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Relativistic J-matrix method

Paweł Horodecki
Faculty of Applied Physics and Mathematics, Technical University of Gdan´sk, 80-952 Gdan´sk, Poland

~Received 28 January 2000; published 16 October 2000!

The relativistic version of theJ-matrix method for a scattering problem on the potential vanishing faster than
the Coulomb one is formulated. As in the nonrelativistic case it leads to a finite algebraic eigenvalue problem.
The derived expression for the tangent of phase shift is simply related to the nonrelativistic case formula and
gives the latter as a limit case. It is due to the fact that the used basis set satisfies the ‘‘kinetic balance
condition.’’

PACS number~s!: 31.15.2p, 31.30.Jv
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I. INTRODUCTION

The J-matrix method, introduced by Heller and Yama
@1,2# and developed by Yamani and Fishman@3#, is an ex-
ample of an algebraic method in quantum scattering the
Comparing with the algebraic variational theories the meth
has been shown to be free of the false resonances pro
@4#. It has been used in construction of the Gauss quadra
of the continuum@5# ~see also Ref.@6#!, in the definition and
analysis of a reproducing kernel in the context of Harris
genvalues@7#. Quite recently, it has been used in formulati
of complex-scaling method@8# and in development of the
multichannel Green’s functions@9# by means of a complete
L2 basis.

The crux of the method is representation of the Ham
tonian in a suitable nonorthogonal basis changing the dif
ential scattering problem into the purely algebraic one. T
far only the nonrelativistic version of the method has be
formulated. The aim of this paper is to develop the sim
relativistic formulation of the method in its theoretic
framework for potentials sufficiently regular at the origin a
vanishing at infinity faster than the Coulomb one.

II. NONRELATIVISTIC J-MATRIX: RADIAL KINETIC
ENERGY CASE

First we briefly review the non-relativistic Jacobi matr
approach introduced in Refs.@1,2# and extended in Ref.@3#.
We recall only the case when the potential vanishing fa
than the Coulomb one is involved, as we shall formulate
relativistic formalism for this kind of potential. The Coulom
case is much more complicated and it will be conside
elsewhere. Let$fn

l %n50
` be either Laguerre or Gaussian~Her-

mite! basis set. The explicit forms of both bases as well
some other formulas concerning non-relativistic probl
~see Ref.@3#! are collected in Table I. Only the second bas
i.e., the Gaussian one, forms an orthogonal set, hence
general, the notion of biorthonormality is needed. The

$f̄n
l %n50

` is biorthonormal to$fn
l %n50

` with respect to the

unitary scalar product if^f̄m
l ufn

l &[*0
`f̄m

l (lr )fn
l (lr )dr

5dmn . Biorthonormal basis functions$f̄n
l % are also given in

Table I. The important feature of the sets$fn
l % is that the

radial kinetic energy operator

H02
k2

2
[2

1

2

d2

dr2 1
l ~ l 11!

2r 2 2
k2

2
~1!
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if expanded in any of them, takes the tridiagonal or Jac
form

Jmn[^fm
l u~H02k2/2!fn

l &,

JmnÞ0 only for m5n,n61. ~2!

In the abovek is a wave number related to the energyE and
massm of the projectile

k25
2mE
\2 . ~3!

It must be stressed here that the matrix elementsJmn are
functions of k, i.e., Jmn5Jmn(k). The regular solution
S(k,r ) of the equation

~H02k2/2!S~k,r !50 ~4!

is simply proportional to the Riccati-Bessel function, satis
ing S(k,r );r l 11 as r→0 and S(k,r ) ;

r→`
sin(kr2(pl/2)).

Using an expansion ofS(k,r ) in the basis $fn
l %, i.e.,

S(k,r )5(n50
` sm

l fn
l (lr ), one can write Eq.~4! in the form

(
n50

`

Jmnsn
l 50. ~5!

As shown in Ref.@3#, using the explicit form of the matrix
elementsJmn one can find the expansion coefficientssn

l in
terms of Gegenbauer polynomials~see Table I!. Again we
havesn

l 5sn
l (k). In theJ-matrix method to solve a scatterin

problem one introduces the second, cosinelike funct
C(k,r ), which is required to satisfyC(k,r );r l 11 as r→0
andC(k,r ) ;

r→`
cos(kr2(pl/2)). It cannot be the second so

lution of the original, homogeneous problem as this soluti
proportional to the Riccati-Neumann function, is singular
the origin.

The requiredC(k,r ) function has been found@1–3#, in
another way, namely, by solving an inhomogeneous equa

~H02k2/2!C~k,r !5bf̄0
l ~lr !, b52

k

2s0
l ~6!

with s0
l being the first expansion coefficient of sine solutio

Then the expansion coefficients ofC(k,r ) satisfy the equa-
tion
©2000 The American Physical Society16-1
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TABLE I. Elements of expansion of sine- and cosine-like solutions in the Laguerre and the Gaussia
set@3#. TheLn

(a) andCn
(a) are the Laguerre and the Gegenbauer polynomials, respectively while2F1 and 1F1

are the Gauss and the Kummer~confluent! hypergeometric functions~see Ref.@11#!, respectively;l.0 is a
scaling parameter.

Quantity Laguerre set Gaussian set

fn
l (lr ) l 11exp(2lr/2)Ln

(2l 11)(lr ) (lr ) l 11exp(2l2r2/2)Ln
(2l 11)(l2r 2)

f̄n
l

n!

ln12l11
~lr!21fn

l
2n!

l2G~n12l13/2!
fn

l

sn
l 2ll!n!~sinu!l11

n12l11
Cn

~l11!~cosu!
A2pn! ~21!n

G~n1 l 13/2!
exp~2h2/2!Ln

~ l 11/2!~h2!

cn
l 22lG~l11/2!n!

ApG~n12l 12!~sinu!l

A2/pG~n11/2!~21!nn!

G~n1 l 13/2!
exp~2h2/2!h2 l

32F1X2n22l 21,n11;
1

2
2 l ;sin2~u/2!C, 31F1S 2n2 l 2

1

2
,
1

2
2 l ,h2D ,

sinu [
kl21

k2l2211/4
h[

k

l

l-

ion

ed

nts

t
of

it

e
n-
e

in
tion

e

(
n50

`

Jmncn
l 5bf̄0

l . ~7!

The corresponding coefficientscn
l 5cn

l (k) ~see Table I! have
also been found@3# by some differential technique. The ca
culated expansionsS(k,r )5(n50

` sn
l fn

l (lr ) and C(k,r )
5(n50

` cn
l fn

l (lr ) have been used in an approximate solut
of the original scattering problem on the radial potentialV
5V(r ) vanishing faster than the Coulomb potential

S H01V2
k2

2 DcE50. ~8!

Namely, the potentialV has been replaced by a truncat
potential operator

VN5PN
† VPN , ~9!

wherePN is the generalized projection operation

PN5 (
n50

N21

ufn
l &^f̄n

l u. ~10!

The new potential operator can be written in the basis$fn
l %

as an N3N matrix with the matrix elementsVmn
N

5^f̄n
l uVfn

l &. Then the exact solutioncE
N of the new problem

S H01VN2
k2

2 DcE
N50. ~11!

has been expanded in the basis$fn
l % as

cE
N~r !5 (

n50

N21

an
l fn

l 1 (
n5N

`

~sn
l 1tandNcn

l !fn
l ~12!

to satisfy the boundary requirementcE
N(r ) ;

r→`
sin(kr

2(pl/2))1tandN cos(kr2(pl/2)). The tandN is an approxi-
mation of the tangent of the sought phase shiftd of the exact
05271
solutioncE of the problem~8!. The left-hand side projection
of Eq. ~11! onto the basis$fn

l % gives then infinitely many
equations depending onn. However all equations forn>N
11 are satisfied automatically as coefficientssn

l ,cn
l satisfy

the same recursion relation~5! for anym.0. The remaining
finite set on equations involve N11 unknowns
tandN ,$anl%n50

N21. Those equations can be easily solved@1,2#.
In particular, using the recursion relation for matrix eleme
Jnm the tangent can be calculated giving

tandN52
sN21

l 1gN21,N21~E!JN,N21sN
l

cN21
l 1gN21,N21~E!JN,N21cN

l , ~13!

wheregN21,N21(E)5(n50
N21GN21,m

2 /(Em2E) with the matrix
G diagonalizing the finite-dimensional problem@G†P†(H0
1V2k2/2)PG#mn5(En2E)dmn . Here the energy dependen
quantitygN21,N21(E) can be viewed as the matrix element
the inverse of the truncated operatorP†(H01VN

2(k2/2))P if restricted to theN-dimensional space where
does not vanish. The quantitiesEn @10# are called Harris
eigenvalues~see also Ref.@7#, and references therein!.

III. RELATIVISTIC JACOBI-MATRIX PROBLEM

Now we shall turn to the relativistic problem. Before th
formulation of the method we shall find the relativistic cou
terparts ofS(k,r ) and C(k,r ) in some suitable basis. W
shall also calculate the relativistic Jacobi matrix elements
this basis. For this purpose consider the free Dirac equa

~H02E/c\!C

[S ~mc22E!/c\ 2d/dr1k/r

d/dr1k/r ~2mc22E!/c\
D S F~r !

G~r ! D5S 0
0D .

~14!

In the above the total energyE is related to the rest energyE
asE5E1mc2. Let l (k) be the non-negative solution of th
equation l ( l 11)5k(k11), i.e., l (k)5k and l (k)52k
6-2
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21 for positive and negativek, respectively. We shall usu
ally omit the symbolk in the notation throughout the tex
and write l only, remembering that the latter depends onk.
Then Eq.~14! has two independent solutions. The first on
regular at the origin

C reg~r !5S F reg~r !

Greg~r ! D;S ĵ l~ k̃r !

6e ĵ l 71~ k̃r !
D ~15!

is constituted by the Riccati-Bessel functions with bound
behavior

ĵ l~x! ;
x→0

xl 11

~2l 11!!!
and ĵ l~x! ;

x→`
sinS x2 p l

2
D . ~16!

The numberse and k̃ in Eq. ~15! are standard abbreviation

e[AE2mc2

E1mc2, k̃[
A~E2mc2!~E1mc2!

c\
. ~17!

The quantityk̃ converges in the nonrelativistic limitc→` to
the numberk5A2mE/\2. The second solution of Eq.~14!,
irregular at zero is given by

C irr~r !5S F irr~r !

Girr~r ! D;S 2n̂l~ k̃r !

6en̂l 71~ k̃r !
D . ~18!

Here we have the Ricatti-Neumann functions with proper

n̂l~x! ;
x→0

2
~2l 21!!!

xl
and n̂l~x! ;

x→`
2cosS x2 p l

2
D .

~19!

In both solutions~15! and~18! the upper and lower signs i
the small components correspond to negative and positivk,
respectively. From the above it can be immediately seen
the regular solutionC reg is the relativistic counterpart o
nonrelativistic functionS(k,r ). For the sake of consistenc
with the nonrelativistic case, hereafter we shall denote
relativistic sinelike solutionC reg by CS . To develop the
Jacobi matrix analysis we have to introduce a suitable b
set.

A. The basis set

In the Hilbert spaceL2(0,̀ ) ^ C2 on which the Dirac op-
erator from Eq.~14! is defined. Let again$fn

l (x)% be either
the Laguerre or the Gaussian basis set and letcn

l (lr )
5(k/r 1d/dr)fn

l (lr ).1 Then the basis set defined for o
purposes is

Fnk
1 ~r ![S fn

l ~lr !

0 D , Fnk
2 ~r ![S 0

cn
l ~lr ! D . ~20!

The above set depends on the positive reals numberl which
can be treated as a nonlinear variational parameter~see, for
instance, Ref.@12#!. Note that the set~20! satisfies the ‘‘ki-

1One should keep in mind that here dependence onk is not only
present vial coefficient, but via operator (k/r 1d/dr).
05271
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netic balance condition.’’ The latter condition is genera
defined as a requirement that, if the functions$g i% are used
to expand the large component of the solution of the Di
equation, then the basis$v i% used for expansion of the sma
component should consist of linear combinations of fun
tions $(k/r 1d/dr)g i%. Use of such a basis is the simple
way @13,14# to omit the problem of the so called ‘‘finite bas
set disease’’~see Refs.@16–18#! in estimation of bound
states of the atomic system. It seems that it would also
interesting in the future to consider the relativisticJ-matrix
problem in the context of the relativistic Sturmian basis~see
Ref. @19#, and references therein! as it is known that the
relativistic free particle Green function takes a particula
simple form in this basis.

The biorthonormal elements to the functions~20! obvi-
ously areF̄nk

1 (r )5„f̄n
l (lr ),0…T, F̄nk

2 (r )5„0,c̄n
l (lr )…T. As

usual, we denote byf̄ n the element biorthonormal tof n . The
elementsf̄n

l (k) @3# are recalled in Table I. Here we sha

calculate the biorthonormal elementsc̄n
l (k) .

It is easy to show~integrating by parts! that biorthonormal
elements$c̄n

l (x)%n50
` should satisfy the equation

E
0

`F S k

r
2

d

dr D c̄m
l ~lr !Gfn

l ~lr !dr5dmn . ~21!

Hence it suffices only to solve the following inhomogeneo
differential equation

S k

x
2

d

dxD c̄n
l ~x!5f̄n

l ~x!, x5lr . ~22!

The resulting functions are given in Table II. They a
belong to the spaceL2(0,̀ ). This fact is obvious apart from
the case of negativek for the Gaussian set. This case nee
more careful analysis as here it is not possible to give
functions by explicit formula. For allk,0 the functions

$c̄n
l % due to Gaussian set behave asr l 12 at the origin , and

vanish at infinity not slower thanr 2( l 11) as the limit of the
occurring integral is finite. Then (cn

l )2 behaves forr→` as
r 22(l 11) and, asl is nonnegative,icn

l i exists. Thus in both
cases, when$fn

l % is either the Laguerre or the Gaussian ba

set, all elements$c̄n
l % biorthonormal to new functionscn

l

5(k/r 1d/dr)fn
l belong toL2(0,̀ ). Then obviously bior-

thonormal elementsF̄nk due to the relativistic case belong t
the Hilbert spaceL2(0,̀ ) ^ C2. Note that we do not need th
explicit forms of biorthonormal functions in our conside
ations.

B. Expansions of relativistic sine and cosine solutions

Now we are in the position to find the expansions of sin
like CS5C reg and cosinelikeCC solutions. The latter are to
satisfy three requirements:~1! CC should haveC irr type
asymptotic form,~2! CC should exhibit regular behavior a
the origin, ~3! coefficients of theCC expansion should sat
isfy ~apart from at most the few first ones! the same recur-
rence equations as the ones ofC reg5CS .

Consider first the solution
6-3
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TABLE II. Biorthonormal elementsc̄n
l due to the small component.

Quantity Laguerre set Gaussian set

c̄n
l for k.0

2
n!

n12l11
~lr!lexp~2lr/2!

3(
k50

n

~22!k11Ln2k
~2l 1k11!~lr !

2
n!

l2G~n12l 13/2!
exp~2l2r2/2!~lr ! l

3(
k50

n

~22!k11Ln2k
~2l 1k11!~l2r 2!

c̄n
l for k,0

2
n!

n12l11
exp~2lr/2!(

k50

n

~22!k11

3(
i 50

k
~2l 11!!

~2l 112 i !!
~lr !2l 112 i~21! iLn2 i

~2l 111 i !~lr !

2
n!

l2G~n12l 13/2!
~lr !2~ l 11!

3E
0

~lr !2

t l 11/2exp~2t2/2!Ln
~ l 11/2!~ t !dt
d

ob

-

th

of
ly

in

nd
oef-
e

ts

ion

w

CU~ k̃,r !5~FU~ k̃,r !,GU~ k̃,r !!T

of the inhomogeneous equation of type~14!:

S H02
E

c\ DCU[F inh . ~23!

In the above the indexU5S,C corresponds to sinelike an
cosinelike solution. The inhomogeneity is chosen asF inh

5F0k
1 5(VUf̄0

l ,0)T and the coefficientsVU are VS50,
VC52e/s0

l .
Equation~23! can be also written as

~k/r 2d/dr !GU2 k̃eFU5VUc̄0
l ,

~k/r 1d/dr !FU2
k̃

e
GU50. ~24!

We can introduce the relativistic counterpart of the Jac
matrix

J mn
ss8[^Fmk

s u~H02E/c\!Fnk
s &,

s,s856, m,n50,1,2, . . . . ~25!

The matrix elements ofJ can be expressed in an ex
tremely simple form. To see this, let us define the 232
matricesJmn defined by their matrix elements as$Jmn%ss8
[J mn

ss8 . Then it can be easily seen that in the spinor basis
new matrix takes the particularly simple form

Jmn5S 2 k̃e^fm
l ufn

l & ^cm
l ucn

l &

^cm
l ucn

l & 2
k̃

e
^cm

l ucn
l &
D . ~26!
05271
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The explicit forms of the integrals constituting elements
the above matrix are given in Table III. They are simp
related to the nonrelativisticJ-matrix elements~2! ~see Ref.
@3#!:

Jmn5
1

2
^cm

l ucn
l &2

k2

2
^fm

l ufn
l &. ~27!

Now we shall predict the expansions of the two solutions
basis~20! in the following form:

CU5 (
s56

(
n50

`

unk
s Fnk

s [ (
n50

`

un
l ~ k̃!S fn

l

~e/ k̃!cn
l D ,

~28!
U5S,C; u5s,c,

i.e., we predict that large components of sine-like a
cosine-like solutions are given by the same expansion c
ficientssn

l ,cn
l as in the non-relativistic case, only taken in th

modified pointk̃ and that the small components coefficien
are only rescaled bye/ k̃.

It can be easily verified that Eq.~28! really solves Eq.
~14!. Namely putting the above expansion into the equat
and using the definition of matrix elements~25! we get the
infinite set of equations

(
s856

(
n50

`

J mn
ss8unk

s8 5VUf̄0
l dm0ds,1 ,

s56,m50,1,2, . . . ~29!

as for any pairm,nfixed the second element in the lower ro
of the matrix ~26! is rescaled by2 k̃/e we obtain immedi-
ately that all equations~29! with a negative ‘‘index’’s5 ‘ ‘
2 ’ ’ are
TABLE III. The overlap integrals proportional to the elements ofJ matrix.

Integral Laguerre set Gaussian set

^fm
l ufn

l & G~n12l12!

ln!
@2~n12l12!dmn2ndm,n21

2(n12n13)dm,n11]

G~n1l13/2!

2n!
dmn

^cm
l ucn

l & G~n12l12!

4n!
@2~n12l12!~2l21!dmn

1ndm,n211(n12n13)dm,n11]

l2G~n1l13/2!

2n!
@~2n1 l 13/2!dmn

1ndm,n211(n1 l 13/2)dm,n11]
6-4
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satisfied trivially. Recalling the definition ofl 5 l (k) @see cf.
the remark following Eq.~14!# after integration by parts on
gets

^cm
l ucn

l &5 K S k

r
1

d

dr Dfm
l US k

r
1

d

dr Dfn
l L

5 K fm
l US 2

d2

dr2 1
l ~ l 11!

r 2 Dfn
l L .

Taking into account the form of the upper row of the mat
~26! and the identity~27! we obtain immediately that equa
tions ~29! with the ‘‘index’’ s5 ‘ ‘ 1 ’ ’ have the identical
form with the sets of equations~5!, ~7! if the latter are evalu-
ated atk̃ instead ofk. Thus we have shown that the expa
sions~28! are in fact solutions of Eq.~24!. From the nonrel-
ativistic case we see that their large components have
desired behavior at the origin and at infinity. Moreover,
the equations of the type~14! are coupled and the behavio
of the one component determines the behavior of the o
one. Hence both the components of the solutionsCS ,CC
have the asymptotic behavior we need for purposes of
method, i.e.,CS is simply the regular solution,CC behaves
asC irr at infinity and asC reg at the origin. As the inhomo-
geneity involves only one biorthonormal elementC0k

1 both
functions satisfy the same set of equations apart from
first one@see formula~26!#.

IV. POTENTIAL SCATTERING

Now we shall consider the central problem of our pap
which is the approximate solution within theJ-matrix for-
malism. Consider again the radial part of the scattering pr
lem of a projectile on a target described by a sufficien
regular potentialV5V(r ) vanishing at infinity faster than th
Coulomb potential. To solve the problem one has to find
solution of the following equation:

S H01
V

c\
2

E

c\ DCE50. ~30!

A solutionCE of the above equation is required to satisfy t
boundary conditionCE( k̃,r ) ;

r→`
CS( k̃,r )1 t̃CC( k̃,r ) where

the tangent of the phase shift,t̃ 5tand̃, is to be found.
To develop the formalism of the relativisticJ-matrix ~we

shall denote it byJ matrix to distinguish from the nonrela
tivistic case! we use the generalized projection operators

PN5 (
s56

(
n50

N21

uFnk
s &^F̄nk

s u, ~31!

and introduce the truncated potential

V N5PN
† V

c\
PN , ~32!

wherePN
† corresponds to Hermitian conjugate ofPN .

Now one can seek the exact solution of the equation w
truncated potential
05271
he
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S H01V N2
E

c\ DCE
N~r !50. ~33!

Note that for anycPL2(0,̀ ) ^ C2 the functionV Nc van-
ishes at infinity faster than 1/r . Recall that we assumed tha
our original potentials vanish at infinity faster than 1/r 2.
Thus although Eq.~33! has not a standard Dirac equatio
form with the same scalar potential in its large and sm
part, still its solution asymptotically satisfies the free Dir
equation. Hence the solutionCE

N satisfies the boundary con
dition

CE
N~ k̃,r !;CS~ k̃,r !1 t̃ NCC~ k̃,r !, ~34!

where t̃ N is an approximated tangent of phase shift. As t
potential operatorV N ——→

N→`
V/c\. We expect that forN

→`, t̃ N converges to correct valuet̃ 5tand̃.
Now we shall find more details about the form of th

solutionCE
N . The most general formula is

CE
N5 (

s56
(

m50

`

dmk
s uFmk

s &. ~35!

Consider the matrix representation of Eq.~33!. Putting the
expansion of the functionCE

N in the basis$Cnk
6 % we get the

infinite set of equations

(
s856

(
n50

`

~J1V N!mn
ss8dnk

s8 50, s56,m50,1,2, . . . .

~36!

It can be easily seen by the right-hand side projection of
~24! onto the basis$Cnk

6 %.
According to analysis following the formula~29! the ex-

pansion coefficients$dnk
6 % of CE

N must satisfy~a! for the

large component(n50
` Jmn( k̃)dnk

1 50, m.N with elements
Jmn(•) given by the nonrelativistic formula,~b! for the small
componentdnk

2 5(e/k)dnk
1 . Moreover we impose the addi

tional condition ~c! FE
N;S( k̃,r )1 t̃ NC( k̃,r ) @see condition

~34!#. This gives us, together with the condition~b!, the fol-
lowing required form of the sought solutionCE

N of Eq. ~33!
~see Ref.@3#!:

CE
N5 (

m50

N21 S dmk
1 fm

l

dmk
2

e

k̃
cm

l D 1 (
m5N

` S ~skm
1 1 t̃ Nckm

1 !fn
l

~skm
2 1 t̃ Nckm

2 !cn
l D ,

~37!

where the abbreviationsskm
6 ,ckm

6 has been used according
Eq. ~28!. After adding and subtracting the term(m50

N21
„(skm

1

1 t̃ Nckm
1 )fn

l ,(skm
2 1 t̃ Nckm

2 )cn
l
…

T to the left hand side of the
above equation it is straightforward to see that the ab
function satisfies the asymptotic condition~34!.

Let us turn back to equations~36!. In general, in analogy
to the nonrelativistic case, they can be schematically rep
sented as follows:
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X X X X X X X 0

0 X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X X

X X X X X X

X X X 0 X X X
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•

sN11,l
1

sN,l
1

dN21,l
1

•

•

d1,l
1

d0,l
1

d0,l
2

d1,l
2

•

•

dN21,l
2

sN,l
2

sN11,l
2

•

©
5

¨

•

0
0
0
•

•

0
0
0
0
•

•

0
0
0
•

©
.

From the construction of the required form~37! we see that all the equations form.N are satisfied automatically. Thus on
has to solve the remaining 2N12 equations with the unknownst̃ N ,d0k

1 ,d1k
1 , . . . ,dN21,k

1 ;d0k
2 ,d1k

2 , . . . ,dN21,k
2 . Note that

here the number of equations is greater than the number of sought quantities (2N11), so in general the set of equations
such a form can have no solution. But in our particular case the solution certainly exists as the general theory of dif
equations assures the existence ofCE

N and, according to the previous analysis, Eq.~37! represents the most general requir
form of CE

N .
Using Eqs.~36! one obtains the following form of the remaining equations:

1
2J N,N21

11 cN21
1 J N,N21

11 0 ¯ 0 J N,N21
12 2J N,N21

12 cN21
2

JN21,N
11 cN

1 ~J1V N!N21,N21
11 ~J1V N!N21,N22

11
¯ J N21,N22

12 J N21,N21
12 J N21,N

12 cN
2

0 ~J1V N!N22,N21
11 ~J1V N!N22,N22

11
¯ J N22,N22

12 J N22,N21
12 0

] ] ] ¯ ] ] ]

0 ~J1V N!0,N21
11 ~J1V N!0,N22

11
¯ ~J1V N!0,N22

12 ~J1V N!0,N21
12 0

0 ~J1V N!0,N21
21 ~J1V N!0,N22

21
¯ ~J1V N!0,N22

22 ~J1V N!0,N21
12 0

] ] ] ¯ ] ] ]

0 J N22,N21
21 JN22,N22

21
¯ ~J1V N!N22,N22

22 ~J1V N!N22,N21
22 0

J N21,N
21 cN

1 J N21,N21
21 JN21,N22

21
¯ ~J1V N!N21,N22

22 ~J1V N!N21,N21
22 J N21,N

22 cN
2

2J N,N21
21 cN21

1 J N,N21
21 0 ¯ 0 J N,N21

22 2J N,N21
2 cN21

2

2
31

t̃ N

dN21
1

dN22
1

•

d0
1

d0
2

•

dN22
2

dN21
2

t̃ N

2 51
J N,N21

11 sN21
1 1J N,N21

12 sN21
2

2J N21,N
11 sN

12J N21,N
12 sN

2

0
•

0
0
•

0
2J N21,N

21 sN
12J N21,N

22 sN
2

J N,N21
21 sN21

1 1J N,N21
22 sN21

2

2 .
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Keeping in mind that the inner 2N32N matrix (J
1V N)nm

ss8 ,s56,m,n50,1,...,N21 is Hermitian and real,
hence symmetric, and recalling the definition ofVN we can
solve the above equations by some orthogonal matrixG ~see
the nonrelativistic case!:

FG†Pn
†S H01

V

c\
2

E

c\ DPNGG
mn

ss8
5

1

c\
~En

s2E!dnmdss8 .

~38!

2N32N matrix G(E) with elements defined as

Gmn
ss8~E!5 (

p56
(
i 50

N21

c\
Gm,i

sp Gn,i
s8p

Ei
p2E

~39!

is an inverse of the 2N32N matrix representation of the
truncated operatorPN

† (H01V/c\2E/c\)PN . It can be
viewed as the approximation of the relativistic Green fun
tion in the basis~20!. The numbersEn

p are the relativistic
counterparts of the Harris eigenvalues@10#. They represent a
finite approximation of the spectrum of the relativist
HamiltonianH01V/c\. In particular, they include positive
approximations of the firstN energy levels due to the poten
tial V and theN negative pseudoenergies due to the conti
ous spectrum. As our basis~20! satisfies the kinetic balanc
condition@13,14# there is a hope thatEi

p satisfy the general-
ized form of the Hylleraas-Undheim theorem~see, for in-
stance, Refs.@15,20#, and references therein!. It means, in
particular, that~i! N positive values among set$Ei

p% approxi-
mate the exact eigenenergiesH01V/c\ from the above and
that ~ii ! the remainingN eigenvalues have values belo
2mc2.

We can introduce now the (2N12)3(2N12) block-
diagonal matrix

G̃~2N12!3~2N12!5diag~1,G2N32N,1! ~40!

and act with it on the left-hand side of the above set ofN
12 equations. Using the fact that the matrixJN,N21 given
by Eq.~26! is nonsingular the set of (2N12)3(2N12) the
equations can be solved with respect to the approximate
gent of phase shift. Using the properties of the coefficient
the matrixJ one can derive the tangent of the approxima
phase shift in the form similar to the nonrelativistic formu

t̃ N52
sN21

l ~ k̃!1~2e/ k̃!GN21,N21
11 ~E!JN,Ṅ21~ k̃!sN

l ~ k̃!

cN21
l ~ k̃!1~2e/ k̃!GN21,N21

11 ~E!JN,N21~ k̃!cN
l ~ k̃!

.

~41!

Note that in the above theJN,N21 stands for the nonrelativ
istic J-matrix element@see Eq.~27!#. The fact that we have
2N12 equations and 2N11 unknows results in second
very similar formula fort̃ N with ( k̃/e)GN21,N21

21 (E) instead
of GN21,N21

11 (E). From the previous analysis we know th

both equations must givethe same t˜
N which means that one

hasGN21,N21
21 (E)5(e/ k̃)GN21,N21

11 (E).
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V. DISCUSSION

Comparing Eq.~41! with the nonrelativistic formula~13!

one can see that apart from the quantity (2e/ k̃)GN21,N21
11 (E),

all elements of the expression for tangent of the phase s
have the same form as in Eq.~13!, they are only evaluated in
relativistic wave numberk̃.

Now let us note that for anyN the above formula for
tangent shift converges to the nonrelativistic limit as t
speed of lightc approaches infinity. Indeed, the basis~20!
used ensures~see Refs.@14,15#! that in the limit of infinitec
the large component satisfies the correct Schro¨dinger equa-
tion ~11! with the wave numberk5 limc→`k̃. This means
that the related tangent of the phase shift must also satis
correct limit, i.e.,

lim
c→`

t̃N5tN . ~42!

From the above we get immediately

limc→`~2e/ k̃!GN21,N21
11 ~E!5gN21,N21~E!.

Moreover (2e/ k̃)GN21,N21
11 (E) plays the analogous role a

gN21,N21(E). In fact, the matricesG(E) and g(E) can be
viewed as the finite approximations of the Green functions
the relativistic and nonrelativistic Hamiltonians with the p
tentialV, respectively. The form of the factor 2e/ k̃ is simply
connected with the normalizations of the Green functions
both cases. It can be seen from the simple analysis of the
of second order equations derived in a standard way from
Dirac equation.

From the practical point of view, the convergence can
improved with the help of additional parameterl. As we
mentioned before, the latter can be treated as an additi
variational parameter. In particular its optimal value will d
pend on the range of the potential. It can be seen simply
potentials of long range should be treated with smalll while
potentials with support located close to the origin will r
quire large values of the parameter.

In conclusion, we have provided the relativistic version
Jacobi matrix method for well defined class of potentia
The usage of the basis satisfying the ‘‘kinetic balance c
dition’’ allowed for a simple formulation of the method. I
particular, the derived expression for the tangent of the ph
shift is similar to its nonrelativistic counterpart and repr
duces the latter as a correct nonrelativistic limit.
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