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Collisional decoherence in the presence of ultrafast optical pulses

C. Search and P. R. Berman
Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 2 June 2000; published 12 October 2000!

An expression for the van der Waals interaction between an active atom and a perturber atom is derived
using an irreducible tensor representation. This interaction leads to magnetic state decoherence in an ensemble
of active atoms. The magnetic state decoherence can be suppressed by the application of ultrafast optical
pulses. It is shown that the depolarization cross section can be suppressed by as much as 40% with only four
optical pulses during a single collision and that, for a large number of pulses, the cross section is proportional
to n0

22/11 wheren0 is the number of pulses at the Weisskopf radius. This paper generalizes our previous results
in which the collisional interaction was modeled as a square pulse.

PACS number~s!: 34.50.Rk, 32.80.Qk, 34.20.Cf
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Several recent papers@1–3# have contained proposals fo
suppressing the decoherence resulting from the coupling
quantum system to a thermal reservoir. The methods
cussed in these papers require the application of ti
dependent perturbations to the system on a time scale th
short compared to the correlation time of the reservoir.
this paper we apply a similar idea to magnetic state re
ation in an atomic vapor.

‘‘Active’’ atoms in a thermal vapor interacting with a
bath of foreign gas perturbers undergo elastic collisions
cause a depolarization of any initial magnetic state cohere
present in the active atoms. More precisely, if we consi
active atoms that are initially prepared in them50 sublevel
of a J51 state, then collisions with the perturbers will cau
the population to equilibrate among them50,61 sublevels
at a rate Gcol that is typically on the order of 107

2108 s21 per Torr of perturber pressure.
The depolarization arises from elastic collisions that c

be described by a semiclassical model in which the pertu
ers move along classical trajectories. It is common to mo
the atom-perturber interaction as a van der Waals interac
varying asR(t)26 where the quantityR(t) is the distance
between the active atom and perturber. The collision timetc
is approximately equal tob/v whereb is the impact param-
eter andv is the relative speed of the two atoms. For therm
speeds, and an impact parameterb0 equal to the so-called
Weisskopf radius that serves as a characteristic radius in
lisional decoherence,tc is of order 1 ps.

To suppress the magnetic state decoherence one mus
turb the active atoms on a time scale much less thantc in
order to disrupt the coherent evolution of the atomic st
wave function resulting from the van der Waals interactio
This necessitates the use of interactions that have dura
on the order of 10– 100 fs. One can achieve such inte
tions using ultrafast optical pulses applied to the initial sta
of the active atoms.

The modification of collisional dynamics in the presen
of intense laser fields, i.e.,xtc*1, wherex is the Rabi
frequency, is not a new subject. See, for example, the pa
@5–8# and the review@9#. However, all theoretical treat
ments, including @7#, which specifically treats time
dependent fields, have considered the field strength to
constant over the course of a collision so that the dres
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states of the atom1field system were the appropriate bas
states for studying the collision dynamics. However, we w
to turn the field on and off several times during the course
a single collision. Consequently, the previous work is ina
plicable here.

The experiment that we envision involves an active at
initially in a Ja50 ground state,ug,Ja50,m50&, at t50,
that is excited by a pulse of durationte!tc to the m50
sublevel of aJa51 excited state,ue,Ja51,m50&. It is as-
sumed that the spontaneous emission decay rate of the
cited state is much smaller thanGcol so that spontaneou
decay on the time scale of magnetic state decoherence ca
ignored. A series of off-resonant linearly polarized ultrafa
pulses with durationtp!tc is applied that couple the state
ue,1,m& to a Ja50 state,uu,0,0&. This is depicted in Fig. 1.
When the atom-field detuningd on thee-u transition is large
compared withtp

21 , the net effect of each pulse is to pro
duce a phase shiftDstp of the ue,1,m& state amplitudes. Ex-
plicitly, one finds that this ac Stark effect phase shift is giv
by Dstp5tpuxe1m,u00u2/d, where xe1m,u00 is a Rabi fre-
quency associated with thee-u transition that is proportiona
to the amplitude of the external field pulse. The fie
strengths are chosen such that the phase shift of them50
state amplitude due to each of the pulses is a uniformly
tributed random number in the interval@0,2p#. This type of

FIG. 1. Atomic level diagram illustrating proposed experime
The pump and probe fields are resonant on theug,0,0&→ue,1,0& and
ue,1,1&→uu,0,0& transitions, respectively. The pulses are detun
from the ue,1,0&→uu,0,0& transition by an amountd.
©2000 The American Physical Society05-1
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C. SEARCH AND P. R. BERMAN PHYSICAL REVIEW A62 053405
pulse sequence could be achieved using pulse shaping
niques@10#. The effect of the pulses is to disrupt the cohere
collision process in an irreversible manner owing to the s
chastic nature of the phasesDstp . The pulse train must be
on continuously for a time of orderGcol

21 . After a timeGcol
21 ,

the population in them561 states is probed with a circu
larly polarized pulse.

In a previous paper@4# we modeled the collision using
square pulse and neglected the collisional level shifts of
Zeeman states. In this paper we wish to consider a van
Waals interaction calculated from first principles. The resu
ing interaction is not isotropic and depends on the rela
orientation of the atom and perturber. The average over
lision orientations becomes nontrivial in the presence of
rectional external fields. The direct approach would be
numerically solve the density-matrix equations for a suita
large enough set of collision geometries to obtain an accu
estimate of the spatially averaged cross sections. Instead
look for a ‘‘typical collision’’ that gives the same cross se
tion for a particular transition in the perturbation theory lim
and in the absence of any external field, and use this ge
etry to calculate the cross section when an external fiel
present.

I. INTERACTION POTENTIAL

The dipole-dipole interaction between two colliding a
oms can be written as@11#

V~ t !5(
Q,K

F2
~4p!3/2

R~ t !3 S 2

15D
1/2

Y2,Q* „u~ t !,f~ t !…dK,2G
3 (

q,q8
^1,q;1,q8u2,Q&Tq

1~a!Tq8
1

~p!, ~1!

whereTq
k(a) and Tq

k(p) are the electric multipole momen
operators of the active~a! and perturber~p! atoms in an
irreducible basis, and the coupling coefficient is a Clebs
Gordan coefficient. If the active atom is located at the ori
while the perturber moves along the trajectoryR(t)
5x(t) x̂1y(t) ŷ1z(t) ẑ, then cosu(t)5z(t)/R(t), cosf(t)
5x(t)/Ax(t)21y(t)2.
05340
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For straight line trajectories in the laboratory fram
R(t)5vt, one can define a collision frame as depicted in F
2. In the collision frame, the perturber moves along t
‘‘standard’’ trajectoryR(t)5vt x̂81bẑ8. The collision frame
is related to the laboratory frame by a rotation. Con
quently, the average over all collision orientations cor
sponds to an average over the three Euler angles that pa
etrize the rotation to the collision frame.

In the case of nonresonant foreign gas perturbers, b
atoms undergo virtual transitions to allowed excited sta
but return to their initial angular-momentum multiplet if th
collision is adiabatic. Adiabaticity is satisfied iftc

21!vpa

wherevpa is the frequency difference or sum between t
virtual transitions of the active and perturber atoms. In t
case, for an active atom having total angular momentumJa
51 and perturber atom having ground-state angular mom
tum Jp50, one finds that the state amplitudes of the act
atom evolve as

i ȧm5(
m8

Umm8~ t !am8 , ~2!

where

FIG. 2. The ‘‘standard collision geometry’’ in which the pe

turber moves along the trajectoryR(t)5vt x̂81bẑ8 in the x8z8
plane.
Umm8~ t !5
1

\2vpa
(
m9

^1,m;0,0uV~ t !u0,0;1,m9&^0,0;1,m9uV~ t !u1,m8;0,0&

5(
m9

(
Q,N,q,q8,n,n8

F 1

\2vpa

~4p!3

R~ t !6 S 2

15DY2,Q* „u~ t !,f~ t !…Y2,N* „u~ t !,f~ t !…G uTu2

3^1,q;1,q8u2,Q&^1,n;1,n8u2,N&^0,0;1,qu1,m&^1,m9;1,q8u00&^1,m8;1,nu0,0&^0,0;1,n8u1,m9&

5 (
m9,Q,Q8

~21!Q8
uCu2

R~ t !6
Y2,Q* „u~ t !,f~ t !…Y2,Q8

* „u~ t !,f~ t !…^1,m;1,2m9u2,Q&^1,2m8;1,m9u2,Q8&,

~3a!
5-2
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uTu25
1

9
u^J51uuT(1)~a!uuJ50&u2u^J51uuT(1)~p!uuJ50&u2, ~3b!

uCu25S 2

15D ~4p!3

\2vpa

uTu2, ~3c!
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and ^J51uuT(1)(a,p)uuJ50& is a reduced matrix element.
Even though the above result was derived for the spec

case of the perturber making aJp50→Jp51 virtual transi-
tion while the active atom made aJa51→Ja50 virtual
transition, the above result is valid when all allowed virtu
transitions are included@12#. Only the definition ofuCu2 is
changed. Rewriting the spherical harmonics using the c
position rule for spherical harmonics,

Y2,Q* ~u,f!Y2,Q8
* ~u,f!5(

L,l
A 25

4p~2L11!
^2,Q;2,Q8uL,l &

3^2,0;2,0uL,0&YL,l* ~u,f!,

one then obtains after some manipulations the final form
the matrix elements

Umm8~ t !5(
L,l

~21!m81L11
25uCu2

A4p~2L11!R~ t !6

3^1,m;1,2m8uL,l &^2,0;2,0uL,0&

3H 1 1 L

2 2 1J YL,l* „u~ t !,f~ t !…, ~4!

where$ % is a Wigner 6-J symbol. The 6-J symbol is zero
unless 0<L<2 and^a,0;b,0uc,0&50 if a1b1c5 odd in-
teger.

It follows thatUmm8(t) contains only spherical harmonic
of order L50,2. For an arbitrary collision geometry that
related to the standard geometry byactive rotations through
the anglesa,b,j about thez, y, andz axes, respectively, on
finds

Umm8~ t,a,b,j!5(
L,l

~21!m81L11
25uCu2

A4p~2L11!R~ t !6

3^1,m;1,2m8uL,l &^2,0;2,0uL,0&

3H 1 1 L

2 2 1J
3Dll 8

(L)
~a,b,j!YL,l 8

* „u0~ t !,f0~ t !…. ~5!

Here tanu0(t)5vt/b andf0(t)50 in the collision frame. In
the remainder of this paper we focus on them50→m51
transition, with associated matrix element
05340
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U01~ t,a,b,j!5@U10~ t,a,b,j!#*

5
2uCu2

R~ t !6

5

4
A 1

15p(
m

D21m
(2) ~a,b,j!

3Y2,m* „u0~ t !,f0~ t !…. ~6!

II. INCLUSION OF EXTERNAL PULSES

The external pulses can be treated using an impact
proximation provided that there is no significant change
the expectation values of the active-atom variables dur
the pulse duration. This corresponds to the conditions

tp!tc and uUmm8~ t !utp!1.

A. Randomly spaced pulses

If the pulses occur randomly at some average rateg, then
they produce ‘‘decoherence’’ terms in the density-mat
equations of a form similar to those in@4#,

S ]rmm8
]t D

pulse

52g~12dm,1dm8,21

2dm,21dm8,12dm,m8!rmm8 . ~7!

Here rmm8 are the components of the active atom dens
matrix that have been averaged over the random phases
duced by the external pulses.

Notice that only the coherences between them50 and
m561 experience any decay due to the pulses. In the la
ratory frame, the polarization of the pulsesê defines the
quantization axis for the active atom. Consequently,
pulse only couples theue,1,0& state to theuu,0,0& state and
only the m50 substate amplitude acquires a random ph
as a result of the pulse. One can also consider the situatio
the collision frame in which the quantization axis is defin
by ẑ8 as shown in Fig. 2. In this coordinate system, t
quantization axis is no longer parallel to the field polariz
tion. However, Eqs.~7! still hold in the collision frame.
When the field of the incident pulse has an arbitrary pol
ization relative to the atom andx(t)/d(t)!1 wherex(t)
5uE0(t)u,e,J51uuduuu,J50./6\ is the reduced Rabi fre
quency, then the lowest-order effect of the pulse is simpl
phase shift of each of the states. Them561 states acquire
the same phase shift, which is different than that of them
50 state. Since the state vector of the active atom is o
5-3



ct

c

al
y
n

th

ra

e
he
a
fo

ns
e

te

in
op

-
n

i

in

nd

rly,

e
for

on.

ge

s
-

C. SEARCH AND P. R. BERMAN PHYSICAL REVIEW A62 053405
defined up to an arbitrary global phase factor, one can fa
out the random phase of them561 states. One is left with
only the m50 state experiencing a phase shift ofDstp .
There will be higher-order corrections proportional to (x/d)2

that result in transitions between theue,1,m& states. The
density-matrix equations in the presence of randomly spa
pulses are

]rmm8
]t

5(
m9

@ iU m9m8~ t !rmm92 iU mm9~ t !rm9m8#

1S ]rmm8
]t D

pulse

. ~8!

B. Equally spaced pulses

Alternatively, one can consider the pulses to be equ
spaced with the interval between the pulses denoted bT
5g21. The active atoms evolve freely according to the de
sity matrix equations,

]rmm8
]t

5(
m9

@ iU m9m8~ t !rmm92 iU mm9~ t !rm9m8# ~9!

in the interval between pulses. When a pulse occurs,
coherence termsr105r01* andr2105r021* acquire a random
phase, while the populations andr2115r121* coherences are
unaffected by the pulse. If one performs an ensemble ave
over the random phase, the boundary conditions after thenth
pulse are

r10„ts1~n21!T1tp…5r210„ts1~n21!T1tp…50,
~10a!

r121„ts1~n21!T1tp…5r121„ts1~n21!T…, ~10b!

rmm„ts1~n21!T1tp…5rmm„ts1~n21!T…, ~10c!

wherets is the time at which the first pulse occurs. The tim
at which the collision starts is arbitrary with respect to t
pulse periodT. Consequently, one must average over
times at which the first pulse could occur. The probability
the first pulse to occur in the interval (ts ,ts1dts) is
gQ(ts)Q(T2ts)dts , whereQ is a unit step function.

In order to analyze the cross section for collisional tra
fer from them50 to m51 sublevels in the presence of th
external pulses, it is convenient to introduce the parame

n05gb0 /v5b0 /vT,

which represents the average number of pulses occurring
collision having impact parameter equal to the Weissk
radius.

III. CROSS SECTION FOR n0š1

When n0@1, there is a wide range of impact param
eters for which the number of pulses per collisio
n(b)5n0b/b05gtc5tc /T@1. The collisional evolution
can be calculated using perturbation theory
05340
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uU10(t)tc /n(b)u2n(b)!1. For randomly spaced pulses,
the perturbation theory limit, one can use Eqs.~7! and~8! to
obtain the final-state population,

r11~`!5E
2`

`

U10~ t8!E
2`

t8
U01~ t9!e2g(t82t9)dt8dt91c.c.

5E
2`

` E
2`

`

U10~ t8!U01~ t9!e2gut82t9udt8dt9. ~11!

For g@tc
21 , the exponential is very sharply peaked arou

t85t9, e2gut82t9u'g21d(t82t9) and

r11~`!5g21E
2`

`

uU10~ t !u2dt, ~12!

a result that could have been written by inspection. Simila
for equally spaced pulses, one can use Eqs.~9! and ~10! to
obtain

r11~`!5TE
2`

`

uU10~ t !u2dt. ~13!

One then obtains for them51 population after averaging
over all collision geometries forgb/v5b/vT@1,

~ r̄11!pulses5~ r̄11!no pulses

504

84p

1

g~b/v !

5~ r̄11!no pulses

504

84p

1

n0~b/bo!
, ~14!

where (r̄11)no pulses is the perturbation theory result in th
absence of external pulses. An explicit expression
( r̄11)no pulsesis given in Sec. IV.

Equation~14! can be used to estimate the cross secti
We define the ratio of them50→m51 cross sections with
and without pulses asS(n0),

S~n0!5
~s!pulses

~s!no pulses

5E
0

`

~ r̄11!pulses~y,n0!y dy/E
0

`

~ r̄11!no pulses~y!y dy,

~15!

where y5b/bo . To estimateS(n0) for n0@1 we use the
perturbation theory result fory.y8, wherey8 is defined by
r̄11(y8)51, and the strong collision, asymptotic avera
value, r̄1154/15 @12# for 0,y,y8. In this manner, we ob-
tain

S~n0!5
28

31S 1.91

n0
D 2/11

. ~16!

The power lawS(n0);n0
22/11 is a general result that hold

for all potentials that vary as 1/R6 and was previously de
5-4
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COLLISIONAL DECOHERENCE IN THE PRESENCE OF . . . PHYSICAL REVIEW A 62 053405
rived in @4#. This result clearly indicates that asn0→` the
atom is frozen in its initial state.

IV. CROSS SECTION FOR n0È1

When n0;1, it is necessary to solve the appropria
equations numerically forall collision orientations and then
average the results. Since this procedure is rather time
suming, we adopt an alternative method that should g
results that agree at least qualitatively with the exact one
‘‘typical collision’’ geometry is defined in which, in the ab
sence of external pulsesand in the perturbation theory limit,
the value ofr11 calculated for the typical collision geometr
equals the value ofr̄11.

In perturbation theory, witha0(2`)51, one finds from
Eqs.~2! and ~6! that

r11~a,b,j!no pulses

5ua1~`!u2

5uAu2U(
m

E
2`

`

D21m
(2) ~a,b,j!

Y2,m* „u~ t !,f~ t !…

R~ t !6
dtU2

5
5puAu2

163b10v2 H 3

4
~12cos 4a!1

3

4
~1631cos 4a

236 cos 2j cos 2a!cos2b127 sinb cosb

3sin 2j sin 2aJ sin2b, ~17!

where

uAu25
1

15p S 5uCu2

4 D 2

.

Using the orthogonality relationship for the rotation matric
Dm8m

( j ) (a,b,j) with respect to integration over rotation angl
a,b,j, one obtains the orientation averaged population

~ r̄11!no pulses5
21puAu2

1024b10v2
. ~18!

By introducing the quantityF(a,b,j) defined as

r11~a,b,j!no pulses5~ r̄11!no pulsesF~a,b,j!, ~19!

the ‘‘typical collision’’ can be defined as one for whic
F(a,b,j)51. In this manner, the transition probability pro
duced by a perturber with orientation (a,b,j) relative to our
standard collision geometry in the perturbation theory lim
is the same as that producedon averageby a collision. For
a5j50 and b5p/6.25 one finds thatr11(0,p/6.25,0)
51.018r̄11.

The choicea5j50 has the added benefit of convertin
the three-level problem into an effective two-level proble
The collision matrix for the ‘‘typical collision’’ geometry
05340
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Umm8(t,0,b,0) is real for all m and m8. If one makes a
change of basis to a symmetric-antisymmetric basis given

a05a0 ,

a15~a111a21!/A2,

a25~a112a21!/A2, ~20!

the Schro¨dinger equation in the new basis is

i ȧ15$U11~ t,0,b,0!1U121~ t,0,b,0!%a1 , ~21a!

i ȧ25$U11~ t,0,b,0!2U121~ t,0,b,0!%a2

1A2U10~ t,0,b,0!a0 , ~21b!

i ȧ05A2U10~ t,0,b,0!a21U00~ t,0,b,0!a0 . ~21c!

Here explicit use has been made of the relations
U2m2m85(21)m2m8Umm8

* . The symmetric statea1 de-
couples from the other two states and simply acquires
overall phase. Moreover, for the initial conditionsa0(2`)
51 anda21(2`)5a11(2`)50, r11(`) is completely in-
dependent ofa1(`). It is now a simple matter to incorporat
the external pulses into these equations.

A. Randomly spaced pulses

For randomly space pulses, Eqs.~7!, ~8!, ~20!, and ~21!
can be recast in the form of Bloch equations,

ẇ52A2U10~ t,0,b,0!v, ~22a!

v̇5„U11~ t,0,b,0!2U121~ t,0,b,0!2U00~ t,0,b,0!…u

22A2U10~ t,0,b,0!w2gv, ~22b!

u̇52„U11~ t,0,b,0!2U121~ t,0,b,0!2U00~ t,0,b,0!…v2gu,

~22c!

with

w~ t !5r22~ t !2r00~ t !,

v~ t !5 i „r20~ t !2r02~ t !…,

u~ t !5r20~ t !1r02~ t !. ~23!

In terms of a dimensionless timex5tv/b and a coupling
constanth525uCu2/(40pb5v)5(b0 /b)5 one has

dw/dx5h f ~x,b!v, ~24a!

dv/dx5hg~x,b!u2h f ~x,b!w2n0h21/5v, ~24b!

du/dx52hg~x,b!v2n0h21/5u, ~24c!

f ~x,b!5
2x cos 2b2~12x2!sin 2b

~11x2!4
, ~24d!
5-5
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FIG. 3. Plot of f (x,p/6.25) andg(x,p/6.25)
as a function ofx.
t
r,

ct

in

lt in

on
s

g~x,b!5
2x sin 2b1~12x2!cos 2b

~11x2!4
, ~24e!

w~2`!521;v~2`!5u~2`!50. ~24f!

Figure 3 shows a plot off (x,p/6.25) andg(x,p/6.25). For
fixed h andb one can think ofh f andhg as effective Rabi
frequencies and detunings for the system.

In general, to findr11(t), one needs to knoww(t) as well
asr12(t) andr11(t), since

r11~ t !5S a11a2

A2
D S a11a2

A2
D *

5
w~ t !11

4
1

r11~ t !1r12~ t !1r21~ t !

2
. ~25!
05340
However, for the initial conditionsa0(2`)51 and
a11(2`)5a21(2`)50 it is easy to show tha
r11(t)5r12(t)50 for all t. Therefore, as asserted earlie
r11(t) is independent ofa1(t) and is given byr11(t)
5@w(t)11#/4.

Equations~24! can be integrated numerically with respe
to x for fixed h andb. For eachh the Bloch equations were
integrated over the interval23<x<3, which is taken to
simulate the interval (2`,`). The numerical integration
over h ~or b), needed to evaluateS(n0), was done for
0.01<h<200 with b5p/6.25. In Fig. 4 a plot of r11(x
53) for n052 is shown as a function ofb/b0. Results from
a numerical evaluation ofS(n0) @Eq. ~15!# are shown in Fig.
5. One sees that forn051, one achieves a 15% reduction
the cross section and, forn054, the reduction is 36%. This
shows that even a moderate number of pulses can resu
dramatic reductions in the cross section.

In the case ofn050, one can compare the cross secti
obtained for the ‘‘typical collision’’ geometry with the cros
FIG. 4. Plot ofr11(x53) as a
function of b/b05h21/5 for three
cases:~i! no pulses;~ii ! n052 for
randomly spaced pulses; and~iii !
n052 for equally spaced pulses.
5-6



ly

COLLISIONAL DECOHERENCE IN THE PRESENCE OF . . . PHYSICAL REVIEW A 62 053405
FIG. 5. Plot ofS(n0) for ran-
domly spaced pulses and equal
spaced pulses.
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section~averaged over all collision geometries! calculated in
@12#. One finds that there is a difference of only 0.1%@13#,
which is in fact less than the numerical error quoted in@12#
and the numerical error of our results. This level of agr
ment must be regarded as fortuitous. Regardless, it sh
that the ‘‘typical collision’’ geometry is a viable alternativ
to a complete averaging for them50→m51 transition. It is
important to note that the typical collision geometry w
defined by matchingperturbation theoryresults—there was
no guarantee it would yield quantitatively accurate resu
when the average overall impact parameters was carried ou

B. Equally spaced pulses

Now consider what happens when the pulses occu
well-defined times with each pulse occurring at intervalsT
5g21, with n05gb0 /v. To solve this problem one setsn0
50 in Eqs.~24! so that the Bloch equations are

dw/dx5h f ~x,b!v, ~26a!

dv/dx5hg~x,b!u2h f ~x,b!w, ~26b!

du/dx52hg~x,b!v. ~26c!

The Bloch vector evolves freely from its initial conditio
until xs , which is the time of the first pulse. Since the pul
completely randomizes the coherences, the pulse project
Bloch vector back on thew axis. Thus one has the new initia
conditions w(xs

1)5w(xs
2) and v(xs

1)5u(xs
1)50. The

Bloch vector again evolves freely until the timexs1Tv/b
5xs1n0

21h1/5 when the next pulse occurs. This pulse ag
projects the vector back on thew axis and the procedur
repeats until the end of the collision. It is also necessary
average over the time of the first pulse that has a probab
density of n0h21/5Q(xs)Q(n0

21h1/52xs). The results are
also plotted in Fig. 5. Forn051, one achieves a 20% redu
tion in the cross section and whenn054 the reduction is
47%. Notice thatS(n0) does not exhibit any oscillations, a
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ws
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in @4#. The oscillations were a consequence of the collis
area between any two pulses always being the same f
collision interaction modeled as a square pulse. This does
occur for our smooth potential.

It is interesting to consider howxs affectsr11(`). When
n0(b/b0)@1, the affect of the first pulse is negligible since
occurs in the far wing of the collision. However, when on
a single pulse occurs during the collision, one can clearly
the effect that the pulse has in disrupting the coherent e
lution of the active atom due to the collision. We consid
the case ofb5b0 and plotr11(`) as a function ofxs in Fig.
6. The populationr11(`) is a minimum whenxs corresponds
to the time whenu f (x,p/6.25)u is largest. Sinceh f (x,b)
plays the role of a Rabi frequency, we see that the pu
effectively destroys the coherent evolution of the syst
from m50 to m51. Similarly, r11(`) achieves its maxi-
mum value whenxs coincides with the maximum o
g(x,p/6.25). Recall thathg(x,b) is the detuning for our
two-level system. The pulse effectively reduces the detun
and thereby enhances the transition amplitude.

It should be emphasized that this typical collision wor
best for the particular scattering processm50→m51 and
would yield poorer results if used to try to determine oth
elements in the scattering superoperator for the active a
density matrix. For example, to compute the cross section
scattering fromm521→m511, one cannot ignore the
r11(t) and r12(t) terms. Finally, note that the standa
geometry (a5g5j50) cannot be used as our typical co
lision geometry since the cross section for this geometry
the absence of pulses is only 60% of the averaged c
section@12#. The cross section is particularly small owing
the fact thatg(x,0) is even whilef (x,0) is odd with respect
to time reversal.

V. DISCUSSION

The application of the external pulses shows a supp
sion of the transition probabilities between different ma
5-7
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FIG. 6. A plot of r11(x53,b5b0) when a
single pulse occurs atx5xs during the collision.
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netic substates. The magnetic substates are defined wit
spect to a quantization axis that is arbitrary in the absenc
an external field. For any particular collision in the presen
of pulses, there are two convenient ways to define the qu
tization axis. One could define the quantization axis as thẑ8
axis in the collision frame or by the polarizationê of the
linearly polarized external pulses in the laboratory frame.
us consider the former case. When one rotates to a diffe
collision orientation, one must also rotate the field polari
tion ê andk vector in the appropriate way. Symbolically,
r0(Ep)mm8 represents the density-matrix solution in the c
lision frame with an external fieldEp representing the pulses
then the solution for an arbitrary collision geometry rep
sented byV is

r~Ep ,V!mm85Dmn
(J)~V!21r0„Ra~V!21Ep…nqDqm8

(J)
~V!.

~27!

Here Dmn
(J)(V) is an active rotation matrix element an

Ra(V) is the representation of the corresponding active
tation acting onEp . Physically, this corresponds to a syste
in which the perturber’s trajectory relative to the active ato
is related to the trajectory in the collision frame,R(t)
5vt x̂81bẑ8, by the rotationRa(V) while the orientation of
the external pulses relative to the active atom are unchan

Since there is a functional dependence onV in
r0„Ra(V)21Ep…, averaging over allV is nontrivial since one
cannot take advantage of the properties ofDmn

(J)(V) to obtain
a simple form for the averaged superscattering matrix a
@12#. Consequently, we are led to the idea of a ‘‘typical c
lision’’ geometry in order to avoid these problems and s
obtain useful numerical results. A similar approach is e
ployed in @5# when calculating the scattering matrix. The
calculate their cross sections in the laboratory frame~with
quantization axisê) as a function of the angles that chara
terize the collision orientation in the laboratory frame a
05340
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use a single polar angle that preserves the collision cha
teristics instead of numerically averaging over the full ran
of angles.

In our analysis, the pulse that initially excited the popu
tion in ue,1,0& was linearly polarized in theẑ direction of the
laboratory frame. If, instead the excitation pulse has arbitr
polarization, then it will create a coherent superpositi
uc(0)&5(mam(0)ue,1,m&. If this state can be transforme
into anm850 state with respect to the quantization axisẑ8,
in a rotated laboratory system, then the above analysis
mains valid in the new coordinate system.

Thus one can preserve coherent superpositions of st
provided that there exists a coordinate system (x̂8,ŷ8,ẑ8) re-
lated to the original laboratory frame (x̂,ŷ,ẑ) by a rotation
parameterized byV8, such that

ue,1,08&5Up~V8!uc~0!&, ~28a!

uc~0!&5Ua~V8!ue,1,08&5(
m

Dm0
(1)~V8!ue,1,m&.

~28b!

Here ue,1,08& is the m850 state with respect to the
( x̂8,ŷ8,ẑ8) axes andUp(V8) represents thepassiverotation
acting on our state whileUa(V8)5Up

21(V8) is the corre-
sponding active rotation of the system@14#. As an example,
x-polarized light with kÄkẑ will excite the stateuc(0)&
5(1/A2)(ue,1,21&2ue,1,11&)5ue,1,08& for ẑ85 x̂. The
external pulses prevent decoherence of this superpos
state.

The important effect being demonstrated here is that v
rapid perturbations of a system that destroy the phase r
tionship between the amplitudesam(t) at t andt1dt, inhibit
the coherent time evolution of the states. The idea bea
close resemblance to the quantum Zeno effect@15# in which
the coherent evolution of a quantum system is inhibited
invoking the measurement postulate to project the state
5-8
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tor onto an eigenstate of the measurement operator. Altho
the net result is the same, the process described in this p
does not qualify as an example of the quantum Zeno ef
@4#. Instead our proposal is similar in spirit to the classic
Drude theory of conduction in metals, where the electro
undergo randomizing collisions with ions that cause them
lose all information about their velocity before the collisio
@16#.

The effect being proposed in this paper can be unders
in the more general context of system plus reservoir inte
tions. One can consider the foreign gas perturbers to re
sent a thermal bath having correlation timetc . Similarly,
one can attribute the random phase factors produced by
pulses as due to the coupling of the active atom to a sec
reservoir with a correlation timetc8 such thattc8!tc . The
interaction of the active atomS with the two reservoirsB1
andB2 can be described formally by the total HamiltonianH
and state vectoruc(t)&,

H5HS1HB11HB21HSB11HSB2 , ~29!

where HS is the active atom Hamiltonian andHB1 is the
reservoir of foreign gas perturbers. The HamiltonianHSB1

5g1(aSa ^ Ba
(1) is the interaction between the active ato

and the bath of perturbers, andSa are the operators acting o
the active atom Hilbert space and have nonzero off-diago
elements. The HamiltonianHB2 represents the second rese
voir with correlation time tc8 , and HSB25g2(t)(aSa

8

^ Ba
(2) is the interaction of the active atom with the reserv

due to the pulses. The operatorsSa
8 that act on the Hilbert
ys

G

a-
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space of the active atom are diagonal in the representa
considered. If the coupling ofS to B2 is of the formg2(t)
5G(nQ(t2nT)Q(nT1tp2t) and tc8,tp!T,tc where
G is arbitrarily large so that the termsHS andHSB1 can be
neglected wheng2(t)Þ0, then the effect of the coupling to
the bath att5nT1tp is

uc~nT1tp!&5expF2
i

\ S Gtp(
a

Sa8 ^ Ba
(2)1tpHB1

1tpHB2D G uc~nT!&. ~30!

The basis states for the Hilbert space of the active a
simply acquire a phase due to the interaction withB2. More-
over, sincetp.tc8 the phase of these states atnT1tp will
be uncorrelated with the phase atnT. The random phase
from the optical pulses can be thought of as the perio
coupling to a very fast bath. Thus our proposal involves
use of one reservoir to inhibit transitions induced by anot
reservoir which has a much longer correlation time.
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kovlenko, Zh. Éksp. Teor. Fiz.83, 1297 ~1982! @Sov. Phys.
JETP56, 743 ~1982!#.
.

.

@9# K. Burnett, Phys. Rep.118, 339 ~1985!.
@10# Femtosecond Laser Pulses: Principles and Experiments, ed-

ited by C. Rulliere~Springer-Verlag, New York, 1998!; A.M.
Weiner, Prog. Quantum Electron.19, 161 ~1995!.

@11# P.R. Berman, Phys. Rev. A29, 957 ~1984!.
@12# P.R. Berman and Willis E. Lamb, Phys. Rev.187, 221~1969!.
@13# Our definition ofh is 12 times theh used in@12#.
@14# M. Chaichian and R. Hagedorn,Symmetries in Quantum Me

chanics: From Angular Momentum to Supersymmetry~IOP
Publishing, Bristol, UK, 1997!.

@15# B. Misra and E.C.G. Sudarshen, J. Math. Phys.18, 756~1977!.
@16# N.W. Ashcroft and N.D. Mermin,Solid State Physics~Saun-

ders College Publishing, Forth Worth, 1976!.
5-9


