function

QN11,q(q̃,p̃)5U K q̃1 i p̃

A2
Ua,q,hN11L U2

,

05340
QN11,q~ q̃,p̃!

5Na,hN11 ,q
2 e2(q̃21 p̃2)/2

3U(
l 50

` S a
q̃2 i p̃

A2
D l (N11)1q

@ l ~N11!1q#! @hN11$ l ~N11!1q%#!
U 2

,

~36!

with u(q̃1 i p̃)/A2& a coherent-state vector.
For N51, these states reduce to even (q50) and odd

(q51) Schrödinger cats@17#. In Ref. @33# the squeezing and
antibunching effects are examined by using the funct
h1(n) introduced in@16# for the NCS. We will see in the
following @see Eq.~38!# that the nonlinear cats representin
the dark state of a trapped ion are properly described by
deformationh2(n;h2)5Ln22

2 (h2)/@n(n21)Ln22(h2)#.
In Fig. 1, we show the Wigner functions for nonline

even Schro¨dinger cats of amplitudea53.5 ~real! and differ-
ent parametersh. In the linear case@h50, Fig. 1~a!#, the
quantum interference is localized around the origin. The t
coherent Gaussian peaks are circularly shaped.

For increasingh, the nonlinearity flattens the interferenc
pattern while the central interference fringes, particula
their negative part, become more evident. This is essent
7-8
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FIG. 2. Top view of the
Wigner function @Eq. ~35!# for
three and four NCS states sittin
on the circle.a53.5 ~real! andh
50.33. This value of the nonlin-
earityh leads to a smooth reshap
ing of the coherent peaks from
nearly circular shape to an elliptic
one.
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due to a reshaping of the coherent contribution peak fro
Gaussian-like nearly circular shape to an elliptical one w
minor axis parallel to the direction connecting the two coh
ent peaks. These come closer to the origin and the re
where the Wigner function is nonzero shrinks notably.

A further increase inh causes the progressive comin
closer and closer of the main peaks, while the interfere
fringes become more localized. For higherh, there are some
interference fringes spreading over the two coherent pe
This phenomenon is dominant for very highh values@Figs.
1~b!,1~c!,1~d!, h50.5] where the main peaks come into th
interference region and the coherent character of the
states forming the cat is no longer distinguishable. The in
ference area becomes larger than in the linear case a
circular symmetry of the interference pattern becomes
dent.

In Fig. 2, we present two NCS on a circle formed by t
superposition of three and four NCS (a53.5 andh50.33).

VII. DARK STATES

In 1993 Ciracet al., @15# proposed a scheme for preparin
coherent squeezed states of motion in an ion trap base
05340
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the multichromatic excitation of a trapped ion. Using tw
waves with beat frequency equal to twice the trap freque
a ‘‘dark resonance’’ appears in the fluorescence emitted
the ion; the ion is placed in a squeezed state. Similar ‘‘d
states’’ produced by a bichromatic field with beat frequen
equal to the trap frequency were studied by de Matos F
and Vogel in 1996@16# dentified as nonlinear coheren
states.

We will consider in the following a beat frequency that
a generic multiple of the trap frequencyn, and the ion dark
state is described by a generalized coherent state on a c
We will consider a bichromatic field of the type

Ab,N115 f N11~ n̂!aN112aN11f 0~ n̂!, ~37!

for which the dark state satisfies the equation

S aN11
f N11~ n̂2N21!

f 0~ n̂2N21!
2aN11D ucdark&50,

that is @see Eq.~33!#

ucdark&5uaN11 ,hN11 ,N11,q&,
7-9
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with

hN11~ n̂;h2!5~N11!!
Ln̂2N21

N11

~ n̂2N!N11Ln̂2N21

~38!

and

aN115
V0

VN11

~N11!!

~2 ih!N11
.

In short, the dark state is the superposition ofN11 non-
linear coherent states that are equidistantly separated
each other along a circle with modulation factorek

5exp@2pik/(N11)#. These states represent the change of
Schrödinger cat states under the influence of the strong n
linearity of the trapped ion vibrations~see Fig. 1!.

In particular,

h1~ n̂;h2!5
Ln̂21

1

n̂Ln̂21

5
Ln̂212Ln̂

h2Ln̂21

,

h2~ n̂;h2!5
2Ln̂22

2

n̂~ n̂21!Ln̂22

, ~39!

and

a15 i
V0

V1
, a252

V0

V2

2

h2
.

Expressing the Laguerre polynomials by their asympto
expressionAnh2h1(n;h2) tends, forn→` , to a function
depending on the productnh2 only,

Anh2h1~n;h2!5tanS 2Anh22
p

4 D1O~n23/4!. ~40!

Note the oscillating behavior of the eigenvaluesE(n)
;tan2(2Anh22p/4)/h2. This circumstance implies tha
each eigenstate is encompassed by an infinite countabl
of eigenstates of slightly different energies. For exceptio
values ofh, some eigenvalues can vanish. In these cases
series representation of the relative NCS loses its mean
The behavior ofE(n) asn→` has strong implication on the
resolution of unity, as we will see in the following.

As a consequence of Eq.~40!, the logarithm of the facto-
rial @h1

2(n,h2)#!n! times h2n tends asymptotically to

ln$@h1
2~n;h2!#!n!h2n%

;
n→`

p

8h2E (8/p)2nh2

lnF tanS p
4 ~Az21! D G2

dz1const

;
n→`

1

h2
u~Anh2!1const,

whereu(x) is an oscillating entire function
05340
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u~x!5
2

p
$24x Im@Li2~e2 iw!1Li2~2eiw!#

1Re@Li3~e2 iw!2Li3~2eiw!#%

5
4

p (
k50

`

~21!k
4x~2k11!21

~2k11!3
cos@~2k11!4x#,

~41!

with Lin(z)5(k51
` zk/kn the polylogarithm function. Accord-

ing to Eq.~41!, ln$@h1
2(n,h2)#!n!h2n% is an oscillating function

of Anh2, with the envelope expanding proportionally
Anh2, as shown in Fig. 3. This behavior is confirmed by t
exact expressions of ln$@h1

2(n,h2)#!n!h2n% plotted in Fig. 4

FIG. 3. Asymptotic expression ofu(Az) versusz @see Eq.~41!#.

FIG. 4. ln$@h1
2(n,h2)#!n!h2n% versusn for h250.01 ~a!, 0.02 ~b!,

0.1 ~c!, and 0.2~d!.
7-10
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versusn for h250.01,0.02,0.1, and 0.2.
In particular, there exists a countable infinite sequence

values of nh2 for which @h1
2(n,h2)#!n!h2n is close to

exp(216An/ph), so that the NCS can be normalized on
for uahu less than one. In contrast with the linear coher
states, the NCS relative to a trapped ion fill the open cir
1/h in the complex plane. Ash→0, the domain of existence
tends to the whole complex plane, as for the linear cohe
states. While these states are normalized forah inside the
unit circle, the scalar product ofua1 ,h& and ua2 ,h& is de-
fined even if one of the numbersa1 or a2 has an arbitrary
modulus as long as the product of the moduli is less t
1/h2. A similar situation occurs for the harmonious stat
@25# described by the deformation functionh(n)51/An.

For generic combinations of vibrational excitation leve
and parameterh2, the ion rovibronic dynamics fully display
its nonlinear character. An example of this feature has b
seen above in connection with the discussion of the Wig
functions of some nonlinear Schro¨dinger cats and states on
circle of order 3 and 4.

A. A resolution of unity

Being that these NCS are restricted to values ofa such
that uahu,1, the Mellin transform~23! reduces to the
single-sided Laplace transform

g~s!5 lim
«→0

E
«

`

mh~h22e2t!e2stdt.

Then,g(s) is the right-sided Laplace transform of the dist
bution mh(h22e2t) and tends asymptotically to the analyt
function exp@h22v(Ash2)# of s in the half-plane Res.1
and is bounded according to

g~s!<K e2T Res,

with T a negative infinitesimally small constant andK a con-
stant. Consequently,mh is a distribution with support
bounded on the left att5T,0 ~see Ref.@34# corollary 8.4-
1a.!. This means that it is necessary to include in the un
resolution non-normalizable states of amplitudeuau.h21.

B. Approximate deformations

The difficulties in dealing with this deformation can b
overcome by using approximate deformations. This is ju
fied by the circumstance that in laser cooling experime
one deals with ions occupying a finite number of vibration
levels.

In particular, when the parameterh2 is not very large, the
deformationsh1,2(n) can be approximated by a few terms
the series expansion

h1~ n̂;h2!511
n̂21

2
h21

2n̂223n̂11

6
h4

1
11n̂3222n̂2113n̂22

48
h61•••,
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h2~ n̂;h2!511
2

3
~ n̂22!h21

11n̂2239n̂134

24
h4

1
19n̂3296n̂21159n̂286

60
h61•••. ~42!

Approximating the deformationh1(n) by 11@(n̂
21)/2#h2 we have thatm(h2/2)h1

(x) coincides with the Mel-

lin antitransform ofG(s)G2(2/h21s21). Before using Eq.
~26! with A53, B50 and a150, a25a352/h221, we
have to remove the degeneracya25a3 by evaluating Eq.
~26! for a22a35« and letting «→0. Since lim«→0G(«)
1G(2«)→22 sinh(g«)/«522g with g50.577 21 the Eul-
er’s constant, then

a2
2mh1

~x!5G2~a2!0F2S ;12a2,12a2 ;2
x

a2
2D

22gG~2a2!G~2a2!0F2S ;1,11a;2
x

a2
2D

3S x

a2
2D a2

.

At the same time, theh exponential reads

Eh~v !50F3S ;1,a211,a211;
v

a2
2D .

Expanding the generalized factorial@h1(n̂,h2)#! to the
second order inh2, the NCSua,h1& can be expressed as
combination of excited coherent states

ua,h1&5S 11h22
h4

12D ua&1S h2

2
1

7h4

72 Daua,1&

1S 2
h2

2
1

h4

24Da2ua,2&2
5h4

36
a3ua,3&1O~h6!.

A better approximation can be obtained by represent
the Laguerre polynomialsLn21(h2) by a finite sum of pow-
ers ofh2,

Ln~h2!;(
k50

K

~21!kS n
kD h2k

k!
5PK~n!,

so thath1(n;h2) @see Eq.~39!# can be replaced by a rationa
function

hA,B~n!5
PA11~n21!2PA11~n!

h2PB~n21!
5g

)
i 51

A

~n1ai !

)
j 51

B

~n1bj !

.

~43!
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For using the characteristic functionrh,A , we should choose
A5B, while for introducing theP representationA>B. In
particular, Ciracet al., @10,15# and Blockleyet al., @11# have
expanded the exponential of Eq.~3! up to second order inh,
their case corresponds toA5B54.

If the roots2ai and2bi are not integer, we have@cf. Eq.
~25!#

@hAB~s!#! 5gs21G21S ~a!

~b! DGS ~a!1s
~b!1sD .

For this class of deformations, the measure is given by
combination of the generalized hypergeometric functions
Eq. ~24!, subject to the precaution of removing the dege
eracy of the coefficientsai ,bi .

In particular, forA5B51 the Husimi-KanoQ function
~36! relative to the stateuz,h& reduces to

Q1~w!}e2uw2zu2/2uÃnJ2n~Ã!u2→ uÃu→`Ce2uw2zu2/2

3F11
cot~np!

2
~zw* 2n1z* w2n!G ,

with n51/h21(1/2), Ã5( i /2)zw* and z5( iez/4n)2n.
Consequently, the projectoruz,h&^z,hu is represented in
terms of the undeformed coherent states by aP representa-
tion containing derivatives of the Dirac function of the ve
high ordern. This confirms the advantage of using the re
resentation~31!.

For a finite rank density matrix,mh(x) can be represente
by a finite combination of Laguerre polynomials

mh~x!5e2x(
n50

nmax

mnLn~x!. ~44!

Imposing the condition~22! for 0<n<nmax yields

mn5(
m

~21!mS n
mD $@h~m!#! %2.

In Fig. 5, we have plotted these approximate measure fu
tions for different values of h2 (50.015,0.0156,
0.0158,0.016), representing density operators relative to
excited up to the leveln550. For these values ofh2, the
inclusion of a larger number of terms (n.50) would lead to
measures taking negative values.

VIII. CONCLUSIONS

The vibrational steady states of ions placed in a parab
trap and driven by bichromatic fields detuned by multiples
the vibrational frequency provide a class of realizations
the nonlinear version of the so-called coherent states o
circle. The most well-known example is that of the nonline
Schrödinger cat states. As for the linear case, these states
also be decomposed into finite sums of nonlinear cohe
states, which can be considered as the building blocks of
vibrational wave functions of systems driven by laser fie
detuned by multiples of the vibrational frequency.

This class of states is well described by the Wigner fu
tion, which has been computed for states on a circle of
gree two~cats!, three, and four. The relative patterns show
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dramatic dependence on the Lamb-Dicke parameterh,
which measures the degree of departure from the linear c
This behavior is due to the irregular dependence of the
deformation function on the Fock state indexn.

With the aim of investigating the possibility of extendin
some mathematical tools of the linear coherent state the
to NCS a deformed displacement operatorDh(a) has been
introduced, which, in analogy with the linear one, genera
the NCSua,h& by displacing the Fock vacuum state@ ua,h&
5Dh(a)u0&]. The penalty paid for this extension is the lo
of the unitarity. However, it allows the construction of
linear functional that can be used for representing den
operators by means of a generalized probability distribut
function rA,h(z).

The peculiarities of NCS connected with trapped ions
come evident when the deformation factorial is analyzed
very largen. The weight of thenth Fock state contributing
to a NCS exhibits an almost periodic behavior by taking ve

large and very small values of the order ofe6CAnh2
. Conse-

quently, the NCS can be normalized only fora filling the
open circle 1/h in the complexa plane. In addition, this
behavior prevents the existence of a regular measure fo
solving the unity. These pathologies mark the difference w
q oscillators whose deformation function is an increas
function of n. The NCS with radius less than 1/h are com-
plete but their duals have radiush. This is the same for the
harmonious states@25#.

For extending to these NCS theP representation formal-
ism, it is necessary to replace the deformation with an
proximate one, for which there exists a measure. These
proximate NCS can be constructed in different ways. T
examples are provided. In the first case, the deformatio
represented by a rational function of the occupation numb
obtained by truncating the Laguerre polynomials to so
order inh2. By increasing the degree of these rational fun
tions it is possible to accurately represent the actual de

FIG. 5. Measuremh(x) versusx obtained as a combination o
50 Laguerre polynomials@Eq. ~44!# and four different values of
h250.015, 0.0156, 0.0158, 0.016.
7-12
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mation for occupation numbers extending up to infinity. T
respective measures are the Mellin antitransforms of gam
function productsG(((a)

(b))) and are given by combinations o
generalized hypergeometric functions. In the second c
the measure is represented by a finite combination of
guerre polynomials. In this way it is possible to repres
exactly the factorials up to a given leveln, although it is not
possible to obtain, in general, a positive definite measure

The NCS can provide a basis for studying the trapped
evolution by representing the statistical expectation value
either antinormalGA(A,Ah

†) or normalGN(A,Ah
†) products

of A and Ah
† as integrals of the probability distribution

rh,A(z) or Ph(z) times the classical functionsGA(z,z* ) and
d,

ria

J.

.

A

on

E

05340
a

e,
-
t

n
of

GN(z,z* ). Another possibility consists in transforming th
density matrix master equation to an equivalent equation
the P representation. This problem will be addressed in
more systematic way in a forthcoming paper.

Before concluding, it is remarkable that the deformati
used for theq oscillators, the ancestors of the NCS, is bas
on the same transformation used by Heine@35# a century ago
for generalizing the Gauss hypergeometric function.
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