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General energy bounds for systems of bosons with soft cores
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We study a bound system ofN identical bosons interacting by model pair potentials of the formV(r )
5l sgn(p)rp1m/r2, l.0, m>0. By using a variational trial function and the ‘‘equivalent two-body method,’’
we find explicit upper and lower bound formulas for theN-particle ground-state energy in arbitrary spatial
dimensionsd>3 for the two casesp52 andp521. It is demonstrated that the upper bound can be system-
atically improved with the aid of a special large-N limit in collective field theory.

PACS number~s!: 03.65.Ge, 31.15.Pf, 03.75.Fi
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I. INTRODUCTION

The principal subject of this paper is the ground-state
ergy of a system composed ofN identical bosons bound
together by pair potentials. Such systems usually collaps
the large-N limit; that is to say, the binding energy per pa
ticle rises withN to infinity @1,2#. In two earlier papers we
studied gravitating boson systems@3#, and systems of boson
or fermions that interact by wide classes of purely attract
pair potential@4#. In the present paper we extend this wo
for the boson case to systems with pair potentials that b
the system but have a soft repulsive core of the formm/r 2.
The methods we develop to analyze these systems may
application to models for Bose-Einstein condensates@5,6# in
which there is at present much renewed interest@7–17#. As
in our earlier work, the goal of the present study is to prov
simple general energy bounds as functions of the parame
m, l, m, and N. Since it is not difficult to do so, we als
allow for an arbitrary numberd>3 of spatial dimensions.

Formulas forN-particle upper and lower energy boun
are derived for pair potentialsVi j 5V0f (r i j ) whose shapes
f (r ) are either harmonic oscillators with a soft coref (r )
5lr 21m/r 2, or Kratzer potentialsf (r )52l/r 1m/r 2. The
shapes of these two potentials are shown in Fig. 1 fol
5m51. The first of the models could perhaps be conside
as a generalization of the soluble one-dimensional Calog
model@18–20# to dimensiond>3. For such potentials, with
minima f ( r̂ ) at r 5 r̂ .0, provided there are enough spat
dimensions available (d11>N) for every pair distance to
satisfyr i j 5 r̂ , then, in classical mechanics the lowest ene
would be equal to (2

N)V0f ( r̂ ). This expression provides
lower energy bound in both classical and quantum mech
ics; our general energy bounds~valid for all N>2) will show
that this value is approached asymptotically for largeV0 in
the limit d→`; this is possible because the positi
contribution from zero-point oscillations varies lik
(N21)(NV0)1/2 and is eventually dominated by the sta
potential term.

The nonindividually of identical quantum-mechanic
particles introduces a very powerful constraint that allows
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to relate theN-body problem to a specially constructed~re-
duced! two-body problem having an overall factor ofN21
and a potential enhanced byN/2, corresponding respectivel
to the N21 relative kinetic-energy operators and theN(N
21)/2 pair potentials. This ‘‘equivalent two-body’’ notion
which is central to our approach to the study of these s
tems, will be formulated explicitly in Sec. II. TheN-body
energy E is described by functionE5FN(v)5E/(N21),
where v5(N/2)V0 , and V0 is the coupling parameter~in
units \5m51). Sincev includes the factorN, it follows
that if we consider afinite value of v and let N→`, this
implies that V0→0. The well-known exactly soluble
d-potential problem in one dimension@21# provides a conve-
nient illustration of the energy functionF(v). If V(r )5
2V0d(r ), we have exactly

E
N21

5E5FN~v !52
1

6 F11
1

NGv2, N>2, v5
N

2
V0 .

~1.1!

FIG. 1. The shapes of the two potentials studied: the harmo
oscillator with soft core,H5 f (r )5lr 21mr 22, and Kratzer’s po-
tential,K5 f (r )52lr 211mr 22, with l5m51 ~units \5m51!.
©2000 The American Physical Society10-1
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The shape of the potential dictates the formv2 of these en-
ergy curves, and there is a distinct curve for each value
N>2. The curves of this particular example satisfy the g
eral functional inequalities@3#

F2~v !<E5FN~v !<F`~v !<Ff~v !<FG~v !, ~1.2!

where, as will be explained later,Ff(v) is an upper bound
obtained with the aid of collective-field theory in the largeN
limit, and FG(v) is the upper-bound curve obtained by em
ploying anN-body translation-invariant Gaussian trial wa
function. The ordering of theFN(v) curves withN is a con-
sequence of the monotonic increase in the severity of
boson-symmetrization constraint with increasingN. For the
soluble d-potential model we have@3# explicitly: F`(1)5
21/6, Ff(1)520.164 868, andFG(1)521/2p. The fam-
ily of densities used for the variational collective-field upp
bound is given by

f~r !5e2~r /b!q
, b,q.0. ~1.3!

The energy is minimized with respect to the positive sc
and power parametersb andq. The effectiveness of this use
ful two-parameter family of trial densities is also demo
strated by the applications discussed in Secs. IV and V
low. We conjecture thatFf(v) is close toF`(v) for the
more general problems considered in this paper but we k
no way of proving such a claim at this time. For anoth
well-known soluble problem, thed-dimensional harmonic
oscillator V(r )5V0r 2, with d>1, the inequalities~1.2! all
collapse together to the common exact valueE5dv1/2.

II. N-BODY PROBLEM IN THE CENTRE-OF-MASS
FRAME

The Hamiltonian, with center of mass removed, for a s
tem of N identical particles each of massm interacting via
central pair potentials may be written

H5
1

2m (
i 51

N

pi
22

1

2mNS (
i 51

N

pi D 2

1 (
j . i 51

N

V0f S ur i2r j u
a D ,

~2.1!

whereV0 anda are respectively the depth and range para
eters of the potential with shapef. By algebraic rearrange
ment Eq.~2.1! may be rewritten in the more symmetric
form

H5 (
j . i 51

N H 1

2mN
~pi2pj !

21V0f S ur i2r j u
a D J . ~2.2!

We now define new coordinates byr5BR, wherer5@r i #
andR5@r i # are column vectors of the new and old coord
nates, respectively, andB is a real constantN3N matrix. For
convenience we require all the rows ofB to be unit vectors,
we let the elements of the first row all be equal to 1/AN, so
that r1 is proportional to the center-of-mass coordinate;
also require that the remainingN21 rows ofB be orthogo-
nal to the first row, so that they define a set ofN21 relative
05251
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coordinates. One more row is also fixed so that we hav
least one pair distance at our disposal, namely,

r25
r12r2

&
. ~2.3!

For boson systems, we have found that Jacobi relative c
dinates, for whichB is orthogonal, are the most useful. Thu
corresponding to the transformationr5BR of the coordi-
nates, it follows that the column vectorP of the associated
momenta transforms to the new momentaP5@p i # by the
relation P5(BT)21P5P. If C is any translation-invarian
wave function for theN-body system composed of identic
bosons, then we can write@22,23# the following mean energy
relation between theN-body and two-body systems:

~C,HC!5~C,HC!, ~2.4!

where the ‘‘reduced’’ two-particle HamiltonianH is given
by

H5~N21!F 1

2m
p2

21
N

2
V0f S&ur2u

a D G . ~2.5!

Further simplifications can be achieved if we work wi
dimensionless quantities. We suppose that the translat
invariant N-body energy isE and we define the dimension
less energy and coupling parametersE andv by the expres-
sions

E5
mEa2

~N21!\2 , v5
NmV0a2

2\2 . ~2.6!

It is then natural to define a dimensionless versions of
reduced two-body HamiltonianH and the relative coordinate
r2 by the relations

H5
mHa2

~N21!\2 52D1v f ~r !,

~2.7!
r5&r2 /a5~r12r2!/a, r 5ir i .

We note that the HamiltonianH depends onN only through
the dimensionless coupling parameterv. By the Rayleigh-
Ritz ~min-max! principle @24–26#, we have the following
characterization of theN-body ground-state energy param
eterE in terms ofH:

E5min
C

~C,HC!

~C,C!
5FN~v !, ~2.8!

whereC is a translation-invariant function of theN21 rela-
tive coordinates~and spin variables, if any! that is symmetric
under the permutation of theN individual-particle indices.
The N-body energyE is recovered fromE by inverting Eq.
~2.6!. Thus we have explicitly

E5
~N21!\2

ma2 FNS NmV0a2

2\2 D . ~2.9!
0-2
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GENERAL ENERGY BOUNDS FOR SYSTEMS OF BOSONS . . . PHYSICAL REVIEW A 62 052510
However, for the remainder of this paper we shall work w
the dimensionless formE5FN(v): the problem is to find or
approximateFN . In each situation we shall have to speci
the dimensiond of physical space; usuallyd53.

III. ENERGY BOUNDS

The energy bounds used in this paper are summarize
terms of theF functions by Eq.~1.2!. The history of the
equivalent two-body method for boson systems has been
scribed in the earlier papers@3,4# and in the reference
therein. The main result is a general energy lower bou
which, for boson systems with orthogonal Jacobi relative
ordinates, is given by

F2~v !<E5FN~v !, ~3.1!

where F2(v) is the lowest eigenvalue of the one-partic
~‘‘reduced’’ two-particle! Hamiltonian H52D1v f (r ).
With equal simplicity, our weakest upper boundFG(N), pro-
vided by a Gaussian boson trial functionC, may also be
expressed in terms of the one-body operatorH. This is a
consequence of the following argument. If and only if t
symmetric translation-invariant functionC is Gaussian
@27,28#, it may be factored in the form

C~r2 ,r3 ,...,rN!5c~r2!h~r3 ,r4 ,...,rN!. ~3.2!

But the equivalence~2.4! then implies, in this case, thatE
<(c,Hc)ici22. This explains why the inequalities~1.2!
collapse together in the case of the harmonic oscillator
which the exact one-body lowest eigenfunction ofH is also
Gaussian. In this argument we assume for the upper bo
that ^H& has been optimized with respect to the scale of
wave function. The boson symmetry of these Gaussian fu
tions is demonstrated most clearly by the following algebr
identity:

(
j . i 51

N

~r i2r j !
25N(

k52

N

rk
2. ~3.3!

The potentially better upper boundFf(N) is more com-
plicated both to derive and to compute@3#. It is found by
considering the collective field model in the large-N limit.
The energy so obtained is an upper bound toF`(v) and this,
in turn, may be closely approximated from above by op
mizing the right-hand side of the following equation:

FN~v !<Ff~v !5 1
8 E @¹f~r !#2

f~r !
ddr

1vE E f~r ! f ~ ur 2r 8u!f~r 8!ddr ddr 8, ~3.4!

wheref(r ) is a trial probability density function~for inter-
particle distances! satisfying *f(r )ddr 51. It has been
shown@3# that if f is Gaussian, and the energy is optimiz
with respect to a scale parameter, then the resultFf(v) is
identical to the upper boundFG(v) obtained with the aid of
a scale-optimized translation-invariant Gaussian trial w
05251
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function. The wider possible choice of the form of the pro
ability densityf allows us to transcend the Gaussian bou
while still working essentially with a variational ‘‘function’’
of single variable for theN-body problem.

In order to facilitate the reproduction of our results a
the application of the method to other problems, we make
following explicit technical remarks concerning the cased
53. It is very helpful to think of the probability density as
function f(r )5w(r /b)5w(s), which depends on the re
maining parameterq, to be discussed later. If we letI
5*0

`w(s)s2ds, then the kinetic-energy integral becomes

^Ekin&5
1

8Ib2 E
0

` @w8~s!#2

w~s!
s2ds ~3.5!

and potential-energy integrals for pure powers may be w
ten

^r p&5
bp

I 2~p12!
E

0

`

dt w~ t !t

3E
t

`

ds w~s!s$~s1t !p122~s2t !p12%, pÞ22.

~3.6!

For the casep522 we have instead

K 1

r 2L 5
1

I 2b2 E
0

`

dt w~ t !tE
t

`

ds w~s!s lnS s1t

s2t D . ~3.7!

With the terms expressed in this form, the minimization ov
scaleb.0 can often be carried out explicitly yielding a
algebraic expression that then needs to be minimized w
respect to the remaining parameterq. We have explored vari-
ous alternative forms forw(s), such assq exp(2s2) and
exp@2(s2q)2#, but have found it difficult to improve on the
variable-power familyw(s)5exp(2sq) that we have used to
obtain the results discussed in detail in Secs. IV and V
low.

IV. HARMONIC OSCILLATOR WITH A SOFT CORE

We now choose the potential shape to be

f ~r !5lr 21
m

r 2 , l.0, m>0. ~4.1!

The lower boundF2(v) is given by the lowest eigenvalue o
H52D1v f (r ) in d dimensions, a problem that is dis
cussed, for example, in Ref.@29#. The Gaussian upper boun
FG(v) is provided by minimizing the Rayleigh quotien
(c,Hc)/(c,c) with respect to the scale variablea in c(r )
5e2(1/2)ar 2

in d dimensions. These calculations yield th
following bounds on theN-boson energy parameterE @the
energy itself is recovered essentially by multiplyingE by N
21, according to Eq.~2.10!#
0-3
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RICHARD L. HALL PHYSICAL REVIEW A 62 052510
2~vl!1/2H 11Fmv1S d

2
21D 2G1/2J ,E,~dvl!1/2

3Fd1
4vm

d22G1/2

, d>3. ~4.2!

The Gaussian trial wave function allows us to compute
approximate value for the mean-squared pair separations2 a
measure of the size of the system. We find

s25^~r12r2!2&5
d

2~vl!1/2 S 11
4vm

d~d22! D
1/2

. ~4.3!

We now look at some special cases. For the harmo
oscillator,m50, the inequalities collapse to the exact val
E5d(vl)1/2. The asymptotic forms of the bounds asv→`
andm.0 are given by

;2v~lm!1/2,E,;2v~lm!1/2S d

d22D 1/2

. ~4.4!

Thus for largeN the energy per particleE increases likeN,
although the ‘‘size’’ of the system~as estimated by the
Gaussian wave function! approaches the constant values
5@d/(d22)#1/4(m/l)1/4. If d is now taken large, the
asymptotic form of the energy approaches the classical
pressionE5v f ( r̂ ), wherer̂ 5s5(m/l)1/4 is the position of
the minimum off (r ).

For the special cased53 we obtain in general

~vl!1/2@21~114mv !1/2#,E,~vl!1/2@9112vm#1/2. ~4.5!

These results are shown in Fig. 2 along with the improv
upper bound~‘‘dashed’’ curve! obtained with the trial prob-
ability density function~1.3!. The extreme optimalq(v) val-
ues in the range shown wereq(2)52.8593,q(20)54.460.
Hence the optimal probability densityf(r ) is found to be
quite far from Gaussian.

V. KRATZER POTENTIAL

The Kratzer potential has shape function given@30–39#
by

f ~r !52
l

r
1

m

r 2 , l.0, m>0. ~5.1!

TheN-particle lower boundF2(v) is provided by the lowes
eigenvalue ofH52D1v f (r ) in d dimensions, a problem
that is discussed, for example, in Ref.@40#. Meanwhile an
exactly similar calculation to that described in Sec. IV, w
a Gaussian trial function, generates the corresponding u
bound. We find in this way that the energy parameterE
satisfies the following inequalities:

2
~vl!2

$11@~d22!214vm#1/2%2,E,2
~vlgd!2

F2d1
8vm

d22G , d>3,

~5.2!
05251
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where thed-dependent constantgd is given by

gd5

GS d21

2 D
GS d

2D , g35
2

Ap
. ~5.3!

The Gaussian trial wave function again allows us to comp
an approximate value for the mean-squared pair separa
We find

s25^~r12r2!2&5
d3

2~vlgd!2 S 11
4vm

d~d22! D
2

. ~5.4!

For the pure gravitational casem50 the energy inequali-
ties become

2
~vl!2

~d21!2,E,2
~vlgd!2

2d
. ~5.5!

The asymptotic forms of the bounds asv→` andm.0 are
given by

;2
vl2

4m
,E,;2

vl2

4m
M ~d!,

where M ~d!5Fgd
2~d22!

2 G . ~5.6!

The function M (d) increases monotonically withd to 1;
M (3)52/p'0.636 62;M (8).0.9. Thus, as for the previ

FIG. 2. Bounds for the energy parameterE(v)5E/(N21) of
the N-boson system with pair potentials of the formf (r )5V0(r 2

1r 22), as a function ofv5NV0/2. The graphs show:U the upper
boundFG(v) found by a Gaussian trial function,L the lower bound
F2(v) by the equivalent two-body method, and ‘‘dashed’’ the upp
boundFf(v) by collective field theory.
0-4
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GENERAL ENERGY BOUNDS FOR SYSTEMS OF BOSONS . . . PHYSICAL REVIEW A 62 052510
ous model, the energy per particleE increases likeN. Mean-
while the size~as estimated by the Gaussian wave functio!
approaches the constant values5@2&d/gd(d22)#(m/l).
If d is now taken large, the asymptotic form of the ener
~again! approaches the classical expressionE5v f ( r̂ ), in
which r̂ 5s52m/l is the position of the minimum off (r ).

For the special cased53 we obtain in general

2
~vl!2

@11~114vm!1/2#2,E,2
~vl!2

p@ 3
2 12vm#

. ~5.7!

The bounds for three dimensions are shown in Fig. 3, al
with the improved upper bound~‘‘dashed’’ curve! obtained

FIG. 3. Bounds for the energy parameterE(v)5E/(N21) of
the N-boson system with pair potentials of the formf (r )5V0

(2r 211r 22), as a function ofv5NV0/2. The graphs show:U the
upper boundFG(v) found by a Gaussian trial function,L the lower
boundF2(v) by the equivalent two-body method, and ‘‘dashed
the upper boundFf(v) by collective field theory.
m

,
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y

g

with the trial probability density function~1.3!. The extreme
optimal q(v) values in the range shown were for this pro
lem: q(2)52.0017,q(20)53.237. The optimal probability
density ~in this family! is found to be almost Gaussian fo
small v,3 but very different from Gaussian for larger va
ues ofv.

VI. CONCLUSION

The main purpose of this paper is to derive gene
bounds for the energy ofN-boson systems that are boun
together by pair potentials with soft cores. We have exa
ined two such models and we have provided upper and lo
bound formulas valid for allN>2 and d>3, and for all
values of the potential parameters that bind the syst
These bounds are expressed in terms of the energy param
E5E/(N21)5FN(v), where ~in units with \5m51) v
5NV0/2. If the potential shape is such thatF2(v) is close to
F`(v), then we obtain close upper and lower bounds va
for all N>2. The upper boundFG(v) provided by a Gauss
ian trial function may be improved toFf(v), which is de-
rived by using a~possibly non-Gaussian! trial probability
density f in a limiting form of collective field theory. In
order to do significantly better one might hand craft a tr
wave function for a particularf (r ) andN. Of course, to be
secure about this wave function one would still need to fi
a good lower bound, a goal usually not easy to achieve.
global results we have obtained show that these boson
tems are asymptotically bounded by expressions of the f
E;cN2; if d is also large, we have shown that the heuris
classical expressionE5(2

N)V0f ( r̂ ) is reached asymptotically
Since the many-body problem continues to offer a seri
challenge for direct numerical solution, it is very helpful
have some explicit analytic upper and lower energy bou
and size estimates for model systems such those discuss
this paper.
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