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Effective range analysis of positron-hydrogen collisions
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Humberstor{Can. J. Phys60, 591 (1982], using the Kohn variational method, showed that the range of
validity of Wigner's threshold law for positronium formation in positron-hydrogen collisions is extremely
narrow for theS wave. To examine the near-threshold behavior, we analgbeiditio calculations using the
multichannel effective range theory of Watanabe and GréBhgs. Rev. A22, 158 (1980] and the single-
channel effective range theory of Fabrikg@pt. Spectros®&3, 131(1982)] for the positronium-proton chan-
nel. We confirmed the presence of a Ramsauer minimum irLth® elastic cross section for positronium-
proton scattering, and found a similar minimum for 1. The near-threshold structure is interpreted in terms
of a virtual state, resonances, tunneling through and transmission over a barrier, and quantum suppression.

PACS numbd(s): 34.85+x

[. INTRODUCTION teractions[31,32. Humberstoret al. [14] used this method
to fit their variational results close to the positronium forma-
Positronium formation in positron-hydrogen collisions is tion threshold. While the fit to the variational results for
a fundamental three-body Coulomb process, and is amenabidg (L =0) is good close to threshold, it deviates from the
to experimental investigatiol—4]. This process is of inter- variational results soon after the threshold, with the deviation
est in astrophysics due to the observation of 511-keMys becoming large near the=2 threshold. Wigner's-matrix
from solar flares, from the galactic center and from above thénethod does not explicitly take into account the polarization
galactic centef5—7]. The cross section for antihydrogen for- potential in either the positron-hydrogen or positronium-
mation in antiproton-positronium collisions is related simply proton channels. The polarizability relevant to the initial
to the cross section for positronium formation in positron-channel is that of hydrogen, which is fairly small, namely 4.5
hydrogen collision$8]. a.u.; however, the effective polarizability in the positronium-
The positronium formation cross section in positron-proton channel is significant, namely, 72 a.u.
hydrogen collisions in the Ore gap was calculated accurately Here, we preser matrices and cross sections for tBe
using a number of different methodéhe Ore gap is the P andD waves for positron-hydrogen collisions in the Ore
energy region between the onset of positronium formatiorgap that we obtained using the multichannel ERT of Wa-
and the first excitation level of the target atgriihe S-, P-, tanabe and Greerj83]. We obtained the ERT parameters by
and D-wave cross sections for positronium formation werefitting to theab initio calculations of Refd.14,22. For sim-
computed by Humberston and co-workers using the Kohmplicity, we also used the single-channel ERT of Fabrikant
and inverse Kohn variational methof8—14]. Humberston [34] to analyze the positronium-proton channel. Both ERT's
et al. [14] showed that the partial cross sections correctlyexplicitly take into account the polarization potential in the
satisfy the Wigner's threshold lajd5] but the range of va- positronium-proton channel. These theories confirm the
lidity is very small for theS wave. Extensive two-center Swave Ramsauer minimum if,, found by Van Reeth and
close-coupling calculations were performgtb—21. Gien  Humberstor[35], whereK,, is the element of th& matrix
[22] employed the Harris-Nesbet method. Arcle¢ral. [23]  corresponding to positronium-proton scattering. In addition,
performed a pioneering calculation for tBevave cross sec- we found aP-wave Ramsauer minimum iK,,. The ERT
tion for positronium formation in positron-hydrogen colli- analysis also provides evidence in the positronium-proton
sions in the Ore gap. More recently, Igarashi and Toshimaystem of arSwave virtual state ané- and D-wave reso-
[24] and Zhou and Lin25-27 performed hyperspherical nances with negative-energy positions.
close-coupling calculations for the=0, 1, 2, 3, 4, 5, and 6 The multichannel ERT fits the Kohn variationad, (L
partial waves and for the =0, 1, 2, and 3 partial waves, =0) well near the positronium formation threshold, and
respectively. Very recently, Hi28] reportedK matrices and fairly well over the entire Ore gap. The behavior of this cross
cross sections fog, P, D, andF waves using modified Fad- section is quite striking, with a steep rise near the threshold
deev equations. Previously, we employed the hypersphericabnsistent with Wigner’s threshold law, followed by a gently
hidden crossing method to compute tBe P-, andD-wave  rising plateau. The ERT analysis confirms that Wigner's

cross sections for positronium formatig29]. threshold law[15] is valid only in a very narrow energy
The positronium formation cross section was measuredange.
for positron collisions with hydrogefil—3], deuterium[4], We interpret the sharp rise of ti&wave cross section as

alkali metals[30], and noble gasd81]. The measurements tunneling through a barrier. The barrier arises from a repul-
of positronium formation for positron collisions from the sive centrifugal-type term and an attractive polarization po-
noble gases were analyzed using Wign&matrix method, tential. The squared transmission modulli fits the steep

which is an effective range theoERT) for short-range in-  rise followed by a plateau. We also analyzed the steep rise in
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terms of the quantum suppression ré#i$36]. We find that  pendence of a short-rangeematrix. The base pair is chosen
P is quite similar to|T|?; thus positronium formation pro- from a linear combination of Y2M .. [In(k/f)¥%r] to yield
vides a physical example of quantum suppression. The ERTeal standing waves for positive eneri@a].

calculations, the top-of-barrier analysis, and quantum sup- Watanabe and Green8&3] applied their quantum defect
pression effects illustrate the importance of the polarizatiortheory to a multichannel problem: that of the photodetach-

potential in the positronium-proton channel. ment ofK™ in an energy range where two P channel&of,
We outline the ERT's in Sec. Il, and give the results innamely, 4ep and 4pes, are open. The polarization poten-
Sec. lll. In Sec. IV, we derive for arbitrar a squared tial in the second channel was explicitly taken into account.

transmission modulu§T|? for wave propagation through a The two-channeK matrix was expressed in terms of the
barrier, and apply it tocSwave positronium formation. In quantum defect parametergg,B,G) that vary rapidly with
Sec. V, we present the quantum suppression rati®fand  energy and the parametdtie elements of the matrix °°)

in Sec. VI we present our conclusions. In the Appendix, wethat vary slowly with energy. The quantum defect parameters
discuss the effect of the polarization potential on the positiorarise from the polarization potential and depend upand

of the virtual state and resonance poles in $matrix. We  m, whereas the parameters that vary slowly with energy de-

use atomic units throughout unless explicitly stated. pend upon the short-range interaction.
Watanabe and Greefia3] obtainedk P in the following
Il. EFFECTIVE RANGE THEORY way. At a single energy, the full physickl matrix K from

o ] ) anab initio calculation was fitted using the elementskdi®

The long-range polarization potential ua/2r* in the s fitting parameters. Siné€” varies slowly with energy, it
positronium-proton channel is important for energies close tQyas taken to be a constant obtained at a single energy where
threshold. For this potential, an expansionk8f” cotd in  the ab initio calculations were most reliable. The fitted?®
k? does not exist, and effective range expressions for shortyas then used over the entire range where only the two chan-
range interactions do not apply. However, O'Malleyal.  nejls were open. The effect of the polarization potential in the
[37] derived a modified ERTIMERT) applicable to the first channel is taken into account implicitly in the process of
— a/2r* polarization potential. They used exact solutions 1fitting the two-channel matrisk ”°. We used the same pro-
the Schrdinger equation with the polarization potential cequre here, except that fir=0 we also considered fits
[33,38,39. The solutions are given in terms of Mathieu func- Whereng or (Kgg)—l vary linearly with energy.
tionsr*?M ... [In(k/f)"?r], wheref=\/ua andr is the order The full physicalk matrix (K?) is expressed in terms of
of the Mathieu functions. O'Malleyet al. [37] expanded he elements oKP%, namely,
the characteristic exponentr and the ratio m(7)

=M, (0)/M__(0) about the threshold energy. Fb+0, KZ, K%,
the expansion ok cot&, aboutE=0 contains a number of ~ K#=| 2 )
terms not present in the usual ERT, including a term linear in K21 K2
k and a log term. They foun[B7] ) ( k|ll+1/2 0 ) (Kﬁ’ ng) ( k|ll+1/2 0 )
1 7f2  4f2 - I,+1/2 20 120 Ir+1/2]
K COtSy= — — + skt k2In(0.25(k) + - - . (1) 0 Kk Ka Kzz/\ 0k
ap 3a; 33
()
For|#0, the leading term in the expansion of @ris pro- where
portional tok?, and is given by[37]
KZO KZO
’7Tf2k2 KZO_ 11 12)
- Tl wzo 20
@O = o g2+ )2 -1 @ K3 K2
PO POy, PO PO
While Egs.(1) and(2) are appropriate when the potential 1 K11Q+KarKaalgs K1z @
consists of a short-range part and a polarization potential, the Q KD Kg’gl“gg—l“fg

range of applicability in energy is very narrow when the

effective polarizabilitywa is large. Furthermore, Eqgl)  Q=T'— K5Iy, andl;=1,=L, andk, and k, are the
and(2) are for single-channel scattering only. Consequentlywave numbers of the positron and positronium, respectively.
Watanabe and Greef83] and Fabrikanf34] extended the Equations(3) and (4) are inverted to give the fitting pa-
MERT [37] to a broader energy range, and Watanabe antametersk®°,

Greend33] considered a multichannel system. The broader

range is achieved by retaining the exact values of the char- o Kff ng
acteristic exponent and the ratiam rather than expansions K™= KS’O szg
valid only for smallf. !
A key feature in ERT's is the normalization of the base KZ0
. - S . . j_KzoKzor K 20
pair of solutions for the Schdinger equation with the polar- —o| @ 128211 gf 12 ©)
ization potential. The base pair is normalized to be energy '
. . L KZO I KZO+F
independent near~0 in order to minimize the energy de- 21 fif22T1 g
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k_ZIl_lKﬁ =172, —1,—1/2
1 I E V- PR VR A PO P A P
——— —k, "k, 2 "(KY)T 1 2 12
KPO=Q Q 1 2 12 St , (6)
—ly— 12 —1,—1/2 —2l,-1
k, 1k, 2 TKE, k, 72 T K5+ g
|
where significant in the positronium-proton channel. Thus, like Wa-
tanabe and Greer|@3], we explicitly considered the effec-
1 1 tive polarization potential in the second channel only, using

Q @)

= 20 —2I,-1 z"
gt TgKE  Tygtk, 22 Ty KE,

In these equations, the matrdix depends on the quantum
defect parametergp, B, andG and is given by

Eq. (6) and theab initio K matrix at a single energy to obtain
the slowly varying matri¥<°. We used this constant value
in Eq. (3) to computeK? for the entire Ore gap. Fdr=0,
we also used the values of the initio K matrix [14] at two
energies to fik5e and (K59) ™ to linear functions ok3.

- BY2 0\ cosyp sinyp)\ ! Fabrikant[34] developed an alternative ERT for the po-
“|lp-i2g g2 —sin cos larization potential. It is for single-channel scattering only,
g n7e s and has the form
|27T |27T
co§ — - sinl ——- 5 Mc+d 1
tans =~y (17)
| a |2’7T
BRI s B where 6, is the phase shift. The coefficiengsb,c, andd
12 depend only on the polarization potential, i.e., only upon
ky 0 andm. Khrebtukov[40] gave explicit analytical expressions
0 K-l (8)  for these coefficients, namely,
2
1
where a=|—- m) coST T, (18
1
np=arcta 71/ 7,) — §|27T- ©) 1 _ (1
b=|{—=+m|sinw7+(—1)| =—m], (29
m m
B=(7i+73) ", (10 . .
- i ST |
G=—B(mmnst m2m1), E>0. 11 C_(_+m sinwr=(-1) (m m)’ 20
The parameterg,, 7,, 73, andn, depend only upon the d=—a. (21)

characteristic exponent and ratiom through

In Eq. (17) M depends on the short-range potential only,

nlzl m+ —|+| m= E)L , (12) is a meromorphic function of energy, and is related to Wign-
2 m m/cos 20 er's R matrix. Furthermore, it has the same analytic proper-
ties as Wigner'sR matrix, namely, it is an analytic function
1 1 ( 1, 1 of energy except for simple polé84]. The value ofM (if
ma=5|[m+ =)= m- 2] ——], (13) | AN b0 -1
2 m m) cos 25 applied to the second chanpé$ identical to K5,) * of
Watanabe and Greene’s ER33]. Note also that Eq(17) is
1/1 equivalent to Eq(4.3) of Ref.[37].
72=+ 5| ~mjtan2s, (14 For L=0 the coupling between the elastic positron-
hydrogen channel and the positronium-proton channel is
1/1 weak, i.e.,K;,=K,; is small and the single-channel ERT of
3=~ E(E_m tan 2o, (15  Fabrikant[34] can be used. In this casKy,~tans, . We
extracted a value d¥l at a single energy, and used it for the
where entire Ore gap. We also used thb initio K,,(~tané,) at
two energies to fiM andM ~* to a linear function of energy.
T 1 We usedvVATHEMATICA to code the ERT’s of Watanabe
o= 2 T=lp— 2 (18  and Greeng33] and Fabrikanf34]. We checked our com-

puted values of andm with those tabulated by Khrebtukov

For positron-hydrogen collisions in the Ore gap, there ar¢40]. We also checked the quantum defect paramejgrs,
two open channels and the effective polarization potential isnd G, with those given by Watanabe and Gre¢@8] for
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TABLE |. Fitted parameterk®’. For L=0, K and K2 Frrsro e T Tt Fr Ty
=K5?, fitted atk,=0.7081 a.u. FoL=1, KF? andKP2=K5?, T ]
fited atk;=0.714 a.u. FolL,=2, K? and K9=K5?, fitted at ]
k,=0.75 a.u.

L 0 1 2 N h
N4 — ]
KPo ~0.079 42 0.790 98 0.660 64 T
0.71012 \ ]
KP9=K5? —-0.03197% 1.12197 0.401 98
0.461 92 : N
K52 —0.530 06 4.442 98 0.428 08 TS T T
0.549 38 0.5 0.55 0.6 0.65 0.7

Positron Energy k12 (Ry)
gFitting to the variational resultsl4,42.
bFitting to the ESPS resulf®2). FIG. 1. L=0, K, vs the energy of the incident positréd (in
Ry). The open circles are the variational resyligd]. The short-
L=0 and with those obtained from the fortran code of Wa-dashed line shows the first two terms of the MERT for &g37].
tanabe and Greerjd1] for L=0, 1, and 2. In searching for The solid, dashed, and the dashed-dot lines are the results obtained
a pole in the single-chann& matrix, we used the fortran Uusing the multichannel ERT33]. The solid line corresponds to
code of Khrebtukov[40], which solves tad=—i using takingKE_S equalotoaconstant, the dashed line corresponds to using
tans, from Eq. (17). a linear fit fork 52 , and the dashted-dot line corresponds to using a
linear fit for (K59) 2.
Ill. EFFECTIVE-RANGE THEORY RESULTS . . .
section as a result df,, passing through zero. The position
A. Results for L=0 of the Ramsauer minimum can be estimated from the first

From the variational calculation of Humberstenal.[14] WO terms of the MERT37]
of the K matrix K# at k;=0.7081 a.u., we obtaine "
using Eq.(5). We give the elements d€™ in Table I. We tandy=k,| —ag— E(Wﬂakz) ' (24)
used this short-rang¢€ matrix in Eqs.(3) and(4) to compute 3
the K matrix and cross sections for the entire Ore gap.
We also used Eq(5) to computeK5? at two energies Namely,

(k;=0.7077 and 0.7083This enabled us to fiK5s to two

alternative forms, namely, Ia% kgM:@. (25)
THA
K22 =B+ k3, (22
The scattering lengthy=lim,_ otandy/k is related toK5?
and by a,= /K55 . Using the value oK5? given in Table | gives
the scattering length of-16.0089 a.u. Gie22], using the
(KE) " t=B"+7'K3, (23)  enlarged eight state E8S coupled-state calculation

[H(1s,2s,2p,3p) and Ps(%,2s,2p,3p)], obtained a scatter-
ing length of —15.89 a.u. Using our value of the scattering
length in Eq.(25) gives the Ramsauer minimum &§™
=0.2123 a.u., in good agreement with Rf4]. It is inter-

where the parameterg, vy, B’, and y' are —0.533 883,
1.34436,—1.87319, and-4.779 58, respectively. We took
the elementk Y andK 'S to have the constant values given

in Table 1. _ esting that, while Eq(25) gives a good estimate of the po-
_Figure 1 compares the three ERT calculations Kob  jtion of the Ramsauer minimum, the shape of dgrirom
with the variational _cal_culaptéo_nBM,SS. The three ERT cal-  ihe \MERT agrees poorly with the variational calculatjad]
culations are in whichi) K, is taken to be a constartj) and the two-channel ERT of Watanabe and GrefSs.
K55 is taken to have the energy dependence of(E2), and  Most importantly Eq.(24) predicts a maximum value af,
(iii) (K59) "t is taken to have the energy dependence of Eq~3|a,|2/4mua~ /3.7, whereas the ERT fit gives a value
(23). All three ERT calculations give excellent agreementclose to/8.
with the variational resultgl4] close to the positronium for- The scattering length for the positronium-proton system is
mation threshold and up to abckg=0.504, and reasonable large and negative, indicating dn=0 virtual state of the
agreement for the entire Ore gap. The ERT calculations ipositronium-proton system. The behaviorkof, near thresh-
which K59 has an energy dependence of the form of eithenld is consistent with the presence of a virtual state; that is, it
Eq. (22) or (23) does better over the entire energy range tharrises very rapidly after the positronium formation threshold,
the ERT calculation in whickb; is taken as a constant. ~ and reaches a maximum close to threshold, in this case at an
As noted by Van Reeth and Humbers{@b], there is a energyE2:k§/4= 8.68x10 * a.u. above threshold. At the
Ramsauer minimum in the positronium-proton elastic crossnaximum K,,=0.419 29, so that the corresponding phase
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shift §,=tan K ,,=0.3969< 7/8. The eigenvalue of th&
matrix corresponding to positronium-proton scattering, de-

noted here byK,,, has a value very close 1., at maxi-

mum, K ,,=0.420 05. Thus, at the maximum, the eigenphase
corresponding to positronium-proton scattering is given by

'50=0.3988< /8. Interestingly, for positronium-proton scat- ¥~
tering the eigenphase corresponding to positronium-protor
scattering forlL=0, 1, and 2 is approximatelg/8(2L + 1)

at the maxima. For short-range interactions andLferO if

there is a virtual state, the phase shift rises rapidly to a value
of slightly below /2 (or an odd multiple ofz/2). A virtual

state corresponds to a pole in tBematrix on the negative
imaginary k axis for short-range interactions. For single-
channel scattering, a pole in tH& matrix corresponds to
tand,= —i. We obtained an estimate of the position of the FIG. 2.L=0, K;, vs the energy of the incident positrén Ry).
virtual state pole by approximating the two-channel problemrhe open circles are the variational resiiltd]. The solid, dashed,

as a single-channel problem, that of positronium-proton sca@nd the dashed-dot lines are the multichannel ERT restf{sand
tering, and locating the pole in the single-chanSehatrix. ~ K17 are taken as constants. The solid line corresponds to t&fig
This approximation should be good for=0 where the cou- toplge a constant, the dashed line corresponds to using a linear fit for
pling between the two channels is weak. Using just the firsK22 » and the dashed-dot line corresponds to using a linear fit for
term of the MERT[37], Eq. (1) gives the position on the (K5 ™

pole to be ak,= —i/|ag|=—0.0624, which is on the nega-

tive imaginaryk axis. However, if one uses the first two wave. The fit to Wigner'sR matrix gives the correct thresh-
terms of the MERT[37], Eq. (1), the pole is atk,=  old behavior and a steep rise of,(L=0) near threshold,

oq2 L v e
0.5 0.55 0.6 0.65

Positron Energy k12 (Ry)

—0.0169-0.057 49 which is slightly off the negative
imaginaryk axis. If one uses the ERT of Fabrikdi®4] with
the exact expressions farandm, and takedV = (K59) ~* to

but, after the maximum in the cross section, it begins to
deviate from the variational result. The deviation becomes
quite significant at then=2 threshold, owing to the rapid

be a constant, the pole is slightly closer to the real axis atlecrease of th& matrix results with energy. Figure 3 com-
kp=—0.00096-0.037 The position of the pole changes pares the three ERT calculations with the variational results
only slightly if M or (M)~! is fitted to a form linear in [14]. All three ERT calculations obtain a steep rise and a
energy. This is the first prediction of a virtual state of thesmall peak near threshold. The cross section computed with
positronium-proton system. Because it does not occur at the constanK 5y decreases with energy but not as significantly
usual position on the imaginarl axis, and because this as the Wigner'sR matrix calculation. The ERT calculations
anomaly is related to the polarization potential, we give an which szg is taken to have the energy dependence of
more complete discussion of virtual states in the Appendix.ejther Eq.(22) or (23) agree well with the variational results
_Figure 2 compares the three ERT calculations Kb [14] up to a position energl? of about 0.65 a.u. These ERT
with the variational calculationis4]. The ERT calculationin - cajculations illustrate the importance of explicitly taking into

; PO ; H . . . . . .
which K3, is taken to be a constant gives excellent agreeaccount the polarization potential in the positronium-proton
ment with the variational calculations close to the positro-channel.

nium formation threshold, and reasonable agreement for the
entire Ore gap. However, the ERT calculations in wh{cﬂf

has the energy dependence of E2p) or (23) gives better 0008 } ' ‘ ' ‘ ' :
agreement with the variational results for the entire Ore gap“y® ¢.005 [ o o ]
In all cases,K;, satisfies Wigner's threshold lawl5], =z i S
namely, it is proportional t&s * 2 near threshold. ®  o.004f M
Humberstonet al's variational results satisfy Wigner’'s § : ]
threshold law[15] g 0.003F g
015 kng, (26) ? 0.002 |- ]
S} : ]
but only over a very small energy range for Bavave[14]. o G0l ]
The cross section displays an infinite slope at threshold, . T
maximizes at an energy 1.480 3 a.u. above threshold, 0.5 0.55 0.6 0.65 0.7

and changes abruptly to a gently rising plateau over the re-
mainder of the Ore gap. There is a small peak at the transi-
tion between the steep rise and the plateau. FIG. 3. L=0 partial contribution to the cross sectitin units of

This behavior was analyzed in RgL4] using Wigner'sR  #a3) for positronium formation vs the energy of the incident pos-
matrix (ERT) [32] with a five-parameter fit for each partial itron (in Ry). See the caption of Fig. 2.

Positron Energy k12 (Ry)
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0.001 V4t L L L -0.6_""'"""""“""'
0.5 0.55 0.6 0.65 0.7 05 0.55 0.6 0.65 0.7

Positron Energy k12 (Ry) Positron Energy k 2 (Ry)
1
FIG. 4. L=0 partial contribution to the cross sectifin units of
wa(z,) for elastic positronium-proton scattering vs the energy of the,
incident positron(in Ry). See the caption of Fig. 2.

FIG. 5.L=1, K,, vs the energy of the incident positrén Ry).
e open circles are the variational resutig]. The solid line is
multichannel ERT results.

note, however, that we did not obtain good agreement be-
tween the multichannel ERT calculationskf; and o4 for
Il partial waves.

Figure 4 compares the ERd&,, with the variational re-
sults[14]. The cross section rises rapidly as the energy de
creases toward the positronium formation threshold. Thé
zero-energy cross section is large (1825) due to a large B. Results for L =1
scattering length. The Ramsauer minimum is clearly evident PO
in the cross section at a positron energy of approximately W& computed the short-rangematrix K™ using Eq.(5)

. . . Z
0.52 Ry. All three ERT calculations give a virtual state, a@nd the variationak matrix (K“) of Humberstoret al.[14]

Ramsauer minimum, and a good fit to the variational result§t K1=0.714 a.u. Atk,=0.714 a.u. the magnitude of the

over the entire energy range of the Ore gap. The ERT calc atio of Ky, to Ky, from the variational calculation is the

lations in whichK5? is given an energy dependence of either argest. In Table | we give the fitted elementsiGT° which

; : T we used for the entire Ore gap. In Table Il we give the
Eq.(22) or (23) does better in reproducing the position of the =1 quantum defect parameters , B, andG. Note, thatB

Ramsauer minimum than the ERT calculations in WH@S andg are very large and positive for smalf, but decrease
is taken to be a constant. The ERT calculation in whig§  rapidly with increasing energy. As stated by Watanabe and
has the form of Eq(23) does better in fitting to the varia- Greend33], the rapid variation of the amplitudes Bfandg
tional results over the whole Ore gap than the other ERTin the region of smalkf arises from the penetration of the
calculations. effective centrifugal barrierl(+ 1/2)%/r?. At largekf, B ap-

Our focus in this paper is on positronium formation andproaches unity ang vanishes.
elastic positronium-proton scattering in the Ore gap. We Figure 5 compares the ERT fit &f,, with the variational

TABLE Il. Values of quantum-defect parameters for 1. Positive energies 0.85kf<5. Numbers in
brackets denote powers of 10.

kf k, B 7 nl g
5[—-2] 5.893 —3] 5.0741] —1.5970] —-5.083-1] 1.9093]
1[—1] 1.179 - 2] 2.54§1] ~1.6220] ~5.164—1] 4.7652]
2[-1] 2.357-2] 1.28§1] ~1.6710] -5.31§-1] 1.1842]
3[—1] 3.536 —2] 8.6990] —-1.7170] —5.466 —1] 5.2171]
4[-1] 4.714-2] 6.6240] —1.7620] ~5.609—1] 2.9011]
5[—1] 5.893 — 2] 5.3840] —1.8060] ~5.748-1] 1.83G1]
6[—1] 7.071-2] 4.56Q0] —1.8480] ~5.883-1] 1.2511]
7[-1] 8.250 — 2] 3.9760] —1.8940] ~6.014—-1] 9.0240]
8[—1] 9.428 — 2] 3.54Q0] —1.9300] -6.143-1] 6.7670]

9 —1] 1.061 1] 3.2030] —1.97Q0] —-6.269 —1] 5.2290]
1[0] 1.179-1] 2.9340] —2.0080] ~6.393-1] 4.1340]
2[0] 2.357—1] 1.7530] —2.3670] —7.535-1] 7.367—1]
3[0] 3.53 1] 1.3850] —2.6900] —-8.563—1] 1.869—1]
40] 4.714-1] 1.2160] —2.9900] —9.51§-1] 3.300-2]
5[0] 5.893—1] 1.1260] —3.2730] —1.0470] ~1.660—2]
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results[14]. The figure shows good agreement near the pos- 025 1 7
itronium formation threshold, and reasonable agreement fol [ 1
the entire Ore gap. Actually, very close to the threshold there 02 [ 4
is a significant disagreement between the ERT and varia:
tional results which is not apparent in the figure due to the 015 [ ]

smallness oK, in this region. Very close to threshold, the «
ERT results are in accord with O'Mallest al’s Eq. (2), but %
the variational results are not. Just above threshé&id,
=0.70712 a.u. K3/2.=9.35x10"° a.u.), the variational
results are lower than the ERT results by a factor of 12.
However, byk;=0.71 a.u. k3/2u=2.05x10"% a.u.), the
variational and ERT results agree by about 7%. The matrix T
elementK,, rises rapidly from the positronium formation 08 Byt 08 b Al
threshold to a maximum, after which it decreases more Pashtron Ensrgy ,"(Ry)

slowly than the initial rise, passes through zétioe Ram-
sauer minimuny and then continues to decrease. The behav-S
ior of L=1 is remarkably similar to that df =0 although

for L=1 the rapid rise near the threshold is not as sharp fogy g gap. The ERT confirms that the variational resae

L =0 and the Ramsauer minimum occurs at a higher energ¥satisfy Wigner's threshold lad5].

The similarity ofK, for the two partial waved. =0 and Figure 8 compares the ERT fit of,, with the variational
1, is at first surprising, because there is a repulsive angulagsylts[14]. It shows that the ERT fit and variational results
momentum barrier fot =1, but not forL=0. We argue in  55ree well near the positronium formation threshold, and rea-
Sec. IV that this similarity is expected on the basis Ofsonaply well for the entire Ore gap. There is a disagreement
Mathieu’s equation, where there is an effective inverted ospetween the ERT and variational results very close to thresh-
cillator “potential,” as well as a constant-energy-like term, 5|4 que to the disagreement it,, between the two sets of
— (L +1/2)%, for all partial waves. The combination of these resylts. However, bk, =0.71 a.u., the ERT and variational
two terms means that there are barrier penetration effectg.gts agree to within 13%. The cross sectiog rises rap-
present even fo =0. These effects were discussed in Ref-idly from threshold to a peak value of ’2}33 at k,

[45] using a top-of-barrier theory employing parabolic cylin- _q 716 4., decreases to zero at the Ramsauer minimum,
der functions, and are furt_her dlscusseq in Sec. IV. and then increases slowly with energy up to the2 thresh-

The ERT calculation gives the maximum Ky, at ki 14 of hydrogen. This behavior is well reproduced by the
=0.725 a.u.and the Ramsauer minimurkabetween 0.77  gpt ‘indicating that the structure has its origin in the strong
and 0.78 a.u. At the maximuiki,;=0.2798. The maximum  5|arization potential in this particular channel.
in the eigenvalue of th& matrix K,,, corresponding to the
positronium-proton channel, occurs kf=0.717 a.u. The C. Results for L =2
eigenphased,,(5,,=tan 'K,,) at the maximum ofK,, is
0.134 which is approximatelyr/24=7/8(2L+ 1) for L
=1.

The sharp rise oK, close to the positronium formation
threshold indicates ah=1 resonance in the positronium-
proton channel. We searched for a pole in the single-channe! 06
S matrix corresponding to the elastic positronium-proton 5 g
scattering, although we recognize that the coupling betweer~ 05 [ h
the two channels is not generally negligible for 1. Near I : - :
threshold all elements of the matrix vanish, and the single-
channel ERT of FabrikariB4] with a constanM gives a first
estimate of the pole location. We found a pole lgt
=0.095-0.16B or equivalently at an energ§t2=k§/4= E,
—i(I'/2)=—0.0048-(i/2)0.016. The pole is at a negative
energyE, and the widthl" is positive and relatively large, of
the order of 0.1 times the width of the entire Ore gap. We ®
interpret this pole as a resonance with a negative-energy pa I . ‘ . ‘
sition. Since we used the single-channel approximation, this %5 o os oes o7
calculation only suggests the possibility of a resonance. Positron Energy k.2 (Ry)

Figures 6 and 7 compare the ERT and variational results !

[14] of Ky, and o4, respectively. The agreement between FIG. 7. L=1 partial contribution to the cross sectitin units of
the ERT and variational results is excellent close to the posra2) for positronium formation vs the energy of the incident pos-
itronium formation threshold, and very good over the entireitron (in Ry). See the caption of Fig. 5.

01 ]

0.05 [ ]

FIG. 6. L=1, Ky, vs the energy of the incident positrén Ry).
ee the caption of Fig. 5.

In Table Il we give theL =2 quantum defect parameters
7p, B, andG. We fitted the short-rangé matrix K”° using
data from the inverse Kohn variational calculation of &e
matrix [14,42 at k;=0.75 a.u. In Table | we give the

0.4 [ ]

0.3 [ .

1) (in units of na
O

02| .

12(L
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0.5 0.55 0.6 0.65 07 Positron Energy k" (Ry)

Positron E k2(R
ositron Energy k" (Ry) FIG. 9.L=2, Ky, vs the energy of the incident positrén Ry).

The open circles are the inverse Kohn variational reqults42.

eThe solid line is the multichannel ERT fit to the inverse Kdkn
matrix atk;=0.75 a.u. The crosses are the E8PS re$dlt$ The
dashed line is the multichannel ERT fit to the E8RSnatrix at

fitted elements oK ”°. We used the inverse Kohn rather than kK1=0.75 a.u.

the Kohn results, since we are inform| that the former .
are more reliable 2] results ofK,, are. Atk;=0.71 a.u.K,, of the inverse Kohn

We also fitted the short-range mat#€® using the alge- Ccalculation is about a factor of 10 smaller thkp, of the
braic enlarged eight pseudostate Harris-Nesbet E8PS calcE8PS calculation. Humberstat al. [14] stated that theit
lation of Gien[22] at k;=0.75 a.u. We give these fits =2 results are less well converged than the#0 and 1
in Table I. The wave function in the ESPS scheme isfesults, and that thelt=2 results are probably less accurate
; oo than those of Gieh22]. ForL=0 and 1 there is much better
comprised of the (pseud(?)states H(%,2s,2p,3d) and. agreement between the inverse Kohn and E8PS results than
Ps(2s,2s,2p,3d) together with a large number of correlation

. o there is forL=2. This is in accord with our findings. For
terms. The dipole polarizability of H() _and Ps(%) [@] instance, ak;=0.71 a.u. the twaab initio calculations of

were taken into account by the H§P and Ps(®) K, agree within 3% fol.=0 and 1, but disagree strongly

pseudostates, respectiveld4]. The H(3d) and Ps(8) forL=2.

pseudostates were used to take into account the quadrupole Figure 9 showsK,, vs the positron energy. This figure

effects. compares the ERT fit to the inverse Kohn and E8PS results,
The inverse Kohn results ¢f,, are not in accord with the as well as theb initio inverse Kohn and E8PS calculations.

MERT of O’'Malley et al's [37] Eq. (2), whereas the EBPS The two ERT calculations agree well near threshold and both

FIG. 8. L=1 partial contribution to the cross sectifin units of
wa(z,) for elastic positronium-proton scattering vs the energy of th
incident positron(in Ry). See the caption of Fig. 5.

TABLE lll. Values of quantum-defect parameters for 2. Positive energies 0.85kf<6. Numbers in
brackets denote powers of 10.

kf ko B 7 nl g
5[—-2] 5.893 —2] 2.759 - 2] —3.1420] 1.00Q0] 1.33714)
1[—-1] 1.179 - 2] 5.519 —2] —3.1410] —9.999-1] 3.3403]
2[—1] 2.357—2] 1.104 —1] —3.1410] —9.997—-1] 8.3392]
3[—1] 3.534 —2] 1.659 —1] —3.1390] —9.993-1] 3.6942]

4 -1] 4.714 -2] 2.204 -1] —3.13§0] —9.98§ —1] 2.0692]
5[—1] 5.893 —2] 2.747-1] —3.1360] —9.983 -1] 1.3172]
6[—1] 7.071-2] 3.283 1] —3.1340] —-9.977-1] 9.0861]
71—-1] 8.25Q —2] 3.810 1] —3.1320] —-9.970-1] 6.6291]
8[—1] 9.428 - 2] 4324 -1] —3.1300] —9.964 —1] 5.0281]
9[—1] 1.061 1] 482§ —-1] —3.1280] —9.958 - 1] 3.9341]
1[0] 1.179-1] 5.311—-1] —3.1270] —9.99§ -1] 3.1571]
2[0] 2.357—1] 9.055 —1] —3.1280] —9.95 —1] 6.7670]
3[0] 3.53¢ —1] 1.0830] —3.1750] —1.0110] 2.4620]
4[0] 4.714-1] 1.1390] —3.2660] —1.04Q0] 1.1120]
5[0] 5.893 —1] 1.1430] —3.3880] —1.0780] 5.664 —1]
5.66Q0] 6.671—1] 1.1320] —3.4790] —1.1080] 0.379 1]
6[0] 7.071-1] 1.1250] —3.5290] —1.1230] 3.066 — 1]
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8 F T T T T 0.3 T T T T
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c 4F ) 7 « 0.5 [
3 : ] 01|
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o 1k = 0.05
P A S E N TS Rt 0:,,,‘|,..|..x‘..,|,‘:
0.5 0.55 0.6 0.65 0.7 0.5 0.55 0.6 0.65 0.7
. 2
Positron Energy k “(Ry) Positron Energy k‘z(Ry)
FIG. 10. L=2 partial contribution to the cross secti@in units FIG. 11. L=2, K4, vs the energy of the incident positrgm

of 7a3) for elastic positronium-proton scattering vs the energy ofRy). See the caption of Fig. 9.
the incident positrorfin Ry). See the caption of Fig. 9.

) IV. TOP-OF-BARRIER ANALYSIS
satisfy the MERT of O’Malleyet al.[37]. The E8PS calcu-

lation and the corresponding ERT fit agree well lat The ERT fits toab initio calculations show that the con-
=0.71 a.u., and agree reasonably well over the entire Orsiderable structure in the positronium-proton channel relates
gap. In contrast, the inverse Kohn results<gf, are too low  closely to the large effective polarization potential in that
near threshold. We suspect that the polarizability diBds  channel. It should, therefore, be possible to interpret the
inadequately described in the inverse Kohn results neastructure solely in terms of positronium motion in a polariza-
threshold. This effect is remedied by using the inverse Kohnion potential. In this section we show that Wigner’s thresh-
results at an energy away from threshold then extrapolatingid law relates to tunneling through a barrier. The barrier is
to threshold using the multichannel ERT. due to the combined effect of a repulsive centrifugal-type
The behavior oK, for L=2 is similar to the behavior of  term (L + 1/2)2/2p? and an attractive polarization potential
Kz, for L=0 and 1. It rises from the threshold, reaches a_ ,/2,4 wherep is the Jacobi coordinate of the center of
maximum and then decreases with increasing energy up t@ass of positronium with respect to the proton. Qualita-
then=2 threshold. The ERT fit oK, to the E8PS calcula-  yely, such tunneling ceases at an enekg2u greater than
tion has a maximum valug of 0.24171at=0.7783 a.u. The iho height of the barrier, thus this would suggest that
maximum occurs at a higher energy for=2 than forL _rises with energy ak(2L+l/2) up to an energy of the order of

=0 and 1, a_md the rise from threshold is not as rapid. This ig, top of the barrier, after which it would vary much more
in accord with Eq.(2)._ . . slowly. This aspect of the dynamics is included in the ERT
We'found a po[e n th'e smgle—channﬁlmatnx'corre- via the Mathieu functions and is seen in the ERT fits reported
sponding  to ellastlc. positronium-proton scattering kgt i gec 1. In this section we relate this behavior to top-of-
=0.2569-0.3139which corresponds to an energy Bb= 5 rier motion using a formula we employed in connection
—0.008-0.04 Thus, as fo. =1, the pole is at a negative i our=1 hyperspherical hidden crossing calculations of
energy and the width is larggelative to the Ore gapand Ref. [29].
positive. It corresponds to a resonance with a negative en- rnnejing through a barrier can be treated via the WKB
ergy position.
Even thoughK,, decreases with energy after its maxi-

mum, it does not vanish in the Ore gap, and thus, urllike T T
=0 and 1, there is no Ramsauer minimum for 2. How- _ 1ot g
ever, the diagonized matrix elemelt, does go through Ng" i F
zero before then=2 threshold. Thus the second eigenchan- % :
nel shows a Ramsauer minimum, even though the physical £ 0.8 F
second channel does not. The value of the eigenphase correg o6 b
sponding to elastic positronium-proton scattering is approxi- g :
mately /40 at the maximum. 2 04l
Figures 10, 11, and 12 showw,, K,,, ando;,, respec- 0" o2 b
tively, vs the positron energy computed using the ERT fitted i ]
to the inverse Kohn calculation, and the E8PS together with U S
0.5 0.55 0.6 0.65 0.7

the ab initio inverse Kohn and E8PS calculations. The fitted
E8PS and theab initio E8PS calculations agree well near
threshold, and reasonably well for the entire Ore gap. The F|G. 12.L=2 partial contribution to the cross secti@n units
peak value ofry, from the ERT fit to the E8PS calculation is of ra2) for positronium formation vs the energy of the incident
777a§, and occurs ak,=0.747 a.u. positron(in Ry). See the caption of Fig. 9.

Positron Energy k‘2 (Ry)
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approximation; however, that theory can only be used foturning points R; andR,) are close together, thus the ex-
energies well below the top of the barrier. It is necessary tgression in Eq(28) was used.
go beyond the WKB approximation to interpret the threshold In Ref.[29] we consideredT|? for L=1. Here we dem-
region. Two theories have been given which do this. One isnstrate that a barrier is present evenlfer0, where there
the top-of-barrier theory of Reff29] and[45], which places is no centrifugal barrier. Because of the significant effective
tunneling and motion above the barrier on an equal footingpolarization potential in the positronium-proton channel one
and is described in this section. The other is the “quantunshould use Mathieu functions to propagate the wave in the
suppression” analysis of Reff36] discussed in Sec. V. positronium-proton channel to large distance. Vogt and
The cross section that takes into account tunnelingvannier[38] showed that the solutions to the Scotlirmer
through, and motion above, the barrief.[29]) is given by  equation, corresponding to the polarization potential
—al2r*, are given byr'”M . [In(kif)¥%r]. They satisfied

o9 =[T|?s{y(HC) (27)  the equation
where o{5)(HC) is the unmodified hidden crossing cross , & d 1\2 L
section, ando{3 is the hidden crossing cross section that |X gzt X gy ~| L+ 3] TKI(x*+x"9) M. [Inx]=0,
takes into account motion below and above the barrier. In (32)
Eq. (27), |T|? is the transmission modulus squared, and is
given by where the radial variableis related to the scaled variabte
by x=(k/f)?r. A further change of variable= e reduces
2 1 this equation to the standard form of the Mathieu equation
i :1+exp(2 a)’ (28)
™ dZ 1 2
where forE=(k3/21) — 0.25<V(Rrog), (d_goz_ L+3 +2ka°5“2¢)) M- (¢)=0. (33
1R — The change of variable= (k/f)¥?r [39] introduced the
a= ;JRl 2(v(R)—-E)dR, (29 Langer factor [ +1/2)>—L(L+1)=1/4. Thus there is a re-
pulsive centrifugal-type termlL(+ 1/2)?/r? present even for
and forE>V(Rropg), L=0. The repulsive term and the attractive polarization po-
tential result in a barrier even fdt=0. The transmission
R modulus squaredT|? for tunneling through the barrier is
a= 7JR1 2(E-V(R)dR. (30) given by Eq.(28), where the parametexis written as

In Egs.(29) and(30), Ris the hyper-radius, anB;qg is the _ i "2\/—_
top-of-barrier position. In Eq29), R; andR, are the zeros a ) py 2pn(V(p) ~E2)dp, (34

of g(R) =v2(V(R) —E)dR, whereas in Eq30) R,=R% are

the complex roots ofi(R) = y2(V(R) —E). In Ref.[29], we  using Jacobi coordinates. In EG4), p; andp, are the real
considered two potential3/(R), namely, V(R)=¢5(R) roots of yV2u(V(p) — E,). Equation(34) is the appropriate
—3(1/4R?) =e,(R), in accordance with the hidden crossing form for the parametea for V(p)>E,=k2/2u. The form
theory[Eq. (10) of Ref.[29] or Eq. (4.14 of Ref.[47]] and  appropriate forV(p)<E, is analogous to EQq(30). The
V(R)=¢,(R)— 3{,|(d?¢,/dR?)) in accordance with the asymptotic form ofV(p) contains just two terms, the repul-
one-Sturmian correction to the hidden crossing thg@y.  sive term and the attractive polarization potential:

(17) of Ref.[29]]. The asymptotic form o¥/(R)=¢,(R) is )

given by Eq.(105) of Ref.[48]. The asymptotic form of the V(p)— (L+12°  a (35
potential V(R) =¢,(R) — 3(¢,|(d?¢,/dR?)) is given by P 2up®  2p*

Egs. (107 and (109 of Ref. [48]. It contains a repulsive

centrifugal termL(L+1)/2up? and an attractive polariza- With the asymptotic potential, the integral far can be
tion potential— a/2p* as well as a small repulsive d po-  evaluated analytically. One obtains

tential that is unique to the hyperspherical theory. In Ref.

[29] a barrier was noted in both potentials for=1. L+1/2 1-b 13 _1-b
A strict application of the hidden crossing theory would a=— \/ﬁZFl E'E'Z’H ' (36)
also have a factofT,ykg|?, but that factor would only in-
clude tunneling, i.e., where
|Twiel’=exd —2mal, E<V(Ryop), (3D 2 ak,
= (37
| Twiel?=1, E>V(Rrop), (L+1/2)

whereRog is the top-of-barrier position. It was recognized  Expanding Eq(36) about the threshold energy for posi-
in Ref. [29] that the WKB factor is not reliable when two tronium formation gives
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0,008 [T T T T T T T T V. QUANTUM SUPPRESSION

«, 0.005 [ 5 e ] In Sec. IV we saw that the WKB approximation to the

g : T o o© < Mathieu functions accounts only for Wigner’s threshold law,

E 0.004 - g@ ] but fails at an energy as small as 5.40 ° a.u. above the

E E threshold. The reduction of excitation cross sections below

g 0003r 1 the expected WKB value has been called “quantum suppres-

& p.o6s E ] sion,” and has been analyzed for a model system by Cote

S r ] et al.[36]. To determine whether the near-thresh8ldiave

o 0.001 b ] cross section for positronium formation is a physical ex-

E ] ample of quantum suppression, we applied the analysis of

ey Ref.[36], where the suppression is related to a fa&pthe
-0.02 0 0.02 0.04 0.06 008 0.1 ratio of the quantum-mechanical probabilitg {)) for enter-

Positronium Energy k74 (a.u) ing the well to the semiclassical probabilitiK{,), i.e.,
FIG. 13. Comparison of the TOB factpF|2 with the variational

results[14] for the Swave cross section for positronium formation p— qu (39)

o1(L=0). The TOB factofT|? for the figure is normalized at the Kse'

peak in the variational resultsk{=0.077 018 a.u.k§/4: 1.482

x10™% a.u.). The open circles are the variational results. The solidyhere

line is the factod T|?.

o B Gl U pt)|2 sirRs, (40)
2 k + qm™— out, % 2_ Pin (ORI
|T|2%e*27Ta~ 8(L’U/;-¥/22)2> . (38) |U (pout)|
+

and &, is the Swave phase shift. The functiom(p) is the
Swave solution to the Schdinger equation, normalized ac-
Hence the cross section for positronium formation using Eqgscording to
(27), (28), and (36) correctly satisfies Wigner's threshold
law. We see the importance of the repulsive centrifugal-type out sin(k,p + 8p)
term (L+ 1/2)%/2up? to obtain Wigner's threshold law. At u (P)NT&)- (41)
the top of the barrieh=1, a=0, and|T|?=1/2. Using the
asymptotic form of the potenti@Eq. (35)] the position of the

e pe : The radiusp?, is where|ull, 5| reaches a local maximum.
top of the barrier is estimated to be aprop

We took R* = 2p* to be at the minimum of the hyper-
— H _ 1,2 n n

- Vzﬂa/(|;+1/22) and t_he height t0 D&/max=k7os/21t spherical potentia ,(R) — 3(¢,|(d?¢,/dR?)). We obtained
_(L_+ 1_/2) /8"_‘ a. ForL=0, the position c_>f the top of the the hyperspherical potential by using the finite element
barrier is estimated to bp=24 a.u., or in terms of the method to compute}(R) = &,(R) — & (1/4/R?) [49], and us-

hypgr—rgdius to be aR=34 a.u. The height of thd>_'=0 ing the asymptotic form of the second derivative term, to
barrier is extremely small, namely, 0.000 054 a.u. This smal rder 1R*, of Ref. [48]. Furthermore, we obtained(p*)
’ . . ' in

val nts for th n chan f th itroni . .
alue accounts for the sudden change of the positro urBy evaluating ap;, the long-range form of the wave function

formation cross section near threshold. Evenliet1, the o . " . o .

energy corresponding to the height of the barrier, 4_4¥vh|ch IS wntt(;an n telr.msdof Imeg_r combmi\tmcnl of I_\/Ialtlhleu
X103 a.u., is considerably smaller than the region of ap_tﬁnctlops, ?nh norrrgal;;? chor_ Ing to EEQI ()j assmaf ¥ q
plicability of the ERT. e ratio of the probability density per unit distance of find-

Figure 13 comparel|2 with the variationa[14] Swave ing the particles inside and outside the well is given by

positronium formation cross section. For the purpose of the

figure, we normalizedT|? at the peak of the variational re- K
sults of oy, (k,=0.077 01 a.u.). It can be seen thi@}? has c!
the correct general behavior, namely, a very steep rise near

threshold followed by a more gently rising plateau. At thewhereD is the depth of the well36].

cross-section peak, the positronium kinetic enekgf2u is Figure 14a) compare, |T|%, oL =0), and|Tyxs|?.
about five times the height of the potential of the top of theFor plotting purposes we normalized the variational results
barrier, i.e., well above the top of the barrier. Although?  to unity atk,=0.077 018 a.u. There is reasonable agreement
is similar to the shape of the positronium formation crossbetweenP, |T|2, ando (L =0) over a wide energy range,
section, it fails to reproduce the small peak in the variationabut | T\g|2, even with the Langer correction, is quantita-
results[14] and in the ERT fit{see Fig. 3. This small peak tively incorrect over most of the region. Figure(bfshows

is probably due to the reflection from the barrier back intothe threshold region in a more detail. The raRoin the

the interaction region omitted in the top-of-barrier theory.vicinity of the threshold scales approximately as the square
Aside from this effect, the top-of-barrier theory accuratelyroot of the depth of the potential well. Interestingly, if one
represents the structure seen in the more complete ERT. approximates for the depth of the wBllby the magnitude of

1/2

K2/2
Chuai (42)

k3/2m+D
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1.2 et tichannel ERT to analyze partial wave cross sections for pos-
i ] itronium formation in positron-hydrogen collisions. In addi-
tion to the ERT's, we used the top-of-barrier thef2@| and
quantum suppressiof86] to explore the threshold region.
All the approaches take into account explicitly the significant
polarization potential in the positronium-proton channel. The
multichannel ERT, the top-of-barrier theory, and quantum
suppression give the correct threshold behaviorSavave
positronium formation, and confirm that the range of validity
of Wigner's threshold law is very narroji5]. We find that
r the multichannel ERT fit even reproduces the small peak
0 o o ;os; P '01 ' ;“;15 502 near threshold in the variational results, while the more ap-
Positronium Energy K 24 @u) ' proximate top-of-barrier and quantum suppression factors do
not. For bothL=0 and 1, the multichannel ERT fit to the
LI e B L o PR variational calculations generally agree well with i ini-
I ] tio calculations. Fol. =2, the multichannel ERT fits indi-
0.8 - ] cate that the variational calculatiofis4,42 are not reliable

I ] near threshold, whereas the E8PS calculations seem to be
reliable.

The largeSwave scattering length in the positronium-
proton channel is indicative of a virtual state. We located the
pole in theSmatrix that corresponds to tigwave virtual
state of the positronium-proton system. The pole is displaced
from the negative imaginaryaxis because of the long-range
polarization potential. The polarization affects the virtual
state by shifting the pole slightly away from the negative
imaginary axis. It also causes the phase shift to reach a maxi-
mum value of#/8 rather than~=7/2, as expected for short-

FIG. 14. (3 Comparison of the quantum suppression ratio 'aNge potentllals. It has long beer) recognized that Ramsauer
with the TOB factor| T|2, with the WKB factor| T2, and with ~ MiNima require a strong polarization poteniiD]. The vir-
the variational resultgl4] for o1,(L =0) (normalized. For the fig- tual state in a strongly polarized system is an additional
ure we normalized the variational resulig;,(L=0) at k, structure that more recently has been reco_gn[ﬁchZI. .
=0.077018 a.u. K¥4=1.482<10"3 a.u.), which is at its peak _ For bothL=1 and 2 we found a pole in th& matrix.
value to the TOB factofT|?. The dash-dotted line iB, the solid Be_cause_t_he positioB, of the pole is negative but the W'd_th
line is|T|?, the dashed line iT\kg|?, and the open circles are the I is positive, the p‘?'_e corresponds to a resonance with a
normalized variational resultgb) Comparison between the quan- N€gative energy position.
tum suppression ratiB, the TOB facto| T|?, and the WKB factor The behavior of the eigenphase corresponding to the
| Twkal? very close to the positronium formation threshold. @ge  Positronium-proton channel is remarkably similar for all an-
gular momenta. Fob. =0, there occurs a virtual state, and

the polarization potential at}, the ratioP is brought in quite for L=1 and 2 a resonance at a negative energy position.

. 2 Lo There is a Ramsauer minimum iy, for L=0 and 1, and in
good agreement with the factgF|* for a positronium energy : ~
k§/2,u to about 0.001 a.u. the diagonal elemer,, for L=0, 1, and 2. Between the

We conclude that near-threshddvave positronium for- threshold and the minima, the eigenphase has a maximum

mation is an example of quantum suppression. The quantu%talmfa Of;]T./B(ZLJ.F 1). Welhav:e not found a 5|mplgdexple}r}a-
suppression effects are satisfactorily modeled by ERT wittflon for this maximum value. It appears to an accidental fea-
the exact Mathieu functions, the top-of-barrier wave func-ture of the positronium-proton channel not present in other

tions[45], or the quantum suppression factr systems. . . -
[45] g PP In this paper we consider positron-hydrogen collisions

specifically. However, many features of positronium forma-
VI. CONCLUSIONS tion and the elastic positronium-proton cross sections should
be similar for all neutral targets, owing to the strong polar-

Positron-hydrogen scattering is rich in low-energy fea-.~ ° 2 O 2
tures, including Ramsauer minima, virtual states, resonanceﬁiat'on potential in the positronium-ion channel. One notable
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threshold phenomena, and quantum suppression. These f 'f_fere_nce_for po_sitron-alkali collisions is that positronium
tures emerge in effective range theories that employ exa rmation is possible at zero energy, E.ind that at £Er0 energy
expressions for the Mathieu functions. The single-channel’€ SWave cross section for positronium formation is infi-
ERT of Fabrikant[34] and the multichannel ERT of Wa-
tanabe and Greer83] use the exact expressions of the char-
acteristic exponent and ratiom from the Mathieu functions.
We used both ERT’s to analyze partial wave cross sections We appreciate discussions with Dr. I. |. Fabrikant, Dr. T.
for elastic positronium-proton scattering, and used the mulT. Gien, Dr. J. Humberston, and Dr. P. Van Reeth. We thank
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AC05960R22464 with the U.S. DOE. value ofk; and negativek, .
To see how these properties are modified by the polariza-
APPENDIX: VIRTUAL STATE AND RESONANCES tion potential, consider the estimate of the pole position us-

o ing the first two terms of the MERT. One finds
The association of large, low-energgwave cross sec-

tions with loosely bound states or virtual states is a standard

topic in elementary scattering thed®3-56. The basic fea- 1 Tpa 1
tures of these states and resonances is well known for short- a, 3a2 =
; . X X e . 0 °8p 0
range potentials. In this appendix, we discuss what modifi- ko=kzp=k; +ikj= > 5.
cations occur to the position of a virtual state pole for 1 77“2“) (““g
=0 and to a resonance pole for-0, owing to the presence 3a; 3a;
of the polarization potential. (A5)

We first recall some basic mathematical features of virtual
states for short-range potentials. For single-chaithebve  Because the scattering length is negative, bptandk; are
scattering, the radial wave function has the asymptotic forrmegative, i.e., the pole is shifted slightly off the negative
_ _ imaginary axis. Only in the limiting case— 0 is the pole on
u~N[e ' —sé"], (A1) negative imaginary axis & =i/a,.

o In the energy plane the pole occurs at
wherek can be any complex number. The function is ana-

lytically continued from positive real energy to negative en-
ergy by the replacememt=ix, k>0, then K2—k?  2ik,k;
E2p:

0 o (AB)

u~N[e —Se&"]=Ng S e —e ~]. (A2)

For L=0, the imaginary part oE,, is positive, i.e., the

For a bound stateS‘l_zo, i.e., S has a pole. For single- widthI" is negative. The pole does not correspond to a reso-
channel scatteringS=e'?%, so that a pole corresponds to nance but to a virtual state shifted off the imaginary axis.
cot&=i. Using the first term in the ERT to write cé§as a  The effect of the polarization potential is to shift the position
function ofk, and solving the equation cé§=i, gives a first  of the pole in thek plane toward the left from the position it
estimate of the bound-state energy would have for a short-range interaction. If one uses the ERT
of Fabrikant 34] with constani, rather than the MERT, the
position of the pole moves t&,,=—0.000 34+ 0.000 02,

o~ i (A3) butE, andI" are still negative.
ag For short-range interactionk,cotd, is an analytic func-
tion of energy, however, this is not the case for inverse
The zero-energy cross section is given by power-law potentials. The nonanalyticity can be traced to the
nonanalyticity of the ration [m=(fk)7], sincer is not an
integer. With the MERT we located a single pole to the left
(T:4’7Ta.2:4_ﬂ-: 2_77 (A4) of the negative imaginarl axis. We could not locate a mir-
O k% |Egl’ ror pole, i.e., a pole to the right of the negative imaginlary
axis; however, it could lie on a different sheet of the Rie-
which is large for a weakly bound state. mann surface.

The zero-energy cross section is also large if the scatter- There are examples of virtual states for long-range inter-
ing length is large and negative, but in this case there is nactions in which the position of the pole is displaced off the
bound state. Rather, the pole is at negative imagikagnd  negative imaginaryk-axis. For instance, Herzenberg and
the wave function increases exponentially at large distanceSaha[46] obtained a virtual electron state in a weakly polar
The corresponding state is unphysical, and is given the nammolecule. The state is predominatéywave character. The
virtual state. It can be considered as a new bound state abotatil of the potential is a dipole potential. The pole which
to be born[46]. Thus large, low-energ@wave cross sec- corresponds to a virtual state is off the negative imagirkary
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axis, and, to the left of it, on the physical sheet of the Rie-Using the single-channel ERT of Fabrikant with constsint
mann surface(The first sheet is defined by a cut along thewe found poles ak,,=0.095-0.16B for L=1 and atk,
negative real axiy.There is a corresponding pole that is =0.2569-0.3129for L= 2. In both cases the poles occur at
symmetric about the negative imagindnaxis, but this pole negative energies, but the width= — 4k, k; is positive. Thus
occurs on a different Riemann sheet. Other examples dhese poles correspond to resonances at a negative energy
poles off the negative imaginary axis that do not corre- position. As forL=0, the effect of the polarization potential
spond to resonances have been given by Fabrilghb67, s to shift the pole in thé plane to the left. FoL=1 and 2,
and Hill et al. [58]. the magnitude of the real part of the pole in thplane|k|

The Mathieu functions with angular momentw0 are  has been reduced to be less than the magnitude of the imagi-
not qualitatively different from those with=0. ForL=1  nary part|k;|. This has the consequence that in the energy
and 2 we also located poles in the single-char®miatrix.  plane the positior, of the pole is negative.
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