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Collisional decoherence in the presence of ultrafast optical pulses
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An expression for the van der Waals interaction between an active atom and a perturber atom is derived
using an irreducible tensor representation. This interaction leads to magnetic state decoherence in an ensemble
of active atoms. The magnetic state decoherence can be suppressed by the application of ultrafast optical
pulses. It is shown that the depolarization cross section can be suppressed by as much as 40% with only four
optical pulses during a single collision and that, for a large number of pulses, the cross section is proportional
to ngz’” whereng is the number of pulses at the Weisskopf radius. This paper generalizes our previous results

in which the collisional interaction was modeled as a square pulse.

PACS numbgs): 34.50.Rk, 32.80.Qk, 34.20.Cf

Several recent papef$—3] have contained proposals for states of the atomfield system were the appropriate basis
suppressing the decoherence resulting from the coupling of &ates for studying the collision dynamics. However, we wish
guantum system to a thermal reservoir. The methods digo turn the field on and off several times during the course of
cussed in these papers require the application of timea single collision. Consequently, the previous work is inap-
dependent perturbations to the system on a time scale that jdicable here.
short compared to the correlation time of the reservoir. I The experiment that we envision involves an active atom
this paper we apply a similar idea to magnetic state relaxinitially in a J,=0 ground state|g,J,=0m=0), att=0,
ation in an atomic vapor. that is excited by a pulse of duration<rt. to the m=0

“Active” atoms in a thermal vapor interacting with a Sublevel of aJ,=1 excited statele,J,=1m=0). Itis as-
bath of foreign gas perturbers undergo elastic collisions thatumed that the spontaneous emission decay rate of the ex-
cause a depolarization of any initial magnetic state coherenc@ted state is much smaller thdr,, so that spontaneous
present in the active atoms. More precisely, if we considefl€cay on the time scale of magnetic state decoherence can be
active atoms that are initially prepared in tie=0 sublevel ignored. A series of off-resonant_llnearly polarized ultrafast
of aJ=1 state, then collisions with the perturbers will causePUIS€s with duratior,< 7. is applied that couple the states
the population to equilibrate among the=0,= 1 sublevels |&1M) to aJ,=0 state[u,0,0). This is depicted in Fig. 1.
at a rate I'y, that is typically on the order of 70 When the at(_)m-il?ld detuning on thee-u transition is large
—10° s ! per Torr of perturber pressure. compared withr, ~, the net effect of each pulse is to pro-

The depolarization arises from elastic collisions that carfluce a phase shifi 7, of the |e,1m) state amplitudes. Ex-
be described by a semiclassical model in which the perturbplicitly, one finds that this ac Stark effect phase shift is given
ers move along classical trajectories. It is common to modePy As7p= Tp| Xeimuod /3, Where xeimuoo is a Rabi fre-
the atom-perturber interaction as a van der Waals interactiofluency associated with tfeeu transition that is proportional
varying asR(t)*G where the quantityR(t) is the distance tO the amplitude of the external field pulse. The field
between the active atom and perturber. The collision time  strengths are chosen such that the phase shift ofrth@®
is approximately equal tb/v whereb is the impact param- state amplitude due to each of the pulses is a uniformly dis-
eter and is the relative speed of the two atoms. For thermaltributed random number in the intenfd, 27 ]. This type of
speeds, and an impact paramebgrequal to the so-called
Weisskopf radius that serves as a characteristic radius in col- [v,0,0>
lisional decoherencer, is of order 1 ps.

To suppress the magnetic state decoherence one must per- Probe
turb the active atoms on a time scale much less tham
order to disrupt the coherent evolution of the atomic state Pulses
wave function resulting from the van der Waals interaction.
This necessitates the use of interactions that have durations le,1,m>
on the order of 10-100 fs. One can achieve such interac-
tions using ultrafast optical pulses applied to the initial states
of the active atoms.

The modification of collisional dynamics in the presence
of intense laser fields, i.ex7.=1, wherey is the Rabi
frequency, is not a new subject. See, for example, the papers
[5-8] and the review[9]. However, all theoretical treat-  FIG. 1. Atomic level diagram illustrating proposed experiment.
ments, including [7], which specifically treats time- The pump and probe fields are resonant or{ghe,0)—|e,1,0) and
dependent fields, have considered the field strength to be,1,1)—|u,0,0) transitions, respectively. The pulses are detuned
constant over the course of a collision so that the dressefdom the|e,1,0)—|u,0,0) transition by an amoun.

Pump

—_— 1g,0,0>
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pulse sequence could be achieved using pulse shaping tech- . 4
niqueg 10]. The effect of the pulses is to disrupt the coherent
collision process in an irreversible manner owing to the sto-
chastic nature of the phasésr,. The pulse train must be Perturber
on continuously for a time of orddf__:. After a timeT' ., / Trajectory
the population in then= =1 states is probed with a circu-

larly polarized pulse.

In a previous papdd] we modeled the collision using a o0
square pulse and neglected the collisional level shifts of the o
Zeeman states. In this paper we wish to consider a van der >y
Waals interaction calculated from first principles. The result- )
ing interaction is not isotropic and depends on the relative Active atom
orientation of the atom and perturber. The average over col- atorigin
lision orientations becomes nontrivial in the presence of di- X
rectional external fields. The direct approach would be to . . . .
numerically solve the density-matrix equations for a suitably FIG. 2. The "standard C‘?"'S'O” geometry” in VYh'Ch the per-
large enough set of collision geometries to obtain an accurafyPer moves along the trajectofg(t) =vtx’+bz" in the x'z'
estimate of the spatially averaged cross sections. Instead, W&"e:
look for a “typical collision” that gives the same cross sec- _ ) ) o
tion for a particular transition in the perturbation theory limit ~ For straight line trajectories in the laboratory frame,
and in the absence of any external field, and use this geoni?(t) =Vt, one can define a collision frame as depicted in Fig.
etry to calculate the cross section when an external field ig- In the collision frame, the perturber moves along the
present. “standard” trajectoryR(t) =vtx’ +bz’. The collision frame

is related to the laboratory frame by a rotation. Conse-
I. INTERACTION POTENTIAL quently, the average over all collision orientations corre-
sponds to an average over the three Euler angles that param-

The dipole-dipole interaction between two colliding at- €trize the rotation to the collision frame.
oms can be written ag1] In the case of nonresonant foreign gas perturbers, both
atoms undergo virtual transitions to allowed excited states,
but return to their initial angular-momentum multiplet if the

r

3/2 1/2
vin=3 | - (4m) [ 2\, (000, ()5 collision is adiabatic. Adiabaticity is satisfied # 1<w,,
- 3 |15 2Q ' K,2 . .
QK R(t) where w,, is the frequency difference or sum between the
virtual transitions of the active and perturber atoms. In this
L N case, for an active atom having total angular momeniym
X E (10;10'12Q)Tg(a) T, (p), (1) =1 and perturber atom having ground-state angular momen-
.9 tum J,=0, one finds that the state amplitudes of the active

where Tg(a) and T§(p) are the electric multipole moment atom evolve as

operators of the activéa) and perturber(p) atoms in an

irreducible basis, and the coupling coefficient is a Clebsch-

Gordan coefficient. If the active atom is located at the origin ian=> Upm(t)ay , 2)
while the perturber moves along the trajectoR(t) m’

=x()x+y(t)y+z(t)z, then coF(t)=zt)/R(t), cos(t)

=x(t)/Vx(t)Z+y(t)%. where
U (1) = ﬁzl > (1,m;0,0V(1)[0,0;1m")(0,0;1m"|V(t)|1,m’;0,0)
Wpa m"
1 (4am?df2)\_, .
22 ﬁz—wpaW(E)YZ,Q(em,¢(t>)Y2,N(0<t>,¢<t>> |2

x(1,0;1,9'12,Q)(1,n;1,n"|2N){0,0;1g/1,m)(1,m";1,g'|00)(1,m’;1,n|0,0(0,0;1n"|1,m")

= 2 (-n¢

m’,Q,Q’ R(t)6

CI?

Y3(8(1), B(1)Y50,(8(1), (1)1 m;1,—m"[2Q)(1,—m';1m"[2Q"),
(3a
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1
ITIP=g1(=1/T®@)][3=0)*(3=1[[TV(p)[|3=0)?,

and(J=1||T®)(a,p)||J=0) is a reduced matrix element.
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(3b)

|c|2:(_)(4”)3
15 ﬁpra

|T|2, (30)

Even though the above result was derived for the specific

case of the perturber makingJg=0—J,=1 virtual transi-
tion while the active atom made &=1—J,=0 virtual

transition, the above result is valid when all allowed virtual

transitions are includefil2]. Only the definition of|C|? is

UOl(tlavag):[UlO(t!C(!B!é:)]*
-ICl?5

[1
~ RS 4 EEm: D& (. B,€)

X Y3 m(00(1), do(t)).

(6)

changed. Rewriting the spherical harmonics using the com-

position rule for spherical harmonics,

. 25
E,Q(0,¢)Y2,Qr(0,¢)=LE’I Il T 2Q2Q' L)

X (2,0;2,0L,0)Y} (6, 6),

one then obtains after some manipulations the final form for

the matrix elements

25/C|?
Vam(2L+1)R(1)®

x{(1,m;1,—m’|L,l1)(2,0;2,0L,0)
1 L
X{ )Yt,l(e(t)!(l)(t))'

2 2 1
where{} is a Wigner 63 symbol. The 63 symbol is zero
unless BsL<2 and(a,0;b,0c,00=0 if a+b+c= odd in-
teger.

It follows thatU .y (t) contains only spherical harmonics
of orderL=0,2. For an arbitrary collision geometry that is
related to the standard geometry &gtive rotations through
the anglesy, 8, ¢ about thez, y, andz axes, respectively, one
finds

ummr<t>=§ (—1)m et

(4)

, 25/C|?
ummf(t,a,ﬂ,a:LZl (=1 +L+1\/Wf|+|l)R(t)6
x(1,m;1,—m’|L,1)(2,0;2,0L,0)
X[l 1 L]
2 2 1

XD (@, B,E)Y! . (6o(1), do(t).  (5)

Here tandy(t) =vt/b and ¢y(t) =0 in the collision frame. In
the remainder of this paper we focus on time=0—m=1
transition, with associated matrix element

II. INCLUSION OF EXTERNAL PULSES

The external pulses can be treated using an impact ap-
proximation provided that there is no significant change in
the expectation values of the active-atom variables during
the pulse duration. This corresponds to the conditions

Tp<7e and [Upp (t)|7p<1.

A. Randomly spaced pulses

If the pulses occur randomly at some average fatthen
they produce “decoherence” terms in the density-matrix
equations of a form similar to those jid],

IPmm _
ot
pulse

Here p,ny are the components of the active atom density
matrix that have been averaged over the random phases pro-
duced by the external pulses.

Notice that only the coherences between the0 and
m= *+1 experience any decay due to the pulses. In the labo-

ratory frame, the polarization of the pulsesdefines the
guantization axis for the active atom. Consequently, the
pulse only couples thge,1,0) state to thgu,0,0) state and
only them=0 substate amplitude acquires a random phase
as a result of the pulse. One can also consider the situation in
the collision frame in which the quantization axis is defined

by z' as shown in Fig. 2. In this coordinate system, the
quantization axis is no longer parallel to the field polariza-
tion. However, Eqgs.7) still hold in the collision frame.
When the field of the incident pulse has an arbitrary polar-
ization relative to the atom ang(t)/5(t)<<1 where x(t)
=|Eq(t)|<e,J=1]|d||u,J=0>/6# is the reduced Rabi fre-
quency, then the lowest-order effect of the pulse is simply a
phase shift of each of the states. Tine= =1 states acquire
the same phase shift, which is different than that of rtine
=0 state. Since the state vector of the active atom is only

—y(1- 5m,15m’,71

)

= Om,~16m' .1~ Om,m’) Pmnv -
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defined up to an arbitrary global phase factor, one can factdit ,(t) 7./n(b)|?>n(b)<1. For randomly spaced pulses, in
out the random phase of te= *1 states. One is left with the perturbation theory limit, one can use E¢8.and(8) to
only the m=0 state experiencing a phase shift dfr,. obtain the final-state population,

There will be higher-order corrections proportional jd §)?

that result in transitions between the,1m) states. The | ot It ") A1r A
density-matrix equations in the prese[lce of>randomly spaced p1a(*) = fﬂculo(t )ffxum(t e - dt’dt" +c.c.
pulses are

=f f Ut ) Ug(tMe " Vldt'dt”.  (12)

IPmmy . .
at = 2 [T e (O iy = TU e () pryr ]
m//
) For y> rc_l, the exponential is very sharply peaked around
+< Pmm’) . (8) t,:t”, e_y‘tl_t”‘m’)’_lﬁ(t’—t") and
at pulse

p1a(°)= 771f |Uo(t)dt, (12
B. Equally spaced pulses —

Alternatively, one can consider the pulses to be equallya result that could have been written by inspection. Similarly,

spaced with the interval between the pulses denoted by
=y~ 1. The active atoms evolve freely according to the den-]cor equally spaced pulses, one can use &gsand (10) to

. . ; obtain
sity matrix equations,

(?p ’ . . — ” 2
AT 3 (iU i (Ot = 1U (D] (9 pus=) =T [ U a3
m”

in the interval between pulses. When a pulse occurs, the One then obtains for the=1 population after averaging
coherence termsyo=p%, andp_ o= p%_, acquire a random over all collision geometries foyb/v=b/vT>1,

phase, while the populations apd ,=p7_, coherences are
unaffected by the pulse. If one performs an ensemble average
over the random phase, the boundary conditions aftenttme
pulse are 504 1

= (p10no puiseqzg— T 75T
proltst (N—1)T+7)=p_1oftet+ (n—1)T+7,)=0, Prino puisesgar ng(b/by)

(109 _
where (p11)no puisesiS the perturbation theory result in the
p1-1(ts+(N—1)T+7))=p; 1(ts+(n—1)T), (100  absence of external pulses. An explicit expression for
(P11 no puisesiS given in Sec. IV.
Pram(tst(N=1)T+7p)=pmuts+(N—1)T), (100 Equation(14) can be used to estimate the cross section.
We define the ratio of thenx=0—m=1 cross sections with
and without pulses aS(n),

o _ 504 1
(P11 putses= (P1Dno pulsesgg y(blv)

(14)

wheretg is the time at which the first pulse occurs. The time
at which the collision starts is arbitrary with respect to the
pulse periodT. Consequently, one must average over all

times at which the first pulse could occur. The probability for S(ny) = M
the first pulse to occur in the intervalt(ts+dts) is (0)no puises
vO(ty) O(T—t.)dts, where® is a unit step function. w w __
In order to analyze the cross section for collisional trans- =J (P11 puised Y:No)y dy/j (P1Dno puiseéY)Y dY,
fer from them=0 to m=1 sublevels in the presence of the 0 0
external pulses, it is convenient to introduce the parameter (15
Ng=ybglv=by/vT, wherey=Db/b,. To estimateS(ny) for ny>1 we use the

_ ~_ perturbation theory result for>y’, wherey’ is defined by
which represents the average number of pulses occurring ina

O o ) "Y=1, and the strong collision, asymptotic average
collision having impact parameter equal to the Weisskop u(y )— ¢ , . ymp g
radius value, p11=4/15[12] for 0<y<y’. In this manner, we ob-

tain

Ill. CROSS SECTION FOR ng>1 28( 1.91) 2111
(16)

: . . Ng)===|—
When nyg>1, there is a wide range of impact param- S(No) 31\ ng
eters for which the number of pulses per collision,

n(b)=ngb/by=yr.=7./T>1. The collisional evolution The power IawS(no)~n52’ll is a general result that holds

can be calculated using perturbation theory iffor all potentials that vary as R? and was previously de-
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rived in [4]. This result clearly indicates that ag—> the U, (t,0,3,0) is real for alm and m’. If one makes a

atom is frozen in its initial state. change of basis to a symmetric-antisymmetric basis given by
IV. CROSS SECTION FOR np~1 8p=4ao,
When nyg~1, it is necessary to solve the appropriate a,=(a,+a_1)/\2,
equations numerically foall collision orientations and then
average the results. Since this procedure is rather time con- a_=(a,;—a_1)/\2, (20)

suming, we adopt an alternative method that should give
results that agree at least qualitatively with the exact ones. Ahe Schrdinger equation in the new basis is
“typical collision” geometry is defined in which, in the ab-

sence of external pulsesd in the perturbation theory limit ié1+={U11(t,0,,8,0)+ U, 4(t,08,0}a,, (213
the value ofp,, calculated for the typical collision geometry _
equals the value gb,;. ia_={Uq4(t,0,8,00—U;_4(t,0,8,0)}a_
In perturbation theory, witlag(—«~)=1, one finds from
Egs.(2) and (6) that +12U4(1,0,8,0)a, (21b)
p11(, B, E)no pulses iag=12U0(t,0,8,00a_+Uy(t,08,0a,. (210
=|ay(»)|? Here explicit use has been made of the relationship
. 2 U pw=(-1)"""™U* . The symmetric state, de-
” Yo m(0(), (1)) ) ;
=A13 > D@ (a,B,&) ——————dt couples from the other two states and simply acquires an
m J-o R(t)® overall phase. Moreover, for the initial conditioag(— =)
5rlA2 (3 3 =1 anda_;(—»)=a,(—»)=0, pq4() is completely in-
_ o7 S ° dependent o0&, (). It is now a simple matter to incorporate
B 163b1002(4(1 COS4a)+4(163+ cos a the external pulses into these equations.
) ) ) For randomly space pulses, Edg), (8), (20), and (21)
X sin 2¢ sin Za]smzﬁ, (17 can be recast in the form of Bloch equations,
where W=212U1(t,0,8,0)0, (229
|A]2= - ( 5|c|2) 2 v=(U14(1,0,8,00—U;_1(t,0,8,0)— Ugy(t,0,8,0)u
tomi 4 —2.2Ut.0,8.0W—yv, (22b)

Using the orthogonality relationship for the rotation matrices . 0.8.0 0.8.0 0.8.0
DY (a,B,£) with respect to integration over rotation angles u=-U1(t,08,0~U;14(t.08,0)~Uod(t,0,8.0))v = yu,

a,3,&, one obtains the orientation averaged population (229
with
— 217|A|?
(P1Dno pulses:m- (18 W(t)=p_ _(t)—poo(t),
v(t)=i(p_o(t)—po_(1)),
By introducing the quantity («,B,§) defined as (O=1(p—o(=po-(1))
u(t)=p_o(t) +po_(t). (23

p11(@, B, E)no puise (P1Dno puiseF (@, 8,€),  (19) o _ _
In terms of a dimensionless time=tv/b and a coupling
the “typical collision” can be defined as one for which constantp=25 C|?/ (40mb%)=(b,/b)° one has
F(a,B,€)=1. In this manner, the transition probability pro-

duced by a perturber with orientatior (8, ¢) relative to our dw/dx=nf(x,B)v, (243
sadardcllsin qoomety n e pebalon D0 I g gt - ey .
i?_i;%ﬂa'nd B=m/6.25 one finds thatp,4(0,7/6.25,0) duldx=— ng(x.8)v—ngy~Ysu, (246
e 0 s e e b oy dxemspoaodsnz
The collision matrix for the “typical collision” geometry (1+x%)4
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FIG. 3. Plot off(x,7/6.25) andg(x,/6.25)
as a function ofk.

f(x,1/6.25)
g(x,n/6.25)

_ 2xsin2B+(1-x%)cos 28
- (1+x2)*

9(x,8) , (249

W(—»)=—1v(-»)=u(-2)=0. (24f)
Figure 3 shows a plot of(x,7/6.25) andg(x,/6.25). For
fixed » and 8 one can think ofyf and ng as effective Rabi
frequencies and detunings for the system.

In general, to fingp44(t), one needs to know(t) as well
asp,_(t) andp, . (t), since

However, for the initial conditionsag(—<«)=1 and
a,(—»)=a_q(—x)=0 it is easy to show that
p++(t)=p,_(t)=0 for all t. Therefore, as asserted earlier,
p11(t) is independent ofa,(t) and is given bypq4(t)
=[w(t)+1]/4.

Equationg24) can be integrated numerically with respect
to x for fixed » and 8. For eachy the Bloch equations were
integrated over the interval 3=x=<3, which is taken to
simulate the interval { «,»). The numerical integration
over n» (or b), needed to evaluat§(ny), was done for
0.01= <200 with B==/6.25. In Fig 4 a plot of py;(x
=3) for ng=2 is shown as a function df/b,. Results from
a numerical evaluation &(ng) [Eg. (15)] are shown in Fig.
5. One sees that far,=1, one achieves a 15% reduction in
the cross section and, fop=4, the reduction is 36%. This
shows that even a moderate number of pulses can result in
dramatic reductions in the cross section.

In the case ohy=0, one can compare the cross section
obtained for the “typical collision” geometry with the cross

FIG. 4. Plot ofp;4(x=3) as a
function of b/by=7"*® for three
cases{i) no pulsesf{ii) np=2 for

randomly spaced pulses; afid )
ny=2 for equally spaced pulses.

a,+a_\(a,+a_\"
pui(t)=
V2 V2
w(t)+1 +p, (D+p_. (1)
_ ( +P++( pr-()+p_( . (25
4 2
05
04
0.3 [ i §
QT L
02
vvvvvvvvv No pulses
I S I E Lt Randomly Spaced (n,=2)
Equally Spaced (n,=2)
01
00

04 06 08 1.0 12 14 16
b/b

1.8 2.0
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1.0
09
08
=
a | FIG. 5. Plot ofS(ng) for ran-
0.7 domly spaced pulses and equally
L spaced pulses.
06
F —e— Randomly spaced pulses ‘~\\‘
——B-- Equally spaced pulses ~a
05
1 1 1 1 | 1
0 1 2 3 4 5
n

section(averaged over all collision geometrje=lculated in  in [4]. The oscillations were a consequence of the collision
[12]. One finds that there is a difference of only 0.1%3], area between any two pulses always being the same for a
which is in fact less than the numerical error quotedili]  collision interaction modeled as a square pulse. This does not
and the numerical error of our results. This level of agree-occur for our smooth potential.
ment must be regarded as fortuitous. Regardless, it shows It is interesting to consider hows affectspq4(c°). When
that the “typical collision” geometry is a viable alternative ny(b/bg)>1, the affect of the first pulse is negligible since it
to a complete averaging for tthe=0—m=1 transition. Itis  occurs in the far wing of the collision. However, when only
important to note that the typical collision geometry wasa single pulse occurs during the collision, one can clearly see
defined by matchingerturbation theoryresults—there was the effect that the pulse has in disrupting the coherent evo-
no guarantee it would yield quantitatively accurate resultdution of the active atom due to the collision. We consider
when the average ovell impact parameters was carried out. the case ob=Db, and plotp,,(e°) as a function ok in Fig.
6. The populatiomq4() is a minimum wherxg corresponds
B. Equally spaced pulses to the time when|f(x,7/6.25) is largest. Sincepf(x,B)
lays the role of a Rabi frequency, we see that the pulse
ffectively destroys the coherent evolution of the system
from m=0 to m=1. Similarly, p;;() achieves its maxi-
mum value whenxg coincides with the maximum of
g(x,7/6.25). Recall thatpg(x,8) is the detuning for our

Now consider what happens when the pulses occur
well-defined times with each pulse occurring at intervals
=y~ 1, with ng=yby/v. To solve this problem one setg
=0 in Egs.(24) so that the Bloch equations are

dw/dx= 7f(x, B)v (263 two-level system. The pulse effectively reduces the detuning
M and thereby enhances the transition amplitude.
dv/dx= ng(x, B)u— nf(x, B)W (26b) It should be emphasized that this typical collision works

best for the particular scattering processs0—m=1 and
would yield poorer results if used to try to determine other
elements in the scattering superoperator for the active atom
density matrix. For example, to compute the cross section for
scattering fromm=—-1—m=+1, one cannot ignore the
I’fé+(t) and p, _(t) terms. Finally, note that the standard
geometry @¢=y=¢=0) cannot be used as our typical col-
lision geometry since the cross section for this geometry, in
the absence of pulses is only 60% of the averaged cross
section[12]. The cross section is particularly small owing to

=Xt o 7 when the next pulse oceurs. This pulse adaiMe fact thatg(x,0) is even whilef (x,0) is odd with respect
projects the vector back on the axis and the procedure to time reversal

repeats until the end of the collision. It is also necessary to
average over the time of the first pulse that has a probability
density of ngn~ %0 (xg) 0 (ny *7Y°—xs). The results are
also plotted in Fig. 5. Fony=1, one achieves a 20% reduc-
tion in the cross section and when=4 the reduction is The application of the external pulses shows a suppres-

47%. Notice thalS(ny) does not exhibit any oscillations, as sion of the transition probabilities between different mag-

du/dx=—5g(x,B)v. (260

The Bloch vector evolves freely from its initial condition
until xg, which is the time of the first pulse. Since the pulse
completely randomizes the coherences, the pulse projects t
Bloch vector back on ther axis. Thus one has the new initial
conditions w(xJ)=w(x;) and v(x{)=u(x)=0. The

Bloch vector again evolves freely until the timg+Tov/b
-1,_1/5

V. DISCUSSION
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FIG. 6. A plot of py;(Xx=3,b=by) when a
0.04 - single pulse occurs at=xg during the collision.
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netic substates. The magnetic substates are defined with rese a single polar angle that preserves the collision charac-

spect to a quantization axis that is arbitrary in the absence déristics instead of numerically averaging over the full range

an external field. For any particular collision in the presenceof angles.

of pulses, there are two convenient ways to define the quan- In our analysis, the pulse that initially excited the popula-

tization axis. One could define the quantization axis agthe tion in |e,1,0) was linearly polarized in the direction of the

axis in the collision frame or by the polarizatianof the  laboratory frame. If, instead the excitation pulse has arbitrary

linearly polarized external pulses in the laboratory frame. Lefolarization, then it will create a coherent superposition

us consider the former case. When one rotates to a differen’(0))==man(0)[e,1m). If this state can be transformed

collision orientation, one must also rotate the field polarizainto anm’=0 state with respect to the quantization axis

tion e andk vector in the appropriate way. Symbolically, if in & rotated laboratory system, then the above analysis re-

po(Ep)mm represents the density-matrix solution in the col-mains valid in the new coordinate system.

lision frame with an external fiel, representing the pulses, ~ Thus one can preserve coherent superpositions of states,

then the solution for an arbitrary collision geometry repre-provided that there exists a coordinate systethy(',z’) re-

sented by() is lated to the original laboratory framex,§/,z) by a rotation
parameterized b{)’, such that

p(Ep,mmm;DE#L(Q)-lpoma(m-lEp)angimm(. ., le.1,0)=U,(Q")|¢(0)), (283
2

0))=UL(Q")]e,1,0)=2>, DXQ")|e,1m).
Here DY)(Q) is an active rotation matrix element and [#(0))=Ua(1)] ) % mo( ) )

R.(Q) is the representation of the corresponding active ro- (280

tation acting orE, . Physically, this corresponds to a system ) )

in which the perturber’s trajectory relative to the active atomHere [€,1,0") is the m’=0 state with respect to the

is related to the trajectory in the collision fram&(t) (x',y",z") axes andJ,(£}") represents theassiverotation

—utx’ +b2’, by the rotatiorR,(Q) while the orientation of ~acting on our state whil&J,(Q")=U,*(Q") is the corre-

the external pulses relative to the active atom are unchange8ponding active rotation of the systdi]. As an example,
Since there is a functional dependence 6h in  x-polarized light with k=kz will excite the state| #(0))

po(Ra(Q) E,), averaging over al is nontrivial since one =(1N2)(le1~1)—|e1,+1))=|e1,0') for Z=X. The

cannot take advantage of the propertie®@f,(2) to obtain  external pulses prevent decoherence of this superposition

a simple form for the averaged superscattering matrix as igtate.

[12]. Consequently, we are led to the idea of a “typical col-  The important effect being demonstrated here is that very

lision” geometry in order to avoid these problems and still rapid perturbations of a system that destroy the phase rela-

obtain useful numerical results. A similar approach is em+jonship between the amplitudeg,(t) att andt+ t, inhibit

ployed in[5] when calculating the scattering matrix. They the coherent time evolution of the states. The idea bears a

calculate their cross sections in the laboratory framveh close resemblance to the quantum Zeno eff&bt in which

quantization axis) as a function of the angles that charac-the coherent evolution of a quantum system is inhibited by

terize the collision orientation in the laboratory frame andinvoking the measurement postulate to project the state vec-
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tor onto an eigenstate of the measurement operator. Althougépace of the active atom are diagonal in the representation
the net result is the same, the process described in this papesnsidered. If the coupling dbto B2 is of the formg,(t)

does not qualify as an example of the quantum Zeno effect GZ,0(t—nT)O(nT+ 7,—t) and 7o, <7,<T<7, where

[4]. Instead our proposal is similar in spirit to the classicalG is arbitrarily large so that the term$g andHgg, can be
Drude theory of conduction in metals, where the electronsieglected whemy,(t) #0, then the effect of the coupling to
undergo randomizing collisions with ions that cause them tahe bath at=nT+ 7 is

lose all information about their velocity before the collision

[16]. i
. The effect being proposed in this paper can be understood |p(nT+ Tp)>ZEXF{ - ili_( GTpE S @B@+ ToHp1
in the more general context of system plus reservoir interac- “«

tions. One can consider the foreign gas perturbers to repre-

sent a thermal bath having correlation tinag. Similarly, +7-pH52)
one can attribute the random phase factors produced by the

pulses as due to the coupling of the active atom to a second

reservoir with a correlation time,, such thatr,,<7.. The  The basis states for the Hilbert space of the active atom
interaction of the active ator8 with the two reservoir81 simply acquire a phase due to the interaction vié&ith More-
andB2 can be described formally by the total Hamiltontan over, sincer,> 7., the phase of these statesnal+ 7, will

lp(nT)). (30

and state vectof(t)), be uncorrelated with the phase mf. The random phases
from the optical pulses can be thought of as the periodic
H=Hs+Hp;+HpatHsp +Hspm, (29 coupling to a very fast bath. Thus our proposal involves the

use of one reservoir to inhibit transitions induced by another

where Hs is the active atom Hamiltonian aridg, is the reservoir which has a much longer correlation time.

reservoir of foreign gas perturbers. The Hamiltonldgg,
=0:2,S,®BY is the interaction between the active atom
and the bath of perturbers, aBg are the operators acting on ACKNOWLEDGMENTS
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