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Symmetry of the atomic electron density in Hartree, Hartree-Fock, and density-functional theories
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The density of an atom in a state of well-defined total angular momentum has a specific finite spherical
harmonic content, without and with interactions.Approximatesingle-particle schemes, such as the Hartree,
Hartree-Fock, and local density approximations, generally violate this feature. We analyze, by means of
perturbation theory, the degree of this violation and argue that it is small. The correct symmetry of the density
can be assured by a constrained-search formulation without significantly altering the calculated energies. We
compare our procedure to the~different! common practice of spherically averaging the self-consistent poten-
tial. Kohn-Sham density functional theory with theexactexchange-correlation potential has the correct finite
spherical harmonic content in its density; but the corresponding exact single-particle potential and wave
functions contain an infinite number of spherical harmonics.

PACS number~s!: 31.15.Ew
ns
e

ve
hr

th

tre

e
on
ge
tio
th
g

ld
e

es

e

m
h

er
in
ed

um
Eq.
it
ut
,
al
ds
l-

d in

uite

e
tive
eri-
tent

e
nt.
the
T
the

-
that
ed

ns

he
ive
ons
tu-
nd
tial
ot
ical

c

I. INTRODUCTION

Single-particle descriptions of electronic states and de
ties in atoms date back to their earliest models. Most of th
involve the motion of individual electrons in some effecti
potential due to the nucleus and the other electrons; Bo
early analysis of some atomic spectra involved this idea@1#.
With the advent of wave mechanics, the idea took on
form of solving single-particle Schro¨dinger equations with
this effective potential. Prominent examples are the Har
and Hartree-Fock~HF! approximations@2–4#, and density-
functional theory~DFT! @5#. Of these, only DFT provides in
principle an exact description of electron densities with th
proper truncated spherical harmonic content. In practice,
is forced to adopt an approximate form for the exchan
correlation potential, such as the local density approxima
~LDA !. In carrying out such calculations, one computes
electronic states and effective potential iteratively, yieldin
self-consistent potential and density.

The spherical symmetry of the nuclear potential yie
states of well-defined angular momentum. However, exc
for S states, the resulting electron densities are generallynot
spherically symmetric. (S states and their spherical densiti
present no problem and will not be further considered.! As
we shall see below, in states of well-defined angular mom
tum quantum numbersL andLz , the exact densityn(rW) may
be decomposed in thefinite series

n~rW !5(
l 50

L

n2l~r !Y2l
0 ~VW !, ~1!

where then2l(r ) are radial functions andY2l
0 (VW ) are spheri-

cal harmonics.
The self-consistent densities obtained via the approxi

tion schemes described above do not have this form. T
form canbe and often is obtained by introduction of a furth
approximation that, however, violates the minimum pr
ciple: the effective potential may be spherically averag
1050-2947/2000/62~5!/052511~10!/$15.00 62 0525
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yielding single-particle states with good angular moment
quantum numbers and a resulting density of the form in
~1!. Such spherical averaging is of practical utility as
greatly reduces the numerical effort involved in carrying o
the approximation schemes@6#. Nevertheless, the Hartree
HF, and LDA may all be expressed in terms of variation
principles, implying that the use of spherical averaging lea
to an overestimation of atomic energy levels. To our know
edge, the quantitative effect of this has only been checke
a small number of cases@7,8#. The effect is thought to be
small since the resulting energies for many atoms are in q
good agreement with experiment@9#.

In this paper, we will examine this, to our knowledg
largely unexplored, issue in some detail. Using a perturba
approach, we will demonstrate that the inappropriate sph
cal harmonic components appearing in the self-consis
density ~without spherical averaging! are generally quite
small.~An exactDFT calculation would, of course, yield th
exact density with the correct spherical harmonic conte!
We then develop a constrained search principle to modify
variational principles involved in the Hartree, HF, and DF
approximations to guarantee that the resulting density has
correct form of Eq.~1!. We show in the context of the Har
tree approximation that this approach generates energies
are only slightly higher than those from the unconstrain
approximation.

It is interesting to consider in more detail the implicatio
of Eq. ~1! for exactDFT. Being exact@5#, it is unnecessary to
introduce constraints to guarantee this ‘‘symmetry’’ of t
density. What is the angular symmetry of the exact effect
single-particle potential entering the Kohn-Sham equati
that guarantees that the density will have this form? A na
ral but incorrect guess would be that the Hartree a
exchange-correlation potentials together sum to a poten
that is spherically symmetric. In fact this is generally n
true: the effective single-particle potential contains spher
harmonic components ofall even orders.~A concrete ex-
ample of this is presented in Appendix A.! Indeed, it has
been shown@10,11# that a unique, spherically symmetri
©2000 The American Physical Society11-1
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H. A. FERTIG AND W. KOHN PHYSICAL REVIEW A62 052511
single-particle potentialv0(r ) may be chosen to match th
spherical componentn0(r ) of the density; it is possible to
formulate an alternative to the Hohenberg-Kohn theor
based solely onn0(r ) @10#. However, the resulting potentia
yields incorrect higher-order components of the dens
n2l(r ) ( l .0). Thus, there is a kind of complementarity:
one insists that the density has the correct truncated sphe
harmonic content for an interacting state of well-defined
gular momentum, the effective single-particle potential w
not have spherical symmetry and the single determin
model wave function willnot have good angular momentum
quantum numbers. By contrast, if one insists that the sin
particle potential be spherically symmetric, the corre
spherical harmonic content of the density of the interact
state cannot be reproduced.

The remainder of this paper is organized as follows.
Sec. II, we first give the proof of Eq.~1!. By a perturbative
approach to the Hartree approximation, we demonstrate
the deviation of the density from its appropriate symmetry
actually quite small in a specific example~a helium triplet
state!, and comment on related results for the HF approxim
tion and LDA. In Sec. III, we formulate a constrained-sear
approach to single-particle approximations for the dens
which we apply to the Hartree approximation and the LD
We summarize our results in Sec. IV. Finally, two appe
dixes are included. In Appendix A, we discuss a two-elect
harmonic atom with interactions and show explicitly that t
density of its lowest triplet state cannot be reproduced b
noninteracting system in a spherically symmetric effect
single-particle potential. Appendix B contains some deta
of the numerical calculations.

II. SPHERICAL HARMONIC CONTENT OF THE
DENSITY

A. Finite spherical harmonic content of the density

We begin by proving Eq.~1! of the Introduction by a
standard application of the Wigner-Eckart theorem. Cons
an atom in a stateuL,M & with total orbital angular momen
tum L and total azimuthal angular momentumLz5M along
the z direction. We ignore spin-orbit coupling, so that th
orbital and spin states of the atom may be specified se
rately. We are interested in the expectation value of the
eratorn(rW)5( id(rW2rW i), whererW i denotes the position of th
i th electron. A useful decomposition of the delta function
this context is@12#

d~rW2rW i !5
1

r 2
d~r 2r i !(

l 50

`

(
m52 l

l

Yl
2m~VW !Yl

m~VW i !,

whereVW represents an angular direction in spherical coo
nates. The set$Yl

m(VW i), m52 l ,2 l 11, . . . ,l % constitutes
an irreducible tensor operator with respect to the ang
momentum operatorL, and obeys the Wigner-Eckart theo
rem @13#. It follows that^L,M uYl

m(VW i)uL,M & is proportional
to the Clebsch-Gordon coefficient^LlMmuLlMm&, which
vanishes unlessm50, 0< l<2L, andl is even. Substituting
05251
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the expansion for the delta function into the expectat
value of the density and using the above observation dire
yields Eq.~1!.

B. Infinite spherical harmonic content in the Hartree and
Hartree-Fock approximations

The decomposition of the physical density of an atom
state in spherical harmonics consists of a finite series. H
ever, the Hartree, HF, and approximate DFT solutions donot
produce densities with this property. For example, supp
we could find a finite decomposition for the density in th
Hartree approximation,

nH~rW !5 (
l 50 (l even)

l max

nl~r !Yl
0~VW !.

The effective single-particle potential contains a term of
form

le2E d3r 8
nH~rW8!

urW2rW8u
,

wherel (0<l<1) is a parameter by which we may switc
on the electron-electron interaction, which will be useful b
low. This term has a spherical harmonic decomposition w
maximum l 5 l max. The effective potential in the single
particle Schro¨dinger equation multiplies a wave functionf;
for a single-particle state of azimuthal quantum numberm
50 this may be expanded as

f~rW !5 (
l 850

l max8

yl 8~r !Yl 8
0

~VW !. ~2!

When multiplied by the potential, the resulting products
spherical harmonics may be expressed as linear comb
tions of single spherical harmonicsYl

0 , with a maximum
nonvanishing contribution froml 5 l max1 l max8 . The other
terms in the Schro¨dinger equation, however, contain sphe
cal harmonics of orderl no greater thanl max8 . Thus, the
Schrödinger equationcannot be solved by wave functions
expressable in a finite spherical harmonic expansion~except
for the trivial case ofL850).

The density produced from these wave functions in g
eral has no finite spherical harmonic expansion. One wa
demonstrate this uses perturbation theory. The solution to
Hartree equations may be expressed as a power seriesl;
terms of higher order involve increasingly larger orders
spherical harmonics. When reorganized as a spherical
monic expansion, all orders will occur with each coefficie
being a power series inl. It is not possible for these coeffi
cients to vanish for arbitrary values ofl.

As a concrete example, we analyze a two-electron atom
a triplet spin state with total angular momentumL51,
whose density is not spherically symmetric. Using pertur
tion theory in the electron-electron interaction, we comp
the density in the Hartree approximation. The Hamiltoni
for our system is
1-2
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SYMMETRY OF THE ATOMIC ELECTRON DENSITY IN . . . PHYSICAL REVIEW A62 052511
H5 (
i 51,2

F2
1

2m
¹ i

22
Ze2

r i
G1le2

1

urW12rW2u
, ~3!

whereZ is the nuclear charge. The fully interacting system
given byl51, and we will formally develop our perturba
tion theory in powers ofl. Alternatively, one may setl
51 and consider an expansion of energy and density in p
ers of 1/Z, which is equivalent to an expansion inl. Physi-
cally, one should thus think of the smalll limit as the state
of a highly ionized atom of largeZ. The specific case we wil
focus on isN52; thusl51 andZ52 describes the helium
atom.

In the absence of interactions, the state of interest to
involves one electron in a 1s state and one in a 2p state that
we take to be in them50 state. It is easy to see that th
density of this state satisfies Eq.~1!:

n(0)~rW !5uf0
(0)~rW !u21uf1

(0)~rW !u2

5uR10~r !Y0
0~VW !u21uR21~r !Y1

0~VW !u2

5@c00
0 R10~r !21c11

0 R21~r !2#Y0
0~VW !

1c11
2 R21~r !Y2

0~VW !. ~4!

In Eq. ~4!, f0
(0) and f1

(0) are, respectively, the 1s and 2p
states,Rnl(r ) are hydrogenic radial functions, withn the
principal quantum number andl the angular momentum; th
coefficientscjk

i are defined as

cjk
i 5E dVW Yi

0~VW !Yj
0~VW !Yk

0~VW !,

so thatYj
0(VW )Yk

0(VW )[( icjk
i Yi

0(VW ). The coefficientscjk
i are

closely related to Gaunt coefficients commonly used
atomic structure calculations@9#, and have properties simila
to Clebsch-Gordon coefficients; in particular,cjk

i 50 unless
i 1 j 1k is even andu j 2ku< i<u j 1ku. It is these two prop-
erties that guarantee the density of the noninteracting s
has the truncated form in Eq.~1!. The superscript (0) in Eq
~4! denotes noninteracting quantities (l50).

The Hartree approximation amounts to self-consisten
finding two single-particle eigenstatesf0 and f1, of ener-
gies«0 ,«1, for noninteracting electrons moving in an effe
tive potential

Ve f f
H 52

Ze2

r i
1le2E d3r 8

n~rW8!

urW2rW8u
, ~5!

where the density isn(rW)5uf0(rW)u21uf1(rW)u2. To first or-
der in perturbation theory, we may write that potential as

Ve f f
H 52

Ze2

r i
1le2E d3r 8

n(0)~rW8!

urW2rW8u
1O~l2!

[2
Ze2

r i
1lU (1)~rW !1O~l2!.
05251
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The Schro¨dinger equation arising in the Hartree approxim
tion may be solved within perturbation theory by expandi
the effective potential, eigenstates, and eigenenergie
powers ofl. The first-order correction to the eigenstates s
isfies the inhomogeneous differential equation

@H02« i
(0)#f i

(1)~rW !5@« i
(1)2U (1)#f i

(0)~rW !, ~6!

where i 50,1, and the first-order correction to the energ
are « i

(1)5*d3rf i
(0)* (rW)U (1)(rW)f i

(0)(rW). Because the density

n(0)(rW) contains only even spherical harmonics, so will t
potentialU (1). It immediately follows that the wave function
correctionsf i

(1) will have the same parity as the statesf i
(0)

from which they descend. Using the multiplicative propert
of the Yl

0 gives

f0
(1)5y0~r !Y0

0~VW !1y2~r !Y2
0~VW !,

f1
(1)5y1~r !Y1

0~VW !1y3~r !Y3
0~VW !, ~7!

whereyi(r ) are purely radial functions.
Our development of the perturbation theory already illu

trates one of the central points of this paper: We can see
the effective potential~which we have computed to first or
der in l) is not spherically symmetric and the wave fun
tions arising in the Hartree equation do not have well-defin
angular momentum. By expanding both sides of Eq.~6! in
spherical harmonics and matching the coefficients for eacl,
the equations for the radial functions may all be written
the form

@h0~ l !2« l
(0)#yl~r !5 f l~r !, ~8!

where

h0~ l !52
1

2m

1

r 2

d

dr
r 2

d

dr
1

l ~ l 11!

2mr2
2

Ze2

r

and« l
(0)5«0

(0) for evenl, «1
(0) for odd l. The functionsf l are

easily computed, and the equations may be solved num
cally. This calculation will be presented in the next sectio
Once the radial functionsyl are obtained, the first-order cor
rection to the density in the Hartree approximation is fou
by adding the squared wave functions and collecting term
orderl. The resulting density may be written in the form

n(1)~rW !5n0
(1)~r !Y0

0~VW !1n2
(1)~r !Y2

0~VW !1n4
(1)~r !Y4

0~VW !

with

n0
(1)~r !52c00

0 R10~r !y0~r !12c11
0 R21~r !y1~r !,

n2
(1)~r !52c02

2 R10~r !y2~r !12c11
2 R21~r !y1~r !

12c13
2 R21~r !y3~r !,

n4
(1)~r !52c13

4 R21~r !y3~r !. ~9!
1-3
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H. A. FERTIG AND W. KOHN PHYSICAL REVIEW A62 052511
Note that to this order inl, only one ‘‘offending’’ spheri-
cal harmonicY4

0(VW ) appears. However, all even spheric
harmonics would appear in higher orders in perturbat
theory. Figure 1 illustrates the radial functionsnl

(1)(r ) for the
present model problem, as well as the analogous zeroth-o

FIG. 1. Radial functions of the spherical harmonic decompo
tion of the density in the Hartree approximation in a heliumP state.
Zeroth and first-order corrections~designated by superscripts! in the
electron-electron interaction are illustrated. Absolute magnitu
fall quickly with increasing spherical harmonic indexl ~designated
by subscripts!. ~a! n0

(0)(r ), n0
(1)(r ); ~b! n2

(0)(r ), n2
(1)(r ); ~c! n4

(1)(r ).
05251
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densitiesnl
(0)(r ) appearing in the spherical harmonic deco

position of the density for the noninteracting problem@cf.
Eq. ~4!#. Note that the magnitude of the offending spheric
harmonic component is quite small~ratio of maximum con-
tribution to root mean-square density 3.8631023), and that
the densitiesnl

(1)(r ) decrease very rapidly with increasingl.
The reason for this is that at zeroth order, the density~of the
noninteracting system! varies rather slowly as a function o
the angular variable. When interactions are introduced, s
a slowly varying potential has only a small amplitude f
scattering electrons into high angular momentum states;
resulting density thus only has a small component of largl
spherical harmonics. It is clear that this property is true at
orders in perturbation theory: the effective potential enter
at any order will always have a much largerY0

0 component
than any other, leading to only small admixtures of hi
angular momenta in the wave functions. Finally, although
have illustrated this property in the specific context of a h
lium triplet P state, it should be quite general for atom
Indeed, our model problem is in some sense a ‘‘worst-ca
example; for larger atoms, particularly ones with ma
closed shells, the predominant spherical components of
density will be even larger. This helps to explain the succ
of using spherically averaged effective potentials in the H
tree approximation@7#.

Spherical averaging is also a common practice in apply
the Hartree-Fock approximation@9#, and it is therefore of
interest to assess the extent to which Eq.~1! will be violated
without such averaging. We again proceed perturbatively
addition to the direct potentialU (1)(rW), there is now a non-
local exchange potential, to first order in perturbation theo
and the corrections to the wave functions take the form

f0
(1),HF5y0

HF~r !Y0
0~VW !1y2

HF~r !Y2
0~VW !,

f1
(1),HF5y1

HF~r !Y1
0~VW !. ~10!

There is noY3
0 term in the wave functions because there is

precise cancellation between the direct and exchange te
The resulting density, remarkably, has precisely the ri
form–Eq. ~1!—to first order, unlike in the Hartree approx
mation. In fact, one may demonstrate that the solution to
HF approximation reproduces the correction to the den
exactlyto first order in the electron-electron interaction.

Unfortunately, this good property of the solutions to t
HF equations is limited to first order inl. This is most easily
seen in the context of our model calculation for the HeP
state. The presence of aY2

0 component to the density ensure
that the effective potential seen by either electron has a s
lar component. For thef0 state, this leads to a contributio
proportional toY2

0(VW ), as in Eq.~10!. At second order inl,
this necessarily produces a component in the density pro
tional to Y4

0(VW ). However, the fact that the HF density ha
the correct form to orderl implies that the magnitude of th
violation will be even smaller than that found in the Hartr
approximation.

i-

s
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C. Harmonic content of the density in density-functional
theory and local density approximation

The violations of Eq.~1! found in the Hartree and HF
theories donot occur for theexactDFT, which, by construc-
tion, produces exact densities. In practice, one must alw
introduce approximations for the exchange-correlation
ergy and potential. To illustrate the point, we conside
perturbative application of the local density approximati
~LDA ! to our heliumP state example.

The formalism closely parallels our perturbative approa
to the Hartree approximation. In LDA, we need to sol
self-consistently a Schro¨dinger’s equation with an effective
potential given byVe f f

H 1Vxc
LDA , whereVe f f

H is given by Eq.

~5! andVxc
LDA5dExc

LDA@n(rW)#/dn(rW). For the purpose of this
illustration, we neglect the correlation contribution and ta
Vxc

LDA(rW)'Vx(rW)52@(6/p)n(rW)#1/3 @14#. To first order inl,
it is sufficient to replacen in Vxc

LDA with n(0). BecauseVxc
LDA

is not an analytic function of the density, it is important
recognize that whenVxc

LDA is expanded in terms of spheric

harmonicsYl
0(VW ), the resulting series will involve all eve

values of l. This contrasts with the Hartree contributio
which at this order contained onlyl 50 and l 52 compo-
nents. In some sense this suggests LDA will lead to stron
violations of Eq.~1! than we encountered in the Hartree a
proximation. However, the effective potential we construc
first order inl is a slowly varying function ofVW , so that
contributions from large values ofl to the wave functions are
still quite small.

When expanded in spherical harmonics, the correction
the wave functions have a form very similar to Eq.~7!,
exceptf0

(1) will now contain all even spherical harmonics
and f1

(1) will contain all odd ones. Writing f i
(1)

5( l y2l 1 iY2l 1 i
0 (vW ), the equations satisfied by they2l 1 i ’s are

identical in form to Eq.~8!, with a modified form for the
inhomogeneous functionsf l . Once the radial functions hav
been obtained, the first-order correction to the density
LDA is given by n(1)(rW)5( ln2l

(1)(r )Y2l
0 (VW ) with

n2l
(1)~r !52c0,2l

2l R10~r !y2l~r !12c1,2l 21
2l R21~r !y2l 21~r !

12c1,2l 11
2l R21~r !y2l 11~r !.

In practice, the expansion of the density falls off so rapid
~see Fig. 2! with l that only the lowest few functionsyn need
to be computed.

III. RESTORING THE SYMMETRY OF THE DENSITY

A. Constrained-search formulation

The calculations in the above sections to some extent
plain why spherical averaging is successful in the Hart
and HF approximations, and in the LDA, when applied
atoms. Nevertheless, the averaging is basicallyad hoc, and
lacks a clear justification. From a formal point of view
spherical averaging has a dissatisfying aspect: the minim
tion principles that are used to derive the three approxim
tions are abandoned when it is introduced. Formally, a m
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consistent approach—especially for DFT—is to modify,
more precisely,constrainthe wave functions searched in th
minimizations in such a way that Eq.~1! is guaranteed. This
has the advantage that the energies of the atomic states f
will be lower than those found by spherical averaging.
practice, however, the energy lowering turns out to be qu
small. Nevertheless, it is useful to explore constrained-sea
methods for preserving symmetry properties of the den
because such violations are known to occur in other sym
try properties—particularly those involving spin@15# —and
may be responsible for more serious errors that arise in
lecular calculations. The present formalism is a example
how to consistently impose symmetry on an approxim
single-particle scheme.

As stated above, the Hartree, HF, and LDA equations
derived from minimization principles. In the Hartree a
proach, the energy functional is

E@C#5^CuH0uC&1
e2

2 E d3rd3r 8
n~rW !n~rW8!

urW2rW8u
. ~11!

Here, uC& is a normalized wave function,H0 is the nonin-

FIG. 2. Radial functionsyl(r ) produced by the constrained Ha
tree approximation to first order in perturbation theory for a heliu
triplet P state~see text!. ~a! y0(r ), y1(r ); ~b! y2(r ), y3(r ), y4(r ).
Note that thel 50,1,2 contributions are identical to the results
the standard Hartree approximation;l 53,4 results are modified by
the constraint.
1-5
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H. A. FERTIG AND W. KOHN PHYSICAL REVIEW A62 052511
teracting electron Hamiltonian, andn(rW) is the expectation
value of the density in the stateuC&. To generate the Hartre
equations, one minimizesE@C# among orthonormal produc
wave functions@7#. In density-functional theory, one adds a
appropriate exchange-correlation energyExc to the expres-
sion~11!, and then searches for the minimum of the result
energy@14,16#. ~This presumes the density is noninteracti
v-representable, which we will assume for the states of
terest.! For the exact exchange-correlation energy the res
ing density satisfies Eq.~1!. Of course, the exact exchang
correlation energy is unknown, and, in practice, one is for
to adopt approximations@14#.

To constrain these searches to the subspace of states
ing a density of the form of Eq.~1!, we introduce a set o
r-dependent Lagrange multipliersL2l(r ). The constraints
that must be enforced are

E dVW n~rW !Y2l
0 ~VW !50, 2l .2L, ~12!

where L is the angular momentum of the state of intere
The functional we need to minimize is

E1Exc1E d3rVR~rW !n~rW !, ~13!

where

VR~rW ![ (
l .2L

L2l~r !Y2l
0 ~VW !. ~14!

After minimization of Eq. ~13!, we arrive at a single-
particle Schro¨dinger equation

F2
1

2m
¹21vs~rW !Gf i~rW !5« if i~rW !. ~15!

For density-functional theory,

vs~rW !52
Ze2

r
1e2E d3r 8

n~rW !

urW2rW8u
1Vxc„@n~rW !#,rW…1VR~rW !,

~16!

where Vxc is the exchange-correlation potential. For
N-electron atom, filling the lowestN eigenstates of Eq.~15!
leads to the density used in Eq.~16!, so these equations mu
be solved self-consistently. The Lagrange parametersL2l(r )
of Eq. ~13! must be chosen to satisfy Eq.~12!.

One natural, but incorrect, guess would be thatVR simply
removes the high spherical harmonics present in the o
terms enteringvs , rendering a spherically symmetric singl
particle potential. This is not possible except for the triv
case ofSstates. For example, in our model calculation of t
helium P state, the lowest spherical harmonic compon
present inVR is l 54, which cannot remove thel 52 com-
ponent coming from the Hartree term. In fact, the sing
particle potential in general containsall orders of spherica
harmonics. With the exact form ofVxc , VR50, butVxc itelf
contains an infinite number of spherical harmonics. This
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demonstrated in a specific soluble model~Appendix A!: two
fermions in a harmonic trap, interacting via a repulsive qu
dratic potential. The exact eigenfunctions of this system m
be written down explicitly, and in Appendix A we show~a!
that the density of aP state cannot be produced by a noni
teracting electron system in any spherically symmetric
tential, and~b! that the unique single-particle potential repr
ducing this density~cf. the Hohenberg-Kohn theorem@5#! in
a noninteracting system contains all even orders of sphe
harmonics.

B. Perturbative implementation

Our proposed solution to the problem of producing de
sities that have an appropriate form for orbital angular m
mentum eigenstates thus reduces to finding a self-consis
solution to Eqs.~12!, ~15!, and~16!. The following is a prac-
tical procedure:~1! Obtain the self-consistent Kohn-Sha
solution with the givenExc@n# and the self-consistent tota
potentialvs(rW). We expect that this will violateweakly the
constraints ~12!, with the offending density component
n2L12(r ),n2L14(r ), . . . being small.~2! The restoring po-
tential,VR,2L12(r ),VR,2L14(r ), . . . is determined by solving
the equation

S 2n2L12
0 ~r !

2n2L14
0 ~r !

2n2L16
0 ~r !

A
D

5E
0

`

dr8r 82KFF
„@vs~0!#;r ,r 8…S VR,2L12

0 ~r 8!

VR,2L14
0 ~r 8!

VR,2L16
0 ~r 8!

A
D ,

~17!

whereKFF is the submatrix (l ,l 8.2L) of the linear density
response functionKl ,l 8(r ,r 8) corresponding tovs(rW). ~3!
The new wave function and density, satisfying the co
straints~12! are determined fromvs(rW)1VR(rW).

Equivalently, this process can be carried out in terms
wave functions~see Appendix B!. Perturbative energies fo
our helium P state example using the constrained Hart
approximation and LDA are presented in Table I along w
comparable results for unconstrained and spherically a
aged approaches.

IV. CONCLUSION

This paper deals with the angular dependence of the e
tron densityn(rW) of an atom in a state of finite angular mo
mentumL, both in the exact physical state and in vario
single-particle descriptions. The spherical harmonic cont
of the physical density, as a direct consequence of
Wigner-Eckart theorem, is limited to even values ofl<2L.
However in the Hartree, Hartree-Fock, and the various
1-6
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proximate forms of Kohn-Sham theory, the spherical h
monic content of the density involvesall l values~although
components withl .2L are small.! The exact Kohn-Sham
effective single-particle potential by definition reproduc
the l-limited physical density; on the other hand, the pote
tial involves all l values.~This is documented for the case
an exactly soluble model of a harmonic atom with interact
electrons.!

We show how the requirementl<2L can be restored by a
constrained-search procedure using Lagrange param
functions. Various numerical illustrations are presented.

Somewhat analogous symmetry violations are known
arise in connection with the electronic spin quantum nu
bers. They may be susceptible to similar analysis and s
metry restoration.
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APPENDIX A: DENSITY FOR A HARMONIC ATOM

In this appendix, we present a calculation of aP state for
two spinless fermions trapped in a quadratic potential, in
acting via a repulsive quadratic potential. This is not
tended as a realistic model of a physical atom, but it sha
with physical atoms their symmetry properties and allo
analytic calculations of wave functions and densities. O
main goals in this calculation are to demonstrate that~i! the
exact density in this interacting state cannot be reprodu
by noninteracting fermions in any spherically symmetric p
tential, and~ii ! that the single-particle potential thatdoes
reproduce the density contains spherical harmonics of
even orders.

Our model Hamiltonian is

H52
1

2m
@¹1

21¹2
2#1

1

2
mv0

2@r 1
21r 2

2#2
1

2
mv1

2urW12rW2u2.

~A1!

Defining center-of-mass and relative coordinatesrWcm5(rW1

1rW2)/2, rW5(rW12rW2)/2, this may be rewritten as a sum o
commuting Hamiltonians, one for the center-of-mass coo
nate (HCM) and one for relative coordinates (HR),

HCM52
1

2m
¹cm

2 1
1

2
mv0

2r cm
2 ,

HR52
1

2m
¹21

1

2
mvR

2r cm
2 , ~A2!

wherem52m, vR
25v0

22 1
2 v1

2 . The total angular momentum

operator may be written in the formLW 5LW CM1LW R , the sum
of angular momentum operators for the center-of-mass
relative coordinates. Using the composition rules for angu
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momenta@13#, it is easy to see that theP state of lowest
energy is formed by putting the center-of-mass degree
freedom in ans state and the relative degree of freedom in
p state. Using the explicit forms for harmonic oscillat
states, the wave function is

C5H F 1

p l CM
2 G 3/4

expF2
r cm

2

2l CM
2 G J H 1

A2
F 1

p l 2G 3/4

3H1S z

l DexpF2
r 2

2l 2G J , ~A3!

where H1(x)52x is a Hermite polynomial,l 25(mvR)21,
and l CM

2 5(mv0)21. The density of this state is

n~rW !5@A1Bz2#e2r 2/L2

5H FA1
1

3
Br2G1

B

3
A16p

5
r 2Y2

0~VW !J e2r 2/L2

~A4!

with

A54p3/2j5C2,

B5~4p!3/2
j3l 4

L4
C2. ~A5!

The length scales appearing in the above two equations
given by L25 l 21 l CM

2 and j225 l CM
22 1 l 22, and C

5@p l CMl #23/2@A2l #21. Note that Eq.~A4! has the form re-
quired by Eq.~1!.

We now demonstrate that Eq.~A4! is not derivable from a
system ofnoninteractingfermions in a spherically symmet
ric external potential. To show this, suppose the densitywas
derivable from such a potential. Then the two occup
single-particle states would necessarily have the fo
f0(rW)5S(r )Y0

0(VW ), f1(rW)5P(r )Y1
0(VW ). The sum of the

squares of these gives the density; matching this to Eq.~A4!
gives explicit expressions forS(r ) andP(r ),

S~r !5A4pAe2r 2/2l 2,

P~r !5F B

3c11
2
A16p

5 G 1/2

re2r 2/2l 2. ~A6!

It is interesting to notice that the functional forms ofSandP
are perfectly compatible with a state of noninteracting ferm
ons in a harmonic trapping potential. However, thenormal-
izations of S and P are not correct. For example,S(r ) is
properly normalized if and only ifA5(pL2)3/2. An exami-
nation of the explicit expression forA, Eq. ~A5!, reveals that
this is the case only ifv150; i.e., the repulsion vanishes
Thus, for noninteracting fermions,no spherical potential will
reproduce the interacting density.

On the other hand, a noninteracting potential that is
spherically symmetric can be found to make the density
1-7
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two noninteracting fermions take the form of Eq.~A4!. We
again demonstrate this by using perturbation theory. Beca
the density is axially symmetric—i.e., it may be written as
function ofr andz—we look for an effective potential that i
also axially symmetric. In the body of this paper we ha
essentially expressed thez dependence of densities and p
tentials in terms of spherical harmonics. However, in t
appendix, because harmonic oscillator wave functions ha
number of useful algebraic properties, we expand instea
powers ofz.

The form of Eq.~A4! suggests that the effective singl
particle potential that reproduces the density has the form

Ve f f~rW !5 1
2 mve f f

2 r 21dV~z!,

where ve f f51/mL2. We will perform our perturbation
theory around aVe f f with dV50; this is slightly different
than working around the noninteracting state, as the len
scaleL is modified by interactions. Nevertheless, it is cle
thatdV must be small if the interaction strength is weak. F
this form of the potential, it is also clear that the two sing
particle states must have the form

f i~rW !5c0~x!c0~y!x i~z! ~A7!

with i 50,1, andc0 the ground state of a one-dimension
harmonic oscillator with frequencyve f f , and for dV50,
x0(z)[c0(z) may be taken as a harmonic oscillator grou
state andx1(z)[c1(z) as the first excited state. If the ele
trons were noninteracting, we would necessarily have in
~A4!:

A5A0[F 1

pL2G 3/2

,

B5B0[F 1

pL2G 3/2
2

L2
. ~A8!

It is convenient to parametrize the effect of interactions
terms of the deviations ofA andB from these values,

dn~rW ![@dA1dBz2#e2r 2/L2

with dA[A2A0 , dB5B2B0. Denoting the first-order cor
rections tox i(z) asdx i(z), it is easy to demonstrate to low
est order in perturbation theory that

@dÃ1dB̃z2#e2z2/2L2
5dx0~z!1A2

z

L
dx1~z!, ~A9!

where (dÃ,dB̃)5(pL2)5/4(dA,dB)/2. With some algebra
Eq. ~A9! may be written as

dx0~z!1A2
z

L
dx1~z!5bc2~z!, ~A10!

whereb5(23/2/6)(pL2)1/4@dB̃L22dÃ#, andc2(z) is then
52 harmonic-oscillator state.
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We now expanddx0(z),dx1(z) in harmonic-oscillator
states:

dx0~z!5 (
n50

`

c2nc2n~z!,

dx1~z!5 (
n50

`

c2n11c2n11~z!. ~A11!

The coefficientscn obey the recursion relation

An11cn115bdn,22cn2Ancn21 ~A12!

for n>2. In addition,c0 ,c150 sincedx0(z), dx1(z) must
be orthogonal tox0 , x1.

Perturbation theory definesdx0 , dx1(z) in terms ofdV.
A useful expansion fordV is

dV~z!5 (
n even

vn

2n/2An!
HnS z

L D . ~A13!

First-order perturbation theory yields a linear relation b
tween thecn’s and thevn’s,

cn5H vn

nve f f
n even

An11vn111Anvn21

~n21!ve f f
n odd;

~A14!

Eqs. ~A12! and ~A14! may be combined to form a set o
recursion relations forvn . Any choice ofv2 will generate an
entire set ofvn’s, whose magnitude in general grows rapid
with n. The resultingdV(z) is ill-defined. However, for a
given b there is auniquechoice ofv2 for which uvnu uni-
formly decreases with increasing evenn. ~Note thatvn van-
ishes for odd values ofn and v2m alternates in sign.! This
choice may be found as follows: select a large value ofN and
set vn50 for n.N. The recursion relations forvn (0,n

FIG. 3. Approximate coefficientsvn in expansion ofdV given
by Eq. ~A13! for b50.1 ~see text!. vn is assumed to vanish forn
.N with different values ofN given in the figure. The expansio
coefficients converge to a unique set of values asN→`.
1-8
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<N) then may be written as a matrix equation that may
solved numerically with little difficulty. Figure 3 illustrate
vn for b50.1 and several increasing values ofN. As may be
seen, thevn converge to auniquesequence asN→`, and the
limiting values vanish rapidly with increasingn.

The potential we have found is theuniquesingle-particle
potential that produces the density of the harmonic at
model, to first order in perturbation theory, as required by
Hohenberg-Kohn theorem@5#. It involves all even powers o
z, or, equivalently, all spherical harmonicsY2l

0 . This demon-
strates that, to reproduce the physical density, involvinl
50 and l 52 only, requires, in the absence of interaction
an external potential involving all evenl values.

APPENDIX B: PERTURBATIVE CALCULATION OF
DENSITIES AND ENERGIES FOR CONSTRAINED

ENERGY FUNCTIONAL

In this appendix, we discuss a concrete example of
ideas developed in Sec. III, providing details of how, for t
helium P state, our perturbative Hartree approximation
modified by the introduction of the constraint.

We begin with the single-particle Schro¨dinger equation,
~15!, with single-particle potential

vs~rW !5
2Ze2

r
1le2E d3r 8

n~rW8!

urW2rW8u
1lVR~rW !. ~B1!

To lowest nontrivial order inl, the corrections to the wav
functionsf i

(1) obey Eq.~6!. The form ofU (1) must be modi-
fied to include the restoring potential

U (1)~rW !→UR
(1)~rW ![e2E d3r 8

n(0)~rW8!

urW2rW8u
1VR~rW !.

Note that to this order in perturbation theory, thel 50 and
l 52 components in a spherical harmonic expansion
UR

(1)(rW) come only from the Hartree potential, and so a
identical to the ones encountered in Sec. II B. The highl
components ofUR

(1) come only fromVR . UR
(1)(rW) thus can be

expanded as

UR
(1)~rW !5F0

(1)~r !Y0
0~VW !1F2

(1)~r !Y2
0~VW !

1v4~r !Y4
0~VW !1v6~r !Y6

0~VW !1•••.

The radial functionsFn
(1) are determined fully by the nonin

teracting electron density, and the functionsvn(r ) come
from VR .

Because all even values ofl appear in the decompositio
of UR

(1) , the corrections to the wave functions contain
spherical harmonics:

f0
(1)5y0~r !Y0

0~VW !1y2~r !Y2
0~VW !1y4~r !Y4

0~VW !1•••,

f1
(1)5y1~r !Y1

0~VW !1y3~r !Y3
0~VW !1y5~r !Y5

0~VW !1•••.
~B2!
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Noting that the radial functionsyi(r ) fall off very rapidly
with l, we retain onlyl<4 in the calculations that follow.
The radial functionsyl obey Eq.~8!, with

f 0~r !5@«0
(1)2c00

0 F0
(1)~r !#R10~r !,

f 1~r !5@«1
(1)2c01

1 F0
(1)~r !2c21

1 F2
(1)~r !#R21~r !,

f 2~r !52c20
2 F2

(1)~r !R10~r !,

f 3~r !52c21
3 F2

(1)~r !R21~r !2c41
3 v4~r !R21~r !,

f 4~r !52c40
4 v4~r !R10~r !. ~B3!

Only f 3 and f 4 are modified byVR ; it follows that the
y0 , y1 , and y2 are identical to the results of the Hartre
approximation without the constraint. The equations to
solved are closed by requiring the highest spherical harmo
component retained,l 54, to vanish to first order inl in the
density:

n4
(1)~r !5c04

4 R10~r !y4~r !1c31
4 R21~r !y3~r !50. ~B4!

The constrained Hartree state is found by solving Eqs.~8!,
~B3!, and ~B4!. The radial functionsyn(r ) results are pre-
sented in Fig. 3. We present in Table I the energies obtai
by the Hartree approximation, the spherically averaged H
tree approximation, and the constrained Hartree approxi
tion. As can be seen, the differences among the three
proaches only arise at orderl2 @17#, and are quite small
Nevertheless, the constrained Hartree approximation yie
an energy considerably closer to the unconstrained Har
approximation than the spherically averaged one, indica
that imposing the symmetry by spherical averaging raises
energy considerably more than necessary.

Finally, for comparison we also present in Table I ana
gous energies for the results of a constrained, perturba
LDA calculation. The method for computing the wave fun
tions is, mutatis mutandis, the same as for the constraine
Hartree approximation. As in that approximation, the intr
duction of the constraint introduces little change in the e
ergy.

TABLE I. Zeroth (E(0)), first- (lE(1)), and second- (l2E(2))
order contributions to the He 2P state energy calculated in pertu
bation theory in the electron-electron interaction strengthl by vari-
ous methods.H, Hartree approximation;H2Sph, spherically aver-
aged Hartree approximation;H2C, constrained Hartree
approximation;LDA, local density approximation;LDA2C, con-
strained local density approximation. Energy units aree2/aB with
aB5\2/me2 the hydrogenic Bohr radius.

H H2Sph H2C LDA LDA2C

E(0) 22.5000 22.5000 22.5000 22.5000 22.5000
E(1) 1.3063 1.3063 1.3063 0.5439 0.5439
E(2) 20.4059 20.4039 20.4052 20.1140 20.1139
1-9
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