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The relativistic version of thd-matrix method for a scattering problem on the potential vanishing faster than
the Coulomb one is formulated. As in the nonrelativistic case it leads to a finite algebraic eigenvalue problem.
The derived expression for the tangent of phase shift is simply related to the nonrelativistic case formula and
gives the latter as a limit case. It is due to the fact that the used basis set satisfies the “kinetic balance
condition.”

PACS numbgps): 31.15-p, 31.30.Jv

[. INTRODUCTION if expanded in any of them, takes the tridiagonal or Jacobi
form
The J-matrix method, introduced by Heller and Yamani | ) |
[1,2] and developed by Yamani and Fishmi@, is an ex- Inn=(Pml(Ho—k*/2) by,

ample of an algebraic method in quantum scattering theory.
Comparing with the algebraic variational theories the method
has been shown to be free of the false resonances proble .
[4]. It has been used in construction of the Gauss quadratu g the above is a wave number related to the eneggnd
of the continuuni5] (see also Ref6]), in the definition and Massm of the projectile
analysis of a reproducing kernel in the context of Harris ei- ome
genvalue$7]. Quite recently, it has been used in formulation KP=—n.
of complex-scaling metho@8] and in development of the i
multichannel Green’s functio®] by means of a complete .
L2 basis. It mqst be stres_sed here that the matrix elemenis are
The crux of the method is representation of the Hamil-funCtIonS of k €., Jmn=Jmn(K). The regular solution
tonian in a suitable nonorthogonal basis changing the differS(k.r) of the equation
ential scattering problem into the purely algebraic one. Thus (Ho—K2/2)S(k,r)=0 (4)
far only the nonrelativistic version of the method has been
formulated. The aim of this paper is to develop the simpleg simply proportional to the Riccati-Bessel function, satisfy-
relativistic formulation of the method in its theoretical ing S(k.r)~r'*1 asr—0 and S(k,r) ~ sinkr—(ml/2)).
framework for potentials sufficiently regular at the origin and roe
vanishing at infinity faster than the Coulomb one.

Jnn#z0  only for m=n,n*1. 2

)

Using an expansion ofS(k,r) in the basis{d)'n}, ie.,
S(k,r)=2ﬁzos'm¢'n()\r), one can write Eq(4) in the form

Il. NONRELATIVISTIC  J-MATRIX: RADIAL KINETIC ®
ENERGY CASE > JmnsSh=0. (5)
n=0

First we briefly review the non-relativistic Jacobi matrix
approach introduced in Refgl,2] and extended in Ref3].  As shown in Ref[3], using the explicit form of the matrix
We recall only the case when the potential vanishing fasteglementsJ,,,, one can find the expansion coefficierstsin
than the Coulomb one is involved, as we shall formulate th@erms of Gegenbauer polynomialsee Table ). Again we
relativistic formalism for this kind of potential. The Coulomb haves'n=s'n(k). In the J-matrix method to solve a scattering
case is much more complicated and it will be considered,oplem one introduces the second, cosinelike function
elsewhere. Lefé,},— o be either Laguerre or Gaussiéfer- ¢k r), which is required to satisfg(k,r)~r'*1 asr—0
mite) basis set. The explicit forms of both bases as well agngc(k,r) ~ coskr—(#1/2)). It cannot be the second so-
some other formulas concerning non-relativistic problemytion of the original, homogeneous problem as this solution,
(see Ref[3]) are collected in Table I. Only the second basis, ,roportional to the Riccati-Neumann function, is singular at
i.e., the Gaussian one, forms an orthogonal set, hence, e origin.
general, the notion of biorthonormality is needed. The set The requiredC(k,r) function has been founfiL—3], in
{E‘n}‘;;o is biorthonormal to{d)'n}ﬁ;o with respect to the another way, namely, by solving an inhomogeneous equation
unitary scalar product if(¢l,|dhy= /5L (Ar)@L(Nr)dr .
= 8mn. Biorthonormal basis functiongp! } are also given in (Ho—K2/2)C(k,r)=Bpy(\I), B=— o (6)
Table I. The important feature of the sdt#!} is that the So

radial kinetic energy operator L ) . - . .
with s, being the first expansion coefficient of sine solution.

kz_ 1 d_2+ I(1+1) K (1  Then the expansion coefficients 6(k,r) satisfy the equa-
2 2dr? " 2r2 2 tion
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TABLE I. Elements of expansion of sine- and cosine-like solutions in the Laguerre and the Gaussian basis

set[3]. TheL{" andC{® are the Laguerre and the Gegenbauer polynomials, respectively shiland ;F ;

are the Gauss and the Kumnieonflueni hypergeometric functiontsee Ref[11]), respectivelyA>0 is a

scaling parameter.

Quantity Laguerre set Gaussian set
o) (A1) lexpar/2)L @ D (\r) (A0 lexpAZrH2) L D (\2r2)
- n! -1 2n! |
¢n )xn+2|+1( "¢y NT(n+21+3/2) ¢n

2lni(sing)'** y2mnl(—1)"
| (1+1) _ (1+1/2,_ 2
Sn n+21+1 Cn (cos6) I‘(n+|+3/2) exp( 772/2)Ln (79)
J —2T(+1/2)n! J2/7T(n+1/2)(—1)"n! 2
exp(—
" Jal(n+21+2)(sin ) T(n+1+3/2 K
1 11 .
X,F —n—2|—1,n+1;§—l;sm2(0/2), X.F1l —n—1— ’E_l’” ,

-1

SN0 7174

2
k
=X

2 IniCn=Bo- (7)
The corresponding coefficient$=cl,(k) (see Table)lhave
also been foundi3] by some differential technique. The cal-
culated expansionsS(k,r)=37_.s ¢ (Ar) and C(k,r)
=3”_,chén(\r) have been used in an approximate solution
of the original scattering problem on the radial potentfal
=V(r) vanishing faster than the Coulomb potential

2

Hot V=% ®

) lﬂEZO

Namely, the potentiaV has been replaced by a truncated
potential operator

VN=P[VPy, 9)
wherePy is the generalized projection operation
N—1
Pn= 2 [6n) (1. (10

The new potential operator can be written in the b@&ih‘,}

as _an NXN matrix with the matrix elementsV},
=($!|V!). Then the exact solutiof® of the new problem
k2
Ho+VWN— —
0 2

)ngzo. (12)

has been expanded in the bakis,} as
N—1

YR(r) = EO

P a'n¢'n+nZN (s'n+tan5,\,c'n)¢>'n (12
to satisfy the boundary requiremenV/E(r)r:w sinkr
—(7/2))+tanéy coskr—(71/2)). The tanj is an approxi-
mation of the tangent of the sought phase shiff the exact

solution ¢ of the problem(8). The left-hand side projection
of Eq. (11) onto the basig ¢!} gives then infinitely many
equations depending am However all equations fon=N

+1 are satisfied automatically as coefficiestsc!, satisfy
the same recursion relatidb) for anym>0. The remaining
finite set on equations involveN+1 unknowns
tandy . {a,in_o. Those equations can be easily soljac.

In particular, using the recursion relation for matrix elements
J.m the tangent can be calculated giving

Sn-1F ngl,Nfl(g)‘]N,NflslN
CINfl—i_ngl,Nfl(g)JN,NflCN ,

tandy=— (13

wheregy-1n-1(8) ==NZgTR - 10/ (Em— &) with the matrix

I' diagonalizing the finite-dimensional problefd "PT(H,
+V—=k?12)PT | un=(E— &) 8mn. Here the energy dependent
quantitygy-1n-1(&) can be viewed as the matrix element of
the inverse of the truncated operatoP™(Hq+VN

— (K?/2))P if restricted to theN-dimensional space where it
does not vanish. The quantitig, [10] are called Harris
eigenvaluegsee also Ref[7], and references thergin

Ill. RELATIVISTIC JACOBI-MATRIX PROBLEM

Now we shall turn to the relativistic problem. Before the
formulation of the method we shall find the relativistic coun-
terparts ofS(k,r) and C(k,r) in some suitable basis. We
shall also calculate the relativistic Jacobi matrix elements in
this basis. For this purpose consider the free Dirac equation

-0

(m—E)/ch
| drdr+ i
In the above the total enerdyis related to the rest enerdgy
asE=&+mdc. Letl(«) be the non-negative solution of the
equationl(I+1)=«k(x+1), ie., (k)= and I(k)=—«

—d/dr+«/r
(—mc—E)/ch

F(r)
G(r)

0
0

(14)
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—1 for positive and negative, respectively. We shall usu- netic balance condition.” The latter condition is generally
ally omit the symbolx in the notation throughout the text defined as a requirement that, if the functidns} are used
and writel only, remembering that the latter depends/on to expand the large component of the solution of the Dirac
Then Eq.(14) has two independent solutions. The first one,equation, then the basf&;} used for expansion of the small

regular at the origin component should consist of linear combinations of func-
. tions {(«/r +d/dr)y;}. Use of such a basis is the simplest
Wi 1) = Fredl) ) ~< Jitkr). ) (15  Way[13,14to omit the problem of the so called “finite basis
© Gred ) + €]+ 1(kr) set disease”(see Refs[16-18) in estimation of bound

) states of the atomic system. It seems that it would also be
is constituted by the Riccati-Bessel functions with boundarynteresting in the future to consider the relativisfienatrix
behavior problem in the context of the relativistic Sturmian basise
I+1 R ) o Ref. [19], and references thergiras it is known that the
dji(x),~, 5'”(X_ ?) (16)  relativistic free particle Green function takes a particularly

simple form in this basis.
The biorthonormal elements to the functio(®0) obvi-
= = ously are® ! (r)=(¢!(\r),0), ®, (r)=0.4L(Ar)T. As
\ /E+$§' k V(E-m c;i(Eer )_ (17)  usual, we denote bfj, the element biorthonormal tg,. The

elements¢!(*) [3] are recalled in Table I. Here we shall
calculate the biorthonormal element&" .

T — X =
)=, 2+nn

The numbers andk in Eq. (15) are standard abbreviations

€

The quantityk converges in the nonrelativistic limit—o to

the numberk= \2m&/%2. The second solution of Eq14), Itis easQ/I to showintegrating by partsthat biorthonormal
irregular at zero is given by elements ¢,(X)},-, should satisfy the equation
~ T © d
S I J [(f——)l'(m PLNAr=8,,.  (2D)
q’irr(r)_(Gm(r) -~ + €ﬁ|;1(~kl’) . (18 0 r dr/’m n mn

Here we have the Ricatti-Neumann functions with propertied1€nce it suffices only to solve the following inhomogeneous
differential equation

Aix) ~ — =D 5{ _ ﬂ)

m(x)xH0 N and m(x)bw cos X .

k d - = -
(19 (;_d_x)wn(x)_d)n(x), X=N\T. (22)

In both solutiong15) and(18) the upper and lower signs in The resulting functions are given in Table Il. They all
the small components correspond to negative and positive belong to the space?(0,»). This fact is obvious apart from
respectively. From the above it can be immediately seen thahe case of negative for the Gaussian set. This case needs
the regular solution¥ 4 is the relativistic counterpart of more careful analysis as here it is not possible to give the
nonrelativistic functionS(k,r). For the sake of consistency functions by explicit formula. For alk<<O the functions
with the nonrelativistic case, hereafter we shall denote thgﬂn} due to Gaussian set behaverds? at the origin , and
relativistic sinelike solution¥ ., by WVs. To develop the anish at infinity not slower than™(*1) as the limit of the
Jacobi matrix analysis we have to introduce a suitable baSiéccurring integral is finite. ThengA('n)z behaves for —» as
set. r=20+1) and, ad is nonnegativel| 4| exists. Thus in both
cases, Whel{lqs'n} is either the Laguerre or the Gaussian basis
set, all elements{wn} biorthonormal to new functionsy},

In the Hilbert spacé.?(0) ©C* on which the Dirac op- — (,/r+d/dr) ), belong toL%(0s<). Then obviously bior-
erator from Eq(14) is deflned: Let aggn@d:n(x)} belelther thonormal element§_>nK due to the relativistic case belong to
the Laguerre or the Gaussian basis set andyigAr)  ihe Hilbert spacé 2(0,) ® C2. Note that we do not need the
= («lr+dldr)¢,(xr).* Then the basis set defined for our expicit forms of biorthonormal functions in our consider-
purposes is ations.

<¢L<xr>)
0

A. The basis set

_ 0
P (r)= ) q)nk(r)E( 1//',]()\r))' (20 B. Expansions of relativistic sine and cosine solutions

N ] Now we are in the position to find the expansions of sine-
The above set depends on the positive reals numbvetich ke ¥ = . and cosinelike¥ ¢ solutions. The latter are to

can be treated as a nonlinear variational p_argn{em,“fo_r satisfy three requirement$l) W should haveV,, type
instance, Ref{12]). Note that the se20) satisfies the "ki-  5qymptotic form,(2) W should exhibit regular behavior at
the origin, (3) coefficients of the¥’ - expansion should sat-
isfy (apart from at most the few first onethe same recur-
'One should keep in mind that here dependenca @not only ~ rence equations as the Ones\bieg:\IfS.
present vid coefficient, but via operators(r +d/dr). Consider first the solution

052716-3



PAWEL HORODECKI

PHYSICAL REVIEW A 62 052716

TABLE Il. Biorthonormal elementsa_b'n due to the small component.

Quantity Laguerre set Gaussian set
o) for k>0 EI%II(A”GX“ AI/2) "Xﬁiﬁ%%ii@ﬁﬁexq_x%y@(k”l
XE (— 2)k+1L(2l+k+l)()\r) XE (-2 k+lL(2I+k+1)()\2r2)
Yl for k<0 n+;+1exp( Ar/Z)E( e -5 F(n:!2I+3/2)(M)7(H1)
Zk mz:l).). A2 (1) LA D) Xfowt'“’Zexﬁ—tzlaLi‘“’”(t)dt
wykr) = (Fukr).Gokr)T The explicit forms of the integrals constituting elements of

of the inhomogeneous equation of ty(el):

E
Ho vy
In the above the indel =S,C corresponds to sinelike and
cosinelike solution. The inhomogeneity is chosendag;,
=d; =(Qudyp0)" and the coefficients), are Qg=0,
Qc=—els).
Equation(23) can be also written as

(klr—d/dr)Gy—keF =0

kG—O
Gu=0.

Vy=Piph. (23)

—
uo,

(klr+d/dr)Fy— (24)

We can introduce the relativistic counterpart of the Jacobi

matrix

SS!

=(D, ] (Ho—Elch)@7,),

s,s'’=*+, mn=0,1,2.... (25

The matrix elements off can be expressed in an ex-

tremely simple form. To see this, let us define thx 2
matrices 7, defined by their matrix elements &%} ss

the above matrix are given in Table Ill. They are simply
related to the nonrelativistid-matrix elementg2) (see Ref.

[3]:
1 | | k2 | |
mn:§<‘/jm| lzbn>_ ?<¢m| ¢n> (27)
Now we shall predict the expansions of the two solutions in
basis(20) in the following form:

©

ISR )

s==* n=0

~ dn
|

U=S.C: (28)
i.e., we predict that large components of sine-like and
cosine-like solutions are given by the same expansion coef-
ficientss), ,c}, as in the non-relativistic case, only taken in the
modified pointk and that the small components coefficients
are only rescaled by/k.

It can be easily verified that Eq28) really solves Eq.
(14). Namely putting the above expansion into the equation
and using the definition of matrix elemern(®5) we get the
infinite set of equations

2 El

+n7

u=s,c,

ST
mn nK_QU¢0 m05s+,

=75 Then it can be easily seen that in the spinor basis the
new matrix takes the particularly simple form s=+,m=0,12... (29
—~ke< ¢Im| ¢In> <¢|m| lﬂ'n) as for any paim,nfixed the second element in the lower row
. ~ (26) of the matrix(26) is rescaled by—li/e we obtain immedi-
mn= (| by _ Ifwi by ately that all equation§29) with a negative “index”s=
mi#n e\ 7ml¥n — are
TABLE lll. The overlap integrals proportional to the elements/bmatrix.
Integral Laguerre set Gaussian set
| ! I'(n+21+2) I(n+1+3/2)
(¢nl #n) i [2(n+214+2) 6y~ Ndpn-1 ol Smn
—(N+2n+3)6mn+1l
(B by I(n+2+2) N (n+1+3/2)
mi ¥ 200+ 242D, o L@n+1+312) 6,

+Ny 1+ (N+2n+3) 6 n+1]

+Noy 1+ (N+1+3/2)61 1 1]
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satisfied trivially. Recalling the definition of=1(«) [see cf. v BV
the remark following Eq(14)] after integration by parts one Ho+ V7 = | Ve(r)=0. (33
gets
Note that for anyy e L2(0,2)®C? the functionVNy van-
(Yl gy = f+ i & (f+ i) &! ishes at infinity faster than rl./ Recall that we assumed that
mirn rodr)"™\r dr/"" our original potentials vanish at infinity faster tharr?/

2 10+1) Thus a]though Eq(33) has not a §tapdgrd Dirac equation
(_ il )¢| > form with the same scalar potential in its large and small

dr? re " part, still its solution asymptotically satisfies the free Dirac
equation. Hence the solutioh} satisfies the boundary con-
dition

=<¢'m

Taking into account the form of the upper row of the matrix
(26) and the identity(27) we obtain immediately that equa-
tions (29) with the “index” s=‘‘ +" have the identical qu(kr)~qfs(”k,r)+'qufC('“k,r), (34)
form with the sets of equatior(§), (7) if the latter are evalu- B

ated atk instead ofk. Thus we have shown that the expan-Wherety is an approximated tangent of phase shift. As the
sions(28) are in fact solutions of Eq24). From the nonrel- ~ potential operatod’N ——— V/ch. We expect that foN
ativistic case we see that their large components have the.«, T, converges to correct vallte=tand.

desired behavior at the origin and at infinity. Moreover, as Now we shall find more details about the form of the
the equations of the typel4) are coupled and the behavior solution\lfg‘. The most general formula is

of the one component determines the behavior of the other .

one. Hence both the components of the solutidns, V¢ N s s

have the asymptotic behavior we need for purposes of our \PE_SzEx n12=0 Ol - 39
method, i.e.Wg is simply the regular solutiony - behaves _ _ ' _

asV, at infinity and as¥ 4 at the origin. As the inhomo- Consider the matrix representation of H§3). Putting the
geneity involves only one biorthonormal elemehg, both ~ expansion of the functio g in the basi¥,,} we get the
functions satisfy the same set of equations apart from th&finite set of equations

first one[see formula26)]. o

S D (HVYSEdEE =0, s=+,m=0,1,2....
IV. POTENTIAL SCATTERING s'=x N=0 (36)

t can be easily seen by the right-hand side projection of Eq.
(24) onto the basi§W¥,,}.

Now we shall consider the central problem of our paper,
which is the approximate solution within th&matrix for-
malism. Consider again the radial part of the scattering prob . : .
lem of a projectile on a target described by a sufficiently Ac.cordmgﬁ:[.o.anflycljsils f0.|f|0\\II,V,|\|ng thet for;r_wul@g) ]Ehe ;}X'
regular potential/=\V/(r) vanishing at infinity faster than the pansion coefficientddy,} of g must satisfy(a) for the

Coulomb potential. To solve the problem one has to find thdarge component;_Jmn(K)d,,=0, m>N with elements

solution of the following equation: Jmn(+) given by the nonrelativistic formulab) for the small
componentd,, = (e/k)d, . Moreover we impose the addi-

Hot vV E WVe=0. (30)  tional condition (c) FE~S(T<,r)J.rTNC(~k,r) [see condition

ch ch (34)]. This gives us, together with the conditidim), the fol-

lowing required form of the sought solutioh} of Eq. (33)

A solutionW ¢ of the above equation is required to satisfy the(see Ref[3]):

boundary conditionle(~k,r)r:wllfs(~k,r) +1¥(k,r) where
the tangent of the phase shift=tan3, is to be found. w1 [ dhedh

> + 47 AT |
To develop the formalism of the relativistlematrix (we PN 6 n 2 (Semt INCiem) D1,
shall denote it by7 matrix to distinguish from the nonrela- E i\ d,= vl =N | (St INCiam) lﬁln '
tivistic case we use the generalized projection operators k a7

N—-1
=3 S 0503 @

where the abbreviatiors,, ,c,, has been used according to

and introduce the truncated potential i ) T
Eq. (28). After adding and subtracting the terfrfn'zo((skm

VN=PLXPN @2 +tneh) ¢'n,('s;m'+"thc;m) %)T to the left hand side of the
ch N’ above equation it is straightforward to see that the above
function satisfies the asymptotic conditi¢d¥).
WherePL corresponds to Hermitian conjugate Bf; . Let us turn back to equatior{86). In general, in analogy
Now one can seek the exact solution of the equation withio the nonrelativistic case, they can be schematically repre-
truncated potential sented as follows:

052716-5
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X X X 0 X X X
X X X X X X ST 0
X X X X X X X X X SN, 0
X X X X X X X X dx-1y 0
X X X X X X X X
X X X X X X X X d;, 0
X X X X X X X 0 dg, 0
0 X X X X X X X doy || ©
X X X X X X X X dy; 0
X X X X X X X X ' .
X X X X X X X X . 0
N-1)]
X X X X X X X X X S 0
X X X X X X Sue) 0
X X X 0 X X X

From the construction of the required fof8i7) we see that all the equations for>N are satisfied automatically. Thus one
has to solve the remaining\2+ 2 equations with the unknowrts, ,dg,,d;,, . . . AN_1,:dg..dr, .. dy_1,. Note that
here the number of equations is greater than the number of sought quantitiesl(2 so in general the set of equations of
such a form can have no solution. But in our particular case the solution certainly exists as the general theory of differential
equations assures the existence{(ﬁ and, according to the previous analysis, E2¥) represents the most general required
form of W},
Using Egs.(36) one obtains the following form of the remaining equations:

_Jﬁ,ﬁflcﬁfl JH 1 0 0 JM 1 _jr:_N 1CN-1
j—l\ﬁi—l,Ncﬁ (T+VNNT IN-1 (T+ VNS IN-2 TIn- IN-2 TIn- IN-1 Tne 1NCN
0 (j+VN)N 2N-1 (j+VN)N 2N—2 °° ijz,Nfz \7N72,N71 0

0 (~7+VN)0N 1 (~7+V Jon-2 (j+VN)0N 2 (j+VN)ON 1
0 (T+VN)on-1 (T+VVon_2 = (T+VYon 2 (T+VN)on-1
0 INZ2N-1 INZan-2 e (THVN Do (THVYNNTones 0
jﬁfl,NCl: jﬂrl,N—l /) IN-2 e (JHVNND IN-2 (j"'VN)ﬁ—_l,N—l JIN-1NCN
_jﬁ,Jl:lflclJ\jfl jﬁ,?:lfl 0 0 INN-1 —JINN-1CN-1
ErN TauN-15N-1T TNN-1SN-1
dﬁ—l _Jﬁrl,Nsﬁ_jﬁ—_l,Nsﬁ
dn-2 0
d+
X ° 1= 0
d; 0
dn-2 0
- -t ——
dy_1 ~IN-1nSN T IN-INSN

~ -+ o —— -
ty InnN-1SN-1T TINN-1SN-1
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Keeping in mind that the inner X2N matrix (7
+VYN)SS s=+ mn=0,1,..N—1 is Hermitian and real,
hence symmetric, and recalling the definition}df we can
solve the above equations by some orthogonal méatrigee
the nonrelativistic case

ot V E 1
TP Hot = | Pal| = (En—E) Sumdss
mn
(38)

2N X 2N matrix G(E) with elements defined as

FSp F

N—-1
(E)—Z 20 ch —p—=-

(39

is an inverse of the I9X2N matrix representation of the
truncated operatorPL(Ho+V/ch—E/ch)PN. It can be

PHYSICAL REVIEW A 62 052716

V. DISCUSSION

Comparing Eq(41) with the nonrelativistic formuld13)

one can see that apart from the quantitg/ld G, * in-1(E),
all elements of the expression for tangent of the phase shift
have the same form as in E@.3), they are only evaluated in

relativistic wave numbek.

Now let us note that for an\N the above formula for
tangent shift converges to the nonrelativistic limit as the
speed of lightc approaches infinity. Indeed, the bask0)
used ensuresee Refs[14,15) that in the limit of infinitec
the large component satisfies the correct Sdimger equa-

tion (11) with the wave numbek=lim. ,.k. This means
that the related tangent of the phase shift must also satisfy a
correct limit, i.e.,

C—x®

viewed as the approximation of the relativistic Green func-

tion in the basis(20). The numbersE! are the relativistic
counterparts of the Harris eigenvalyé€)]. They represent a

finite approximation of the spectrum of the relativistic

HamiltonianHy+ V/ch. In particular, they include positive
approximations of the firdll energy levels due to the poten-

tial V and theN negative pseudoenergies due to the contlnu

ous spectrum. As our basi20) satisfies the kinetic balance
condition[13,14 there is a hope thd! satisfy the general-
ized form of the Hylleraas-Undheim theorefsee, for in-
stance, Refs[15,20, and references therginlt means, in
particular, thafi) N positive values among s€EP} approxi-
mate the exact eigenenergidg+ V/c# from the above and

that (i) the remainingN eigenvalues have values below

-mdc.
We can introduce now the (+2)X(2N+2) block-
diagonal matrix
F(2N+2)><(2N+2):diagl,FZNXZNyl) (40)
and act with it on the left-hand side of the above set Nf 2

+2 equations. Using the fact that the matfy y-, given
by Eq.(26) is nonsingular the set of (2+2)X (2N+2) the

equations can be solved with respect to the approximate ta
gent of phase shift. Using the properties of the coefficients o
the matrix.7 one can derive the tangent of the approxmatedd
phase shift in the form similar to the nonrelativistic formula

- s+ - 1((B)Ina-a(k)sy(k)

o1 (K) + (2elk) Gy © IN- 1(E)JN,N—1(P)CLV(R).
(41)

Note that in the above thé y_; stands for the nonrelativ-
istic J-matrix elemen{see Eq.(27)]. The fact that we have
2N+2 equations and R+1 unknows results in second,

very similar formula forty with (k/€)Gy ", _1(E) instead

of Gy "1n_1(E). From the previous analysis we know that

both equations must glvtdﬂe same { which means that one
hasGy i n-1(E)= (elk)Gy in-1(E).

From the above we get immediately
“mcﬁm(ZG/k)gN in-1(BE)=On-1n-1(E)-

Moreover (2.s/k)gN 1in—-1(E) plays the analogous role as
On-1n-1(€). In fact, the matricegj(E) and g(&) can be

viewed as the finite approximations of the Green functions of

the relativistic and nonrelativistic Hamiltonians with the po-

tential V, respectively. The form of the factore®k is simply
connected with the normalizations of the Green functions in
both cases. It can be seen from the simple analysis of the set
of second order equations derived in a standard way from the
Dirac equation.

From the practical point of view, the convergence can be
improved with the help of additional parameter As we
mentioned before, the latter can be treated as an additional
variational parameter. In particular its optimal value will de-
pend on the range of the potential. It can be seen simply that
potentials of long range should be treated with smalihile
potentials with support located close to the origin will re-
quire large values of the parameter.

In conclusion, we have provided the relativistic version of
acobi matrix method for well defined class of potentials.
he usage of the basis satisfying the “kinetic balance con-
ition” allowed for a simple formulation of the method. In
particular, the derived expression for the tangent of the phase
shift is similar to its nonrelativistic counterpart and repro-
duces the latter as a correct nonrelativistic limit.
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