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Symmetry of the atomic electron density in Hartree, Hartree-Fock, and density-functional theories
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The density of an atom in a state of well-defined total angular momentum has a specific finite spherical
harmonic content, without and with interactiomspproximatesingle-particle schemes, such as the Hartree,
Hartree-Fock, and local density approximations, generally violate this feature. We analyze, by means of
perturbation theory, the degree of this violation and argue that it is small. The correct symmetry of the density
can be assured by a constrained-search formulation without significantly altering the calculated energies. We
compare our procedure to tlidifferen) common practice of spherically averaging the self-consistent poten-
tial. Kohn-Sham density functional theory with tle&actexchange-correlation potential has the correct finite
spherical harmonic content in its density; but the corresponding exact single-particle potential and wave
functions contain an infinite number of spherical harmonics.

PACS numbd(s): 31.15.Ew

I. INTRODUCTION yielding single-particle states with good angular momentum
guantum numbers and a resulting density of the form in Eq.
Single-particle descriptions of electronic states and densicl). Such spherical averaging is of practical utility as it
ties in atoms date back to their earliest models. Most of thengreatly reduces the numerical effort involved in carrying out
involve the motion of individual electrons in some effective the approximation schemd$§]. Nevertheless, the Hartree,
potential due to the nucleus and the other electrons; Bohr'siF, and LDA may all be expressed in terms of variational
early analysis of some atomic spectra involved this {dda principles, implying that the use of spherical averaging leads
With the advent of wave mechanics, the idea took on th&o an overestimation of atomic energy levels. To our knowl-
form of solving single-particle Schdinger equations with  edge, the quantitative effect of this has only been checked in
this effective potential. Prominent examples are the Hartreg small number of casdd,8]. The effect is thought to be
and Hartree-FockHF) approximationg2—4], and density-  small since the resulting energies for many atoms are in quite
functional theory(DFT) [5]. Of these, only DFT provides in good agreement with experimefi.
principle an exact description of electron densities with their  |n this paper, we will examine this, to our knowledge
proper truncated spherical harmonic content. In practice, ongyrgely unexplored, issue in some detail. Using a perturbative
is forced to adopt an approximate form for the exchangeapproach, we will demonstrate that the inappropriate spheri-
correlation potential, such as the local density approximatiozal harmonic components appearing in the self-consistent
(LDA). In carrying out such calculations, one computes thejensity (without spherical averagingare generally quite
electronic states and effective potential iteratively, yleldlng asmall. (An exactDFT calculation WOU'd, of course, y|e|d the
self-consistent potential and density. exact density with the correct spherical harmonic content.
The spherical symmetry of the nuclear potential yieldswe then develop a constrained search principle to modify the
states of well-defined angular momentum. However, excepjariational principles involved in the Hartree, HF, and DFT
for Sstates, the resulting electron densities are genenally  approximations to guarantee that the resulting density has the
spherically symmetric.§ states and their spherical densities correct form of Eq(1). We show in the context of the Har-
present no problem and will not be further consideréd  tree approximation that this approach generates energies that
we shall see below, in states of well-defined angular momenare only slightly higher than those from the unconstrained
tum quantum numberis andL,, the exact densitp(r) may  approximation.
be decomposed in thinite series It is interesting to consider in more detail the implications
of Eq. (1) for exactDFT. Being exaci5], it is unnecessary to
- R introduce constraints to guarantee this “symmetry” of the
n(r)= E n2|(r)Y2,(Q), (0] density. What is the angular symmetry of the exact effective
1=0 single-particle potential entering the Kohn-Sham equations
_ that guarantees that the density will have this form? A natu-
where then,(r) are radial functions ani9, (1) are spheri- ral but incorrect guess would be that the Hartree and
cal harmonics. exchange-correlation potentials together sum to a potential
The self-consistent densities obtained via the approximathat is spherically symmetric. In fact this is generally not
tion schemes described above do not have this form. Thigue: the effective single-particle potential contains spherical
form canbe and often is obtained by introduction of a further harmonic components ddll even orders(A concrete ex-
approximation that, however, violates the minimum prin-ample of this is presented in Appendix)Andeed, it has
ciple: the effective potential may be spherically averagedbeen shown[10,11] that a unique, spherically symmetric
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single-particle potentiady(r) may be chosen to match the the expansion for the delta function into the expectation
spherical componemy(r) of the density; it is possible to value of the density and using the above observation directly
formulate an alternative to the Hohenberg-Kohn theorenyields Eq.(1).

based solely omgy(r) [10]. However, the resulting potential

yields incorrect higher-order components of the density B. Infinite spherical harmonic content in the Hartree and

N, (r) (1>0). Thus, there is a kind of complementarity: if Hartree-Fock approximations

one insists that the density has the correct truncated spherical The decomposition of the phvsical density of an atomic
harmonic content for an interacting state of well-defined an- P phy y

gular momentum, the effective single-particle potential will state 't?] sthetncaI r|1_|aFrmond|cs consllststof[?':f_:_nltel st(_arlest.ntl.zlow—
not have spherical symmetry and the single determinant 'S € Hartree, Hi, and approximate solutions

model wave function wilhot have good angular momentum produce d.ensitiefs .With this propgrty. For examp'.e' suppose
guantum numbers. By contrast, if one insists that the singIeWe could find a f|n|t_e decomposition for the density in the
particle potential be spherically symmetric, the correctHartree approximation,

spherical harmonic content of the density of the interacting I max
state cannot be reproduced. nH(r)= n(r)Y(Q).
The remainder of this paper is organized as follows. In =0 (leven)

Sec. Il, we first give the proof of Eql). By a perturbative ] ) ] ] ]

approach to the Hartree approximation, we demonstrate thdthe effective single-particle potential contains a term of the
the deviation of the density from its appropriate symmetry isform

actually quite small in a specific exampla helium triplet .

statg, and comment on related results for the HF approxima- )\ezJ' d3r’n (r')

tion and LDA. In Sec. Ill, we formulate a constrained-search Ir=r’|’

approach to single-particle approximations for the density,

which we apply to the Hartree approximation and the LDA.ywherex (0<\=<1) is a parameter by which we may switch
We summarize our results in Sec. IV. Finally, two appen-on the electron-electron interaction, which will be useful be-
dixes are included. In Appendix A, we discuss a two-electronow. This term has a spherical harmonic decomposition with
harmonic atom with interactions and show explicitly that themaximum I =1,,,,. The effective potential in the single-
density of its lowest triplet state cannot be reproduced by @article Schidinger equation multiplies a wave functiaft

noninteracting system in a spherically symmetric effectivetor a single-particle state of azimuthal quantum numiver
single-particle potential. Appendix B contains some details— g this may be expanded as
of the numerical calculations.

|r
max

R o <

Il. SPHERICAL HARMONIC CONTENT OF THE o(r)= E Y (Y (Q). (2
DENSITY 1"=0

A. Finite spherical harmonic content of the density When multiplied by the potential, the resulting products of

We beain b ing Ea(1) of the Introduction b spherical harmonics may be expressed as linear combina-
€ Degin by proving Q(.) or the Introduction by @ o ,q of single spherical harmoniCﬁ?, with a maximum
standard application of the Wigner-Eckart theorem. Consider The other

- N N )

an atom in a statl,M) with total orbital angular momen- nonvamshmg cgnt.rlbutlon frqrﬂ—lmaXJrlmax. . .

tum L and total azimuthal angular momentdn=M along terms in the Schminger equation, however, contain spheri-
. !

the z direction. We ignore spin-orbit coupling, so that the €& harmonics of ordet no greater tharl Thus, the

max*
orbital and spin states of the atom may be specified sepa2chr@inger equatiorcannotbe solved by wave functions
rately. We are interested in the expectation value of the op*=

expressable in a finite spherical harmonic expangixecept
o - - - " for the trivial case oL’ =0).
e, A s snon o v s oncaan . T densty produce fom thse wave funcions i gen
this context. i12] eral has no f|n|f[e spherical harmonlc expansion. Oqe way to
demonstrate this uses perturbation theory. The solution to the
1 w Hartree equations may be expressed as a power serles in
Sr—r)= —25(r—fi)2 > Yfm(ﬁ)\ﬁm(ﬁi), terms of higher o_rder involve mcregsmgly larger orders of
r (=0 m=—| spherical harmonics. When reorganized as a spherical har-
monic expansion, all orders will occur with each coefficient
< o . .being a power series in. It is not possible for these coeffi-
where() represents an angular direction in spherical coordi-_. ; .
M ) cients to vanish for arbitrary values if
nates. The sefY"({};), m=—1,—I+1,... |} constitutes As a concrete example, we analyze a two-electron atom in
an irreducible tensor operator with respect to the angulag triplet spin state with total angular momentum=1,
momentum operatok, and obeys the Wigner-Eckart theo- whose density is not spherically symmetric. Using perturba-
rem[13]. It follows that(L,M|Y{"(};)|L,M) is proportional  tion theory in the electron-electron interaction, we compute
to the Clebsch-Gordon coefficieftIMm|LIMm), which  the density in the Hartree approximation. The Hamiltonian
vanishes unlessi=0, 0<I=<2L, andl is even. Substituting for our system is
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1_, Z¢
——Véf——
2m ' oy

, 1 The Schrdinger equation arising in the Hartree approxima-
+het——, (3)  tion may be solved within perturbation theory by expanding
[Fa=ra| the effective potential, eigenstates, and eigenenergies in

whereZ is the nuclear charge. The fully interacting system isPOWers ofA. The first-order correction to the eigenstates sat-

given byx =1, and we will formally develop our perturba- isfies the inhomogeneous differential equation

tion theory in powers ofA. Alternatively, one may sek - -

=1 and consider an expansion of energy and density in pow- [HO_Si(O)]‘ﬁi(l)(r):[si(l)_ U(l)]qbi(O)(r)’ (6)

ers of 1Z, which is equivalent to an expansion in Physi- . . . .

cally, one should thus think of the smalllimit as the state wherei=0,1, and thﬁe f|rst—9rder Eorrecnon to the energies

of a highly ionized atom of largZ. The specific case we will - are (V= dr ¢{V* (r)UM(r) ¢{*(r). Because the density

focus on isN=2; thush=1 andZ=2 describes the helium n(®(r) contains only even spherical harmonics, so will the

atom. potentialU™®). It immediately follows that the wave function
In the absence of interactions, the state of interest to USorrectionsd)i(l) will have the same parity as the statﬁg))

involves one electron in aslstate and one in af2state that  from which they descend. Using the multiplicative properties
we take to be in then=0 state. It is easy to see that the of the Y|° gives
density of this state satisfies Ed.):

H= 2

i=1,2

nO(F) = | SO+ | (1) 2 $6=yo(NYH(Q) +ya(r) Y5(D),

= [Ryg(1) Y3(D) |2+ [Rpy(1) YY) B =y1(N YD) +ys(r) YD), (7)
=[cJeR1o(1) 2+ CHRo1(1)2]YI(Q) wherey;(r) are purely radial functions. _
Our development of the perturbation theory already illus-
+c§1R21(r)Yg(ﬁ). 4) trates one of the central points of this paper: We can see that

the effective potentiajlwhich we have computed to first or-

In Eq. (4), d)g)O) and ¢(10) are, respectively, thesland 2 d_er in )\_)_is not spherically symr_netric and the wave func-
states,R.(r) are hydrogenic radial functions, with the tions arising in the Hartree equation do not have well-defined

principal quantum number aridhe angular momentum; the angulgr momentum. By expanding both sid_e_s of &.in
i i . spherical harmonics and matching the coefficients for éach
coefficientsc;, are defined as . . - . .
J the equations for the radial functions may all be written in
. o ) R the form
Che= f dAYY (DY D) YD), o
[ho(1) — & Iyi(r)=1,(r), 8

) thatY?(ﬁ)YE(ﬁ)EEic}kY?(ﬁ).. The coefficients;, are _where
closely related to Gaunt coefficients commonly used in
atomic structure calculatior}9], and have properties similar 1
to Clebsch-Gordon coefficients; in particulal,=0 unless ho(1)=— >
i+j+kis even andj—k|<i<|j+kK|. It is these two prop- my
erties that guarantee the density of the noninteracting state ©)_ (0) ) )
has the truncated form in E¢L). The superscript (0) in Eq. ande[~’=gq” for evenl, 3 for oddl. The functionsf, are
(4) denotes noninteracting quantities=0). easily computed, and the equations may be solved numeri-
The Hartree approximation amounts to Se|f-c0nsistent|>ﬁa”y. This calculation will be presented in the next section.
finding two single-particle eigenstates, and &,, of ener- Once the radial functiong, are obtained, the first-order cor-

gieseg, &4, for noninteracting electrons moving in an effec- rection to the density in the Hartree approximation is found
tive potential by adding the squared wave functions and collecting terms of

order\. The resulting density may be written in the form

I(I+1)_§
2mr? r

d ,d
ar ar

Ze? () . . . .
vg'ffz—Tﬂezf d3r’|F ot (5 nM(r)=n{r)Y5Q)+n(r) Y3 Q) +n{P(r)YYQ)
: _
. . . ] with
where the density isi(r)=|¢o(r)|?+|#.(r)|?. To first or-
der in perturbation theory, we may write that potential as n{(r)=2cR1o(r)Yo(r) +2¢2Roq(r)ys(r),
)y
V- 2 e [ T_“f +o(?) (1) =263 Rucl1)Ya(1) + 265 Ror(1)Y ()
[ r—r'
+2C35Roy(1)ya(r),
z€ +AUA(r)+0(\?)
=—— r :
I ng(r)=2¢1Roi(r)ys(r). €]
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densitiesnfo)(r) appearing in the spherical harmonic decom-
position of the density for the noninteracting probléoi.

Eq. (4)]. Note that the magnitude of the offending spherical
harmonic component is quite sméthtio of maximum con-
tribution to root mean-square density 3:860 %), and that

the densities()(r) decrease very rapidly with increasihg
The reason for this is that at zeroth order, the dersityhe
noninteracting systenwvaries rather slowly as a function of
the angular variable. When interactions are introduced, such
a slowly varying potential has only a small amplitude for
scattering electrons into high angular momentum states; the
resulting density thus only has a small component of large
spherical harmonics. It is clear that this property is true at all
orders in perturbation theory: the effective potential entering
at any order will always have a much Iarg\ég component
than any other, leading to only small admixtures of high
angular momenta in the wave functions. Finally, although we
have illustrated this property in the specific context of a he-
lium triplet P state, it should be quite general for atoms.
Indeed, our model problem is in some sense a “worst-case”
example; for larger atoms, particularly ones with many
closed shells, the predominant spherical components of the
density will be even larger. This helps to explain the success
of using spherically averaged effective potentials in the Har-
tree approximation7].

Spherical averaging is also a common practice in applying
the Hartree-Fock approximatid®], and it is therefore of
interest to assess the extent to which Eg.will be violated
without such averaging. We again proceed perturbatively. In

addition to the direct potential Y)(r), there is now a non-
local exchange potential, to first order in perturbation theory,
and the corrections to the wave functions take the form

P =yEF () YD) +yEF (YY),
My (1)), (10

There is noY3 term in the wave functions because there is a
precise cancellation between the direct and exchange terms.
The resulting density, remarkably, has precisely the right
form—Eq. (1)—to first order, unlike in the Hartree approxi-
mation. In fact, one may demonstrate that the solution to the
HF approximation reproduces the correction to the density
exactlyto first order in the electron-electron interaction.

FIG. 1. Radial functions of the spherical harmonic decomposi- Unfortunately, this good property of the solutions to the
tion of the density in the Hartree approximation in a heligdrstate. ~ HF equations is limited to first order . This is most easily
Zeroth and first-order correctiofidesignated by superscripia the seen in the context of our model calculation for the Ple
electron-electron interaction are illustrated. Absolute magnitudesigte. The presence Omg component to the density ensures
fall quickly with increasing spherical harmonic indexdesignated  that the effective potential seen by either electron has a simi-
by subscripts (a) ng”(r), ng"(r); (b) nf(r), n§(); © nf2(r). o component. For the, state, this leads to a contribution

proportional tng(ﬁ), as in Eq.(10). At second order in,

Note that to this order in, only one “offending” spheri-  this necessarily produces a component in the density propor-
cal harmonicY3(€) appears. However, all even spherical tional to Y((}). However, the fact that the HF density has
harmonics would appear in higher orders in perturbatiorthe correct form to ordex implies that the magnitude of the
theory. Figure 1 illustrates the radial functian)(r) for the  violation will be even smaller than that found in the Hartree
present model problem, as well as the analogous zeroth-ordapproximation.
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C. Harmonic content of the density in density-functional
theory and local density approximation

The violations of Eq.(1) found in the Hartree and HF = Yolr)
theories daot occur for theexactDFT, which, by construc- ot 8
tion, produces exact densities. In practice, one must always
introduce approximations for the exchange-correlation en-
ergy and potential. To illustrate the point, we consider a
perturbative application of the local density approximation
(LDA) to our heliumP state example.

The formalism closely parallels our perturbative approach
to the Hartree approximation. In LDA, we need to solve
self-consistently a Schdinger’'s equation with an effective
potential given byt +V:2A  whereVY,, is given by Eq.

(5) andV:PA= SELPA n(r)]/6n(r). For the purpose of this
illustration, we neglect the correlation contribution and take
VEDA(R) =V, (r) = —[(6/7)n(r) ]2 [14]. To first order in\,

0.4
—
&

.

Yo(r), y,(r) (ag™%)

(b)

L . . . x Yylr)
it is sufficient to replace in Vi2* with n(9). Becausev;>* ) o yi?r)
is not an analytic function of the density, it is important to = o YT ]

recognize that whel;2” is expanded in terms of spherical

harmonichP(ﬁ), the resulting series will involve all even
values ofl. This contrasts with the Hartree contribution,
which at this order contained only=0 and|=2 compo-
nents. In some sense this suggests LDA will lead to stronger
violations of Eq.(1) than we encountered in the Hartree ap-
proximation. However, the effective potential we construct at
first order in\ is a slowly varying function of}, so that ‘ . ‘ ‘ .
contributions from large values bto the wave functions are ° ' 2 3 * s &

still quite small. ™/

When expan(_jed in spherical harmonlcs, the COITeCtions 0 g 5 Radial functiong,(r) produced by the constrained Har-
the Wav(el)fur?ctmns have a form very similar to BE@),  tree approximation to first order in perturbation theory for a helium
exceptes’ will now containall even spherical harmonics, iplet P state(see text (a) yo(r), Ya(r); (0) Yo(r), ya(r), ya(r).
and #{ will contain all odd ones. Writing )  Note that thel=0,1,2 contributions are identical to the results of
= Ely2l+iY(2)I+i(a_;)a the equations satisfied by tlgg ,;'s are  the standar_d Hartree approximatids: 3,4 results are modified by
identical in form to Eq.(8), with a modified form for the the constraint.
inhomogeneous functiorfs. Once the radial functions have
been obtained, the first-order correction to the density irfonsistent approach—especially for DFT—is to modify, or

Yol7) Uslr), yylr) (%)

-0.01

LDA is given by n®(r) = S.nDr)Y2 (3) with more pregiselyconstrainthe wave funct.ions searched in t_he
IS given by ni(r) =2y (r) Yz (€2) wi minimizations in such a way that E€l) is guaranteed. This
nSY(r)=2c2"3Ryg(1)ya (1) +262 1 Rpi(r)ya_1(1) has the advantage that the energies of the atomic states found
’ ' will be lower than those found by spherical averaging. In
+2c§!2,+1R21(r)y2,+1(r). practice, however, the energy lowering turns out to be quite

small. Nevertheless, it is useful to explore constrained-search
In practice, the expansion of the density falls off so rapidlymethods for preserving symmetry properties of the density
(see Fig. 2with | that only the lowest few functiong, need ~ because such violations are known to occur in other symme-
to be computed. try properties—particularly those involving spitt5] —and
may be responsible for more serious errors that arise in mo-
lecular calculations. The present formalism is a example of
how to consistently impose symmetry on an approximate

A. Constrained-search formulation single-particle scheme.

Th lculati i the ab . ‘ tent As stated above, the Hartree, HF, and LDA equations are
€ calculations In the above Sections 10 Some extent 4y 40 from minimization principles. In the Hartree ap-

plain why spherical averaging is successful in the Hartre h. th functional i
and HF approximations, and in the LDA, when applied to%roac » the energy functional 1S

Ill. RESTORING THE SYMMETRY OF THE DENSITY

atoms. Nevertheless, the averaging is basicaflyho¢ and e? n(ryn(r’)
lacks a clear justification. From a formal point of view, E[W]=(P|H|P)+ ?J d3rd3r’ﬁ. (11)
r—r’

spherical averaging has a dissatisfying aspect: the minimiza-
tion principles that are used to derive the three approxima-
tions are abandoned when it is introduced. Formally, a morélere,| V) is a normalized wave functio, is the nonin-
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teracting electron Hamiltonian, ami{r) is the expectation demonstrated in a specific soluble mod&ppendix A): two
value of the density in the stal@). To generate the Hartree fermions in a harmonic trap, interacting via a repulsive qua-
equations, one minimizeB[ ¥ ] among orthonormal product dratic potential. The exact eigenfunctions of this system may
wave functiong7]. In density-functional theory, one adds an be written down explicitly, and in Appendix A we shola)
appropriate exchange-correlation enefy. to the expres- that the density of & state cannot be pr_oduced by a nonin-
sion(11), and then searches for the minimum of the resultingtéracting electron system in any spherically symmetric po-
energy[14,16]. (This presumes the density is noninteractingtential, andb) that the unique single-particle potential repro-
v-representable, which we will assume for the states of inducing this densitycf. the Hohenberg-Kohn theoref&]) in
terest) For the exact exchange-correlation energy the resultd Noninteracting system contains all even orders of spherical
ing density satisfies Eq1). Of course, the exact exchange- harmonics.
correlation energy is unknown, and, in practice, one is forced
to adopt approximationsl4]. B. Perturbative implementation

To constrain these searches to the subspace of states hav-
ing a density of the form of Eq.l), we introduce a set of
r-dependent Lagrange multiplier&, (r). The constraints
that must be enforced are

Our proposed solution to the problem of producing den-
sities that have an appropriate form for orbital angular mo-
mentum eigenstates thus reduces to finding a self-consistent
solution to Egs(12), (15), and(16). The following is a prac-

tical procedure:(1) Obtain the self-consistent Kohn-Sham
f dan(nY%(Q)=0, 2>2L, (12)  solution with the giverE,Jn] and the self-consistent total

potentiaIvS(F). We expect that this will violateveaklythe
whereL is the angular momentum of the state of interest.constraints(12), with the offending density components

The functional we need to minimize is Nor+2(r),NaL44(r), ... being small(2) The restoring po-
tential, Vg o +2(r),Vr 2 +4(r), . . . is determined by solving
3 s the equation
E+Ey .+ | d°rVg(r)n(r), (13
_ngL+2(r)
where ~n3Lag()
0
- 2 — N2 46(1)
VR(N= 2 Aa(1)Y3(D). (14 .
1>2L
After minimization of Eq.(13), we arrive at a single- Vo (")

particle Schrdinger equation . VO (r')
= dr'r'2KFFQogO)irr)| R
fo ([vs(0)] ) V0 (')

1 - - -
[——V2+vs<r> $i(N=2ii(1). (15 e
2m :
For density-functional theory, 7
i 72 n(r) o ) whereKF is the submatrix I(1’>2L) of the linear density
us(r)=—T+e2j de'm+ch([n(f)],r)+VR(r), response functiorK, ,,(r,r') corresponding tav(r). (3)

The new wave function and density, satisfying the con-

straints(12) are determined frono (1) + Vg(r).

where V,. is the exchange-correlation potential. For an Equivalently, this process can be carried out in terms of

N-electron atom, filling the lowest eigenstates of Eq15)  wave functions(see Appendix B Perturbative energies for

leads to the density used in E3.6), so these equations must our heliumP state example using the constrained Hartree

be solved self-consistently. The Lagrange parameterér) approximation and LDA are presented in Table | along with

of Eq. (13) must be chosen to satisfy EL2). comparable results for unconstrained and spherically aver-
One natural, but incorrect, guess would be tatsimply ~ aged approaches.

removes the high spherical harmonics present in the other

terms enterin@g, rendering a spherically symmetric single- IV. CONCLUSION

particle potential. This is not possible except for the trivial

case ofSstates. For example, in our model calculation of the  This paper deals with the angular dependence of the elec-

helium P state, the lowest spherical harmonic componentron densityn(r) of an atom in a state of finite angular mo-

present inVg is | =4, which cannot remove the=2 com- mentumL, both in the exact physical state and in various

ponent coming from the Hartree term. In fact, the single-single-particle descriptions. The spherical harmonic content

particle potential in general contaiadl orders of spherical of the physical density, as a direct consequence of the

harmonics. With the exact form &f,., Vg=0, butV, itelf  Wigner-Eckart theorem, is limited to even valuesl ef2L.

contains an infinite number of spherical harmonics. This isHowever in the Hartree, Hartree-Fock, and the various ap-

(16)
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proximate forms of Kohn-Sham theory, the spherical harmomenta[13], it is easy to see that the state of lowest
monic content of the density involvesd! | values(although energy is formed by putting the center-of-mass degree of
components with>2L are small. The exact Kohn-Sham freedom in ars state and the relative degree of freedom in a

effective single-particle potential by definition reproducesp state. Using the explicit forms for harmonic oscillator
the I-limited physical density; on the other hand, the poten-states, the wave function is

1

V2

tial involves alll values.(This is documented for the case of
. o . 3/4 2
an exactly soluble model of a harmonic atom with interacting | ;{ Mem
exg —
2
r2
expg — | (A3)
Somewhat analogous symmetry violations are known to 2l
arise in connection with the electronic spin quantum num-

electrons). =
where H,(x)=2x is a Hermite polynomial)?=(nwg) 1,

1

al?

1 13/4

2

constrained-search procedure using Lagrange parameter
functions. Various numerical illustrations are presented. XH;

z

We show how the requiremeh& 2L can be restored by a
bers. They may be susceptible to similar analysis and sym

metry restoration. andl2,,=(uwo) ~*. The density of this state is
-, _ 22
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APPENDIX A: DENSITY FOR A HARMONIC ATOM A=473%5C?,
In this appendix, we present a calculation d? state for &1
two spinless fermions trapped in a quadratic potential, inter- B=(477)3/2—4C2. (A5)
acting via a repulsive quadratic potential. This is not in- L

tended as a realistic model of a physical atom, but it shares o )

with physical atoms their symmetry properties and allows! e length sgaleg appearing in th2e atzcz)ve tvgo equations are
analytic calculations of wave functions and densities. oug@iven by L°=1"+lgy and & °=lcy+17% and C
main goals in this calculation are to demonstrate thathe ~ =[lcul1™ 34 V2117, Note that Eq(A4) has the form re-
exact density in this interacting state cannot be reproduce@uired by Eq.(1).

by noninteracting fermions in any spherically symmetric po- We now demonstrate that Egd4) is not derivable from a
tential, and(ii) that the single-particle potential thapes system ofnoninteractingfermions in a spherically symmet-

reproduce the density contains spherical harmonics of alflic external potential. To show this, suppose the densiy
even orders. derivable from such a potential. Then the two occupied

Our model Hamiltonian is single-particle states would necessarily have the form
do(N)=S(r)YS(Q), ¢1(r)=P(r)Y(Q). The sum of the
squares of these gives the density; matching this to(/&4)
gives explicit expressions f@&(r) and P(r),

S(r)=amAe "2,
1/2
rer2? (A6)

1 1 1 IR
H=— %[V§+V§]+ Emwg[rer ra]— Emw§|rl—rz|2.
(A1)

Defining center-of-mass and relative coordinates= (r,

+1,)/2, r=(r,—r,)/2, this may be rewritten as a sum of

commuting Hamiltonians, one for the center-of-mass coordi- P(r)=
nate Hcy) and one for relative coordinatesig),

B 167

3c¢2, ¥V 5

1 1 It is interesting to not_ice th_at the functional forms&ﬁndP _
Heu=— ﬂvéer E’“"grgm’ are perfectly compatible with a state of noninteracting fermi-
ons in a harmonic trapping potential. However, ti@mal-
izations of S and P are not correct. For exampl&(r) is
Hp=— iV2+ l,uwérz , (A2)  Properly normalized if and only iA=(7L?)%2 An exami-
2 2 em nation of the explicit expression fa, Eq. (A5), reveals that
s 2 1 o this is the case only itv;=0; i.e., the repulsion vanishes.
wherep=2m, wg= w5~z wi. The tgtaleangulrilr momentum  Thys, for noninteracting fermionap spherical potential will
operator may be written in the forin=L¢y+Lg, the sum  reproduce the interacting density.
of angular momentum operators for the center-of-mass and On the other hand, a noninteracting potential that is not
relative coordinates. Using the composition rules for angulaspherically symmetric can be found to make the density of
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two noninteracting fermions take the form of H&\4). We ° ' -
again demonstrate this by using perturbation theory. Because
the density is axially symmetric—i.e., it may be written as a
function ofr andz—we look for an effective potential that is wl
also axially symmetric. In the body of this paper we have
essentially expressed tlzedependence of densities and po-
tentials in terms of spherical harmonics. However, in this
appendix, because harmonic oscillator wave functions have a
number of useful algebraic properties, we expand instead in
powers ofz

The form of Eq.(A4) suggests that the effective single-
particle potential that reproduces the density has the form

log, lvl

-4

Veff(F): %mwgffr2+5V(z), 0 50 1:0 150 200
where we=1/uL?. We will perform our perturbation FIG. 3. Approximate coefficients,, in expansion ofsV given
theory around &/¢¢s with 6V=0; this is slightly different by Eq.(A13) for 8=0.1 (see text v, is assumed to vanish for
than working around the noninteracting state, as the length-N with different values ofN given in the figure. The expansion
scaleL is modified by interactions. Nevertheless, it is clearcoefficients converge to a unique set of valuedNasx.
that 6V must be small if the interaction strength is weak. For
this form of the potential, it is also clear that the two single- We now expanddx(z),dx1(z) in harmonic-oscillator

particle states must have the form states:
()= ho(x i(z A7 -
¢I( ) lpO( )lﬂo(Y)Xu( ) ( ) 5XO(Z):n§0 C2n¢2n(z)i
with i1=0,1, andy, the ground state of a one-dimensional
harmonic oscillator with frequencw.¢s, and for 6V=0, o
xo(2)=(2) may be taken as a harmonic oscillator ground x1(2)= 2 Cons1thons1(2). (Al
n=0

state andy4(z)=¢4(2) as the first excited state. If the elec-

trons were noninteracting, we would necessarily have in Ethe coefficientsz, obey the recursion relation
n

(A4):
G vyn+ 1cn+1=,85n'2—cn—\/ﬁcn,l (A12)
A=Ro= L2l for n=2. In addition,cqy,c;=0 sincedxq(z), dx1(z) must
be orthogonal toyg, x1-
1 1%% 2 Perturbation theory define$yg, dx1(z) in terms of V.
B=Boy=|—| —. (A8) A useful expansion fobV is
wl?| L2
v z
It is convenient to parametrize the effect of interactions in oV(z2)= E #H”(E . (A13)
terms of the deviations oA and B from these values, n'even 272\l
5n(F)E[5A+ 5Bzzj|e*r2’L2 First-order Perturbanon,theory yields a linear relation be-
tween thec,’s and thev,’s,
with SA=A—-A,, 6B=B—B,. Denoting the first-order cor- v
rections toy;(z) asdy;(z), it is easy to demonstrate to low- n n even
i i h h Nwert
est order in perturbation theory that - e (A1)
Vn+1lvg, g+ \/ﬁvn—l
K 1 Bo21a- 2222 z n odd;
[6A+ 5Bz e * "% = oxo(2) + V2 [ xa(2),  (A9) (N—=1)wes

o _ Egs. (A12) and (A14) may be combined to form a set of
where (A, 5B) = (7L?)%%(SA,8B)/2. With some algebra, recursion relations fos,,. Any choice ofv, will generate an

Eq. (A9) may be written as entire set ofy,’s, whose magnitude in general grows rapidly
with n. The resultingéV(z) is ill-defined. However, for a
Sva(Z)+ 2 = Sv-(7)= 7). A10 given B there is aunique choice ofv, for which |v,| uni-
Xo(2) V2 L X(2)=By2(2) (A10) formly decreases with increasing even(Note thatv, van-

N 5 ishes for odd values af andv,,, alternates in sign.This
where 8= (2%76)(7L?)Y{ 6BL?— 5A], and y,(z) is then  choice may be found as follows: select a large valuld ahd
=2 harmonic-oscillator state. setv,=0 for n>N. The recursion relations far, (0<n
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<N) then may be written as a matrix equation that may be TABLE I. Zeroth (E®), first- (\EY), and second- X?E(?)
solved numerically with little difficulty. Figure 3 illustrates order contributions to the HeR2state energy calculated in pertur-
v, for B=0.1 and several increasing valueshbfAs may be bation theory in the electron-electron interaction strengtly vari-
seen, the , converge to ainiquesequence ad—, and the  OUS methodsH, Hartree a.pprolximatiorH —Sph spherically aver-
limiting values vanish rapidly with increasiny aged Hartree approximation;H—C, constrained Hartree
The potential we have found is thmiquesingle-particle ~ aPProximationLDA, local density approximatiorl,DA~C, con-
potential that produces the density of the harmonic atonfi@ined local density approximation. Energy units ek with
model, to first order in perturbation theory, as required by thé'®~" /mé the hydrogenic Bohr radius.
Hohenberg-Kohn theorefb]. It involves all even powers of

z, or, equivalently, all spherical harmonihr’gI . This demon- H H—Sph Hc LDA LDA-C
strates that, to reproduce the physical density, involMing E®  —2.5000 —2.5000 —2.5000 —2.5000 —2.5000
=0 andl =2 only, requires, in the absence of interactions,E®) 1.3063 1.3063 1.3063 0.5439 0.5439
an external potential involving all evdnvalues. E®®  —0.4059 —0.4039 —0.4052 -0.1140 —0.1139

APPENDIX B: PERTURBATIVE CALCULATION OF

DENSITIES AND ENERGIES FOR CONSTRAINED ) ) ) ]
ENERGY FUNCTIONAL Noting that the radial functiong;(r) fall off very rapidly

with |, we retain onlyl<4 in the calculations that follow.
In this appendix, we discuss a concrete example of thehe radial functiong, obey Eq.(8), with
ideas developed in Sec. I, providing details of how, for the

helium P state, our perturbative Hartree approximation is fo(r):[881)_(;80@81)(”]&0(”,
modified by the introduction of the constraint.
We begin with the single-particle Sclimger equation, 1WAl Wy AL g @)
(15), with single-particle potential fa()=[e17 = CorPo (1) = Car®3 (1) IRan(1),
. _ze e ) Fa(r) = = c58" (N Rud(r),
v(r)= - +)\e2f d3r’|9 i +A\Vg(r). (Bl
r—r

fa(r)=—c3 @Ry (r) — cdwa(r)Ray(r),

To lowest nontrivial order i\, the corrections to the wave
functions¢*) obey Eq.(6). The form ofU®) must be modi-
fied to include the restoring potential

fa(r)=—cia(r)Ryo(r). (B3)

Only f; and f, are modified byVy; it follows that the
0)/ 27 Yo, Y1, andy, are identical to the results of the Hartree
U(l)(r*)—>U(1)(r*)Ee2f g3 (r V(D) approximation without the constraint. The equations to be
R = = R . . . . .
[r—r’] solved are closed by requiring the highest spherical harmonic
component retained =4, to vanish to first order in in the
Note that to this order in perturbation theory, theO and  density:
=2 components in a spherical harmonic expansion of
ud(r) come only from the Hartree potential, and so are N§D(r)=cgRig(r)Ya(r) +C3Roy(1)y3(r)=0. (B4)
R
identical to the ones encountered in Sec. Il B. The higher _ _ _
components OU(Rl) come only fromV. U(Rl)('?) thus can be The constrained Hartree state is found by solving E8.

expanded as (B3), ar_1d(34). The radial fur_lctions/n(r) results are pre-
sented in Fig. 3. We present in Table | the energies obtained
1) 7 — o (1) 0/ (1) 0/ by the Hartree approximation, the spherically averaged Har-
Uk (1) =P (r)Yo(Q2)+@57(r)Y2(Q) tree approximation, and the constrained Hartree approxima-
+v4(r)Y2(ﬁ)+v6(r)Yg(ﬁ)+ . tion. As can be seen, the differences among the three ap-

proaches only arise at ordaf [17], and are quite small.
Nevertheless, the constrained Hartree approximation yields
an energy considerably closer to the unconstrained Hartree
approximation than the spherically averaged one, indicating
that imposing the symmetry by spherical averaging raises the
energy considerably more than necessary.

Finally, for comparison we also present in Table | analo-
gous energies for the results of a constrained, perturbative
LDA calculation. The method for computing the wave func-
tions is, mutatis mutandisthe same as for the constrained
Hartree approximation. As in that approximation, the intro-
e duction of the constraint introduces little change in the en-
(B2) ergy.

The radial functionsbgl) are determined fully by the nonin-
teracting electron density, and the functiong(r) come
from Vg.

Because all even values bappear in the decomposition
of UY, the corrections to the wave functions contain all
spherical harmonics:

P =yo(N YD) +ya(N)YAD) +ys(NYUD)+ - - -,

¢ =y1(1) YD) +y3(r) Y3(D) +ys(r) YD) +-
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