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General energy bounds for systems of bosons with soft cores
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We study a bound system &f identical bosons interacting by model pair potentials of the f&f(n)
=\ sgn@)rP+u/r?, \>0, u=0. By using a variational trial function and the “equivalent two-body method,”
we find explicit upper and lower bound formulas for tNeparticle ground-state energy in arbitrary spatial
dimensionsgd=3 for the two casep=2 andp= —1. It is demonstrated that the upper bound can be system-
atically improved with the aid of a special largelimit in collective field theory.

PACS numbe(s): 03.65.Ge, 31.15.Pf, 03.75.Fi

[. INTRODUCTION to relate theN-body problem to a specially constructée-
duced two-body problem having an overall factor bf—1
The principal subject of this paper is the ground-state enand a potential enhanced by/2, corresponding respectively
ergy of a system composed of identical bosons bound to the N—1 relative kinetic-energy operators and tR¢N
together by pair potentials. Such systems usually collapse i 1)/2 pair potentials. This “equivalent two-body” notion,
the largeN limit; that is to say, the binding energy per par- Which is central to our approach to the study of these sys-
ticle rises withN to infinity [1,2]. In two earlier papers we tems, will be formulated explicitly in Sec. Il. Thi-body
studied gravitating boson systefi®, and systems of bosons €nergy £ is described by functiorE=Fy(v)=&/(N—1),
or fermions that interact by wide classes of purely attractiveVherev=(N/2)Vo, andV, is the coupling parameteiin
pair potential[4]. In the present paper we extend this work Units z=m=1). Sincev includes the factoN, it follows
for the boson case to systems with pair potentials that bindat if we consider dinite value ofv and letN—c, this
the system but have a soft repulsive core of the farfm?. implies _that V0—>0'. The 'well-k'nown ex_actly soluble
The methods we develop to analyze these systems may haé'epc’te.m'al prpblem In one dmensmﬁﬂl} provides a conve-
application to models for Bose-Einstein condensgbe] in nient illustration of the energy functiok (v). If V(r)=
which there is at present much renewed intef@stl7]. As ~Vod(r), we have exactly

in our earlier work, the goal of the present study is to provide ¢ 1 1 N
simple general energy bounds as functions of the parameterm= E=Fy(v)=— 5 1+ N v?, N=2, v= EVO'
m, N\, w, andN. Since it is not difficult to do so, we also (1.1)

allow for an arbitrary numbed=3 of spatial dimensions.
Formulas forN-particle upper and lower energy bounds 3.5
are derived for pair potentialg;;=V,f(ri;) whose shapes -

f(r) are either harmonic oscillators with a soft coirf) 3
=\r2+ u/r?, or Kratzer potential§(r)=—\/r+ u/r%. The -
shapes of these two potentials are shown in Fig. 1Xor 25 |- H

=u=1. The first of the models could perhaps be considered L
as a generalization of the soluble one-dimensional Calogerc , L
model[18-2( to dimensiond=3. For such potentials, with ¢,
minima f(f) atr=7>0, provided there are enough spatial

dimensions availabled# 1=N) for every pair distance to - |
satisfyr;; =T, then, in classical mechanics the lowest energy Lok
would be equal to x)vof(f). This expression provides a |
lower energy bound in both classical and quantum mechan os L

ics; our general energy boun@alid for all N=2) will show ’

that this value is approached asymptotically for laxggein o I

the limit d—oeo; this is possible because the positive
contribution from zero-point oscillations varies like i
(N=1)(NVy)*? and is eventually dominated by the static 03
potential term. 0 1 2 3 4

The nonindividually of identical quantum-mechanical
particles introduces a very powerful constraint that allows us

FIG. 1. The shapes of the two potentials studied: the harmonic
oscillator with soft coreH=f(r)=\r?+ ur 2, and Kratzer's po-
*Email address: rhall@cicma.concordia.ca tential, K=f(r)=—Ar "1+ ur 2, with A\=p=1 (unitsh=m=1).
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The shape of the potential dictates the fasfof these en- coordinates. One more row is also fixed so that we have at
ergy curves, and there is a distinct curve for each value ofeast one pair distance at our disposal, namely,

N=2. The curves of this particular example satisfy the gen-

eral functional inequalitief3] r,—ro

P2=— - (2.3
Fa(v)<E=Fy(v)=F.(0)<F40)=<Fg(v), (1.2 2

For boson systems, we have found that Jacobi relative coor-
dinates, for whickB is orthogonal, are the most useful. Thus,
corresponding to the transformatign=BR of the coordi-
nates, it follows that the column vectér of the associated
momenta transforms to the new momeibte=[ 7;] by the
éelationrl:(BT)*le P. If ¥ is any translation-invariant
wave function for theN-body system composed of identical
bosons, then we can wrif22,23 the following mean energy
relation between th&l-body and two-body systems:

where, as will be explained latef,,(v) is an upper bound
obtained with the aid of collective-field theory in the lariye-
limit, and F5(v) is the upper-bound curve obtained by em-
ploying anN-body translation-invariant Gaussian trial wave
function. The ordering of th&y(v) curves withN is a con-
sequence of the monotonic increase in the severity of th
boson-symmetrization constraint with increasidgFor the
soluble &potential model we havg3] explicitly: F..(1)=
—1/6,F4(1)=—-0.164 868, and-(1)=—1/27. The fam-

ily of densities used for the variational collective-field upper (U, HP)= (¥, HY), (2.4)
bound is given by

q where the “reduced” two-particle HamiltoniaH is given
p(r)=e """ b,g>0. (13 by

(2.5

The energy is minimized with respect to the positive scale , N V2| p,l
and power parametelsandg. The effectiveness of this use- H=(N=1)|5-m+ 5 Vof | ——] |-
ful two-parameter family of trial densities is also demon-

strated by the applications discussed in Secs. IV .and V be- pFyrther simplifications can be achieved if we work with
low. We conjecture thaF 4(v) is close toF..(v) for the  dimensionless quantities. We suppose that the translation-
more general problems considered in this paper but we knoyhyariant N-body energy is€ and we define the dimension-

no way of proving such a claim at this time. For anotherjess energy and coupling parameterandv by the expres-
well-known soluble problem, thel-dimensional harmonic gjgns
oscillator V(r)=V,r?, with d=1, the inequalitieg1.2) all

collapse together to the common exact vafiredv 2 méa? N,Voa?

E=———, =——a. 2.6
(N-D)a2 "7 242 28
II. N-BODY PROBLEM IN THE CENTRE-OF-MASS
FRAME It is then natural to define a dimensionless versions of the

I . reduced two-body HamiltoniaH and the relative coordinate
The Hamiltonian, with center of mass removed, for a sys-

j . . . . . by the relations
tem of N identical particles each of mass interacting via P2 DY

central pair potentials may be written mHa2
H= ———=—-A+uf
1 N 1 N 2 N Ir—r | (N—1)A? vf(r),
H=>2—2 Pf—5— i+ Vf( : ‘), 2.7
2mi§1 P 2mN i=1 P j>i2:1 ° a r=v2p,la=(ry—ry)la, r=|r|.

(2.1
We note that the HamiltoniaH depends orN only through
whereV, anda are respectively the depth and range paramthe dimensionless coupling parameter By the Rayleigh-
eters of the potential with shage By algebraic rearrange- Ritz (min-max principle [24—26, we have the following
ment Eq.(2.1) may be rewritten in the more symmetrical characterization of thé-body ground-state energy param-

form eterE in terms ofH:
H= % L — D)2+ V. f u (2.2 E=minLHq,)=F (v) (2.9
_j>i=l sz(pl p]) 0 a . . v (\If,\I’) N(D ), .

We now define new coordinates lpy=BR, wherep=|p;] whereV is a translation-invariant function of theé— 1 rela-
andR=[r,;] are column vectors of the new and old coordi- tive coordinatesand spin variables, if anyhat is symmetric
nates, respectively, ariglis a real constaritl X N matrix. For  under the permutation of thE individual-particle indices.
convenience we require all the rows Bfto be unit vectors, The N-body energy¢€ is recovered fronk by inverting Eq.
we let the elements of the first row all be equal tgi/ so  (2.6). Thus we have explicitly

that p, is proportional to the center-of-mass coordinate; we ) )
also require that the remainig— 1 rows of B be orthogo- e (N-D)n N( NmVoa

nal to the first row, so that they define a sef\bf 1 relative ma’ 2h°

(2.9
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However, for the remainder of this paper we shall work withfunction. The wider possible choice of the form of the prob-
the dimensionless forre=Fy(v): the problem is to find or ability density ¢» allows us to transcend the Gaussian bound
approximateFy, . In each situation we shall have to specify while still working essentially with a variational “function”

the dimensiord of physical space; usuallg=3. of single variable for théN-body problem.
In order to facilitate the reproduction of our results and
. ENERGY BOUNDS the application of the method to other problems, we make the

o _ following explicit technical remarks concerning the cake
The energy bounds used in this paper are summarized ia 3, |t s very helpful to think of the probability density as a
terms of theF functions by Eq.(1.2). The history of the  function ¢(r)=w(r/b)=w(s), which depends on the re-
equivalent two-body method for boson systems has been denaining parameter, to be discussed later. If we ldt

scribed in the earlier paperds8,4] and in the references — [2w(s)s?ds, then the kinetic-energy integral becomes
therein. The main result is a general energy lower bound,

which, for boson systems with orthogonal Jacobi relative co- =[w'(s)]?
ordinates, is given b kiny — 2
g y (E“") 802 ), w(s) sds (3.5
Fo(v)<E=Fy\(v), (3.1

) ) ~and potential-energy integrals for pure powers may be writ-
where F,(v) is the lowest eigenvalue of the one-particle (g

(“reduced” two-particleé Hamiltonian H=—A+uvf(r).

With equal simplicity, our weakest upper bouRd(N), pro- bP o

vided by a Gaussian boson trial functioh, may also be (rP)= Z—J’ dtw(t)t

expressed in terms of the one-body operdtorThis is a 1%(p+2) Jo

consequence of the following argument. If and only if the o

symmetric translation-invariant function? is Gaussian xf dsw(s)s{(s+1)PT2—(s—1)P*2}, p#*-—2.
[27,28, it may be factored in the form t

3.6
Y(p2,p3,..-.oN)=¥(p2) 7(P3.p4,-...oN). (3.2 36

But the equivalencé2.4) then implies, in this case, th&t For the casgp=—2 we have instead

<(y,HY)| ¢ 2. This explains why the inequalitiedl.2)

collapse together in the case of the harmonic oscillator for <

which the exact one-body lowest eigenfunctiontbfs also

Gaussian. In this argument we assume for the upper bound

that(H) has been optimized with respect to the scale of theith the terms expressed in this form, the minimization over

wave function. The boson symmetry of these Gaussian fUﬂ(‘sca|e b>0 can often be carried out explicitly yielding an

tions is demonstrated most clearly by the following algebraicagebraic expression that then needs to be minimized with

identity: respect to the remaining parameteiVe have explored vari-

ous alternative forms fow(s), such ass?exp(—<?) and

exfd —(s—q)?], but have found it difficult to improve on the

variable-power familyw(s) = exp(—<) that we have used to

obtain the results discussed in detail in Secs. IV and V be-
The potentially better upper bourte,(N) is more com-  low.

plicated both to derive and to comput8]. It is found by

considering the collective field model in the larijelimit. IV. HARMONIC OSCILLATOR WITH A SOFT CORE

The energy so obtained is an upper bouné& t¢v) and this,

in turn, may be closely approximated from above by opti- We now choose the potential shape to be

mizing the right-hand side of the following equation:

[Vo(r)]?
o(r)

1 1 (= o s+t
r—2>=WJO dtW(t)tJt dSV\(S)Sln<;)- (37)

N N
> (r=r)?=N2 p. (33
1 k=2

iST=

f(ry=xr2+ ﬁ, A>0, u=0. 4.1
Fa(v)=Fy(0)=1 ddr " r2 # D
The lower bound=,(v) is given by the lowest eigenvalue of
+Uf J d(F(r—r'])p(r")dr dr’, (34  H=-A+vf(r) in d dimensions, a problem that is dis-
cussed, for example, in R¢R9]. The Gaussian upper bound
where ¢(r) is a trial probability density functioifor inter-  Fc(v) is provided by minimizing the Rayleigh quotient
particle distances satisfying [¢(r)d9r=1. It has been (#.H¥)/(¥,¢) with respect to the scale variabiein y(r)
shown[3] that if ¢ is Gaussian, and the energy is optimized =e~ (2™ in d dimensions. These calculations yield the
with respect to a scale parameter, then the reBy(v) is  following bounds on theN-boson energy parameté [the
identical to the upper bounélg(v) obtained with the aid of energy itself is recovered essentially by multiplyiEgoy N
a scale-optimized translation-invariant Gaussian trial wave- 1, according to Eq(2.10]
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21172 70
2(0N) Y4 14| po + E_l) } }<E<(dv)\)1/2 L %
v
60 —
4U/-L 1/2 i //
X|d++—=| , d=3. (4.2 v/
d-2 50 - e
v
The Gaussian trial wave function allows us to compute an i 7
approximate value for the mean-squared pair separaticm 40 - //
measure of the size of the system. We find Ev // g
d 4o |12 % //
o?=((r;=ry)%)= | 1+ ) . (43 i /
2(vN) d(d—2) 2 L //
We now look at some special cases. For the harmonic r 7
oscillator, =0, the inequalities collapse to the exact value 10 |-
E=d(v\)Y2 The asymptotic forms of the bounds @s>» i
and u>0 are given by 0o . . . Ll . . . .

d 1/2

~2U(AM)1/2<E<~2U(M)1’2(ﬁ) . (4.9
Thus for largeN the energy per particl& increases likeN, FIG. 2. Bounds for the energy paramet#fv) =£/(N—1) of
although the “size” of the systenfas estimated by the theN-boson system with pair potentials of the forftr) =Vo(r
Gaussian wave functiorapproaches the constant valge ' ). @S afunction ob=NV,/2. The graphs showJ the upper
:[d/(d_z)]lm(m)\)lm If d is now taken large, the boundF¢(v) found by a Gaussian trial functioh,the lower bound
asymptotic form of the energy approaches the classical e{éf}g d'b:y Ehz)e ebqu(l:\c/)ﬁleegvt\évz:;gotlzerr;?thod, and “dashed" the upper
pressiorE=uvf(f), wheref = o= (u/\)*is the position of #(0) BY y:
the minimum off(r).

For the special casg=3 we obtain in general where thed-dependent constar is given by

d-1
(oMY 2+ (1+4puv)A<E<(wM) Y9+ 120 ]2 (4.5 F(T) ,
These results are shown in Fig. 2 along with the improved Yd= d\ ’ Y?’:\/_;' .3
upper bound“dashed” curve obtained with the trial prob- r 2

ability density function(1.3). The extreme optimai(v) val-
ues in the range shown wetg2)=2.8593,q(20)=4.460.  The Gaussian trial wave function again allows us to compute
Hence the optimal probability densiig(r) is found to be an approximate value for the mean-squared pair separation.

quite far from Gaussian. We find
V. KRATZER POTENTIAL 2= ((ry—15)?)= ’ 14 dop |\ (5.4
. o voe 2(v\yg)? d(d—2)) =
The Kratzer potential has shape function giy&9—39
by For the pure gravitational cage=0 the energy inequali-
ties become
Ao
f(r)=—T+r—2, A>0, w=0. (5.9 (U)\)Z (U)\'}’d)z

The N-particle lower bound-,(v) is provided by the lowest

eigenvalue ofH=—A+uvf(r) in d dimensions, a problem The asymptotic forms of the bounds @as:e and >0 are
that is discussed, for example, in R¢40]. Meanwhile an  given by

exactly similar calculation to that described in Sec. IV, with

a Gaussian trial function, generates the corresponding upper vA? v\?

bound. We find in this way that the energy paramefer N_E<E<N_HM(d)’

satisfies the following inequalities:

2
d-2)
- (v\)? _ (ony)? =3 where M(d)= % : (5.6
{1+[(d=2)%+4v ]2 [ 8ou]l 7
2d+ ——= . . . .
d-2 The function M(d) increases monotonically witld to 1;

(5.2 M(3)=2/7m~0.63662;M(8)>0.9. Thus, as for the previ-
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0 with the trial probability density functiol.3). The extreme
optimal q(v) values in the range shown were for this prob-
- lem: q(2)=2.0017,q(20)=3.237. The optimal probability
density (in this family) is found to be almost Gaussian for
a b smallv <3 but very different from Gaussian for larger val-
ues ofv.

Ev) 1 VI. CONCLUSION

2 + Y The main purpose of this paper is to derive general
\\ bounds for the energy di-boson systems that are bound
- \\ together by pair potentials with soft cores. We have exam-
L \\ ined two such models and we have provided upper and lower
3 AN bound formulas valid for aIN=2 andd=3, and for all

values of the potential parameters that bind the system.
L These bounds are expressed in terms of the energy parameter
E=& (N—1)=Fy(v), where (in units with A=m=1) v
=NVy/2. If the potential shape is such tHaj(v) is close to
F..(v), then we obtain close upper and lower bounds valid
for all N=2. The upper bouné&s(v) provided by a Gauss-

v ian trial function may be improved t6 ,(v), which is de-
rived by using a(possibly non-Gaussiartrial probability
density ¢ in a limiting form of collective field theory. In
order to do significantly better one might hand craft a trial
wave function for a particulaf(r) andN. Of course, to be
secure about this wave function one would still need to find
a good lower bound, a goal usually not easy to achieve. The
global results we have obtained show that these boson sys-
tems are asymptotically bounded by expressions of the form

2. H . .-
while the size(as estimated by the Gaussian wave fungtion £~ CN"; if d is also large, we have shown that the heuristic
approaches the constant valoe=[ 2v2d/ y4(d—2)](w/\). cl_assmal expressiofi= (5) Vof (f) is reached asymptoucally.

If dis now taken large, the asymptotic form of the energySince the many-body problem continues to offer a serious
(again approaches the classical expressiBrvf(f), in challenge for direct numerical solution, it is very helpful to

which ? = o =2u/\ is the position of the minimum of(r). ~ have some explicit analytic upper and lower energy bounds
For the special casgé=23 we obtain in general and size estimates for model systems such those discussed in

this paper.

FIG. 3. Bounds for the energy parametfv)=~&/(N—1) of
the N-boson system with pair potentials of the forf(r)=V,
(—r~1+r~2), as a function ob =NV,/2. The graphs showd the
upper bound-g(v) found by a Gaussian trial functioh,the lower
boundF,(v) by the equivalent two-body method, and “dashed”
the upper boundF 4(v) by collective field theory.

ous model, the energy per parti¢teincreases likeN. Mean-

~ (n)?
ald+20u]

(vN)?
1+ (1+4vp)T?2
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