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Effective range analysis of positron-hydrogen collisions
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Humberston@Can. J. Phys.60, 591 ~1982!#, using the Kohn variational method, showed that the range of
validity of Wigner’s threshold law for positronium formation in positron-hydrogen collisions is extremely
narrow for theS wave. To examine the near-threshold behavior, we analyzedab initio calculations using the
multichannel effective range theory of Watanabe and Greene@Phys. Rev. A22, 158 ~1980!# and the single-
channel effective range theory of Fabrikant@Opt. Spectrose53, 131 ~1982!# for the positronium-proton chan-
nel. We confirmed the presence of a Ramsauer minimum in theL50 elastic cross section for positronium-
proton scattering, and found a similar minimum forL51. The near-threshold structure is interpreted in terms
of a virtual state, resonances, tunneling through and transmission over a barrier, and quantum suppression.

PACS number~s!: 34.85.1x
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I. INTRODUCTION

Positronium formation in positron-hydrogen collisions
a fundamental three-body Coulomb process, and is amen
to experimental investigation@1–4#. This process is of inter-
est in astrophysics due to the observation of 511-keVg rays
from solar flares, from the galactic center and from above
galactic center@5–7#. The cross section for antihydrogen fo
mation in antiproton-positronium collisions is related simp
to the cross section for positronium formation in positro
hydrogen collisions@8#.

The positronium formation cross section in positro
hydrogen collisions in the Ore gap was calculated accura
using a number of different methods.~The Ore gap is the
energy region between the onset of positronium format
and the first excitation level of the target atom.! The S-, P-,
and D-wave cross sections for positronium formation we
computed by Humberston and co-workers using the Ko
and inverse Kohn variational methods@9–14#. Humberston
et al. @14# showed that the partial cross sections correc
satisfy the Wigner’s threshold law@15# but the range of va-
lidity is very small for theS wave. Extensive two-cente
close-coupling calculations were performed@16–21#. Gien
@22# employed the Harris-Nesbet method. Archeret al. @23#
performed a pioneering calculation for theS-wave cross sec
tion for positronium formation in positron-hydrogen coll
sions in the Ore gap. More recently, Igarashi and Tosh
@24# and Zhou and Lin@25–27# performed hyperspherica
close-coupling calculations for theL50, 1, 2, 3, 4, 5, and 6
partial waves and for theL50, 1, 2, and 3 partial waves
respectively. Very recently, Hu@28# reportedK matrices and
cross sections forS, P, D, andF waves using modified Fad
deev equations. Previously, we employed the hypersphe
hidden crossing method to compute theS-, P-, andD-wave
cross sections for positronium formation@29#.

The positronium formation cross section was measu
for positron collisions with hydrogen@1–3#, deuterium@4#,
alkali metals@30#, and noble gases@31#. The measurement
of positronium formation for positron collisions from th
noble gases were analyzed using Wigner’sR-matrix method,
which is an effective range theory~ERT! for short-range in-
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teractions@31,32#. Humberstonet al. @14# used this method
to fit their variational results close to the positronium form
tion threshold. While the fit to the variational results f
s12(L50) is good close to threshold, it deviates from t
variational results soon after the threshold, with the deviat
becoming large near then52 threshold. Wigner’sR-matrix
method does not explicitly take into account the polarizat
potential in either the positron-hydrogen or positroniu
proton channels. The polarizability relevant to the init
channel is that of hydrogen, which is fairly small, namely 4
a.u.; however, the effective polarizability in the positronium
proton channel is significant, namely, 72 a.u.

Here, we presentK matrices and cross sections for theS,
P and D waves for positron-hydrogen collisions in the O
gap that we obtained using the multichannel ERT of W
tanabe and Greene@33#. We obtained the ERT parameters b
fitting to theab initio calculations of Refs.@14,22#. For sim-
plicity, we also used the single-channel ERT of Fabrika
@34# to analyze the positronium-proton channel. Both ERT
explicitly take into account the polarization potential in th
positronium-proton channel. These theories confirm
S-wave Ramsauer minimum inK22 found by Van Reeth and
Humberston@35#, whereK22 is the element of theK matrix
corresponding to positronium-proton scattering. In additi
we found aP-wave Ramsauer minimum inK22. The ERT
analysis also provides evidence in the positronium-pro
system of anS-wave virtual state andP- and D-wave reso-
nances with negative-energy positions.

The multichannel ERT fits the Kohn variationals12(L
50) well near the positronium formation threshold, a
fairly well over the entire Ore gap. The behavior of this cro
section is quite striking, with a steep rise near the thresh
consistent with Wigner’s threshold law, followed by a gen
rising plateau. The ERT analysis confirms that Wigne
threshold law@15# is valid only in a very narrow energy
range.

We interpret the sharp rise of theS-wave cross section a
tunneling through a barrier. The barrier arises from a rep
sive centrifugal-type term and an attractive polarization p
tential. The squared transmission modulusuTu2 fits the steep
rise followed by a plateau. We also analyzed the steep ris
©2000 The American Physical Society15-1
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terms of the quantum suppression ratioP @36#. We find that
P is quite similar touTu2; thus positronium formation pro
vides a physical example of quantum suppression. The E
calculations, the top-of-barrier analysis, and quantum s
pression effects illustrate the importance of the polarizat
potential in the positronium-proton channel.

We outline the ERT’s in Sec. II, and give the results
Sec. III. In Sec. IV, we derive for arbitraryL a squared
transmission modulusuTu2 for wave propagation through
barrier, and apply it toS-wave positronium formation. In
Sec. V, we present the quantum suppression ratio forP, and
in Sec. VI we present our conclusions. In the Appendix,
discuss the effect of the polarization potential on the posit
of the virtual state and resonance poles in theS-matrix. We
use atomic units throughout unless explicitly stated.

II. EFFECTIVE RANGE THEORY

The long-range polarization potential2ma/2r 4 in the
positronium-proton channel is important for energies close
threshold. For this potential, an expansion ofk2l 11 cotdl in
k2 does not exist, and effective range expressions for sh
range interactions do not apply. However, O’Malleyet al.
@37# derived a modified ERT~MERT! applicable to the
2a/2r 4 polarization potential. They used exact solutions
the Schro¨dinger equation with the polarization potenti
@33,38,39#. The solutions are given in terms of Mathieu fun
tions r 1/2M 6t@ ln(k/f)1/2r #, wheref 5Ama andt is the order
of the Mathieu functions. O’Malleyet al. @37# expanded
the characteristic exponentt and the ratio m(t)
5M 1t(0)/M 2t(0) about the threshold energy. Forl 50,
the expansion ofk cotd0 aboutE50 contains a number o
terms not present in the usual ERT, including a term linea
k and a log term. They found@37#

k cotd052
1

a0
1

p f 2

3a0
2 k1

4 f 2

3a0
k2 ln~0.25f k!1•••. ~1!

For lÞ0, the leading term in the expansion of tand l is pro-
portional tok2, and is given by@37#

tand l5
p f 2k2

~2l 13!~2l 11!~2l 21!
. ~2!

While Eqs.~1! and~2! are appropriate when the potenti
consists of a short-range part and a polarization potential
range of applicability in energy is very narrow when t
effective polarizabilityma is large. Furthermore, Eqs.~1!
and~2! are for single-channel scattering only. Consequen
Watanabe and Greene@33# and Fabrikant@34# extended the
MERT @37# to a broader energy range, and Watanabe
Greene@33# considered a multichannel system. The broa
range is achieved by retaining the exact values of the c
acteristic exponentt and the ratiom rather than expansion
valid only for smallf.

A key feature in ERT’s is the normalization of the ba
pair of solutions for the Schro¨dinger equation with the polar
ization potential. The base pair is normalized to be ene
independent nearr'0 in order to minimize the energy de
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pendence of a short-rangeK matrix. The base pair is chose
from a linear combination ofr 1/2M 6t@ ln(k/f)1/2r # to yield
real standing waves for positive energy@33#.

Watanabe and Greene@33# applied their quantum defec
theory to a multichannel problem: that of the photodeta
ment ofK2 in an energy range where two P channels ofK2,
namely, 4s«p and 4p«s, are open. The polarization poten
tial in the second channel was explicitly taken into accou
The two-channelK matrix was expressed in terms of th
quantum defect parameters (hP ,B,G) that vary rapidly with
energy and the parameters~the elements of the matrixKP0)
that vary slowly with energy. The quantum defect paramet
arise from the polarization potential and depend upont and
m, whereas the parameters that vary slowly with energy
pend upon the short-range interaction.

Watanabe and Greene@33# obtainedKP0 in the following
way. At a single energy, the full physicalK matrix KZ from
an ab initio calculation was fitted using the elements ofKP0

as fitting parameters. SinceKP0 varies slowly with energy, it
was taken to be a constant obtained at a single energy w
the ab initio calculations were most reliable. The fittedKP0

was then used over the entire range where only the two ch
nels were open. The effect of the polarization potential in
first channel is taken into account implicitly in the process
fitting the two-channel matrixKP0. We used the same pro
cedure here, except that forL50 we also considered fits
whereK22

P0 or (K22
P0)21 vary linearly with energy.

The full physicalK matrix (KZ) is expressed in terms o
the elements ofKP0, namely,

KZ5S K11
Z K12

Z

K21
Z K22

Z D
5S k1

l 111/2 0

0 k2
l 211/2D S K11

Z0 K12
Z0

K21
Z0 K22

Z0D S k1
l 111/2 0

0 k2
l 211/2D ,

~3!

where

KZ05S K11
Z0 K12

Z0

K21
Z0 K22

Z0D
5

1

QS K11
P0Q1K21

P0K12
P0Gg f K12

P0

K12
P0 K22

P0Ggg2G f g
D , ~4!

Q5G f f2K22
P0Gg f , and l 15 l 25L, and k1 and k2 are the

wave numbers of the positron and positronium, respectiv
Equations~3! and ~4! are inverted to give the fitting pa

rametersKP0,

KP05S K11
P0 K12

P0

K21
P0 K22

P0D
5QS K11

Z0

Q
2K12

Z0K21
Z0Gg f K12

Z0

K21
Z0 G f fK22

Z01G f g

D , ~5!
5-2
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KP05QS k1
22l 121K11

Z

Q
2k1

2 l 121/2k2
2 l 221/2

~K12
Z !2Gg f

k1
2 l 121/2k2

2 l 221/2K12
Z

k1
2 l 121/2k2

2 l 221/2K12
Z k2

22l 221
G f fK22

Z 1G f g

D , ~6!
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where

Q5
1

Ggg1Gg fK22
Z0

5
1

Ggg1k2
22l 221

Gg fK22
Z

. ~7!

In these equations, the matrixG depends on the quantum
defect parametershP , B, andG and is given by

G5S B1/2 0

B21/2G B1/2D 21S coshP sinhP

2sinhP coshP
D 21

3S cosS 2
l 2p

2 D sinS 2
l 2p

2 D
2sinS 2

l 2p

2 D cosS 2
l 2p

2 D D
3S k2

l 211/2 0

0 k2
2 l 221/2D , ~8!

where

hP5arctan~h1 /h2!2
1

2
l 2p, ~9!

B5~h1
21h2

2!21, ~10!

G52B~h1h31h2h4!, E2.0. ~11!

The parametersh1 , h2 , h3, andh4 depend only upon the
characteristic exponentt and ratiom through

h15
1

2 F S m1
1

mD1S m2
1

mD 1

cos 2dG , ~12!

h45
1

2 F S m1
1

mD2S m2
1

mD 1

cos 2dG , ~13!

h251
1

2 S 1

m
2mD tan 2d, ~14!

h352
1

2 S 1

m
2mD tan 2d, ~15!

where

d5
p

2 S t2 l 22
1

2D . ~16!

For positron-hydrogen collisions in the Ore gap, there
two open channels and the effective polarization potentia
05271
e
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significant in the positronium-proton channel. Thus, like W
tanabe and Greene@33#, we explicitly considered the effec
tive polarization potential in the second channel only, us
Eq. ~6! and theab initio K matrix at a single energy to obtai
the slowly varying matrixKP0. We used this constant valu
in Eq. ~3! to computeKZ for the entire Ore gap. ForL50,
we also used the values of theab initio K matrix @14# at two
energies to fitK22

P0 and (K22
P0)21 to linear functions ofk2

2 .
Fabrikant@34# developed an alternative ERT for the p

larization potential. It is for single-channel scattering on
and has the form

tand l52
Mc1d

Ma1b
, ~17!

where d l is the phase shift. The coefficientsa,b,c, and d
depend only on the polarization potential, i.e., only upont
andm. Khrebtukov@40# gave explicit analytical expression
for these coefficients, namely,

a5S 1

m
2mD cosp t, ~18!

b5S 1

m
1mD sinp t1~21! l S 1

m
2mD , ~19!

c5S 1

m
1mD sinp t2~21! l S 1

m
2mD , ~20!

d52a. ~21!

In Eq. ~17! M depends on the short-range potential on
is a meromorphic function of energy, and is related to Wig
er’s R matrix. Furthermore, it has the same analytic prop
ties as Wigner’sR matrix, namely, it is an analytic function
of energy except for simple poles@34#. The value ofM ~if
applied to the second channel! is identical to (K22

P0)21 of
Watanabe and Greene’s ERT@33#. Note also that Eq.~17! is
equivalent to Eq.~4.3! of Ref. @37#.

For L50 the coupling between the elastic positro
hydrogen channel and the positronium-proton channe
weak, i.e.,K125K21 is small and the single-channel ERT o
Fabrikant@34# can be used. In this case,K22'tandL . We
extracted a value ofM at a single energy, and used it for th
entire Ore gap. We also used theab initio K22('tandL) at
two energies to fitM andM 21 to a linear function of energy

We usedMATHEMATICA to code the ERT’s of Watanab
and Greene@33# and Fabrikant@34#. We checked our com-
puted values oft andm with those tabulated by Khrebtuko
@40#. We also checked the quantum defect parametershP , B,
and G, with those given by Watanabe and Greene@33# for
5-3
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L50 and with those obtained from the fortran code of W
tanabe and Greene@41# for L50, 1, and 2. In searching fo
a pole in the single-channelS matrix, we used the fortran
code of Khrebtukov@40#, which solves tand l52 i using
tand l from Eq. ~17!.

III. EFFECTIVE-RANGE THEORY RESULTS

A. Results for LÄ0

From the variational calculation of Humberstonet al. @14#
of the K matrix KZ at k150.7081 a.u., we obtainedKP0

using Eq.~5!. We give the elements ofKP0 in Table I. We
used this short-rangeK matrix in Eqs.~3! and~4! to compute
the K matrix and cross sections for the entire Ore gap.

We also used Eq.~5! to computeK22
P0 at two energies

(k150.7077 and 0.7083!. This enabled us to fitK22
P0 to two

alternative forms, namely, ak2
2 ,

K22
P05b1gk2

2 , ~22!

and

~K22
P0!215b81g8k2

2 , ~23!

where the parametersb, g, b8, and g8 are 20.533 83,
1.344 36,21.873 19, and24.779 58, respectively. We too
the elementsK11

P0 andK12
P0 to have the constant values give

in Table I.
Figure 1 compares the three ERT calculations forK22

with the variational calculations@14,35#. The three ERT cal-
culations are in which~i! K22

P0 is taken to be a constant,~ii !
K22

P0 is taken to have the energy dependence of Eq.~22!, and
~iii ! (K22

P0)21 is taken to have the energy dependence of
~23!. All three ERT calculations give excellent agreeme
with the variational results@14# close to the positronium for
mation threshold and up to aboutk1

250.504, and reasonabl
agreement for the entire Ore gap. The ERT calculations
which K22

P0 has an energy dependence of the form of eit
Eq. ~22! or ~23! does better over the entire energy range th
the ERT calculation in whichK22

P0 is taken as a constant.
As noted by Van Reeth and Humberston@35#, there is a

Ramsauer minimum in the positronium-proton elastic cr

TABLE I. Fitted parametersKP0. For L50, K11
P0 and K12

P0

5K21
P0 , fitted at k150.7081 a.u. ForL51, K11

P0 and K12
P05K21

P0 ,

fitted at k150.714 a.u. ForL52, K11
P0 and K12

P05K21
P0 , fitted at

k150.75 a.u.

L 0 1 2

K11
P0 20.079 42a 0.790 95a 0.660 64a

0.710 14b

K12
P05K21

P0 20.031 971a 1.121 97a 0.401 98a

0.461 94b

K22
P0 20.530 06a 4.442 90a 0.428 00a

0.549 36b

aFitting to the variational results@14,42#.
bFitting to the E8PS results@22#.
05271
-

.
t

in
r
n

s

section as a result ofK22 passing through zero. The positio
of the Ramsauer minimum can be estimated from the fi
two terms of the MERT@37#

tand05k2S 2a02
1

3
~pmak2! D , ~24!

namely,

k2
RM5

3ua0u
pma

. ~25!

The scattering lengtha0[ limk→0 tand0 /k is related toK22
P0

by a05 f /K22
P0 . Using the value ofK22

P0 given in Table I gives
the scattering length of216.0089 a.u. Gien@22#, using the
enlarged eight state E8S coupled-state calcula

@H(1s,2s,2p,3p̄) and Ps(1s,2s,2p,3p̄)#, obtained a scatter
ing length of215.89 a.u. Using our value of the scatterin
length in Eq. ~25! gives the Ramsauer minimum atk2

RM

50.2123 a.u., in good agreement with Ref.@14#. It is inter-
esting that, while Eq.~25! gives a good estimate of the po
sition of the Ramsauer minimum, the shape of tand0 from
the MERT agrees poorly with the variational calculation@14#
and the two-channel ERT of Watanabe and Greene@33#.
Most importantly Eq.~24! predicts a maximum value ofd0
'3ua0u2/4pma'p/3.7, whereas the ERT fit gives a valu
close top/8.

The scattering length for the positronium-proton system
large and negative, indicating anL50 virtual state of the
positronium-proton system. The behavior ofK22 near thresh-
old is consistent with the presence of a virtual state; that is
rises very rapidly after the positronium formation thresho
and reaches a maximum close to threshold, in this case a
energyE25k2

2/458.6831024 a.u. above threshold. At the
maximum K2250.419 29, so that the corresponding pha

FIG. 1. L50, K22 vs the energy of the incident positronk1
2 ~in

Ry!. The open circles are the variational results@14#. The short-
dashed line shows the first two terms of the MERT for tand0 @37#.
The solid, dashed, and the dashed-dot lines are the results obt
using the multichannel ERT@33#. The solid line corresponds to
takingK22

P0 equal to a constant, the dashed line corresponds to u
a linear fit forK22

P0 , and the dashted-dot line corresponds to usin

linear fit for (K22
P0)21.
5-4
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shift d05tan21K2250.3969'p/8. The eigenvalue of theK
matrix corresponding to positronium-proton scattering,
noted here byK̃22, has a value very close toK22 at maxi-
mum,K̃2250.420 05. Thus, at the maximum, the eigenph
corresponding to positronium-proton scattering is given
d̃050.3988'p/8. Interestingly, for positronium-proton sca
tering the eigenphase corresponding to positronium-pro
scattering forL50, 1, and 2 is approximatelyp/8(2L11)
at the maxima. For short-range interactions and forL50 if
there is a virtual state, the phase shift rises rapidly to a va
of slightly belowp/2 ~or an odd multiple ofp/2). A virtual
state corresponds to a pole in theS matrix on the negative
imaginary k axis for short-range interactions. For singl
channel scattering, a pole in theS matrix corresponds to
tand l52 i . We obtained an estimate of the position of t
virtual state pole by approximating the two-channel probl
as a single-channel problem, that of positronium-proton s
tering, and locating the pole in the single-channelS matrix.
This approximation should be good forL50 where the cou-
pling between the two channels is weak. Using just the fi
term of the MERT@37#, Eq. ~1! gives the position on the
pole to be atkp52 i /ua0u520.0624i , which is on the nega-
tive imaginary k axis. However, if one uses the first tw
terms of the MERT @37#, Eq. ~1!, the pole is atkp5
20.0169–0.057 49i , which is slightly off the negative
imaginaryk axis. If one uses the ERT of Fabrikant@34# with
the exact expressions fort andm, and takesM5(K22

P0)21 to
be a constant, the pole is slightly closer to the real axis
kp520.000 96–0.037i . The position of the pole change
only slightly if M or (M )21 is fitted to a form linear in
energy. This is the first prediction of a virtual state of t
positronium-proton system. Because it does not occur at
usual position on the imaginaryk axis, and because thi
anomaly is related to the polarization potential, we give
more complete discussion of virtual states in the Append

Figure 2 compares the three ERT calculations forK12
with the variational calculations@14#. The ERT calculation in
which K22

P0 is taken to be a constant gives excellent agr
ment with the variational calculations close to the posit
nium formation threshold, and reasonable agreement for
entire Ore gap. However, the ERT calculations in whichK22

P0

has the energy dependence of Eq.~22! or ~23! gives better
agreement with the variational results for the entire Ore g
In all cases,K12 satisfies Wigner’s threshold law@15#,
namely, it is proportional tok2

L11/2 near threshold.
Humberstonet al.’s variational results satisfy Wigner’

threshold law@15#

s12}k2
2L11 , ~26!

but only over a very small energy range for theSwave@14#.
The cross section displays an infinite slope at thresh
maximizes at an energy 1.4831023 a.u. above threshold
and changes abruptly to a gently rising plateau over the
mainder of the Ore gap. There is a small peak at the tra
tion between the steep rise and the plateau.

This behavior was analyzed in Ref.@14# using Wigner’sR
matrix ~ERT! @32# with a five-parameter fit for each partia
05271
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wave. The fit to Wigner’sR matrix gives the correct thresh
old behavior and a steep rise ofs12(L50) near threshold,
but, after the maximum in the cross section, it begins
deviate from the variational result. The deviation becom
quite significant at then52 threshold, owing to the rapid
decrease of theR matrix results with energy. Figure 3 com
pares the three ERT calculations with the variational res
@14#. All three ERT calculations obtain a steep rise and
small peak near threshold. The cross section computed
a constantK22

P0 decreases with energy but not as significan
as the Wigner’sR matrix calculation. The ERT calculation
in which K22

P0 is taken to have the energy dependence
either Eq.~22! or ~23! agree well with the variational result
@14# up to a position energyk1

2 of about 0.65 a.u. These ER
calculations illustrate the importance of explicitly taking in
account the polarization potential in the positronium-prot
channel.

FIG. 2. L50, K12 vs the energy of the incident positron~in Ry!.
The open circles are the variational results@14#. The solid, dashed,
and the dashed-dot lines are the multichannel ERT results.K11

P0 and
K12

P0 are taken as constants. The solid line corresponds to takingK22
P0

to be a constant, the dashed line corresponds to using a linear fi
K22

P0 , and the dashed-dot line corresponds to using a linear fit

(K22
P0)21.

FIG. 3. L50 partial contribution to the cross section~in units of
pa0

2) for positronium formation vs the energy of the incident po
itron ~in Ry!. See the caption of Fig. 2.
5-5
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S. J. WARD AND J. H. MACEK PHYSICAL REVIEW A62 052715
Figure 4 compares the ERTs22 with the variational re-
sults @14#. The cross section rises rapidly as the energy
creases toward the positronium formation threshold. T
zero-energy cross section is large (1025pa0

2) due to a large
scattering length. The Ramsauer minimum is clearly evid
in the cross section at a positron energy of approxima
0.52 Ry. All three ERT calculations give a virtual state,
Ramsauer minimum, and a good fit to the variational res
over the entire energy range of the Ore gap. The ERT ca
lations in whichK22

P0 is given an energy dependence of eith
Eq. ~22! or ~23! does better in reproducing the position of t
Ramsauer minimum than the ERT calculations in whichK22

P0

is taken to be a constant. The ERT calculation in whichK22
P0

has the form of Eq.~23! does better in fitting to the varia
tional results over the whole Ore gap than the other E
calculations.

Our focus in this paper is on positronium formation a
elastic positronium-proton scattering in the Ore gap. W

FIG. 4. L50 partial contribution to the cross section~in units of
pa0

2) for elastic positronium-proton scattering vs the energy of
incident positron~in Ry!. See the caption of Fig. 2.
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note, however, that we did not obtain good agreement
tween the multichannel ERT calculations ofK11 ands11 for
all partial waves.

B. Results for LÄ1

We computed the short-rangeK matrix KP0 using Eq.~5!
and the variationalK matrix (KZ) of Humberstonet al. @14#
at k150.714 a.u. Atk150.714 a.u. the magnitude of th
ratio of K22 to K12 from the variational calculation is the
largest. In Table I we give the fitted elements ofKP0 which
we used for the entire Ore gap. In Table II we give theL
51 quantum defect parametershP , B, andG. Note, thatB
andG are very large and positive for smallk f , but decrease
rapidly with increasing energy. As stated by Watanabe a
Greene@33#, the rapid variation of the amplitudes ofB andG
in the region of smallk f arises from the penetration of th
effective centrifugal barrier (L11/2)2/r 2. At largek f , B ap-
proaches unity andG vanishes.

Figure 5 compares the ERT fit ofK22 with the variational

e
FIG. 5. L51, K22 vs the energy of the incident positron~in Ry!.

The open circles are the variational results@14#. The solid line is
multichannel ERT results.
TABLE II. Values of quantum-defect parameters forL51. Positive energies 0.05<k f<5. Numbers in
brackets denote powers of 10.

k f k2 B h h/p G
5@22# 5.893@23# 5.075@1# 21.597@0# 25.083@21# 1.909@3#

1@21# 1.179@22# 2.548@1# 21.622@0# 25.164@21# 4.765@2#

2@21# 2.357@22# 1.288@1# 21.671@0# 25.318@21# 1.184@2#

3@21# 3.536@22# 8.699@0# 21.717@0# 25.466@21# 5.217@1#

4@21# 4.714@22# 6.622@0# 21.762@0# 25.609@21# 2.901@1#

5@21# 5.893@22# 5.382@0# 21.806@0# 25.748@21# 1.830@1#

6@21# 7.071@22# 4.560@0# 21.848@0# 25.883@21# 1.251@1#

7@21# 8.250@22# 3.976@0# 21.890@0# 26.014@21# 9.020@0#

8@21# 9.428@22# 3.540@0# 21.930@0# 26.143@21# 6.767@0#

9@21# 1.061@21# 3.203@0# 21.970@0# 26.269@21# 5.229@0#

1@0# 1.179@21# 2.934@0# 22.008@0# 26.393@21# 4.134@0#

2@0# 2.357@21# 1.753@0# 22.367@0# 27.535@21# 7.367@21#

3@0# 3.536@21# 1.385@0# 22.690@0# 28.563@21# 1.865@21#

4@0# 4.714@21# 1.216@0# 22.990@0# 29.518@21# 3.300@22#

5@0# 5.893@21# 1.126@0# 23.273@0# 21.042@0# 21.660@22#
5-6
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EFFECTIVE RANGE ANALYSIS OF POSITRON- . . . PHYSICAL REVIEW A 62 052715
results@14#. The figure shows good agreement near the p
itronium formation threshold, and reasonable agreement
the entire Ore gap. Actually, very close to the threshold th
is a significant disagreement between the ERT and va
tional results which is not apparent in the figure due to
smallness ofK22 in this region. Very close to threshold, th
ERT results are in accord with O’Malleyet al.’s Eq. ~2!, but
the variational results are not. Just above threshold,k1

50.707 12 a.u. (k2
2/2m59.3531026 a.u.), the variational

results are lower than the ERT results by a factor of
However, byk150.71 a.u. (k2

2/2m52.0531023 a.u.), the
variational and ERT results agree by about 7%. The ma
elementK22 rises rapidly from the positronium formatio
threshold to a maximum, after which it decreases m
slowly than the initial rise, passes through zero~the Ram-
sauer minimum!, and then continues to decrease. The beh
ior of L51 is remarkably similar to that ofL50 although
for L51 the rapid rise near the threshold is not as sharp
L50 and the Ramsauer minimum occurs at a higher ene

The similarity ofK22 for the two partial waves,L50 and
1, is at first surprising, because there is a repulsive ang
momentum barrier forL51, but not forL50. We argue in
Sec. IV that this similarity is expected on the basis
Mathieu’s equation, where there is an effective inverted
cillator ‘‘potential,’’ as well as a constant-energy-like term
2(L11/2)2, for all partial waves. The combination of thes
two terms means that there are barrier penetration eff
present even forL50. These effects were discussed in R
@45# using a top-of-barrier theory employing parabolic cyli
der functions, and are further discussed in Sec. IV.

The ERT calculation gives the maximum inK22 at k1
50.725 a.u. and the Ramsauer minimum atk1 between 0.77
and 0.78 a.u. At the maximumK2250.2798. The maximum
in the eigenvalue of theK matrix K̃22, corresponding to the
positronium-proton channel, occurs atk150.717 a.u. The
eigenphased̃22( d̃225tan21K̃22) at the maximum ofK̃22 is
0.134 which is approximatelyp/245p/8(2L11) for L
51.

The sharp rise ofK22 close to the positronium formatio
threshold indicates anL51 resonance in the positronium
proton channel. We searched for a pole in the single-cha
S matrix corresponding to the elastic positronium-prot
scattering, although we recognize that the coupling betw
the two channels is not generally negligible forL51. Near
threshold all elements of theK matrix vanish, and the single
channel ERT of Fabrikant@34# with a constantM gives a first
estimate of the pole location. We found a pole atk2

50.095–0.168i , or equivalently at an energyE25k2
2/45Er

2 i (G/2)520.00482( i /2)0.016. The pole is at a negativ
energyEr and the widthG is positive and relatively large, o
the order of 0.1 times the width of the entire Ore gap. W
interpret this pole as a resonance with a negative-energy
sition. Since we used the single-channel approximation,
calculation only suggests the possibility of a resonance.

Figures 6 and 7 compare the ERT and variational res
@14# of K12 and s12, respectively. The agreement betwe
the ERT and variational results is excellent close to the p
itronium formation threshold, and very good over the ent
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Ore gap. The ERT confirms that the variational results@14#
satisfy Wigner’s threshold law@15#.

Figure 8 compares the ERT fit ofs22 with the variational
results@14#. It shows that the ERT fit and variational resul
agree well near the positronium formation threshold, and r
sonably well for the entire Ore gap. There is a disagreem
between the ERT and variational results very close to thre
old due to the disagreement inK22 between the two sets o
results. However, byk150.71 a.u., the ERT and variationa
results agree to within 13%. The cross sections22 rises rap-
idly from threshold to a peak value of 23pa0

2 at k1

50.716 a.u., decreases to zero at the Ramsauer minim
and then increases slowly with energy up to then52 thresh-
old of hydrogen. This behavior is well reproduced by t
ERT, indicating that the structure has its origin in the stro
polarization potential in this particular channel.

C. Results for LÄ2

In Table III we give theL52 quantum defect paramete
hP , B, andG. We fitted the short-rangeK matrix KP0 using
data from the inverse Kohn variational calculation of theK
matrix @14,42# at k150.75 a.u. In Table I we give the

FIG. 6. L51, K12 vs the energy of the incident positron~in Ry!.
See the caption of Fig. 5.

FIG. 7. L51 partial contribution to the cross section~in units of
pa0

2) for positronium formation vs the energy of the incident po
itron ~in Ry!. See the caption of Fig. 5.
5-7
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S. J. WARD AND J. H. MACEK PHYSICAL REVIEW A62 052715
fitted elements ofKP0. We used the inverse Kohn rather tha
the Kohn results, since we are informed@42# that the former
are more reliable.

We also fitted the short-range matrixKP0 using the alge-
braic enlarged eight pseudostate Harris-Nesbet E8PS c
lation of Gien @22# at k150.75 a.u. We give these fit
in Table I. The wave function in the E8PS scheme
comprised of the ~pseudo-!states H(1s,2s̄,2p̄,3d̄) and
Ps(2s,2s̄,2p̄,3d̄) together with a large number of correlatio
terms. The dipole polarizability of H(1s) and Ps(1s) @43#

were taken into account by the H(2p̄) and Ps(2p̄)
pseudostates, respectively@44#. The H(3d̄) and Ps(3d̄)
pseudostates were used to take into account the quadru
effects.

The inverse Kohn results ofK22 are not in accord with the
MERT of O’Malley et al.’s @37# Eq. ~2!, whereas the E8PS

FIG. 8. L51 partial contribution to the cross section~in units of
pa0

2) for elastic positronium-proton scattering vs the energy of
incident positron~in Ry!. See the caption of Fig. 5.
05271
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results ofK22 are. Atk150.71 a.u.,K22 of the inverse Kohn
calculation is about a factor of 10 smaller thanK22 of the
E8PS calculation. Humberstonet al. @14# stated that theirL
52 results are less well converged than theirL50 and 1
results, and that theirL52 results are probably less accura
than those of Gien@22#. For L50 and 1 there is much bette
agreement between the inverse Kohn and E8PS results
there is forL52. This is in accord with our findings. Fo
instance, atk150.71 a.u. the twoab initio calculations of
K22 agree within 3% forL50 and 1, but disagree strongl
for L52.

Figure 9 showsK22 vs the positron energy. This figur
compares the ERT fit to the inverse Kohn and E8PS resu
as well as theab initio inverse Kohn and E8PS calculation
The two ERT calculations agree well near threshold and b

e

FIG. 9. L52, K22 vs the energy of the incident positron~in Ry!.
The open circles are the inverse Kohn variational results@14,42#.
The solid line is the multichannel ERT fit to the inverse KohnK
matrix atk150.75 a.u. The crosses are the E8PS results@22#. The
dashed line is the multichannel ERT fit to the E8PSK matrix at
k150.75 a.u.
TABLE III. Values of quantum-defect parameters forL52. Positive energies 0.05<k f<6. Numbers in
brackets denote powers of 10.

k f k2 B h h/p G
5@22# 5.893@22# 2.759@22# 23.142@0# 1.000@0# 1.337~4!

1@21# 1.179@22# 5.519@22# 23.141@0# 29.999@21# 3.340@3#

2@21# 2.357@22# 1.104@21# 23.141@0# 29.997@21# 8.335@2#

3@21# 3.536@22# 1.655@21# 23.139@0# 29.993@21# 3.694@2#

4@21# 4.714@22# 2.204@21# 23.138@0# 29.988@21# 2.069@2#

5@21# 5.893@22# 2.747@21# 23.136@0# 29.983@21# 1.317@2#

6@21# 7.071@22# 3.283@21# 23.134@0# 29.977@21# 9.086@1#

7@21# 8.250@22# 3.810@21# 23.132@0# 29.970@21# 6.625@1#

8@21# 9.428@22# 4.324@21# 23.130@0# 29.964@21# 5.028@1#

9@21# 1.061@21# 4.825@21# 23.128@0# 29.958@21# 3.934@1#

1@0# 1.179@21# 5.311@21# 23.127@0# 29.995@21# 3.152@1#

2@0# 2.357@21# 9.055@21# 23.128@0# 29.956@21# 6.767@0#

3@0# 3.536@21# 1.083@0# 23.175@0# 21.011@0# 2.462@0#

4@0# 4.714@21# 1.139@0# 23.266@0# 21.040@0# 1.112@0#

5@0# 5.893@21# 1.142@0# 23.388@0# 21.078@0# 5.664@21#

5.660@0# 6.671@21# 1.132@0# 23.479@0# 21.108@0# 0.375@21#

6@0# 7.071@21# 1.125@0# 23.529@0# 21.123@0# 3.066@21#
5-8
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EFFECTIVE RANGE ANALYSIS OF POSITRON- . . . PHYSICAL REVIEW A 62 052715
satisfy the MERT of O’Malleyet al. @37#. The E8PS calcu-
lation and the corresponding ERT fit agree well atk1
50.71 a.u., and agree reasonably well over the entire
gap. In contrast, the inverse Kohn results ofK22 are too low
near threshold. We suspect that the polarizability of Ps~1s! is
inadequately described in the inverse Kohn results n
threshold. This effect is remedied by using the inverse Ko
results at an energy away from threshold then extrapola
to threshold using the multichannel ERT.

The behavior ofK22 for L52 is similar to the behavior o
K22 for L50 and 1. It rises from the threshold, reaches
maximum and then decreases with increasing energy u
the n52 threshold. The ERT fit ofK22 to the E8PS calcula
tion has a maximum value of 0.2417 atk150.7783 a.u. The
maximum occurs at a higher energy forL52 than for L
50 and 1, and the rise from threshold is not as rapid. Thi
in accord with Eq.~2!.

We found a pole in the single-channelS matrix corre-
sponding to elastic positronium-proton scattering atk2
50.2569–0.3139i which corresponds to an energy ofE25
20.008–0.04i . Thus, as forL51, the pole is at a negativ
energy and the width is large~relative to the Ore gap! and
positive. It corresponds to a resonance with a negative
ergy position.

Even thoughK22 decreases with energy after its max
mum, it does not vanish in the Ore gap, and thus, unlikeL
50 and 1, there is no Ramsauer minimum forL52. How-
ever, the diagonized matrix elementK̃22 does go through
zero before then52 threshold. Thus the second eigencha
nel shows a Ramsauer minimum, even though the phys
second channel does not. The value of the eigenphase c
sponding to elastic positronium-proton scattering is appro
matelyp/40 at the maximum.

Figures 10, 11, and 12 shows22, K12, ands12, respec-
tively, vs the positron energy computed using the ERT fit
to the inverse Kohn calculation, and the E8PS together w
the ab initio inverse Kohn and E8PS calculations. The fitt
E8PS and theab initio E8PS calculations agree well ne
threshold, and reasonably well for the entire Ore gap. T
peak value ofs22 from the ERT fit to the E8PS calculation
7pa0

2, and occurs atk150.747 a.u.

FIG. 10. L52 partial contribution to the cross section~in units
of pa0

2) for elastic positronium-proton scattering vs the energy
the incident positron~in Ry!. See the caption of Fig. 9.
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IV. TOP-OF-BARRIER ANALYSIS

The ERT fits toab initio calculations show that the con
siderable structure in the positronium-proton channel rela
closely to the large effective polarization potential in th
channel. It should, therefore, be possible to interpret
structure solely in terms of positronium motion in a polariz
tion potential. In this section we show that Wigner’s thres
old law relates to tunneling through a barrier. The barrier
due to the combined effect of a repulsive centrifugal-ty
term (L11/2)2/2mr2 and an attractive polarization potenti
2a/2r4, wherer is the Jacobi coordinate of the center
mass of positronium with respect to the proton. Quali
tively, such tunneling ceases at an energyk2

2/2m greater than
the height of the barrier, thus this would suggest thats12

rises with energy ask2
(L11/2) up to an energy of the order o

the top of the barrier, after which it would vary much mo
slowly. This aspect of the dynamics is included in the ER
via the Mathieu functions and is seen in the ERT fits repor
in Sec. III. In this section we relate this behavior to top-o
barrier motion using a formula we employed in connecti
with our L51 hyperspherical hidden crossing calculations
Ref. @29#.

Tunneling through a barrier can be treated via the WK

f
FIG. 11. L52, K12 vs the energy of the incident positron~in

Ry!. See the caption of Fig. 9.

FIG. 12. L52 partial contribution to the cross section~in units
of pa0

2) for positronium formation vs the energy of the incide
positron~in Ry!. See the caption of Fig. 9.
5-9



fo
t

ol
e

ng
um

lin

ss
a

. I
i

g

-

e

ld

d
o

x-

ive
ne
the
nd

tial

n

-

o-

l-

i-

S. J. WARD AND J. H. MACEK PHYSICAL REVIEW A62 052715
approximation; however, that theory can only be used
energies well below the top of the barrier. It is necessary
go beyond the WKB approximation to interpret the thresh
region. Two theories have been given which do this. On
the top-of-barrier theory of Refs.@29# and@45#, which places
tunneling and motion above the barrier on an equal footi
and is described in this section. The other is the ‘‘quant
suppression’’ analysis of Ref.@36# discussed in Sec. V.

The cross section that takes into account tunne
through, and motion above, the barrier~Ref. @29#! is given by

s12
(L)5uTu2s12

(L)~HC! ~27!

where s12
(L)(HC) is the unmodified hidden crossing cro

section, ands12
(L) is the hidden crossing cross section th

takes into account motion below and above the barrier
Eq. ~27!, uTu2 is the transmission modulus squared, and
given by

uTu25
1

11exp~2pa!
, ~28!

where forE5(k2
2/2m)20.25,V(RTOB),

a5
1

pER1

R2A2„V~R!2E…dR, ~29!

and forE.V(RTOB),

a5
2 i

p E
R1

R2

A2„E2V~R!…dR. ~30!

In Eqs.~29! and~30!, R is the hyper-radius, andRTOB is the
top-of-barrier position. In Eq.~29!, R1 andR2 are the zeros
of q(R)5A2„V(R)2E…dR, whereas in Eq.~30! R15R2* are
the complex roots ofq(R)5A2„V(R)2E…. In Ref. @29#, we
considered two potentialsV(R), namely, V(R)5«2(R)
2 1

2 (1/4/R2)5«28(R), in accordance with the hidden crossin
theory @Eq. ~10! of Ref. @29# or Eq. ~4.14! of Ref. @47## and
V(R)5«2(R)2 1

2 ^w2u(d2w2 /dR2)& in accordance with the
one-Sturmian correction to the hidden crossing theory@Eq.
~17! of Ref. @29##. The asymptotic form ofV(R)5«28(R) is
given by Eq.~105! of Ref. @48#. The asymptotic form of the
potential V(R)5«2(R)2 1

2 ^w2u(d2w2 /dR2)& is given by
Eqs. ~107! and ~109! of Ref. @48#. It contains a repulsive
centrifugal termL(L11)/2mr2 and an attractive polariza
tion potential2a/2r4 as well as a small repulsive 1/r4 po-
tential that is unique to the hyperspherical theory. In R
@29# a barrier was noted in both potentials forL51.

A strict application of the hidden crossing theory wou
also have a factoruTWKBu2, but that factor would only in-
clude tunneling, i.e.,

uTWKBu25exp@22pa#, E,V~RTOB!, ~31!

uTWKBu251, E.V~RTOB!,

whereRTOB is the top-of-barrier position. It was recognize
in Ref. @29# that the WKB factor is not reliable when tw
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turning points (R1 and R2) are close together, thus the e
pression in Eq.~28! was used.

In Ref. @29# we considereduTu2 for L51. Here we dem-
onstrate that a barrier is present even forL50, where there
is no centrifugal barrier. Because of the significant effect
polarization potential in the positronium-proton channel o
should use Mathieu functions to propagate the wave in
positronium-proton channel to large distance. Vogt a
Wannier @38# showed that the solutions to the Schro¨dinger
equation, corresponding to the polarization poten
2a/2r 4, are given byr 1/2M 6t@ ln(k/f)1/2r #. They satisfied
the equation

Fx2
d2

dx2 1x
d

dx
2S L1

1

2D 2

1k f~x21x22!GM 6t@ ln x#50,

~32!

where the radial variabler is related to the scaled variablex
by x5(k/ f )1/2r . A further change of variablex5ew reduces
this equation to the standard form of the Mathieu equatio

S d2

dw2 2S L1
1

2D 2

12k f cosh~2w! D M 6t~w!50. ~33!

The change of variablex5(k/ f )1/2r @39# introduced the
Langer factor (L11/2)22L(L11)51/4. Thus there is a re
pulsive centrifugal-type term (L11/2)2/r 2 present even for
L50. The repulsive term and the attractive polarization p
tential result in a barrier even forL50. The transmission
modulus squareduTu2 for tunneling through the barrier is
given by Eq.~28!, where the parametera is written as

a5
1

pEr1

r2A2m~V~r!2E2!dr, ~34!

using Jacobi coordinates. In Eq.~34!, r1 andr2 are the real
roots of A2m„V(r)2E2…. Equation~34! is the appropriate
form for the parametera for V(r).E25k2

2/2m. The form
appropriate forV(r),E2 is analogous to Eq.~30!. The
asymptotic form ofV(r) contains just two terms, the repu
sive term and the attractive polarization potential:

V~r!5
~L11/2!2

2mr2 2
a

2r4 . ~35!

With the asymptotic potential, the integral fora can be
evaluated analytically. One obtains

a5
L11/2

2

12b

A11b
2F1F1

2
,
3

2
;2;

12b

11bG , ~36!

where

b5
2Amak2

~L11/2!2
. ~37!

Expanding Eq.~36! about the threshold energy for pos
tronium formation gives
5-10
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EFFECTIVE RANGE ANALYSIS OF POSITRON- . . . PHYSICAL REVIEW A 62 052715
uTu2'e22pa'S 2Amak2

8~L11/2!2D 2L11

. ~38!

Hence the cross section for positronium formation using E
~27!, ~28!, and ~36! correctly satisfies Wigner’s threshol
law. We see the importance of the repulsive centrifugal-ty
term (L11/2)2/2mr2 to obtain Wigner’s threshold law. A
the top of the barrier,b51, a50, anduTu251/2. Using the
asymptotic form of the potential@Eq. ~35!# the position of the
top of the barrier is estimated to be atrTOB

5A2ma/(L11/2)2 and the height to beVmax5kTOB
2 /2m

5(L11/2)4/8m2a. For L50, the position of the top of the
barrier is estimated to ber524 a.u., or in terms of the
hyper-radius to be atR534 a.u. The height of theL50
barrier is extremely small, namely, 0.000 054 a.u. This sm
value accounts for the sudden change of the positron
formation cross section near threshold. Even forL51, the
energy corresponding to the height of the barrier,
31023 a.u., is considerably smaller than the region of a
plicability of the ERT.

Figure 13 comparesuTu2 with the variational@14# S-wave
positronium formation cross section. For the purpose of
figure, we normalizeduTu2 at the peak of the variational re
sults ofs12 (k250.077 01 a.u.). It can be seen thatuTu2 has
the correct general behavior, namely, a very steep rise
threshold followed by a more gently rising plateau. At t
cross-section peak, the positronium kinetic energyk2

2/2m is
about five times the height of the potential of the top of t
barrier, i.e., well above the top of the barrier. AlthoughuTu2
is similar to the shape of the positronium formation cro
section, it fails to reproduce the small peak in the variatio
results@14# and in the ERT fits~see Fig. 3!. This small peak
is probably due to the reflection from the barrier back in
the interaction region omitted in the top-of-barrier theo
Aside from this effect, the top-of-barrier theory accurate
represents the structure seen in the more complete ERT

FIG. 13. Comparison of the TOB factoruTu2 with the variational
results@14# for the S-wave cross section for positronium formatio
s12(L50). The TOB factoruTu2 for the figure is normalized at the
peak in the variational results (k250.077 018 a.u.,k2

2/451.482
31023 a.u.). The open circles are the variational results. The s
line is the factoruTu2.
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V. QUANTUM SUPPRESSION

In Sec. IV we saw that the WKB approximation to th
Mathieu functions accounts only for Wigner’s threshold la
but fails at an energy as small as 5.431025 a.u. above the
threshold. The reduction of excitation cross sections be
the expected WKB value has been called ‘‘quantum supp
sion,’’ and has been analyzed for a model system by C
et al. @36#. To determine whether the near-thresholdS-wave
cross section for positronium formation is a physical e
ample of quantum suppression, we applied the analysi
Ref. @36#, where the suppression is related to a factorP, the
ratio of the quantum-mechanical probability (Kqm) for enter-
ing the well to the semiclassical probability (Ksc), i.e.,

P5
Kqm

Ksc
, ~39!

where

Kqm5
uuin~r in* !u2

uuout~rout* !u2
5uuin~r in* !u2 sin2d0 , ~40!

and d0 is the S-wave phase shift. The functionu(r) is the
S-wave solution to the Schro¨dinger equation, normalized ac
cording to

uout~r!;
sin~k2r1d0!

sind0
. ~41!

The radiusr in* is whereuuWKB
in u reaches a local maximum

We took Rin* 5A2r in* to be at the minimum of the hyper
spherical potential«2(R)2 1

2 ^w2u(d2w2 /dR2)&. We obtained
the hyperspherical potential by using the finite elem
method to compute«28(R)5«2(R)2 1

2 (1/4/R2) @49#, and us-
ing the asymptotic form of the second derivative term,
order 1/R4, of Ref. @48#. Furthermore, we obtaineduin(r in* )
by evaluating atr in* the long-range form of the wave functio
which is written in terms of linear combination of Mathie
functions, and normalized according to Eq.~41!. Classically,
the ratio of the probability density per unit distance of fin
ing the particles inside and outside the well is given by

Kcl5S k2
2/2m

k2
2/2m1D D 1/2

, ~42!

whereD is the depth of the well@36#.
Figure 14~a! comparesP, uTu2, s12(L50), anduTWKBu2.

For plotting purposes we normalized the variational resu
to unity atk250.077 018 a.u. There is reasonable agreem
betweenP, uTu2, ands12(L50) over a wide energy range
but uTWKBu2, even with the Langer correction, is quantit
tively incorrect over most of the region. Figure 14~b! shows
the threshold region in a more detail. The ratioP in the
vicinity of the threshold scales approximately as the squ
root of the depth of the potential well. Interestingly, if on
approximates for the depth of the wellD by the magnitude of

id
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the polarization potential atr in* the ratioP is brought in quite
good agreement with the factoruTu2 for a positronium energy
k2

2/2m to about 0.001 a.u.
We conclude that near-thresholdS-wave positronium for-

mation is an example of quantum suppression. The quan
suppression effects are satisfactorily modeled by ERT w
the exact Mathieu functions, the top-of-barrier wave fun
tions @45#, or the quantum suppression factorP.

VI. CONCLUSIONS

Positron-hydrogen scattering is rich in low-energy fe
tures, including Ramsauer minima, virtual states, resonan
threshold phenomena, and quantum suppression. These
tures emerge in effective range theories that employ e
expressions for the Mathieu functions. The single-chan
ERT of Fabrikant@34# and the multichannel ERT of Wa
tanabe and Greene@33# use the exact expressions of the ch
acteristic exponentt and ratiom from the Mathieu functions.
We used both ERT’s to analyze partial wave cross sect
for elastic positronium-proton scattering, and used the m

FIG. 14. ~a! Comparison of the quantum suppression ratioP
with the TOB factoruTu2, with the WKB factoruTWKBu2, and with
the variational results@14# for s12(L50) ~normalized!. For the fig-
ure we normalized the variational resultss12(L50) at k2

50.077 018 a.u. (k2
2/451.48231023 a.u.), which is at its peak

value to the TOB factoruTu2. The dash-dotted line isP, the solid
line is uTu2, the dashed line isuTWKBu2, and the open circles are th
normalized variational results.~b! Comparison between the quan
tum suppression ratioP, the TOB factoruTu2, and the WKB factor
uTWKBu2, very close to the positronium formation threshold. See~a!.
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tichannel ERT to analyze partial wave cross sections for p
itronium formation in positron-hydrogen collisions. In add
tion to the ERT’s, we used the top-of-barrier theory@29# and
quantum suppression@36# to explore the threshold region
All the approaches take into account explicitly the significa
polarization potential in the positronium-proton channel. T
multichannel ERT, the top-of-barrier theory, and quantu
suppression give the correct threshold behavior forS-wave
positronium formation, and confirm that the range of valid
of Wigner’s threshold law is very narrow@15#. We find that
the multichannel ERT fit even reproduces the small pe
near threshold in the variational results, while the more
proximate top-of-barrier and quantum suppression factors
not. For bothL50 and 1, the multichannel ERT fit to th
variational calculations generally agree well with theab ini-
tio calculations. ForL52, the multichannel ERT fits indi-
cate that the variational calculations@14,42# are not reliable
near threshold, whereas the E8PS calculations seem t
reliable.

The largeS-wave scattering length in the positronium
proton channel is indicative of a virtual state. We located
pole in theS-matrix that corresponds to theS-wave virtual
state of the positronium-proton system. The pole is displa
from the negative imaginaryk axis because of the long-rang
polarization potential. The polarization affects the virtu
state by shifting the pole slightly away from the negati
imaginary axis. It also causes the phase shift to reach a m
mum value ofp/8 rather than'p/2, as expected for short
range potentials. It has long been recognized that Rams
minima require a strong polarization potential@50#. The vir-
tual state in a strongly polarized system is an additio
structure that more recently has been recognized@51,52#.

For both L51 and 2 we found a pole in theS matrix.
Because the positionEr of the pole is negative but the widt
G is positive, the pole corresponds to a resonance wit
negative energy position.

The behavior of the eigenphase corresponding to
positronium-proton channel is remarkably similar for all a
gular momenta. ForL50, there occurs a virtual state, an
for L51 and 2 a resonance at a negative energy posit
There is a Ramsauer minimum inK22 for L50 and 1, and in
the diagonal elementK̃22 for L50, 1, and 2. Between the
threshold and the minima, the eigenphase has a maxim
value ofp/8(2L11). We have not found a simple explan
tion for this maximum value. It appears to an accidental f
ture of the positronium-proton channel not present in ot
systems.

In this paper we consider positron-hydrogen collisio
specifically. However, many features of positronium form
tion and the elastic positronium-proton cross sections sho
be similar for all neutral targets, owing to the strong pola
ization potential in the positronium-ion channel. One nota
difference for positron-alkali collisions is that positroniu
formation is possible at zero energy, and that at zero ene
the S-wave cross section for positronium formation is in
nite.
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APPENDIX: VIRTUAL STATE AND RESONANCES

The association of large, low-energy,S-wave cross sec
tions with loosely bound states or virtual states is a stand
topic in elementary scattering theory@53–56#. The basic fea-
tures of these states and resonances is well known for s
range potentials. In this appendix, we discuss what mod
cations occur to the position of a virtual state pole forL
50 and to a resonance pole forL.0, owing to the presence
of the polarization potential.

We first recall some basic mathematical features of virt
states for short-range potentials. For single-channelS-wave
scattering, the radial wave function has the asymptotic fo

u'N@e2 ikr2Seikr #, ~A1!

wherek can be any complex number. The function is an
lytically continued from positive real energy to negative e
ergy by the replacementk5 ik, k.0, then

u'N@ekr2Sekr #5NS@S21ekr2e2kr #. ~A2!

For a bound state,S2150, i.e., S has a pole. For single
channel scattering,S5ei2d0, so that a pole corresponds
cotd05i. Using the first term in the ERT to write cotd0 as a
function ofk, and solving the equation cotd05i, gives a first
estimate of the bound-state energy

k'
1

a0
. ~A3!

The zero-energy cross section is given by

s54pa0
25

4p

k2 5
2p

uEBu
, ~A4!

which is large for a weakly bound state.
The zero-energy cross section is also large if the sca

ing length is large and negative, but in this case there is
bound state. Rather, the pole is at negative imaginaryk, and
the wave function increases exponentially at large distan
The corresponding state is unphysical, and is given the n
virtual state. It can be considered as a new bound state a
to be born@46#. Thus large, low-energyS-wave cross sec
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tions are usually associated with loosely bound states or
tual states. For short-range potentials the low-energy ph
shift is often approximately given by tand0'a0k, and if a0
is large the phase shift increases rapidly with increasing
ergy, but does not exceedp/2, i.e., tand0 does not become
infinite.

Large cross sections are also associated with resona
corresponding to poles at complex energiesEr2 iG/2 with
the positionEr and the widthG both positive. In thek plane
these occur atkr2 ik i , with kr andki both positive. Symme-
try requirements show that there are mirror poles at the s
value ofki and negativekr .

To see how these properties are modified by the polar
tion potential, consider the estimate of the pole position
ing the first two terms of the MERT. One finds

k25k2p5kr1 ik i5

1

a0

pma

3a0
2

11S pma

3a0
2 D 2 1

i
1

a0

11S pma

3a0
2 D 2 .

~A5!

Because the scattering length is negative, bothkr andki are
negative, i.e., the pole is shifted slightly off the negati
imaginary axis. Only in the limiting casea→0 is the pole on
negative imaginary axis atki5 i /a0.

In the energy plane the pole occurs at

E2p5
kr

22ki
2

2m
1

2ikrki

2m
. ~A6!

For L50, the imaginary part ofE2p is positive, i.e., the
width G is negative. The pole does not correspond to a re
nance but to a virtual state shifted off the imaginary ax
The effect of the polarization potential is to shift the positi
of the pole in thek plane toward the left from the position
would have for a short-range interaction. If one uses the E
of Fabrikant@34# with constantM, rather than the MERT, the
position of the pole moves toE2p520.000 3410.000 02i ,
but Er andG are still negative.

For short-range interactions,k cotd0 is an analytic func-
tion of energy, however, this is not the case for inve
power-law potentials. The nonanalyticity can be traced to
nonanalyticity of the ratiom @m5( f k)t#, sincet is not an
integer. With the MERT we located a single pole to the l
of the negative imaginaryk axis. We could not locate a mir
ror pole, i.e., a pole to the right of the negative imaginaryk
axis; however, it could lie on a different sheet of the R
mann surface.

There are examples of virtual states for long-range in
actions in which the position of the pole is displaced off t
negative imaginaryk-axis. For instance, Herzenberg an
Saha@46# obtained a virtual electron state in a weakly po
molecule. The state is predominatelyS-wave character. The
tail of the potential is a dipole potential. The pole whic
corresponds to a virtual state is off the negative imaginark
5-13
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axis, and, to the left of it, on the physical sheet of the R
mann surface.~The first sheet is defined by a cut along t
negative real axis.! There is a corresponding pole that
symmetric about the negative imaginaryk axis, but this pole
occurs on a different Riemann sheet. Other examples
poles off the negative imaginaryk axis that do not corre-
spond to resonances have been given by Fabrikant@51,57#,
and Hill et al. @58#.

The Mathieu functions with angular momentumL.0 are
not qualitatively different from those withL50. For L51
and 2 we also located poles in the single-channelS matrix.
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Using the single-channel ERT of Fabrikant with constantM
we found poles atk2p50.095–0.168i for L51 and atk2
50.2569–0.3129i for L52. In both cases the poles occur
negative energies, but the widthG524krki is positive. Thus
these poles correspond to resonances at a negative en
position. As forL50, the effect of the polarization potentia
is to shift the pole in thek plane to the left. ForL51 and 2,
the magnitude of the real part of the pole in thek planeukr u
has been reduced to be less than the magnitude of the im
nary partuki u. This has the consequence that in the ene
plane the positionEr of the pole is negative.
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