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Variational approach to a hydrogen atom in a uniform magnetic field of arbitrary strength
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~Received 17 May 2000; published 13 October 2000!

Extending the Feynman-Kleinert variational approach, we calculate the temperature-dependent effective
classical potential governing the quantum statistics of a hydrogen atom in a uniform magnetic field at all
temperatures. The zero-temperature limit yields the binding energy of the electron, which is quite accurate for
all magnetic-field strengths, and exhibits, in particular, correct logarithmic growth at large fields.

PACS number~s!: 31.15.Pf, 03.65.Ca, 05.30.2d
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I. INTRODUCTION

Quantum-statistical and -mechanical properties of a
drogen atom in an external magnetic field are not exa
calculable. Perturbative approaches yield good results o
for weak uniform fields, as discussed in detail by Le Guill
and Zinn-Justin@1#, who interpolated with analytic mappin
techniques the ground-state energy between weak and s
fields. Other approaches are based on recursive procedu
higher-order perturbation theory@2–4#. Zero-temperature
properties were also investigated with the help of an oper
optimization method in a second-quantized variational p
cedure@5#. The behavior at high uniform fields was inferre
from treatments of the one-dimensional hydrogen at
@6–8#. Hydrogen in strong magnetic fields is still a proble
under investigation, since its solution is necessary to un
stand the properties of white dwarfs and neutron stars
emphasized in Refs.@9–12#. A compact and detailed presen
tation of the bound states and highly accurate numeric
values for the energy levels is given in Ref.@13#.

Equations for a first-order variational approach to t
ground-state energy of hydrogen in a uniform magnetic fie
based on the Jensen-Peierls inequality, were set down a
time ago@14#, but never evaluated. Apparently, they mere
served as a preparation for attacking the more complica
problem of a polaron in a magnetic field@14–16#.

In our approach, we calculate the quantum-statist
properties of the system by an extension of variational p
turbation theory@17#. The crucial quantity is the effective
classical potential. In the zero-temperature limit, this yie
the ground-state energy. Our calculations in a magnetic fi
require an extension of the formalism in Ref.@17#, which
derives the effective classical potential from the phase-sp
representation of the partition function.

Variational perturbation theory has an important adv
tage over other approaches: This calculation yields a g
effective classical potential forall temperatures and couplin
strengths. The quantum-statistical partition function is o
tained from a simple integral over a Boltzmann factor
volving the effective classical potential. The ground-state
ergy is then obtained from its zero-temperature limit. T
asymptotic behavior in the strong-coupling limit emerges
tomatically, and does not have to be derived from ot
sources.
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II. EFFECTIVE CLASSICAL REPRESENTATIONS FOR
THE QUANTUM-STATISTICAL PARTITION

FUNCTION

A point particle in D dimensions with a potentialV(x)
and a vector potentialA(x) is described by a Hamiltonian

H~p,x!5
1

2M
@p2 eA~x!#21V~x!. ~2.1!

The quantum-statistical partition function is given by the E
clidean phase-space path integral

Z5 R D8DxD Dp e2A[p,x]/\, ~2.2!

with an action

A@p,x#5E
0

\b

dt@2 ip~t!• ẋ~t!1H„p~t!,x~t!…#,

~2.3!

and the path measure

R D8DxD Dp5 lim
N→`

)
n51

N11 F E dDxndDpn

~2p\!D G . ~2.4!

The parameterb51/kBT denotes the usual inverse therm
energy at a temperatureT, wherekB is the Boltzmann con-
stant. FromZ we obtain the free energy of the system:

F52
1

b
ln Z. ~2.5!

In perturbation theory, one treats the external potentialV(x)
as a small quantity, and expands the partition function i
powers ofV(x). Such a naive expansion is applicable on
for extremely weak couplings, and has a vanishing radius
convergence. Convergence is achieved by variational pe
bation theory@17#, which yields good approximations for a
potential strengths, as we shall see in a sequel.

A. Effective classical potential

All quantum-mechanical systems studied so far in var
tional perturbation theory were governed by a Hamilton
of the standard form
©2000 The American Physical Society09-1
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H~p,x!5
p2

2M
1V~x!. ~2.6!

The simple quadratic dependence on the momenta make
momentum integrals in the path integral~2.2! trivial. The
remaining configuration space representation of the parti
function is used to define an effective classical poten
Veff(x0), from which the quantum-mechanical partition fun
tion is found by a classically looking integral

Z5E dDx0

l th
D

exp@2bVeff~x0!#, ~2.7!

where l th5A2p\2b/M is the thermal wavelength. Th
Boltzmann factor plays the role of alocal partition function
Zx0, which is calculated from the restricted path integral

e2bVeff(x0)[Zx05l th
D R D Dxd„x02x~t!…e2A[x]/\,

~2.8!

with the action

A@x#5E
0

\b

dt FM

2
ẋ2~t!1V„x~t!…G ~2.9!

and the path measure

R D Dx5 lim
N→`

)
n51

N11 H E dDxn

@2p\2b/M ~N11!#D/2J .

~2.10!

The special treatment of the temporal average of the Fou
path,

x05x~t!5
1

\bE0

\b

dt x~t!, ~2.11!

is essential for the quality of the results. It subtracts from
harmonic fluctuation widtĥ x2&cl the classical divergenc
proportional toT51/kBb of the Dulong-Petit law@17,19#.
Such diverging fluctuations cannot be treated perturbativ
and require the final integration in expression~2.7! to be
done numerically. For the Coulomb potentialV(x)5
2e2/4p«0uxu in three dimensions, the effective classical p
tential in Eq.~2.8! can be approximated well by variation
perturbation theory@17,19,20#.

B. Effective classical Hamiltonian

In order to deal with Hamiltonians like Eq.~2.1!, which
contain ap•A(x) term, we must generalize the variation
procedure. Extending Eq.~2.8!, we define aneffective clas-
sical Hamiltonianby the phase-space path integral
05250
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e2bHeff(p0 ,x0)[Zp0 ,x0

5~2p\!D R D8DxD Dpd„x02x~t!…

3d„p02p~t!…e2A[p,x]/\, ~2.12!

with action ~2.3! and measure~2.4!. This allows us to ex-
press the partition function as the classical looking pha
space integral

Z5E dDx0dDp0

~2p\!D
exp@2bHeff~p0 ,x0!#, ~2.13!

wherep0 is the temporal average of the momentum:

p05p~t!5
1

\bE0

\b

dt p~t!. ~2.14!

The fixing of p0 is done for the same reason as that forx0,
since the classical expectation value^p2&cl is diverging lin-
early with T, just as^x2&cl.

In the special case of a standard Hamiltonian~2.6!, the
effective Hamiltonian in Eq.~2.13! reduces to the effective
classical potential, since the momentum integral in Eq.~2.12!
can then be easily performed, and the resulting restric
partition function becomes

Zp0 ,x05expS 2b
p0

2

2M DZx0, ~2.15!

with the local partition functionZx05exp@2bVeff(x0)# of
Eq. ~2.8!. Thus the complete quantum statistical partiti
function is given by Eq.~2.13!, with an effective classica
Hamilton function

Heff~p0 ,x0!5
p0

2

2M
1Veff~x0!. ~2.16!

As a consequence of the purely quadratic momentum de
dence ofH(p,x) in Eq. ~2.6!, the p0 integral in Eq.~2.13!
can be performed, thus expressing the quantum-statis
partition function as a pure configuration space integral o
the Boltzmann factor involving the effective classical pote
tial Veff(x0), as in Eq.~2.7!.

C. Exact effective classical Hamiltonian for an electron in a
constant magnetic field

The effective classical Hamiltonian for the electron mo
ing in a constant magnetic field can be calculated exac
We consider a magnetic fieldB5Bez pointing along the
positivez axis. The only nontrivial motion of the electron i
in the x-y plane. In symmetric gauge the vector potential
given by

A~x!5
B

2
~2y,x,0!. ~2.17!
9-2
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The choice of the gauge does not affect the partition func
since the periodic path integral@Eq. ~2.2!# is gauge invariant.
Ignoring the trivial free particle motion along thez direction,
we may restrict our attention to the two-dimensional Ham
tonian

H~p,x!5
p2

2M
2vBl z~p,x!1

1

2
MvB

2x2, ~2.18!

with x5(x,y) andp5(px ,py). HerevB5eB/2M is half the
Landau frequency, and

l z~p,x!5~x3p!z5xpy2ypx ~2.19!

is the third component of the orbital angular momentum.
It is useful at intermediate stages of the following dev

opment to treat the more general problem

H~p,x!5
p2

2M
2vBl z~p,x!1

1

2
MV'

2 x2. ~2.20!

At the end of the calculation, only the limitV'→vB will be
relevant. The partition function of the problem is given
Eq. ~2.13!, with D52. Being interested in an effective cla
sical formulation, we have to calculate the path integ
~2.12!. First we express thed function for the averaged mo
mentum as a Fourier integral

d„p02p~t!…5E d2j

~2p\!2
expS 2

i

\
j•p0D

3expF2
1

\E0

\b

dt v0~j!•p~t!G ~2.21!

involving an auxiliary source

v0~j!52
i

\b
j, ~2.22!

which is constant in time. Substituting thed function in Eq.
~2.12! by this source representation, the partition functi
reads

Zp0 ,x05E d2j expS 2
i

\
j•p0D R D82xD 2pd„x02x~t!…

3expH 2
1

\E0

\b

dt @2 ip~t!• ẋ~t!1H„p~t!,x~t!…

1v0~j!•p~t!#J . ~2.23!

Evaluating the momentum integrals and utilizing the perio
icity property x(0)5x(\b), we obtain the configuration
space path integral
05250
n

-

-
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Zp0 ,x05E d2j expS 2
i

\
j•p02

M

2\2b
j2D

3 R D 2xd„x02x~t!…

3expH 2
1

\E0

\b

dt

3FM

2
ẋ2~t!1

1

2
M ~V'

2 2vB
2 !x2~t!

2 iM vB@x~t!3 ẋ~t!#z1x~t!• j1~j!G J ,

~2.24!

where the sourcev0 coupled to the momentum in Eq.~2.23!
has turned to a sourcej1 coupled to the path in configuratio
space@21#, with components

j1~j!5MvB„v0y~j!,2v0x~j!…5
ivBM

\b
~2jy ,jx!.

~2.25!

Expressing thed function in the path integral of Eq.~2.24!
by the Fourier integral

d„x02x~t!…5E d2k

~2p!2
exp~ i k•x0!

3expF2
1

\E0

\b

dt j2~k!•x~t!G ~2.26!

with the new source

j2~k!5
i k

b
, ~2.27!

the partition function~2.24! can be written as

Zp0 ,x05E d2j expS 2
i

\
j•p02

M

2\2b
j2D

3E d2k

~2p!2
exp~ i k•x0!ZV@J~j,k!#. ~2.28!

The functionalZV@J(j,k)# is defined as the configuratio
space path integral

ZV@J~j,k!#5 R D 2x expF2
1

2E0

\b

dtE
0

\b

dt8

3x~t!G21~t,t8!x~t8!

2
1

\E0

\b

dt J~j,k!•x~t!G , ~2.29!

where we have introduced the combined sourceJ(j,k)
5 j1(j)1 j2(k). Formally, the solution reads
9-3
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ZV@J~j,k!#5ZV@0#expF 1

2\2E0

\b

dtE
0

\b

dt8J~j,k!

3G~t,t8!J~j,k!G , ~2.30!

whereG(t,t8) is the matrix of Green functions obtained b
inverting the kernel

G21~t,t8!5
M

\ S 2
d2

dt2
1V'

2 2vB
2 22ivB

d

dt

2ivB

d

dt
2

d2

dt2
1V'

2 2vB
2 D

3d~t2t8!. ~2.31!

The inversion is easily done in frequency space after sp
trally decomposing thed function into the Matsubara fre
quenciesvm52pm/\b:

d~t2t8!5
1

\b (
m52`

`

eivm(t2t8). ~2.32!

The result is

G̃~vm!5
\

M

1

detG̃
S vm

2 1V'
2 2vB

2 22vBvm

2vBvm vm
2 1V'

2 2vB
2 D .

~2.33!

At this point, the additional oscillator in Eq.~2.24! proves
useful: It ensures that the determinant

detG̃~vm!5~vm
2 1V'

2 2vB
2 !214vB

2vm
2 ~2.34!

is nonzero form50, thus playing the role of an infrare
regulator. The Fourier expansion

G~t,t8!5
1

\b (
m52`

`

G̃~vm!e2 ivm(t2t8) ~2.35!

yields the matrix of the Green functions,

G~t,t8!5S Gxx~t,t8! Gxy~t,t8!

Gyx~t,t8! Gyy~t,t8!
D ~2.36!

which inherits the symmetry properties from the kern
~2.31!:

Gxx~t,t8!5Gyy~t,t8!, Gxy~t,t8!52Gyx~t,t8!.
~2.37!

A more detailed description of these Green functions is gi
in Appendixes A and B.

Since the currentJ does not depend on the Euclidea
time, expression~2.30! therefore simplifies to
05250
c-

l

n

ZV@J~j,k!#5ZV@0#expF2
1

\2
J2~j,k!

3E
0

\b

dtE
0

\b

dt8Gxx~t,t8!G . ~2.38!

The Green function has the Fourier decomposition

Gxx~t,t8!5
1

Mb (
m52`

` vm
2 1V'

2 2vB
2

~vm
2 1V1

2 !~vm
2 1V2

2 !
e2 ivm(t2t8),

~2.39!

whereV6 are the frequencies,

V65V'6vB , ~2.40!

andV'.vB , for stability.
The ratios in the sum of Eq.~2.39! can be decompose

into two partial fractions, each of them representing a sin
harmonic oscillator with frequenciesV1 and V2 , respec-
tively. The analytic form of the periodic Green function of
single harmonic oscillator is well known~see Chapter 3 in
Ref. @17#!, and for the present Green function~2.39! we ob-
tain

Gxx~t,t8!5
\

4MV'
S coshV1~ ut2t8u2\b/2!

sinh\bV1/2

1
coshV2~ ut2t8u2\b/2!

sinh\bV2/2 D . ~2.41!

By writing the determinant~2.34! as

detG̃~vm!5~vm
2 1V1

2 !~vm
2 1V2

2 ! ~2.42!

and summing over the logarithms of this, we calculate
partition function as a product of two single harmonic osc
lators:

ZV5ZV@0#5
1

2 sinh\bV1/2

1

2 sinh\bV2/2
.

~2.43!

Results~2.41! and~2.43! determine the generating function
~2.38!. The Euclidean time integrations are then easily do
and subsequently thek andj integrations in Eq.~2.28!. As a
result, we obtain the restricted partition function

Zp0 ,x05expH 2bS 2
1

b
ln

sinh\bV1/2

\bV1/2

sinh\bV2/2

\bV2/2

1
p0

2

2M
2vBl z~p0 ,x0!1

1

2
MV'

2 x0
2D J . ~2.44!

Taking the limit V'→vB , from Eq. ~2.40! we find V1

→2vB andV2→0, and therefore
9-4
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lim
V'→vB

sinh\bV1/2

\bV1/2
5

sinh\bvB

\bvB
,

lim
V'→vB

sinh\bV2/2

\bV2/2
51. ~2.45!

Recalling definition~2.12!, we identify the exact effective
classical Hamiltonian for an electron in a magnetic field

Heff~p0 ,x0!5
1

b
ln

sinh\bvB

\bvB
1

p0
2

2M
2vBl z~p0 ,x0!

1
1

2
MvB

2x0
2 . ~2.46!

Integrating out the momenta in Eq.~2.13!, the configuration
space representation~2.7! for the partition function contains
the effective classical potential for a charged particle in
plane perpendicular to the direction of a uniform magne
field:

Veff~x0!5
1

b
ln

sinh\bvB

\bvB
. ~2.47!

Note that this is a constant potential.
Denoting the area*d2x0 by A, we find the exact quantum

statistical partition function

Z5
A

l th
2

\bvB

sinh\bvB
. ~2.48!

After these preparations, we can turn our attention to
system we want to study in this paper: the hydrogen atom
a uniform magnetic field, where the additional Coulomb
teraction prevents us from finding an exact solution for
effective classical Hamilton function.

III. HYDROGEN ATOM IN CONSTANT
MAGNETIC FIELD

The zero-temperature properties of the hydrogen a
without external fields are exactly known. For the quant
statistics at finite temperatures, an analytical expression
ists, but it is hard to evaluate. It is easier to find an accu
approximate result with the help of variational perturbati
theory@20#. Similar calculations have been performed for t
electron-proton pair distribution function which can be inte
preted as the unnormalized density matrix@19#.

Here we extend this method of calculation to the hyd
gen atom in a constant magnetic field. This extension is q
nontrivial, since the weak- and strong-field limits will tur
out to exhibit completely different asymptotic behaviors. L
us first generalize variational perturbation theory to an e
tron in a constant magnetic field and arbitrary potential.

A. Generalized variational perturbation theory

We consider once more the effective classical form~2.13!
of the quantum-statistical partition function, which require
05250
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path integration~2.12! in phase space. Fluctuations paral
and vertical to the magnetic-field lines are now both no
trivial; we must deal with a full three-dimensional system
and the components of the electron position and momen
are now denoted byx5(x,y,z) and p5(px ,py ,pz). For a
uniform magnetic field pointing along thez axis, the vector
potentialA(x) is used in the gauge~2.17!. Thus the Hamilton
function of an electron in a magnetic field and an arbitra
potentialV(x) is

H~p,x!5
p2

2M
2vBl z~p,x!1

1

2
MvB

2x21V~x!. ~3.1!

The orbital angular momentuml z(p,x) was introduced in Eq.
~2.19!, and the frequencyvB below Eq.~2.18!. The impor-
tance of the separation of the zero-frequency componentx0
and p0 was discussed in Sec. II. Their divergence with t
temperatureT prevents a perturbative treatment. Thus it
essential to set up a perturbation theory only for the fluct
tions aroundx0 andp0. For this we rewrite the action func
tional ~2.3! associated with Hamiltonian~3.1! as

A@p,x#5A
V

p0 ,x0@p,x#1Aint@p,x#, ~3.2!

where we have introduced the fluctuation action

A
V

p0 ,x0@p,x#5E
0

\b

dtH 2 i @p~t!2p0#• ẋ~t!

1
1

2M
@p~t!2p0#22VBl z„p~t!

2p0 ,x~t!2x0…1
1

2
MV'

2 @x'~t!2x0
'#2

1
1

2
MV i

2@z~t!2z0#2J , ~3.3!

in which x'5(x,y) denotes the transverse part ofx and
V'.VB , for stability. The interaction is now

Aint@p,x#5E
0

\b

dtVint„p~t!,x~t!…5A@p,x#2A
V

p0 ,x0@p,x#,

~3.4!

with the interaction potential

Vint„p~t!,x~t!…5
1

2M
$p2~t!2@p~t!2p0#2%2vBx'~t!

3p'~t!1VB„x
'~t!2x0

'
…3„p'~t!2p0

'
…

1
1

2
MvB

2x'2~t!2
1

2
MV'

2 @x'~t!2x0
'#2

2
1

2
MV i

2@z~t!2z0#21V„x~t!…, ~3.5!

where p'5(px ,py). The frequenciesV5(VB ,V' ,V i)
are arbitrary for the moment. The decomposition~3.2!
9-5
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forms the basis for the variational approach, where the
term in action~3.2! allows an exact treatment. The transver
part was given in Sec. II C, and the longitudinal part
trivial, since it is harmonic with frequencyV i . The associ-
ated partition function is given by the path integral

Z
V

p0 ,x05 R D83xD 3pd„x02x~t!…

3d„p02p~t!…e2A
V

p0 ,x0[p,x]/\, ~3.6!

which can be performed. Details are given in Appendix
The result is

Z
V

p0 ,x05
\bV1/2

sinh\bV1/2

\bV2/2

sinh\bV2/2

\bV i/2

sinh\bV i/2
,

~3.7!

where auxiliary frequencies are composed of the frequen
VB andV' in action ~3.3! as

V6~VB ,V'!5V'6VB . ~3.8!

This partition function serves in the subsequent pertuba
expansion as a trial system which depends explicitly on
frequenciesV. The correlation functions are a straightfo
ward generalization of Eq.~2.36! to three dimensions:

Gx0~t,t8!5S Gxx
x0~t,t8! Gxy

x0~t,t8! 0

Gyx
x0~t,t8! Gyy

x0~t,t8! 0

0 0 Gzz
x0~t,t8!

D ,

~3.9!

whose explicit form is derived in Appendix C.
The V-dependent action in Eq.~3.2! is treated perturba

tively. Writing the partition function~2.12! as

Zp0 ,x05~2p\!3 R D83xD 3pd„x02x~t!…d„p02p~t!…

3expH 2
1

\
A

V

p0 ,x0@p,x#J
3expH 2

1

\E0

\b

dtVint„p~t!,x~t!…J , ~3.10!

the second exponential is expanded into a Taylor ser
yielding

Zp0 ,x05~2p\!3 R D83xD 3pd„x02x~t!…d„p02p~t!…

3expH 2
1

\
A

V

p0 ,x0@p,x#J
3F12

1E\b

dtVint„p~t!,x~t!…

\ 0

05250
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1

2!\2E0

\b

dt1E
0

\b

dt2Vint„p~t1!,x~t1!…

3Vint„p~t2!,x~t2!…2•••G . ~3.11!

Defining harmonic expectation values with respect to the
stricted path integral as

^•••&V

p0 ,x05
~2p\!3

Z
V

p0 ,x0
R D83xD 3p . . . d„x02x~t!…

3d„p02p~t!…expH 2
1

\
A

V

p0 ,x0@p,x#J ,

~3.12!

the perturbation expansion for the partition function~3.11!
reads

Zp0 ,x05Z
V

p0 ,x0 (
n50

`
~21!n

\nn!

3K S E
0

\b

dt Vint„p~t!,x~t!…D nL
V

p0 ,x0

.

~3.13!

This power series expansion can be rewritten in the expon
tial form

Zp0 ,x05Z
V

p0 ,x0 expH (
n50

`
~21!n

\nn!

3K S E
0

\b

dt Vint„p~t!,x~t!…D nL
V,c

p0 ,x0J ,

~3.14!

where the subscriptc on the expectation values indicate
cumulants. The lowest cumulants are related to the full
pectation values as follows:

^O1~p~t1!,x~t1!!&V,c
p0 ,x05^O1„p~t1!,x~t1!…&V

p0 ,x0 ,

^O1„p~t1!,x~t1!…O2„p~t2!,x~t2!…&V,c
p0 ,x0

5^O1„p~t1!,x~t1!…O2„p~t2!,x~t2!…&V

p0 ,x0

2^O1„p~t1!,x~t1!…&V

p0 ,x0^O2„p~t2!,x~t2!…&V

p0 ,x0 ,

A, ~3.15!

whereOi„p(t j ),x(t j )… denotes any observable depending
momentum and position. Recalling relation~2.12! between
partition function~3.14! and effective classical Hamiltonia
Heff(p0 ,x0), from Eq.~3.14! we obtain the effective classica
Hamiltonian as a cumulant expansion:
9-6
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Heff~p0 ,x0!52
1

b
ln Z

V

p0 ,x01
1

b (
n51

`
~21!n

\nn!

3K S E
0

\b

dt Vint„p~t!,x~t!…D nL
V,c

p0 ,x0

.

~3.16!

Up to now, we did not make any approximation. The exp
sion on the right-hand side is an exact expression for
effective classical Hamiltonian for anyV.

For systems with a nontrivial interaction, we are capa
of calculating only some initial truncated part of seri
~3.16!, say up to theNth order, leading to the approximat
effective classical Hamiltonian

HV
(N)~p0 ,x0!52

1

b
ln Z

V

p0 ,x01
1

b (
n51

N
~21!n

\nn!

3K S E
0

\b

dt Vint„p~t!,x~t!…D nL
V,c

p0 ,x0

.

~3.17!

This depends explicitly on the three parametersV. Since the
exact expression~3.16! is independent ofV, the best ap-
proximation forHV

(N)(p0 ,x0) should depend onV minimally.
Thus the optimal solution will be found by determining th
parameters from the conditions

¹VHV
(N)~p0 ,x0!5

!
0. ~3.18!

Let us denote the optimal variational parameters toNth order
by

V(N)5„VB
(N)~p0 ,x0!,V'

(N)~p0 ,x0!,V i
(N)~p0 ,x0!….

~3.19!

Inserting these into Eq.~3.17! yields the optimal effective
classical HamiltonianH (N)(p0 ,x0).

B. First-order effective classical potential

The first-order approximation of the effective classic
Hamiltonian~3.17! reads

HV
(1)~p0 ,x0!52

1

b
ln Z

V

p0 ,x02^Vint~p,x!&V

p0 ,x0 . ~3.20!

The invariance of the system under time translations ma
one of the time integrals in expansion~3.16! trivial, yielding
merely an overall factor\b. In particular, the first-order ex
pectation value ofVint(x) in Eq. ~3.20! is independent of the
Euclidean timet.

In order to calculateHV
(1)(p0 ,x0), we use the two-point

correlation functions derived in Appendix C, and the vanis
ing of the linear expectations, e.g.,

^px~t!2p0x&V

p0 ,x050, ~3.21!
05250
-
e

e

l

es

-

to find

HV
(1)~p0 ,x0!5

p0
2

2M
2vBl z~p0 ,x0!1

1

2
MvB

2~x0
21y0

2!

1WV
(1)~x0!, ~3.22!

where we have collected all terms depending on the va
tional parametersV in the potential

WV
(1)~x0!52

1

b
ln Z

V

p0 ,x02MVB~vB2VB! b'
2 ~x0!1M ~vB

2

2V'
2 ! a'

2 ~x0!2
1

2
MV i

2ai
2~x0!1^V~x!&V

p0 ,x0 .

~3.23!

The quantitiesa'
2 (x0),ai

2(x0), andb'
2 (x0) are the transverse

and longitudinal fluctuation widths

a'
2 ~x0!5Gxx

p0 ,x0~0!, ai
2~x0!5Gzz

p0 ,x0~0!,

b'
2 ~x0!5

2

MVB
Gxpy

p0 ,x0~0!. ~3.24!

Note that potential~3.23! is independent ofp0. This means
that approximation~3.22! of the effective classical Hamil-
tonian contains no coupling of the momentump0 to a varia-
tional parameterV, such that the optimalV(1) determined
by minimizing HV

(1)(p0 ,x0) is independent ofp0. We may
therefore integrate outp0 in the phase-space representati
of the first-order approximation for the partition function

Z(1)5E d3x0d3p0

~2p\3!
e2bHV

(1)(p0 ,x0) ~3.25!

to find the pure configuration space integral

Z(1)5E d3x0

l th
3

e2bWV
(1)(x0), ~3.26!

in which WV
(1)(x0) is the first-order approximation to the e

fective classical potential of an electron in a potentialV(x)
and a uniform magnetic field.

C. Application to the hydrogen atom in a magnetic field

We now apply the formulas of Sec. III B to Hamiltonia
~3.1! with an attracting Coulomb potential

V~x!52
e2

4p«0 uxu
, ~3.27!

whereuxu is the distance between the electron and the pro
The only nontrivial problem is the calculation of the expe
tation value^V„x(t)…&V

p0 ,x0 in Eq. ~3.23!. This is done using
the so-calledsmearing formula, which is a Gaussian convo
lution of V(x). This formula was first derived by Feynma
and Kleinert @18#, and now also exists in an extension
9-7
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arbitrary order@19,20#. The generalization to position- and
momentum dependent observables was given in the ph
space formulation@21#. We briefly rederive the first-orde
smearing formula. The expectation value is defined by

^V„x~t8!…&V

p0 ,x05
~2p\!3

Z
V

p0 ,x0
R D83xD 3p V„x~t8!… d„x0

2x~t!…d„p02p~t!…e2A
V

p0 ,x0[p,x]/\.

~3.28!

Now we substitute the potential with the expression

V„x~t8!…5E d3x V~x!d„x2x~t8!…

5E d3x V~x!E d3k

~2p!3
exp@ i k•~x2x0!#

3expH 2
1

\E0

\b

dt j ~t!•@x~t!2x0#J ,

~3.29!

where we have introduced the source

j ~t!5 i\kd~t2t8!. ~3.30!

Inserting expression~3.29! into Eq. ~3.28!, we obtain

^V„x~t8!…&V

p0 ,x05
1

Z
V

p0 ,x0
E d3x V~x!E d3k

~2p!3

3exp@ i k•~x2x0!# Z
V

p0 ,x0@ j #,

~3.31!

with the harmonic generating functional

Z
V

p0 ,x0@ j #5~2p\!3 R D83xD 3p d„x02x~t!…

3d„p02p~t!…expH 2
1

\
A

V

p0 ,x0@p,x#

2
1

\E0

\b

dt j ~t!•@x~t!2x0#J . ~3.32!

The solution is

Z
V

p0 ,x0@ j #5Z
V

p0 ,x0expF 1

2\2E0

\b

dtE
0

\b

dt8 j ~t!

3Gx0~t,t8! j ~t8!G , ~3.33!

with the 333 matrix of the Green functions of Eq.~3.9!. The
properties of the Green functions are discussed in App
05250
se-

n-

dixes A and B. Expressing the sourcej (t) in terms ofk via
Eq. ~3.30!, and performing thet integrations, we arrive at

^V„x~t8!…&V

p0 ,x05E d3x V~x!E d3k

~2p!3
exp$ i k•@x2x0#%

3expF2
1

2
k Gx0~0! kG . ~3.34!

Recognizing thatGyx
x0(0)5Gxy

x0(0) vanish, thek integral is
easily calculated, and leads to the first-order smearing
mula for an arbitrary position-dependent potential

^V„x~t8!…&V

p0 ,x05
1

~2p!3/2a'
2 ~x0!Aai

2~x0!
E d3x V~x!

3expF2
~x2x0!21~y2y0!2

2a'
2 ~x0!

2
~z2z0!2

2ai
2~x0!

G , ~3.35!

the right-hand side containing the Gaussian fluctuat
widths ~3.24!.

For the Coulomb potential~3.27! that we are interested in
the integral in the smearing formula~3.35! cannot be done
exactly. An integral representation for a simple numeri
treatment is

K 2
e2

4p«0 uxu L
V

p0 ,x0

52
e2

4p«0
A2

p
ai

2~x0!E
0

1 dj

ai
2~x0!1j2@a'

2 ~x0!2ai
2~x0!#

3expH 2
j2

2 S x0
21y0

2

ai
2~x0!1j2@a'

2 ~x0!2ai
2~x0!#

1
z0

2

ai
2~x0!

D J . ~3.36!

With this expression we know the entire first-order effecti
classical potential~3.23! for an electron in a Coulomb poten
tial and a uniform magnetic field which has to be optimiz
in the variational parametersV.

IV. RESULTS

We are now going to optimize the effective classical p
tential by extremizing it inV at different temperatures an
magnetic-field strengths. In the zero-temperature limit t
will produce the ground-state energy.
9-8
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A. Effective classical potential for different temperatures
and magnetic field strengths

The optimization ofWV
(1)(x0) proceeds by minimization

in V and must be done for each value ofx0. Reinserting the
optimal parametersV(1)(x0) into expressions~3.23! and
~3.36!, we obtain the optimal first-order effective classic
potential W(1)(x0). The calculations are done numericall
where we used natural units\5e2/4p«05kB5c5M51.
This means that energies are measured in units ofe0
5Me4/(4p«0)2\2[2 Ry'27.21 eV, temperatures i
e0 /kB'3.163105 K, distances in Bohr radii aB
5(4p«0)2\2/Me2'0.53310210 m, and magnetic-field
strengths in B05e3M2/\3(4p«0)2'2.353105 T52.35
3109 G. Figure 1 shows the resulting curves for vario
magnetic-field strengthsB and an inverse temperatureb
51/T51. Examples of the lower-temperature behavior
shown in Fig. 2 forb5100. To see the expected anisotro
of the curves in the magnetic-field direction and in the pla
perpendicular to it, we simultaneously plot the curves
W(1)(x0) transversal to the magnetic field as a function
r05Ax0

21y0
2 at z50 ~solid curves! and parallel as a func

tion of z0 at r050 ~dashed curves!. The curves become
strongly anisotropic for low temperatures and increas
field strengths~Fig. 2!. At a given field strengthB, the two
curves converge for large distances from the origin, wh
the proton resides, to the same constant depending onB. This
is due to the decreasing influence of the Coulomb interac
which shows the classical 1/r behavior in each direction
When approaching the classical high-temperature limit,
effect of anisotropy becomes less important since the vio
thermal fluctuations do not have a preferred direction~see
Fig. 1!. For r0→` or z0→`, the expectation value of th
Coulomb potential~3.36! tends to zero. The remaining effec
tive classical potential

FIG. 1. Effective classical potential~in units of 2 Ry) as a func-
tion of the coordinater05Ax0

21y0
2 perpendicular to the field lines

at z050 ~solid curves!, and parallel to the magnetic field as a fun
tion of z0 at r050 ~dashed curves!. The inverse temperature i
fixed atb51, and the strengths of the magnetic fieldB are varied
~all in natural units!. The small figure enlarges the range
<r0 ,z0<1 with noticeable anisotropy.
05250
l

e

e
r
f

g

e

n

e
nt

WV
(1)~x0!→2

1

b
ln Z

V

p0 ,x02VB~vB2VB! b'
2

1~vB
22V'

2 ! a'
2 2

1

2
V i

2ai
2 ~4.1!

is a constant with regard to the positionx0, and the optimi-
zation yieldsVB

(1)5V'
(1)5vB and V i

(1)50, leading to the
asymptotic constant value

W(1)~x0!→2
1

b
ln

bvB

sinhbvB
. ~4.2!

The B50 curves are of course identical with those obtain
from variational perturbation theory for the hydrogen ato
@20#.

B. Ground-state energy of the hydrogen atom
in uniform magnetic field

In what follows we investigate the zero-temperature b
havior of the theory. Figures 1 and 2 show that the minim
of each potential curve lies at the origin. This means that
first-order approximation to the ground-state energy fo
fixed magnitude of the magnetic fieldB is found by consid-
ering the zero-temperature limit of the first-order effecti
classical potential in the origin

E(1)5 lim
b→`

W(1)~0!. ~4.3!

Thus we obtain from Eq.~3.23! the variational expression fo
the ground-state energy,

EV
(1)~B!5

1

2V'

~V'
2 1vB

2 !1
V i

4
2 K 1

uxu L
V

0

, ~4.4!

FIG. 2. Analogous plot to Fig. 1, but at the larger inverse te
peratureb5100.
9-9
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where the expectation value for the Coulomb potential~3.36!
can now be calculated exactly, since the exponential in
integral simplifies to unity:

K 1

uxu L
V

0

5AV i

p

1

A12V i /V'

ln
12A12V i /V'

11A12V i /V'

.

~4.5!

Equations~4.4! and ~4.5! are independent of the frequenc
parameterVB such that the optimization of the first-orde
expression for the ground-state energy~4.4! requires satisfy-
ing the equations

]EV
(1)~B!

]V'

5
!

0,
]EV

(1)~B!

]V i
5
!

0. ~4.6!

Reinserting the resulting valuesV'
(1) andV i

(1) into Eq. ~4.4!
yields the first-order approximation for the ground-state
ergy E(1)(B). In the absence of the Coulomb interaction t
optimization with respect toV' yieldsV'

(1)5vB , rendering
the ground-state energyE(1)(B)5vB , which is the zeroth
Landau level. An optimal value forV i does not exist since
the dependence of the ground-state energy of this param
is linear in Eq.~4.4! in this special case. To obtain the lowe
energy, this parameter can be set to zero~all optimal fre-
quency parameters used in the optimization procedure
out to be nonnegative!. For a vanishing magnetic field,B
50, Eq. ~4.4! exactly reproduces the first-order variation
result for the ground-state energy of the hydrogen ato
E(1)(B50)'20.42@2 Ry#, obtained in Ref.@20#.

To investigate the asymptotics in the strong-field limitB
→`, it is useful to extract the leading termvB . Thus we
define the binding energy

«~B![vB2E~B!, ~4.7!

which possesses a characteristic strong-field behavior t
discussed in detail subsequently. The result is shown in
3 as a function of the magnitude of the magnetic fieldB,
where it is compared with the high-accuracy results of R
@1#. As a first-order approximation, this result is satisfacto
It is of the same quality as other first-order results, for e
ample those from the operator optimization method in
first order of Ref.@5#. The advantage of variational perturb
tion theory is that it yields good results over the compl
range of the coupling strength, here the magnetic fie
Moreover, as a consequence of the exponential converg
~Ref. @17# Chap. 5!, higher orders of variational perturbatio
theory push the approximate result of any quantity very r
idly toward the exact value.

1. Weak-field case

We now investigate the weak-field behavior of our theo
starting from expression~4.7! and the expectation value o
the Coulomb potential~4.5! in natural units,

«h,V
(1) ~B!5

B

2
2

V

2 S 11
h

2 D2
B2

8V
2AhV

p
h~h!, ~4.8!
05250
e

-
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l
,
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e

e
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,

with

h~h!5
1

A12h
ln

12A12h

11A12h
. ~4.9!

In comparison with Eq.~4.4!, we introduce new variationa
parameters

h[
V i

V'

, V[V' ~4.10!

and utilize, as calculations for the binding energy shown, t
always h<1. Performing the derivatives with respect
these variational parameters, and setting them equal to z
yields conditional equations which, after some manipu
tions, can be written

V

4
1A V

ph

1

12h
S 11

1

2

1

A12h
ln

12A12h

11A12h
D 5

!

0,

~4.11!
1

2
1

h

4
2

B2

8V2
1

1

2
A h

pV

1

A12h
ln

12A12h

11A12h
5
!

0.

Expanding the variational parameters into perturbation se
of the square magnetic fieldB2,

h~B!5 (
n50

`

hnB2n, V~B!5 (
n50

`

VnB2n ~4.12!

and inserting these expansions into the self-consistency
ditions ~4.11! we obtain order by order the coefficients give
in Table I. Inserting these values into the expression for
binding energy~4.8! and expanding with respect toB2, we
obtain the perturbation series

FIG. 3. First-order variational result for the binding energy~in
units of 2 Ry) as a function of the strength of the magnetic fie
The dots indicate the values of Ref.@1#. The dashed curve show
the simple estimate of Landau and Lifschitz@6# 0.5 ln2B, which is
closely related to the ground-state energy of the one-dimensi
hydrogen atom@7,8#.
9-10
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TABLE I. Perturbation coefficients up to orderB6 for the weak-field expansions of the variation
parameters and the binding energy in comparison to the exact ones of Ref.@2#.

n 0 1 2 3

hn 1.0 2
405p2

7168
'20.5576

16828965p4

1258815488
'1.3023 2

3886999332075p6

884272562962432
'24.2260

Vn
16

9p
'0.5659

99p

448
'0.6942 2

1293975p3

39337984
'21.0199

524431667187p5

55267035185152
'2.9038

«n 2
4

3p
'20.4244

9p

128
'0.2209 2

8019p3

1835008
'20.1355

256449807p5

322256764928
'0.2435

«n @2# 20.5 0.25 2
53

192
'20.2760

5581
4608

'1.2112
nd
a

pe

t
e

q
he
ro

w

n

ch

d

re

of
ty,

ion
the
ed
s

rms
« (1)~B!5
B

2
2 (

n50

`

«nB2n. ~4.13!

The first coefficients are also given in Table I. We thus fi
the important result that the first-order variational perturb
tion solution possesses a perturbative behavior with res
to the square magnetic-field strengthB2 in the weak-field
limit, thus yielding the correct asymptotics. The coefficien
differ in higher order from the exact ones, but are improv
in higher orders of the variational perturbation theory~Ref.
@17# Chap. 5!.

2. Asymptotical behavior in the strong-field regime

In the discussion of the pure magnetic field below E
~4.6!, we mentioned that the variational calculation for t
ground-state energy, which is thus associated with the ze
Landau level, yields a frequencyV'}B, while V i50.
Therefore, we use the assumption

V'@V i , V i!B ~4.14!

for the consideration of the ground-state energy~4.4! of a
hydrogen atom in a strong magnetic field. In a first step
expand the last expression of the expectation value~4.5!
which corresponds to condition~4.14! in terms of V i /V'

and reinsert this expansion into the equation of the grou
state energy~4.4!. Then we omit all terms proportional to
C/V' whereC stands for any expression with a value mu
smaller than the field strengthB. In natural units, we thus
obtain the strong-field approximation for the first-order bin
ing energy~4.7!:

«V' ,V i

(1) 5
B

2
2S V'

2
1

B2

8V'

1
V i

4
1AV i

p
ln

V i

4V'
D .

~4.15!

As usual, we consider the zeros of the derivatives with
spect to the variational parameters

]«V' ,V i
(1)

]V i
5
!

0,
]«V' ,V i

(1)

]V'

5
!

0, ~4.16!

which lead to the self-consistence equations
05250
-
ct

s
d

.

th

e

d-

-

-

AV i5
!

2 2
Ap

~ ln V i2 ln V'122 ln 4!, ~4.17!

V'5
! AV i

p 1 B
2
A114

V i

pB2
. ~4.18!

Let us first consider the last equation. Utilizing the second
conditions~4.14!, we expand the second root around uni
yielding the expression

V'5
B

2
1AV i

p
1

V i

pB
22

V i
2

p2B3
1•••, ~4.19!

where the terms are sorted with regard to their contribut
starting with the largest. Since we are interested in
strong-B limit, we can obviously neglect terms suppress
by powers of 1/B. Thus we only consider the following term
for the moment:

V''
B

2
1AV i

p
. ~4.20!

Inserting this into the other condition~4.17!, expanding the
corresponding logarithm, and, once again, neglecting te
of order 1/B, we find

AV i'
2

Ap
~ ln B2 ln V i1 ln 222!. ~4.21!

To obtain a tractable approximation forV i , we perform
some iterations starting from

AV i
(1)5

2

Ap
ln 2Be22. ~4.22!

Reinserting this on the right-hand side of Eq.~4.21!, one

obtains the second iterationAV i
(2). We stop this procedure

after an additional reinsertion which yields
9-11
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TABLE II. Example for the competing leading six terms in Eq.~4.29! at B5105B0'2.3531010 T.

(1/p)ln2B 2(4/p)ln B lnln B (4/p) ln2 ln B 2(4b/p)lnln B @2(b12)/p# ln B b2/p

42.1912 235.8181 7.6019 4.8173 3.3098 0.7632
ce
tr
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to
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AV i
(3)5

2

Ap
S ln 2Be2222lnF 2

Ap
H ln 2Be22

22ln S 2

Ap
ln 2Be22D J G D . ~4.23!

The reader may convince himself that this iteration pro
dure indeed converges. For a subsequent systematical ex
tion of terms essentially contributing to the binding energ
expression~4.23! is not satisfactory. Therefore, it is better
separate the leading term in the curly brackets and exp
the logarithm of the remainder. Then this proceeding is
plied to the expression in the angular brackets and so
Neglecting terms of order ln23B, we obtain

AV i
(3)'

2

Ap
S ln 2Be221 ln

p

4
22 ln ln 2Be22D .

~4.24!

The double-logarithmic term can be expanded in a sim
way as described above:

lnln 2Be225 lnF ln BS 11
ln 222

ln B D G
5 lnln B1

ln 222

ln B
2

1

2

~ ln 222!2

ln2B
1O~ ln23B!.

~4.25!

Thus expression~4.24! may be rewritten as

AV i
(3)5

2

Ap
S ln B22 lnlnB1

2a

ln B
1

a2

ln2B
1bD

1O~ ln23B!, ~4.26!

with abbreviations

a522 ln 2'1.307, b5 ln
p

2
22'21.548. ~4.27!

The first observation is that the variational parameterV i is
always much smaller thanV' in the high-B-field limit as has
been assumed in~4.14!. Thus we can further simplify ap
proximation~4.20! by replacing

V''
B

2 S 11
2

B
AV i

p D→B

2
, ~4.28!

without affecting the following expression for the bindin
energy. Inserting solutions~4.26! and ~4.28! into the equa-
05250
-
ac-
,

nd
-
n.

r

tion for the binding energy~4.15!, and expanding the loga
rithmic term once more as described, we find, up to the or
ln22B,

« (1)~B!5
1

p S ln2B24 lnB lnln B14 ln2ln B24b lnln B

12~b12! ln B1b22
1

ln B
@8 ln2ln B28b lnln B

12b2# D1O~ ln22B!. ~4.29!

Note that the prefactor 1/p of the leading ln2 B term differs
from a value 1/2 obtained by Landau and Lifschitz@6#. Our
different value is a consequence of using a harmonic t
system. The calculation of higher orders in variational p
turbation theory would improve the value of the prefactor

At a magnetic-field strengthB5105B0, which corre-
sponds to 2.3531010 T, the contribution from the first six
terms is 22.87@2 Ry#. The next three terms suppressed by
factor ln21B contribute22.29@2 Ry#, while an estimate for
the ln22B terms yields nearly20.3@2 Ry#. Thus we find

« (1)~105!520.5860.3@2 Ry#. ~4.30!

This is in very good agreement with the value 20.60@2 Ry#
obtained from the full treatment.

Table II lists the values of the first six terms of Eq.~4.29!.
This shows, in particular, the significance of the second le
ing term 2(4/p)ln B ln ln B, which is of the same order o
the leading term (1/p)ln2B but with an opposite sign. In Fig
3, we plot the expression

«L~B!5
1

2
ln2B, ~4.31!

from Landau and Lifschitz@6#, to illustrate that it gives far
too large binding energies even at very large magnetic fie
e.g. at 2000B0}108 T.

This strength of magnetic field appears on surfaces
neutron stars (106–108 T). A recently discovered type o
neuton star is the so-called magnetar@22#. In these, charged
particles such as protons and electrons produced by deca
neutrons give rise to the giant magnetic field of 1011 T. Mag-
netic fields of white dwarfs reach only up to 102–104 T. All
these magnetic-field strengths are far from direct realiza
in experiments. The strongest magnetic fields ever produ
in a laboratory were only of the order 10 T, an order
magnitude larger than the fields in sun spots, which re
about 0.4 T. Recall, for comparison, that the Earth’s m
netic field has the small value of 0.631024 T.
9-12
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It should, however, be noted that there are systems
solid-state physics, where a rescaling of variables co
sponds to extremly strong magnetic fields. In a don
impured semiconductor like GaAs, the properties of the s
tem of an electron bound to a positively charged do
nucleus in an external magnetic field of strength 6.57 T
comparable to a hydrogen atom in a field of strength 2
3105 T @23#. The reason for this is the strongly reduc
effective mass of the electron bound to the donor nucle
the large dielectric constant of the semiconductor, and t
the much larger radius of the orbit of the electron. Hence
Coulomb interaction between the donor nucleus and the e
tron is much weaker than in the hydrogen atom. This
proximate analogy between both systems can thus be us
investigate the effects of extremely strong magnetic fields
earthbound experiments.

As we see in Fig. 3, the nonleading terms in Eq.~4.29!
give important contributions to the asymptotic behavior ev
at such large magnetic fields. It is an unusual property of
asymptotic behavior that the absolute value of the differe
between the Landau expression~4.31! and our approxima-
tion ~4.29! diverges with increasing magnetic-field strengt
B; only the relative difference decreases.

V. SUMMARY

We have calculated the effective classical potential for
hydrogen atom in a magnetic field. For this we have gen
alized variational perturbation theory to make it applicable
physical systems with a uniform external magnetic field.

The effective classical potential containing the compl
quantum statistical information of the system was de
mined in first-order variational perturbation theory. For ze
temperature, it gave the energy of the system. Our re
consists of a single analytic expression which is quite ac
rate at all temperatures and magnetic-field strengths.

ACKNOWLEDGMENTS
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APPENDIX A: GENERATING FUNCTIONAL FOR
PARTICLE IN MAGNETIC FIELD AND

HARMONIC-OSCILLATOR POTENTIAL

For the determination of the correlation functions of
system, we need to know the solution of the two-dimensio
generating functional in the presence of an external sou
j5( j x , j y):

Zx0@ j #5l th
2 R D 2x d„x02x~t!… e2A x0[x; j ]/\. ~A1!
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The action of a particle in a magnetic field in thez direction
and a harmonic oscillator reads

A x0@x; j #5E
0

\b

dt FM

2
ẋ2~t!2 iM VB„@x~t!2x0#3 ẋ~t!…z

1
1

2
M ~V'

2 2VB
2 !@x~t!2x0#2

1 j ~t!•„x~t!2x0…G , ~A2!

whereV'.VB , for stability. The position-dependent term
are centered aroundx05(x0 ,y0), which is the temporal av-
erage of the pathx(t), and thus equal to the zero-frequen
component of the Fourier path,

x~t!5x01 (
m51

`

~xmeivmt1xm
! e2 ivmt!, ~A3!

with the Matsubara frequenciesvm52pm/\b and complex
Fourier coefficientsxm5xm

re1 ixm
im . Introducing a similar

Fourier decomposition for the currentj (t) with Fourier com-
ponentsjm and using the orthonormality relation

1

\bE0

\b

dt ei (vm2vn)t5dmn , ~A4!

the generating functional can be written as

Zx0@ j #5 )
m51

` F E dxm
redxm

imdym
redym

im

~p/Mbvm
2 !2

e2Am(xm ,xm
! ; jm ,jm

! )/\G ,

~A5!

with

Am~xm ,xm
! ; jm ,jm

! !5\bM ~vm
2 1V'

2 2VB
2 !~@xm

re#21@xm
im#2

1@ym
re#21@ym

im#2!

14i\bMVBvm~xm
reym

im2xm
imym

re!

12\b~xm
rej xm

re1xm
imj xm

im1ym
rej ym

re

1ym
imj ym

im!. ~A6!

Expression~A5! is equivalent to the path integral~A1! and
after performing integrations and retransforming the curre

jm5
1

\bE0

\b

dt j ~t!e2 ivmt, ~A7!

we obtain the resulting generating functional

Zx0@ j #5Zx0 expH 1

2\2E0

\b

dtE
0

\b

dt8 j ~t!Gx0~t,t8!j ~t8!J ,

~A8!

with the partition function
9-13
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Zx0[Zx0@0#5 )
m51

`
vm

4

4VB
2vm

2 1~vm
2 1V'

2 !2
, ~A9!

and the 232 matrix of the Green functions:

Gx0~t,t8!5S Gxx
x0~t,t8! Gxy

x0~t,t8!

Gyx
x0~t,t8! Gyy

x0~t,t8!
D . ~A10!

The elements of this matrix are position-position correlat
functions what can be easily proved by applying two fun
tional derivatives with respect to the desired componen
the current to functional~A1!, for example,

Gxx
x0~t,t8!5^„x~t!2x0… „x~t8!2x0…&

x0

5F\2
1

Zx0@ j #

d2

d j x~t!d j x~t8!
Zx0@ j #G

j50

,

~A11!

where we have defined expectation values by

^•••&x05
l th

2

Zx0
R D 2x . . . d„x02x~t!…e2A x0[x;0]/\.

~A12!

From the above calculation, we find the following expre
sions for the Green functions in Fourier space (0<t,t8
<\b):

Gxx
x0~t,t8!5^x̃~t! x̃~t8!&x05Gyy

x0~t,t8!5^ ỹ~t! ỹ~t8!&x0

5
2

Mb (
m51

` vm
2 1V'

2 2VB
2

4VB
2vm

2 1~vm
2 1V'

2 2VB
2 !2

3e2 ivm(t2t8), ~A13!

Gxy
x0~t,t8!5^x̃~t! ỹ~t8!&x052Gyx

x0~t,t8!

52^ ỹ~t! x̃~t8!&x0

5
4VB

Mb (
m51

`
vm

4VB
2vm

2 1~vm
2 1V'

2 2VB
2 !2

3e2 ivm(t2t8), ~A14!

where, for simplicity,x̃(t)5x(t)2x0. It is desirable to find
analytical expressions for the Green functions and the p
tion function~A9!. All these quantities possess the same
nominator, which can be decomposed as

4VB
2vm

2 1~vm
2 1V'

2 2VB
2 !25~vm

2 1V1
2 !~vm

2 1V2
2 !
~A15!

with frequencies

V6~VB ,V'!5V'6VB . ~A16!
05250
n
-
f

-

ti-
-

Therefore the partition function~A9! can be split into two
products, each of which known from the harmonic oscilla
~Ref. @17# Chap. 5!:

Zx05 )
m51

` F vm
2

vm
2 1V1

2 G )
m51

` F vm
2

vm
2 1V2

2 G
5

\bV1/2

sinh\bV1/2

\bV2/2

sinh\bV2/2
. ~A17!

Now we apply property~A15! to decompose the Green func
tion ~A13! into partial fractions, yielding

Gxx
x0~t,t8!5Gyy

x0~t,t8!

5
1

Mb S a1 (
m52`

`
1

vm
2 1V1

2
e2 ivm(t2t8)

1a2 (
m52`

`
1

vm
2 1V2

2
e2 ivm(t2t8)2

1

V1V2
D ,

~A18!

with coefficients

a15
V1

2 2V'
2 1VB

2

V1
2 2V2

2
5

V'1VB

2V'

,

a252
V2

2 2V'
2 1VB

2

V1
2 2V2

2
5

V'2VB

2V'

. ~A19!

Following Ref. @17# Chap. 3, sums of the kind occuring i
expression~A18! are spectral decompositions of the corre
tion function for the harmonic oscillator, and can be summ
up as

(
m52`

`
1

vm
2 1V6

2
e2 ivm(t2t8)5

\b

2V6
g6~t,t8!. ~A20!

Here we introduced the expression

g«~t,t8!5
coshV«~ ut2t8u2\b/2!

sinh\bV«/2
, t,t8P~0,\b!,

~A21!

with «P$1,2,',i%. Thus, thexx andyy correlation func-
tions can be expressed by

Gxx
x0~t,t8!5Gyy

x0~t,t8!5
1

Mb S \b

4V'

g1~t,t8!

1
\b

4V'

g2~t,t8!2
1

V1V2
D , ~A22!

where, from Eq.~A16!, V65V6(VB ,V') are functions of
the original frequenciesVB from the magnetic field andV'

from the additional harmonic oscillator~A2!. It is ob-
9-14
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vious that expression~A22! reduces to the Green function o
the harmonic oscillator forVB→0,

lim
VB→0

Gii
x0~t,t8!5

1

MbV'
2 S \bV'

2
g'~t,t8!21D ,

~A23!

with i P$x,y%. In this limit, partition function~A17! turns out
to be the usual one~Ref. @17# Chap. 5! for such a harmonic
oscillator:

lim
VB→0

Zx05
\bV'/2

sinh\bV'/2
. ~A24!

It is worth mentioning that with the last term in Green fun
tion ~A22!, the classical harmonic fluctuation width

Gxx
cl 5^x2&cl5

1

Mb~V'
2 2VB

2 !
~A25!

is subtracted. This is the consequence of the exclusion o
zero frequency mode of the Fourier path~A3! in the gener-
ating functional~A1!. The necessity to do this was alread
discussed in Sec. II. The other terms in Eq.~A22! are those
which we would have obtainedwithout separation of thex0
component. Thus these terms represent the quan
mechanical Green function containing all quantum fluct
tions as well as thermal fluctuations. It is a nice property
all Green functions discussed in this paper that

Gxx
x0~t,t8!5Gxx

qm~t,t8!2Gxx
cl . ~A26!

Such a relation exists for all other Green functions appro
ately, including momentum-position correlations which w
consider subsequently.

The knowledge of relation~A20! makes it quite easy to
determine the algebraic expression for the mixedxy correla-
tion functions. Rewriting Eq.~A14! as

Gxy
x0~t,t8!52Gyx

x0~t,t8!

5
i

2MbV'

]

]t S (
m52`

`
1

vm
2 1V1

2
e2 ivm(t2t8)

1 (
m52`

`
1

vm
2 1V2

2
e2 ivm(t2t8)D , ~A27!

and applying the derivative with respect tot to relation
~A20!, we obtain the following expression for the mixe
Green function:

Gxy
x0~t,t8!52Gyx

x0~t,t8!5
\

4iM V'
$Q~t2t8!@h1~t,t8!

2h2~t,t8!#2Q~t82t!@h1~t8,t!

2h2~t8,t!#%, ~A28!

where we have used the abbreviation
05250
he

m-
-
f

i-

h«~t,t8!5
sinhV«~t2t82\b/2!

sinh\bV«/2
, t,t8P~0,\b!,

~A29!

with «P$1,2,',i%. Note that classicallŷ xy&cl50, such
that Eq.~A26! reduces to

Gxy
x0~t,t8!5Gxy

qm~t,t8!. ~A30!

The Heaviside function in Eq.~A28! is defined symmetri-
cally:

Q~t2t8!5H 1, t.t8

1/2, t5t8

0, t,t8.

~A31!

In the quantum-mechanical limit of zero temperatureb
→`), the Green function~A22! simplifies to

lim
b→`

Gxx
x0~t,t8!5 lim

b→`

Gyy
x0~t,t8!

5
\

4MV'

~e2V1ut2t8u1e2V2ut2t8u!,

~A32!

while in Eq. ~A28! only h6(t,t8) changes:

lim
b→`

h6~t,t8!52e2V6(t2t8). ~A33!

APPENDIX B: PROPERTIES OF GREEN FUNCTIONS

In this section we list properties of Green functions~A22!
and ~A28!, which are important for the forthcoming consid
eration of the generating functional with sources coupl
linearily to position or momentum in Appendix C. For a
relations, we suppose that 0<t,t8<\b.

1. General properties

A first observation is the temporal translational invarian
of the Green function,

Gi j
x0~t,t8!5Gi j

x0~t2t8!, ~B1!

where each of the indicesi and j stands forx or y, respec-
tively. For equal times we find

Gi j
x0~t,t!5

1

Mb S \b

4V'

g1~t,t!1
\b

4V'

g2~t,t!2
1

V1V2
D

3H 1, i 5 j

0, iÞ j .
~B2!

Moreover we read off the following symmetries from expre
sions~A22! and ~A28!:

Gi j
x0~t,t8!5Gi j

x0~t8,t!3H 1, i 5 j

21, iÞ j .
~B3!
9-15
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Otherwise,

Gi j
x0~t,t8!5Gji

x0~t8,t!. ~B4!

Throughout the paper we always use periodic paths. Hen
is obvious that all Green functions are also periodic:

Gi j
x0~0,t8!5Gi j

x0~\b,t8!, Gi j
x0~t,0!5Gi j

x0~t,\b!.
~B5!

2. Derivatives of Green functions

We now proceed with derivatives of the Green functio
~A22! and~A28!, since these are essential for the derivat
of the generating functional of position- and momentu
dependent correlations in Appendix C.

Before considering concrete expressions, we introduc
new symbol indicating uniquely to which argument the d
rivative is applied. A dot on the left-hand side means
perform the derivative with respect to the first argument a
the dot on the right-hand side indicates that to differenti
with respect to the other argument. Having a dot on b
sides, the Green function is derived with respect to both
guments:

•Gi j
x0~t,t8!5

]Gi j
x0~t,t8!

]t
,

G•
i j
x0~t,t8!5

]Gi j
x0~t,t8!

]t8
,

•G•
i j
x0~t,t8!5

]2Gi j
x0~t,t8!

]t]t8
. ~B6!

Applying such derivatives to Green functions~A22!, we ob-
tain (i P$x,y%)

•Gii
x0~t,t8!5

\

4MV'

@Q~t2t8! f 1~t,t8!

2Q~t82t! f 1~t8,t!#

52G•
i i
x0~t,t8!, ~B7!

with

f 1~t,t8!5~V'1VB!h1~t,t8!1~V'2VB!h2~t,t8!,
~B8!

where h6(t,t) was defined in Eq.~A29!. Performing the
derivatives to both arguments leads to the expression

•G•
i i
x0~t,t8!5 •G̃•

i i
x0~t,t8!1

\

M
d~t2t8!, ~B9!

where we have introduced the partial function
05250
it

s
n
-

a
-

d
e
h
r-

•G̃•
i i
x0~t,t8!52

\

4MV'

@V1
2 g1~t,t8!1V2

2 g2~t,t8!#,

~B10!

which is finite for equal times.
Applying derivatives with respect to the first respecti

second argument to the mixed correlation function~A28!, we
find

•Gxy
x0~t,t8!5

\

4iM V'

@V1g1~t,t8!2V2g2~t,t8!#

52G•
xy
x0~t,t8! ~B11!

and

•Gyx
x0~t,t8!52 •Gxy

x0~t,t8!. ~B12!

Differentiating each argument of the mixed Green functi
results in

•G•
xy
x0~t,t8!5

i\

4MV'

@Q~t2t8! f 2~t,t8!

2Q~t82t! f 2~t8,t!#

52 •G•
yx
x0~t,t8!. ~B13!

with

f 2~t,t8!5~V'1VB!2h1~t,t8!2~V'2VB!2h2~t,t8!.
~B14!

An additional property we read off from Eqs.~B7! and~B11!
is (i , j P$x,y%):

•Gi j
x0~t,t8!5 •Gi j

x0~t8,t!3H 21, i 5 j

1, iÞ j ,
~B15!

G•
i j
x0~t,t8!5G•

i j
x0~t8,t!3H 21, i 5 j

1, iÞ j .
~B16!

The double-sided derivatives~B9!, ~B10!, and~B13! imply

•G•
i j
x0~t,t8!5 •G•

i j
x0~t8,t!3H 1, i 5 j

21, iÞ j .
~B17!

Derivatives~B7!, ~B10!, ~B11!, and~B13! are periodic:

•Gi j
x0~t,0!5 •Gi j

x0~t,\b!, •Gi j
x0~0,t8!5 •Gi j

x0~\b,t8!,
~B18!

G•
i j
x0~t,0!5G•

i j
x0~t,\b!, G•

i j
x0~0,t8!5G•

i j
x0~\b,t8!,

~B19!

•G̃•
i i
x0~t,0!5 •G̃•

i i
x0~t,\b!,

•G̃•
i i
x0~0,t8!5 •G̃•

i i
x0~\b,t8!, ~B20!

•G•
i j
x0~t,0!5 •G•

i j
x0~t,\b!,
9-16
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•G•
i j
x0~0,t8!5 •G•

i j
x0~\b,t8! ~ iÞ j !. ~B21!

APPENDIX C: GENERATING FUNCTIONAL FOR
POSITION- AND MOMENTUM-DEPENDENT

CORRELATION FUNCTIONS

With the discussion of the generating functional f
position-dependent correlation functions and, in particu
the Green functions in Appendix A, and that of their prop
ties in Appendix B, we have laid the foundation to derive
generating functional for correlation functions depending
both position and momentum. Following the framework p
sented in an earlier work@21#, such a functional involving
sources coupled to the momentum can always be reduce
one containing position-coupled sources only.

We start from a three-dimensional effective classical r
resentation for the generating functional

ZV@ j ,v#5E d3x0d3p0

~2p\!3
Z

V

p0 ,x0@ j ,v#, ~C1!

with zero-frequency componentsx05(x0 ,y0 ,z0)5const and
p05(px0 ,py0 ,py0)5const of the Fourier path separated. T
reduced functional is

Z
V

p0 ,x0@ j ,v#5~2p\!3 R D83xD 3p d„x02x~t!…

3d„p02p~t!… expH 2
1

\
A

V

p0 ,x0@p,x; j ,v#J ,

~C2!

where the path integral measure is that defined in Eq.~2.4!.
Extending action~2.3! by source terms, considering a mo
general Hamilton function than Eq.~2.18!, and introducing
an additional harmonic oscillator in thez direction, the action
functional in Eq.~C2! reads

A
V

p0 ,x0@p,x; j ,v#5E
0

\b

dt H 2 i p̃~t!• ẋ~t!1
1

2M
p̃2~t!

2VBl z~ p̃,x̃!1
1

2
MV'

2 @ x̃2~t!1 ỹ2~t!#

1
1

2
MV i

2z̃2~t!1 j ~t!• x̃~t!1v~t!•p̃~t!J
~C3!

with shifted positions and momenta

x̃5x~t!2x0 , p̃5p~t!2p0 . ~C4!

The orbital angular momentuml z(p,x) is defined in Eq.
~2.19!, and used in Eq.~C3! with shifted phase-space coo
dinates~C4!. We have introduced three different frequenc
in Eq. ~C3!, V5(VB ,V' ,V i), where the first both compo
nents are used in regard to the oscillations in the plane
pendicular to the direction of the magnetic field which sh
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be considered here to point in thez direction. The last com-
ponentV i is the frequency of a trial oscillator parallel to th
field lines.

Due to the periodicity of the paths, we suppose that
sources might also be periodic:

j ~0!5 j ~\b!, v~0!5v~\b!. ~C5!

Since we want to simplify expression~C2!, such that we can
use the results obtained in Appendix A, the momentum p
integral is solved in the following. In a first step we re
express the momentumd function in Eq.~C2! by

d„p02p~t!…5E d3j

~2p\!3
expH 2

1

\E0

\b

dt v0•@p~t!2p0#J ,

~C6!

where

v0~j!5
i

\b
j ~C7!

is an additional current which is coupled to the moment
and is constant in time. Defining the sum of all sourc
coupled to the momentum by

V~j,t!5v~t!1v0~j!, ~C8!

functional ~C2! can be written as

Z
V

p0 ,x0@ j ,v#5E d3j R D83xD 3p d„x02x~t!…

3expH 2
1

\E0

\b

dt F2 ip~t!• ẋ~t!1
p2~t!

2M

2VBl z„p~t!,x̃~t!…1
1

2
MV'

2 $x̃2~t!1 ỹ2~t!%

1
1

2
MV i

2z̃2~t!1 j ~t!• x̃~t!1V~j,t!•p~t!G J ,

~C9!

where we have used the translation invariancep̃→p of the
path integral. To solve the momentum path integral, it
useful to express it in its discretized form. Performing qu
dratic completions such that the momentum path integ
separates into an infinite product of simple Gaussian in
grals which are easily calculated, the remaining functiona
reduced to the configuration space path integral

Z
V

p0 ,x0@ j ,v#5E d3j expF M

2\E0

\b

dt V2~j,t!G R D 3x

3d„x02x~t!…expH 2
1

\
A

V

p0 ,x0@x; j ,V#J
~C10!

with the measure~2.10! for D53. The action functional is
9-17
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A
V

p0 ,x0@x; j ,V#5E
0

\b

dt FM

2
ẋ2~t!1 iM VB$ẋ~t!ỹ~t!

2 ẏ~t!x̃~t!%1
1

2
M ~V'

2 2VB
2 !$x̃2~t!

1 ỹ2~t!%1
1

2
MV i

2z̃2~t!1 x̃~t!@ j x~t!

1MVBVy~j,t!#1 ỹ~t!@ j y~t!

2MVBVx~j,t!#1 z̃~t! j z~t!G
2

iM

\ E
0

\b

dt ẋ~t!•V~j,t!, ~C11!

where the last term simplifies by the following consideratio
A partial integration of this term yields

E
0

\b

dt ẋ~t!•V~j,t!52E
0

\b

dt „x~t!2x0…•V̇~j,t!.

~C12!

The surface term vanishes as a consequence of the peri
ity of the path and the source. This periodicity is also t
reason why we could shiftx(t) by the constantx0 on the
right-hand side of Eq.~C12!. Obviously, the importance o
this expression lies in the coupling of the time derivative
V(j,t) to the pathx(t). ThusV̇(j,t) can be handled like a
j (t) current@21#, the action~C11! can be written as

A
V

p0 ,x0@x; j ,V#5A
V

p0 ,x0@x;J,0#

5A
V

p0 ,x0@x;0,0#2
1

\E0

\b

dt x̃~t!•J~j,t!,

~C13!

with a new current vectorJ(j,t) which has the component

Jx~j,t!5 j x~t!1MVBVy~j,t!2 iMV̇x~j,t!,

Jy~j,t!5 j y~t!2MVBVx~j,t!2 iMV̇y~j,t!, ~C14!

Jz~j,t!5 j z~t!2
1

2
MV iVz~j,t!,

and couples to the pathx(t) only. With expression~C10! for
the generating functional, and action~C13!, we have derived
a representation similar to Eq.~A1! with action ~A2!, ex-
tended by an additional oscillator in thez direction. We iden-
tify

j x[Jx , j y[Jy . ~C15!

Inserting substitutions~C15! into solution~A8! for the gen-
erating functional in two dimensions, and performing t
usual calculation for a harmonic oscillator with extern
source ~Ref. @17# Chaps. 3 and 5! in the z direction, we
obtain an intermediate result for the generating functiona
three dimensions@Eq. ~C2!#:
05250
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Z
V

p0 ,x0@ j ,v#5l th
23 Z

V

p0 ,x0E d3j expH M

2\E0

\b

dt V2~j,t!J
3expH 1

2\2E0

\b

dtE
0

\b

dt8 J~j,t!

3Gx0~t,t8! J~j,t8!J . ~C16!

The partition function follows from Eqs.~A17! and ~A24!,

Z
V

p0 ,x05Z
V

p0 ,x0@0,0#

5
\bV1/2

sinh\bV1/2

\bV2/2

sinh\bV2/2

\bV i/2

sinh\bV i/2
,

~C17!

andGx0(t,t8) is the 333 matrix of Green functions:

Gx0~t,t8!5S Gxx
x0~t,t8! Gxy

x0~t,t8! 0

Gyx
x0~t,t8! Gyy

x0~t,t8! 0

0 0 Gzz
x0~t,t8!

D .

~C18!

Except forGzz
x0(t,t8), the Green functions are given by th

expressions in Eqs.~A22! and~A28!. The Green function of
the pure harmonic oscillator in thez direction,

Gzz
x0~t,t8!5

1

MbV i
2 S \bV i

2
gi~t,t8!21D , ~C19!

follows directly from limit ~A23!. Since the currentJ in Eq.
~C14! still depends on time derivatives ofV, we have to
perform some partial integrations in functional~C16!. This is
a very extensive but straightforward work, and thus we o
present an instructive example. For that we apply the pr
erties and the time derivatives of the Green functions wh
we presented in Appendix B. Consider the integral

I 52
M2

2\2E0

\b

dtE
0

\b

dt8 V̇i~j,t! Gii
x0~t,t8! V̇i~j,t8!

~C20!

occuring in the second exponential of Eq.~C16! with i
P$x,y,z%. A partial integration in thet8 integral leads to

I 52
M2

2\2E0

\b

dt V̇i(j,t)S Gii
x0(t,t8) Vi(j,t8)U

t850

t85\b

2E
0

\b

dt8
]Gii

x0(t,t8)

]t8
Vi(j,t8)D

5
M2

2\2E0

\b

dtE
0

\b

dt8V̇i(j,t) G•
i i
x0(t,t8) Vi(j,t8).

~C21!
9-18
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The surface term in the first line vanishes as a consequ
of the periodicity of the current~C5! and Green function
~B5!. A second partial integration, now in thet integral,
results in

I 52
M2

2\2E0

\b

dtE
0

\b

dt8 Vi~j,t! •G•
i i
x0~t,t8! Vi~j,t8!

52
M2

2\2E0

\b

dtE
0

\b

dt8 Vi~j,t! •G̃•
i i
x0~t,t8! Vi~j,t8!

2
M

2\E0

\

dt Vi
2~j,t!. ~C22!

Here we have applied the periodicity property of the rig
hand derivative of Green function~B19!, leading to a van-
ishing surface term in this case too. In the second line,
have used the decomposition~B9! of the double-sided differ-
entiated Green function. Note that the last term just can
the appropriate term in the first exponential of the right-ha
side of Eq.~C16!. Eventually, after performing all such pa
tial integrations, we reexpress Eq.~C16! by

Z
V

p0 ,x0@ j ,v#5l th
23 Z

V

p0 ,x0E d3j expH 1

2\2E0

\b

dtE
0

\b

dt8

3 s̃~j,t! Hx0~t,t8! s̃~j,t8!J , ~C23!

with six-dimensional sources

s̃~j,t!5„j ~t!,V~j,t!… ~C24!

and the 636 matrixHx0(t,t8), which has no significance a
long as we have not done thej integration. We explicitly
insert decomposition~C8! into expression~C24! of the
source vectors̃. Since v0(j) from Eq. ~C7! is constant in
time, some temporal integrals in the exponential of Eq.~C23!
can be calculated, and we obtain
05250
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Z
V

p0 ,x0@ j ,v#5l th
23 Z

V

p0 ,x0expH 1

2\2E0

\b

dtE
0

\b

dt8 s~t!

3Hx0~t,t8! s~t8!J E d3j

3expH 2
M

2\2b
j21 i

M

\2b
j•E

0

\b

dt v~t!J
~C25!

with the new six vector

s~t!5„j ~t!,v~t!… ~C26!

consisting of the original sourcesj andv only. The Gaussian
j integral in Eq.~C25! can be easily solved, and the term
appearing from quadratic completion modify the above m
trix Hx0(t,t8). The final result for the generating function
of all position and momentum dependent correlations
given by

Z
V

p0 ,x0@ j ,v#5Z
V

p0 ,x0 expH 1

2\2E0

\b

dtE
0

\b

dt8

3s~t! Gp0 ,x0~t,t8! s~t8!J . ~C27!

The complete 636 matrixGp0 ,x0(t,t8) contains all possible
Green functions describing position-position, positio
momentum, and momentum-momentum correlations. A
consequence of separating the fluctuations into those per
dicular and parallel to the direction of the magnetic field,
correlations betweenx and y on the one hand andz on the
other hand vanish, as well as those for the appropriate
menta. The symmetries for the position-position Green fu
tions and their derivatives were investigated in detail in A
pendix B, and lead to a further reduction of the number
significant matrix elements. It turns out that only nine e
ments are independent of each other. Therefore we can w
the matrix
Gp0,x0~t,t8!51
Gxx

p0 ,x0~t,t8! Gxy
p0 ,x0~t,t8! 0 Gxpx

p0 ,x0~t,t8! Gxpy

p0 ,x0~t,t8! 0

Gxy
p0 ,x0~t8,t! Gxx

p0 ,x0~t,t8! 0 2Gxpy

p0 ,x0~t,t8! Gxpx

p0 ,x0~t,t8! 0

0 0 Gzz
p0 ,x0~t,t8! 0 0 Gzpz

p0 ,x0~t,t8!

Gxpx

p0 ,x0~t8,t! 2Gxpy

p0 ,x0~t8,t! 0 Gpxpx

p0 ,x0~t,t8! Gpxpy

p0 ,x0~t,t8! 0

Gxpy

p0 ,x0~t8,t! Gxpx

p0 ,x0~t8,t! 0 Gpxpy

p0 ,x0~t8,t! Gpxpx

p0 ,x0~t,t8! 0

0 0 Gzpz

p0 ,x0~t8,t! 0 0 Gpzpz

p0 ,x0~t,t8!

2 .

~C28!
9-19
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The matrix decays into four 333 blocks, each of which
describes another type of correlation: the upper lef
position-position correlation, the upper right~as well as the
lower left! position-momentum correlation, and the low
right a momentum-momentum correlation. The different
ements of the matrix are

Gxx
p0 ,x0~t,t8!5^x̃~t!x̃~t8!&V

p0 ,x05Gxx
x0~t,t8!, ~C29!

Gxy
p0 ,x0~t,t8!5^x̃~t!ỹ~t8!&V

p0 ,x05Gxy
x0~t,t8!, ~C30!

Gzz
p0 ,x0~t,t8!5^ z̃~t!z̃~t8!&V

p0 ,x05Gzz
x0~t,t8!, ~C31!

Gxpx

p0 ,x0~t,t8!5^ x̃~t! p̃x~t8!&V

p0 ,x0

5 iMG •
xx
x0~t,t8!2MVBGxy

x0~t,t8!

5
\

4i
$Q~t2t8!@h1~t,t8!1h2~t,t8!#

2Q~t82t!@h1~t8,t!1h2~t8,t!#%,

~C32!

Gxpy

p0 ,x0~t,t8!5^x̃~t!p̃y~t8!&V

p0 ,x0

5 iMG •
xy
x0~t,t8!1MVBGxx

x0~t,t8!

52
\

4
@g1~t,t8!2g2~t,t8!#2

1

b

VB

V1V2
,

~C33!

Gzpz

p0 ,x0~t,t8!5^z̃~t! p̃z~t8!&V

p0 ,x05 iMG •
zz
x0~t,t8!

5
\

2i
@Q~t2t8!hi~t,t8!2Q~t82t!hi~t8,t!#,

~C34!

Gpxpx

p0 ,x0~t,t8!5^ p̃x~t! p̃x~t8!&V

p0 ,x0

52M2•G̃•
xx
x0~t,t8!22iM 2VB

•Gxy
x0~t,t8!

1M2VB
2Gxx

x0~t,t8!2
M

b

5
\MV'

4
@g1~t,t8!1g2~t,t8!#

2
M

b S 12
VB

2

V1V2
D , ~C35!

Gpxpy

p0 ,x0~t,t8!5^ p̃x~t! p̃y~t8!&V

p0 ,x052iM 2VB
•Gxx

x0~t,t8!

2M2•G•
xy
x0~t,t8!1M2VB

2Gxy
x0~t,t8!

5
\MV'

4i
$Q~t2t8!@h1~t,t8!2h2~t,t8!#
05250
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2Q~t82t!@h1~t8,t!2h2~t8,t!#%,

~C36!

Gpzpz

p0 ,x0~t,t8!5^ p̃z~t! p̃z~t8!&V

p0 ,x052M2•G̃•
zz
x0~t,t8!2

M

b

5
\MV i

2
gi~t,t8!2

M

b
, ~C37!

where the expectation values are defined by Eq.~3.12!. Note
that all these Green functions are invariant under time tra
lations, such that

Gmn
p0 ,x0~t,t8!5Gmn

p0 ,x0~t2t8! ~C38!

with m,nP$x,y,z,px ,py ,pz%.
It is quite instructive to prove that all these Green fun

tions can be decomposed into quantum-statistical and cla
cal parts as we did it in Eq.~A22!. Since we know that the
classical correlation functions do not depend on the Euc
ean time, all derivative terms in Eqs.~C29!–~C37! do not
contribute a classical term. We can write each Green fu
tion as

Gmn
p0 ,x0~t,t8!5Gmn

qm~t,t8!2Gmn
cl . ~C39!

This relation was already checked for Eqs.~C29!–~C31! in
Appendix A. The classical contribution is zero in Eqs.~C32!,
~C34!, and ~C36! following from the absence of classica
terms in derivatives of the Green functions and mixed cor
lations like Eq.~A30!. It seems surprising that correlatio
~C33! contains a classical term, while Eq.~C32! possesses
none. This is, however, a consequence of the cross pro
of the orbital angular momentum appearing in action~C3!,
and the explicit classical calculation entails

Gxpx

cl 5^xpx&
cl50, Gxpy

cl 5^xpy&
cl5

1

b

VB

V'
2 2VB

2
,

~C40!

where the latter is the subtracted classical term in Eq.~A22!
when considering the first two substitutions in Eq.~C15!. In
Eq. ~C37!, the second term is obviously the classical on
since

Gpzpz

cl 5^pzpz&
cl5

M

b
. ~C41!

The extraction of the classical terms

Gpxpx

cl 5^pxpx&
cl5

M

b S 11
VB

2

V'
2 2VB

2 D ~C42!

in the case of the Green functionGpxpx

p0 ,x0(t,t8) requires the

consideration of the last two terms in Eq.~C35!. Thus we
have shown that the decomposition~C39! holds for each of
the Green functions~C29!–~C37!. Note the necessity of sub
tracting the classical terms since they all diverge in the c
sical limit of high temperatures (b→0).
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