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Variational approach to a hydrogen atom in a uniform magnetic field of arbitrary strength
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Extending the Feynman-Kleinert variational approach, we calculate the temperature-dependent effective
classical potential governing the quantum statistics of a hydrogen atom in a uniform magnetic field at all
temperatures. The zero-temperature limit yields the binding energy of the electron, which is quite accurate for
all magnetic-field strengths, and exhibits, in particular, correct logarithmic growth at large fields.

PACS numbds): 31.15.Pf, 03.65.Ca, 05.306d

I. INTRODUCTION Il. EFFECTIVE CLASSICAL REPRESENTATIONS FOR
THE QUANTUM-STATISTICAL PARTITION

. . . FUNCTION
Quantum-statistical and -mechanical properties of a hy-

drogen atom in an external magnetic field are not exactly A point particle inD dimensions with a potentiaV(x)

calculable. Perturbative approaches yield good results onlgnd a vector potentigh(x) is described by a Hamiltonian

for weak uniform fields, as discussed in detail by Le Guillou

and Z_inn-Justir{l], who interpolated with analytic mapping H(p,x)= i[p_ e A(X) 2+ V(x). 2.1

techniques the ground-state energy between weak and strong 2M

Eieg;(rj]z.r-(c))trgirr asgrrt% ?gg?ig : r(taht;i?gj_(z?. r(;(;urgs_lt\é%%rgfaiggesfﬂe guantum-statistical partition function is given by the Eu-
. . . . clidean phase-space path integral

properties were also investigated with the help of an operator

optimization method in a second-quantized variational pro-

cedure[5]. The behavior at high uniform fields was inferred Z= % D'PxDPp e AlPHIA (2.2

from treatments of the one-dimensional hydrogen atom

[6—8]. Hydrogen in strong magnetic fields is still a problem with an action

under investigation, since its solution is necessary to under- s

stand the properties of white dwarfs and neutron stars, as _ s :

emphasized in Ref§9-12]. A compact and detailed presen- Alpx]= fo del ~ip(r)-x(7)+H{p(7).x(7))].

tation of the bound states and highly accurate numerically (2.3

values for the energy levels is given in REL3].

Equations for a first-order variational approach to the2nd the path measure
ground-state energy of hydrogen in a uniform magnetic field, NE1
pased on the Jensen-Peierls inequality, were set down a long 3€ D'PxDPp= lim H
time ago[14], but never evaluated. Apparently, they merely
served as a preparation for attacking the more complicated
problem of a polaron in a magnetic figli4—16. The paramete=1/kgT denotes the usual inverse thermal

In our approach, we calculate the quantum-statisticagnergy at a temperatufg wherekg is the Boltzmann con-
properties of the system by an extension of variational perstant. FromZ we obtain the free energy of the system:
turbation theory[17]. The crucial quantity is the effective
classical potential. In the zero-temperature limit, this yields F=— im 7. (2.5
the ground-state energy. Our calculations in a magnetic field B
require an extension of the formalism in R¢L7], which

f d®x,d°p,

(2ah)D (2.9

N—o N=1

derives the effective classical potential from the phase-spaéé1 perturbation th_eory, one treats the eXtem."’ll poteM(ad) .
as a small quantity, and expands the partition function into

representation of the partition function. wers ofV(xX). Such a naive expansion i licable onl
Variational perturbation theory has an important advanPOWers 0 (x). Such a naive expansion is applicable only

tage over other approaches: This calculation vields a oof r extremely weak couplings, and has a vanishing radius of
ge C " app S y 9 onvergence. Convergence is achieved by variational pertur-
effective classical potential fall temperatures and coupling b

- i Jr ation theon{17], which yields good approximations for all
strengths. The quantum-statistical partition function is ob-, Y17l y g Pp

. ) . ~~ potential strengths, as we shall see in a sequel.
tained from a simple integral over a Boltzmann factor in-
volving the effective classical potential. The ground-state en-
ergy is then obtained from its zero-temperature limit. The
asymptotic behavior in the strong-coupling limit emerges au- All quantum-mechanical systems studied so far in varia-
tomatically, and does not have to be derived from otheitional perturbation theory were governed by a Hamiltonian
sources. of the standard form

A. Effective classical potential
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2

H(p,x)=2p—M+V(x). (2.6

PHYSICAL REVIEW A62 052509

e~ BHeii(Po X0) = 7Po X0

= (2h)° 55 D'PxDPps(xg—x(7))

The simple quadratic dependence on the momenta makes the

momentum integrals in the path integr@.2) trivial. The
remaining configuration space representation of the partitio

X 8(po— p(7))e~APNI/A, (2.12

n

function is used to define an effective classical potentialvith action (2.3) and measuré2.4). This allows us to ex-

Vei(Xg), from which the quantum-mechanical partition func-
tion is found by a classically looking integral

D

de

D
th

0

(2.7

exf — BVer(Xo) ],

where \y,=\27%2B/M is the thermal wavelength. The
Boltzmann factor plays the role oflacal partition function
Z*o, which is calculated from the restricted path integral

e*BVeﬁ(XO)EZXoZ)\g é DDxﬁ(xo—x( T))e—A[x]/h,

(2.9
with the action
ip M.
A[x]=f dr ?XZ(T)‘FV(X(T)) (2.9
0
and the path measure
N+1
dPx
DPx= lim J’ i .
3€ Nosce nﬂl { [27h2BIM(N+ 1)]'3’2}
(2.10

The special treatment of the temporal average of the Fourier

path,

1
B

(2.11

Xo=X(7)=

press the partition function as the classical looking phase-
space integral

J

wherep, is the temporal average of the momentum:

ex BHex(Po,X%o) 1,
(2 ﬁ)D e 01720

(2.13

hp
dr p(7).
0

Po=p(7) (2.14

1
ey
The fixing of py is done for the same reason as thatXgr
since the classical expectation valg#)® is diverging lin-
early with T, just as(x?)¢.

In the special case of a standard Hamilton{@b), the
effective Hamiltonian in Eq(2.13 reduces to the effective
classical potential, since the momentum integral in(2dL2
can then be easily performed, and the resulting restricted
partition function becomes

2
ZpO’X0=ex;< —ﬂzp—l\(;l) Z%o, (2.15

with the local partition functionz*o=exd —BVei(Xo)] of
Eqg. (2.8. Thus the complete quantum statistical partition

function is given by Eq(2.13, with an effective classical
Hamilton function

2

p
Hetf(Po Xo) = gy + Veit(X0)- (2.16

As a consequence of the purely quadratic momentum depen-
dence ofH(p,x) in Eq. (2.6), the p, integral in EQ.(2.13

hp
f dr x(7),
0
. . ) can be performed, thus expressing the quantum-statistical
is essential for the quality of the results. It subtracts from theyartition function as a pure configuration space integral over

harmonic fluctuation width(x?)® the classical divergence the Boltzmann factor involving the effective classical poten-
proportional toT=1/kgB of the Dulong-Petit law[17,19.  tjal V 4(X,), as in Eq.(2.7).
Such diverging fluctuations cannot be treated perturbatively,

and require the final integration in expressith7) to be
done numerically. For the Coulomb potentidl(x)=
—e?/4mey|x| in three dimensions, the effective classical po-
tential in Eq.(2.8) can be approximated well by variational
perturbation theory17,19,20Q.

B. Effective classical Hamiltonian

In order to deal with Hamiltonians like E¢2.1), which
contain ap-A(x) term, we must generalize the variational
procedure. Extending E2.8), we define areffective clas-
sical Hamiltonianby the phase-space path integral

C. Exact effective classical Hamiltonian for an electron in a
constant magnetic field

The effective classical Hamiltonian for the electron mov-
ing in a constant magnetic field can be calculated exactly.
We consider a magnetic fielB=Be, pointing along the
positive z axis. The only nontrivial motion of the electron is
in the x-y plane. In symmetric gauge the vector potential is
given by

B
A(X)= 5(—y,x,0). (2.17)
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The choice of the gauge does not affect the partition function i M
since the periodic path integrtq. (2.2)] is gauge invariant. ZPoXo= j d?¢ exp( ——&po— 52)
Ignoring the trivial free particle motion along tladirection, h 2h%B
we may restrict our attention to the two-dimensional Hamil-

tonian X f#DZXcs(Xo—m)
p 1 ,, 1 (8
H(PX)= 5or — sl P F5MopE (218 % ex _%fo dr
with x=(x,y) andp=(py.p,). Herewg=eB/2M is half the y MXZ(TH EM(Qz — w2)(r)
Landau frequency, and 2 2 LB

Iz(p,x)=(x><p)z=xpy—ypx (2.19 —iM wB[X(T)X).((T)]Z'f'X(T)'jl(f)”,
is the third component of the orbital angular momentum. (2.249
It is useful at intermediate stages of the following devel- )
opment to treat the more general problem where the sourcg, coupled to the momentum in E(R.23
has turned to a sourge coupled to the path in configuration
p? 1 space 21], with components
- - 2,2
H(p,x) oM wBIZ(p,x)+2Mle . (2.20 - M
j1( =Mwgoy(§),—vox( €)= W(‘&y,fx)-
At the end of the calculation, only the limi2 , — wg will be (2.25

relevant. The partition function of the problem is given by ] - ]
Eq. (2.13, with D=2. Being interested in an effective clas- EXPressing thes function in the path integral of Eq2.24

sical formulation, we have to calculate the path integralPy the Fourier integral
(2.12. First we express thé function for the averaged mo-

. S d?k
mentum as a Fourier integral S(Xa— X :f -
(Xo—x(7)) (2m)?2 p( K 0)
- d?¢ i
- = __& 1(h8
8(po—p(7)) f(zrﬁ)zexy{ 7é po) xex;{—%fo drja(r)-X(7)| (2.26
1 (8 .
Xex;{ _ %J drve(&)-p(r)| (2.2 with the new source
0
) i K
: . . Jo(r)=—, (2.27)
involving an auxiliary source B

the partition function(2.24) can be written as

i
Vo(§)=— 72§ (2.22 i M
- | dzfem( “af po_zﬁzﬁgz)

hp

which is constant in time. Substituting tl&function in Eq.

(2.12 by this source representation, the partition function d?« )
reads f Sexp(in-Xxo) Zo[I(£ k)] (2.28
(27)
i ) —_— The functionalZy[J(&,k)] is defined as the configuration
Zpo,Xo:f d?¢ ex;{ - %f' po) ig D'?XD?pd(Xo—X(7)) space path integﬂra|
1 (%8 . ) 1 (4B hB ,
xex;xl’—gf dr[—ip(7)-x(7)+H(P(7),X(7)) Zo[(& k) ]= fD xex —EL dr . dr
0
XX(1)G (7, 7" )x(7")
+Vo(§)'p(7')])- (2.23

: (2.29

1 (4B
—%f d7J(&,k)-X(7)
0
Evaluating the momentum integrals and utilizing the period-
icity property x(0)=x(%8), we obtain the configuration where we have introduced the combined soud{g, )
space path integral =j1(&) +].(x). Formally, the solution reads
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1
Zo[I(& )= ZQ[O]EX%Z zf de d7'J(& x) ZQ[J(fa")]:ZQ[O]eX[{_?‘Jz(fa")
) W
XG(7,7)J(& k)|, (2.30 Xfo dr . dT’GXX(T,T')l. (2.38

whereG(r,7") is the matrix of Green functions obtained by The Green function has the Fourier decomposition
inverting the kernel

©

2_ .2
w3+ 0%— w3

2 7= —iwm(T—T')'
T T R T P BT aveey
dr? ’ dr (2.39
G Yr7)=— '
’ h d d? -

Zind_ - ?+Qi_w28 where(). are the frequencies,
= +

X 8(r—1'). (2.31) 0:=0, = s, (240

and ), >wg, for stability.

The ratios in the sum of Eq2.39 can be decomposed
into two partial fractions, each of them representing a single
harmonic oscillator with frequencieQ , and Q) _, respec-

The inversion is easily done in frequency space after spec-
trally decomposing theS function into the Matsubara fre-
quenciesw,,=2mm/#% B3:

o tively. The analytic form of the periodic Green function of a
S(r—7')= 1 el om(T=7") (2.32 single harmonic oscillator is well know(see Chapter 3 in
hiB m< ' ' Ref.[17]), and for the present Green functi¢&39 we ob-
tain
The result is
G . h[coshQ(|7—7'[-hpI2)
SPLAE wntQf-0g  —2wgon TV Sinhi QY. 12
w = — 0 .
™M detG| 2wpwn  0E+0Q2-wd coshQ _(|7— 7'|—#B12)
(233 sinha BQ _/2 (.49
At this point, the additional oscillator in Eq2.24) proves - .
useful: It ensures that the determinant By writing the determinan(2.34 as
detG(wn) = (03 + 02 — )2+ 40iw? (234 detG(wm) =(wn+ 02)(wp+02) (2.42
is nonzero form=0, thus playing the role of an infrared and summing over the logarithms of this, we calculate the
regulator. The Fourier expansion partition function as a product of two single harmonic oscil-
lators:
G(r,7") 2 G(ope fen(™=7) (2,35 1 1
ﬁﬁ m==e Zo=Zo[0]=5 : :
2 sinha BQ /12 2 sinhA BQ_/2
yields the matrix of the Green functions, (243
Ge(7,7')  Gyy(7,7") Results(2.41) ang(2.43‘).detgrmine the generating funptional
G(r,7')= , , (2.39  (2.38. The Euclidean time integrations are then easily done,
Cy7, 7)) Gyy(m,7') and subsequently the and £ integrations in Eq(2.28). As a

L , ) result, we obtain the restricted partition function
which inherits the symmetry properties from the kernel

(2.3D: _— p[ B( 1I sinh2 BQ /2 sinhf B _I2
=ex ——In
Gl T, T)=Cyy(7, 7)), Gyy(1,7)==Gyy(7, 7). B hpQL2 RBQ-T2
(2.37 2
LY (p x)+3|v|92x2)] (2.44
A more detailed description of these Green functions is given 2m  TEATeTOR o LT ] ’

in Appendixes A and B.
Since the currentl does not depend on the Euclidean Taking the limit Q, —wg, from Eq. (2.40 we find Q
time, expressiori2.30 therefore simplifies to —2wg and)_—0, and therefore
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sinhaBQ /2 sinhfBwg path integration(2.12 in phase space. Fluctuations parallel
hBQ .12 = hiBwg and vertical to the magnetic-field lines are now both non-
trivial; we must deal with a full three-dimensional system,
. and the components of the electron position and momentum
lim W: (2.45 are now denoted bx=(x,y,z) and p=(py,py,p,). For a
0, g hpQ_I2 uniform magnetic field pointing along theaxis, the vector
potentialA(x) is used in the gauge.17). Thus the Hamilton
Recalling definition(2.12), we identify the exact effective function of an electron in a magnetic field and an arbitrary
classical Hamiltonian for an electron in a magnetic field as potentialV(x) is

lim
O —owg

1 sinhiBwg P§ p2 1,
Hef-f(po ,XO) = EIHW + m - wBIZ(pO ,XO) H(p,X) = m - wB| Z(p,x) + E M wpX +V(X). (31)
TIM ngg. (2.46 The orbital angular momentuhy(p,x) was introduced in Eq.

2 (2.19, and the frequencwg below Eq.(2.18. The impor-

tance of the separation of the zero-frequency compongnts
Integrating out the momenta in E(@.13, the configuration  andp, was discussed in Sec. II. Their divergence with the
space representatid@.7) for the partition function contains  temperatureT prevents a perturbative treatment. Thus it is
the effective classical potential for a charged particle in thesssential to set up a perturbation theory only for the fluctua-
plane perpendicular to the direction of a uniform magnetictions aroundx, andp,. For this we rewrite the action func-

field: tional (2.3) associated with Hamiltonia(8.1) as
Veii(Xo) = %ln%. (2.47) Alp.X]= A g p,x]+ A p.X], 3.2

o ) where we have introduced the fluctuation action
Note that this is a constant potential.

Denoting the aredid?x, by A, we find the exact quantum- - nB _ .
statistical partition function Aglp.x]= fo dT[ —i[p(7) = po]-X(7)
A fipwg 1
- - - 2
472 S g’ (248 +5p7 [P(7) = Pol?— Ll o(p(7)

After these preparations, we can turn our attention to the
system we want to study in this paper: the hydrogen atom in
a uniform magnetic field, where the additional Coulomb in-

1
—Po.X(7) = X0)+ sMOI[X" (1)~ %5]?

teraction prevents us from finding an exact solution for the 1 2 2
. ; : > +=MQj[z(7)—z , 3.3
effective classical Hamilton function. 7 MQjl2(7) = 2] 3.3
lIl. HYDROGEN ATOM IN CONSTANT in which x*=(x,y) denotes the transverse part xfand
MAGNETIC FIELD Q, >Qg, for stability. The interaction is now

The zero-temperature properties of the hydrogen atom np X
without external fields are exactly known. For the quantum Aind P.X]= fo d7Vin(P(7), X(7))=A[p,X] = A g [ p.x],
statistics at finite temperatures, an analytical expression ex- (3.4)
ists, but it is hard to evaluate. It is easier to find an accurate
approximate result with the help of variational perturbationwith the interaction potential
theory[20]. Similar calculations have been performed for the

electron-proton pair distribution function which can be inter- 1

preted aspthe ur?normalized density mafrio]. VinP(7),X(7))= m{pz(r)—[p( 7)=Pol?} — wex"(7)
Here we extend this method of calculation to the hydro-

gen atom in a constant magnetic field. This extension is quite Xpt(7)+Qp(x" (1) =x5) X (p" (1) —pp)

nontrivial, since the weak- and strong-field limits will turn 1 1

out to exhibit completely different asymptotic behaviors. Let + = Mawdx (1)~ =MO2[x (1) — x5 12

us first generalize variational perturbation theory to an elec- 2 2

tron in a constant magnetic field and arbitrary potential. 1
—5MOf[z(1)~20]*+V(x(7)), (3.5

A. Generalized variational perturbation theory 2

We consider once more the effective classical f¢2x13 ~ where p*=(py,p,). The frequenciesQ=(Qg,Q, Q)
of the quantume-statistical partition function, which requires aare arbitrary for the moment. The decompositi¢d.2)
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forms the basis for the variational approach, where the first 1
term in action(3.2) allows an exact treatment. The transverse 5 j dry f d7Vindp(71),X(71))
part was given in Sec. Il C, and the longitudinal part is Z'ﬁ
trivial, since it is harmonic with frequenc§);. The associ-
ated partition function is given by the path integral XV (p(72) X(79))— - - - |. (3.11)
Zgy"o= j; D"*xD°pd(xo—X(7)) Defining harmonic expectation values with respect to the re-
stricted path integral as
X 8 e Ag XA 3.6
(pO (T)) Q ( ) oo (277%)3
. . o _ () 3€ D"3xD3p ... 8(xo—X(7))
which can be performed. Details are given in Appendix C. Z?{" 0
The result is
[ 1
_ _ 4 PoXo
e BBOL2 RO hAYM % &(Po p(T))eXp{ o [p’x]]’
Q" sinhzBO /2 sinhABQ_[2 sinh% gQ/2° a7 (3.12

the perturbation expansion for the partition functi@l1l)
where auxiliary frequencies are composed of the frequenciggads

Qg and, in action(3.3 as

ZPo-Xo= 7P0-%0 o (1"
0.(Qp,0,)=0, =04, (39 =g 2
This partition function serves in the subsequent pertubation ] n\ Po.Xo
expansion as a trial system which depends explicitly on the fo d7Vin(p(7),X(7)) :
frequenciesQ). The correlation functions are a straightfor- Q
ward generalization of E(2.36 to three dimensions: (3.13
G(r,7) GO(r1) 0 This power series expansion can be rewritten in the exponen-
;‘X zy tial form
Go(r,7')=| G(n7) GI7.7) 0 :
*° n
0 0 Go(r,7') 29059= 70070 o 2 ( 1)
(3.9 n=0
whose explicit form is derived in Appendix C. B M\ Po-%o
The Q-dependent action in Eq3.2) is treated perturba- W, d7Vin(p(7),X(7)) :
tively. Writing the partition function2.12) as @.c
(3.19
ZPoXo=(27%)3 é D" 3xD3p6(xe— X(7))8(po— p(7)) where the subscript on the expectation values indicates

cumulants. The lowest cumulants are related to the full ex-
pectation values as follows:

xex;ﬂ’—%fl?{)’x"[p,x]]
(O1(p(11) X(T1))>p0 X0_<01(p(71 X(7'1))>p0 o

1 (2B
Xexp{_ﬂo A7Vin(P(7) ’X(T))]’ G100y () X(71)0 () Xm0

the second exponential is expanded into a Taylor series,  =(O1(P(71).X(71))O02(p(72),X(72))) ¢ "

ieldi X X
yielding _<01(p(7'1),x(7'1))>(pf' %(O,(p( Tz)uX(Tz)»(pf' °,

200 0= (27h)? § D' XDty () 3(Po—P(7) : (315

1 oo whereO;(p(7;),x(7;)) denotes any observable depending on
><exp: - %Aﬂo’ 0[p.X]] momentum and position. Recalling relati¢2.12) between
partition function(3.14) and effective classical Hamiltonian
1 (B He#(Po,Xo), from Eq.(3.14 we obtain the effective classical
X|1— %fo d7Vin(p(7),X(7)) Hamiltonian as a cumulant expansion:
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1 1.4 (—1)" to find
Har(Poxo)= — 5In 20+ 2 3~ ] 1
o ) _Po 1o 5 a2
fﬁﬁ n\ Po.Xo Ha’(PoXo) M wB|z(po.Xo)+2MwB(X0+y0)
X drV, X )
< o P >Q,c + W (xo), (3.22

(3.16 where we have collected all terms depending on the varia-

. N tional parameter€) in the potential
Up to now, we did not make any approximation. The expan- P P

sion on the right-hand side is an exact expression for the 1

effective classical Hamiltonian for ar. W (x0) = — E“’l ZP70—MQg(wg—Qg) bZ (Xo) +M(wh
For systems with a nontrivial interaction, we are capable

of calculating only some initial truncated part of series s o 1 s o Do X

(3.16), say up to theNth order, leading to the approximate —Q7) al(Xo) — 5 MQjaj(xo) +(V(x)) g

effective classical Hamiltonian

(3.23
(N) 1 PoXo, T . (1" R 2 2
Ho (Po.Xo) = ——INZg2 "0+ — E - The quantitiesa| (Xo),aj(xo), andb{(Xo) are the transverse
B Bn=1 £l and longitudinal fluctuation widths
[ N\ Po:Xg 2 _ ~PoX 2 _ ~Po.X
><< f dTvim(p(T),x(T))) > . i (%) =G,37%(0),  aj(x0)=G;;7(0),
0 Q,c 2
(3.17) b2 (xg) = M—QBGE;’J;X"(O). (3.29

This depends explicitly on the three parame®@sSince the
exact expressioni3.16) is independent of}, the best ap-
proximation forH{)"(po,X,) should depend of2 minimally.
Thus the optimal solution will be found by determining the
parameters from the conditions

Note that potential3.23 is independent op,. This means
that approximation(3.22 of the effective classical Hamil-
tonian contains no coupling of the momentpgto a varia-
tional parametel, such that the optimaf2*) determined
by minimizing Hg)(po,xo) is independent opy. We may
therefore integrate oyt, in the phase-space representation

]
N -
VQH&Z)(F’O-XO) =0. (3.18 of the first-order approximation for the partition function
Let us denote the optimal variational parameteritio order d3x,d%p .
by 1= f #e*BH(Q)(Po»Xo) (3.25
(27h3)

QM =8 (pg,x0), 2V (po.%0), 2™ (pg.%0)). _ _ _
(3.19 to find the pure configuration space integral

Inserting these into Eq(3.17) yields the optimal effective 1)_ d*xo ~ swWiD(x0)
classical Hamiltoniart ") (pg,Xo). 2= 7\_31e oo, (3.29

B. First-order effective classical potential in which Wg)(xo) is the first-order approximation to the ef-

The first-order approximation of the effective classicalfective classical potential of an electron in a potentigk)
Hamiltonian(3.17) reads and a uniform magnetic field.

1 C. Application to the hydrogen atom in a magnetic field
HE(po Xo) = =N Z 70— (Ve (X)) ™. (3.20 PP Y e
B We now apply the formulas of Sec. Il B to Hamiltonian

. . ) ) (3.1 with an attracting Coulomb potential
The invariance of the system under time translations makes

one of the time integrals in expansi¢®.16) trivial, yielding e?

merely an overall factok 8. In particular, the first-order ex- V(X)=— GmeglX’ (3.27
pectation value oV;,(x) in Eq. (3.20 is independent of the 0

Euclidean timer. where|x| is the distance between the electron and the proton.

In order to calculate{}’(py,Xo), We use the two-point The only nontrivial problem is the calculation of the expec-
correlation functions derived in Appendix C, and the vanish-ation value(V(x(7)))?™ in Eq. (3.23. This is done using
ing of the linear expectations, e.g., the so-calledsmearing formulawhich is a Gaussian convo-

B0 %o lution of V(x). This formula was first derived by Feynman
(Px(7) = Pox) g °=0, (82D and Kleinert[18], and now also exists in an extension to

052509-7



M. BACHMANN, H. KLEINERT, AND A. PELSTER

PHYSICAL REVIEW A62 052509

arbitrary order{19,20. The generalization to pos?tion- and- dixes A and B. Expressing the souide) in terms ofk via
momentum dependent observables was given in the phasgy. (3.30), and performing the- integrations, we arrive at

space formulatiorf21]. We briefly rederive the first-order

smearing formula. The expectation value is defined by

(27h)3

PoXo
ZQ

(V7)o o= § Do Vi) %

_X(_T))5(DO—M)e‘A?)°'X°[D,X]/h_
(3.28

Now we substitute the potential with the expression

V(x(7'))= f d3x V(x) 8(x—x(7"))

3 d3k )
:f d xV(x)f (277)3exp[|,<.(x—x0)]

1788
Xexp[—gfo drj(7)-[x(7)—Xol},

(3.29
where we have introduced the source
j(n=ihrd(r—17"). (3.30
Inserting expressioB.29 into Eq. (3.28, we obtain
Vo= [ axvi [ 22
Tl 7Rk (2m)°
Xexyi ke (X—Xo)] Zg2 ],
(3.3)
with the harmonic generating functional
2% 1= (27 D'3xD3p S(xo—X(7)
L= ( ﬁ)3jg "3xD3p 5(xg—X(7))
1 Po.Xg
X 8(po—p(7))exp — 7 A5 7[p.X]
1 (8
3] Marixn w332
0
The solution is
_ 1 (hB (B
Z007[j1=28 Xoex;{%ﬁ) drfo dr’ j(7)
XGXO(T,T’)j(T’)], (3.33

with the 3X 3 matrix of the Green functions of E(3.9). The

3

d°«
<V(x(7’))>§’g'X0=J d3x V(x)f (Zw)aexp{ik-[x—xo]}

1
X ex;{ - EKGXO(O) K|.

(3.39

Recognizing thaG§2(0)=G§‘>’,(0) vanish, thex integral is
easily calculated, and leads to the first-order smearing for-
mula for an arbitrary position-dependent potential

1
vV 7yY\Po:Xo _
R P R TN

F{ (X—Xo)2+ (Y —Yo)?
xXexpg —
Zai(xo)

f d3x V(x)

_ (2_20)2
2af(Xo)

, (3.39

the right-hand side containing the Gaussian fluctuation
widths (3.24).

For the Coulomb potenti&B.27) that we are interested in,
the integral in the smearing formul8.35 cannot be done
exactly. An integral representation for a simple numerical
treatment is

e2 Po %o
B 4areq |X|

Q
e [2 1 d
4o 78100 f 0 af(xo) + fz[affxo) —af(xo)]
T —
2 | af(xo) + &°[a? (xo) —af(Xo)]
z4
+ az(xo)) ] . (3.39

With this expression we know the entire first-order effective
classical potential3.23 for an electron in a Coulomb poten-
tial and a uniform magnetic field which has to be optimized
in the variational parametei@.

IV. RESULTS

We are now going to optimize the effective classical po-
tential by extremizing it inQ at different temperatures and
magnetic-field strengths. In the zero-temperature limit this

properties of the Green functions are discussed in Appenwill produce the ground-state energy.
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w 4 . . w 3 .

B=0
-4
0 0.5 1
4 ‘ . . 1 ‘ . .
0 5 10 15 20 0 5 10 15 20
po/ag, %0/aB m/as, n/an
FIG. 1. Effective classical potentiéh units of 2 Ry) as a func- FIG. 2. Analogous plot to Fig. 1, but at the larger inverse tem-

tion of the coordinatg,= \/x02+ yo2 perpendicular to the field lines peratures=100.
atz,=0 (solid curve$, and parallel to the magnetic field as a func-
tion of z, at po=0 (dashed curves The inverse temperature is 1
fixed atB=1, and the strengths of the magnetic fi@ldare varied W{(x0)— — =1n Z?S'XO—QB(Q)B—QB) b?
(all in natural unity. The small figure enlarges the range 0 B
<pg,Zp=<1 with noticeable anisotropy. 1
2 2\ 42 2,2
A. Effective classical potential for different temperatures +(wg—Q7)ai—~ EQH g (4.
and magnetic field strengths

The optimization ofW{})(x,) proceeds by minimization is a constant with regard to the positi@g, and the optimi-
in © and must be done for each valuexgf Reinserting the  zation yieldsQ§)= QY= wg and QfY=0, leading to the
optimal parameters2{!)(xo) into expressions(3.23 and  asymptotic constant value
(3.36, we obtain the optimal first-order effective classical
potential W()(x,). The calculations are done numerically, 1
where we used natural units=e*/4meo=kg=c=M=1. W(l)(xo)ﬂ__m&. (4.2
This means that energies are measured in unitseof B sinhBwg
=Me*/(4mep)’h?=2 Ry=~27.21 eV, temperatures in
€0/kg=3.16x10° K, distances in Bohr radii 8  TheB=0 curves are of course identical with those obtained
= (47e0)*h*IMe?~0.53¢<10"*m, and magnetic-field from variational perturbation theory for the hydrogen atom
strengths  in By=e3M?/%3(4me)?~2.35x10° T=2.35 [20].
X 10° G. Figure 1 shows the resulting curves for various
magnetic-field strength® and an inverse temperatuge
=1/T=1. Examples of the lower-temperature behavior are B. Ground-state energy of the hydrogen atom
shown in Fig. 2 for3=100. To see the expected anisotropy in uniform magnetic field
of the curves in the magnetic-field direction and in the plane |, \yhat follows we investigate the zero-temperature be-
perpendicular to it, we simultaneously plot the curves forhayior of the theory. Figures 1 and 2 show that the minimum
W(x)) transversal to the magnetic field as a function ofof each potential curve lies at the origin. This means that the
po= VXgtYs at z=0 (solid curves and parallel as a func- first-order approximation to the ground-state energy for a
tion of z, at po=0 (dashed curves The curves become fixed magnitude of the magnetic fieRlis found by consid-
strongly anisotropic for low temperatures and increasingring the zero-temperature limit of the first-order effective
field strengthgFig. 2). At a given field strengttB, the two  classical potential in the origin
curves converge for large distances from the origin, where
the proton resides, to the same constant dependirgy dhis EM= lim W()(0). 4.3
is due to the decreasing influence of the Coulomb interaction B
which shows the classical rl/behavior in each direction.
When approaching the classical high-temperature limit, th&hus we obtain from Eq3.23 the variational expression for
effect of anisotropy becomes less important since the violenthe ground-state energy,
thermal fluctuations do not have a preferred directisee
Fig. 1). For pg— or z;—=, the expectation value of the 1 Q 110
Coulomb potentia(3.36) tends to zero. The remaining effec- EP(B)= s~ (0% + wd)+ e <—> . (4.9
tive classical potential 20, 4 X/ g
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where the expectation value for the Coulomb poteri8z36) eW(By 30

can now be calculated exactly, since the exponential in the e
integral simplifies to unity: T
< 1>° o 1 1100, " g
— f— —_— n B v
X/ g

T1-Q)/Q,  1+V1-0)/Q, -7
(4.9

Equations(4.4) and (4.5 are independent of the frequency
parameterQ)z such that the optimization of the first-order 10 |
expression for the ground-state enefdyd) requires satisfy- .
ing the equations

JEPB) 1 sEP(B) 1

' =Y (4.6 % 1000 2000
Reinserting the resulting valués(") andQﬁl) into Eq. (4.4 FIG. 3. First-order variational result for the binding enefgy

yields the first-order approximation for the ground-state enunits of 2 Ry) as a function of the strength of the magnetic field.
ergy EV(B). In the absence of the Coulomb interaction theThe dots indicate the values of R¢L]. The dashed curve shows
optimization with respect t6) , yields Q(f)z wg, rendering  the simple estimate of Landau and Lifschigd 0.5 IrPB, which is

the ground-state energi(l)(B)sz, which is the zeroth closely related to the ground-state energy of the one-dimensional
Landau level. An optimal value fof); does not exist since hydrogen atoni7,8].

the dependence of the ground-state energy of this parameter

is linear in Eq.(4.4) in this special case. To obtain the lowest with

energy, this parameter can be set to z@lh optimal fre-

quency parameters used in the optimization procedure turn h(n) = 1 n 1-V1-9 .9
out to be nonnegatiye For a vanishing magnetic field = 1=5 1+V1-7 '

=0, Eq. (4.4 exactly reproduces the first-order variational
result for the ground-state energy of the hydrogen atomin comparison with Eq(4.4), we introduce new variational
EM(B=0)~—0.42[2 Ry], obtained in Ref[20]. parameters

To investigate the asymptotics in the strong-field lifit

—, it is useful to extract the leading termg. Thus we Y _
define the binding energy o =0, (4.10
e(B)=wg—E(B), (4.7 and utilize, as calculations for the binding energy shown, that

. o i ] always »<1. Performing the derivatives with respect to
which possesses a characteristic strong-field behavior to kgese variational parameters, and setting them equal to zero,

discussed in detail subsequently. The result is shown in Figsie|ds conditional equations which, after some manipula-
3 as a function of the magnitude of the magnetic fiBld  tions, can be written

where it is compared with the high-accuracy results of Ref.

[1]. As a first-order approximation, this result is satisfactory. / N e

It is of the same quality as other first-order results, for ex- 9+ ﬁi( + E ! Ir‘.1 ! 7]) =0,
ample those from the operator optimization method in the 4 mnl—7y 2V1-7 1+V1-79

first order of Ref[5]. The advantage of variational perturba- (4.11
tion theory is that it yields good results over the complete 1 » B> 1 n 1 1-J1—-7'

range of the coupling strength, here the magnetic field. 5* Z_ @* 5 E = In 1+ 1- =0.
Moreover, as a consequence of the exponential convergence K K
(Ref.[17] Chap. 3, higher orders of variational perturbation gynanding the variational parameters into perturbation series
theory push the approximate result of any quantity very rapys the square magnetic fiel?,

idly toward the exact value.

1. Weak-field case 7(B)=>, 5,8, Q(B)=>, QB (412
=0 =0
We now investigate the weak-field behavior of our theory, " !
starting from expressiof.7) and the expectation value of gnq inserting these expansions into the self-consistency con-

the Coulomb potential4.5) in natural units, ditions (4.11) we obtain order by order the coefficients given
5 in Table I. Inserting these values into the expression for the
e (B)=E— 9( 1 2) _ B__ /ﬁ h(7) 4.9 binding energy(4.8) and expanding with respect &°, we
74 2 2 2/ 8Q T K ' obtain the perturbation series
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TABLE |. Perturbation coefficients up to ord@® for the weak-field expansions of the variational
parameters and the binding energy in comparison to the exact ones ¢2Ref.

n 0 1 2 3
10 40572 0.5576 16828965 1 3023 3886999332075° 49260
n ' 7168 1258815488 884272562962432
Q 16 0.5659 997 0.6042 129397572 10199 52443166718%° » 9038
" 97 448 39337984 55267035185152 <
e Y o 0a2as 2T 0220 BOLOT (g5 220M980F e
" 3r 128 1835008 322256764928
53 5581
e, [2] -05 0.25 >0 k
n To5~ —0.2760 1605~ 12112
B 2
8(1)(8)25_2 SHBZH. (413 Vm:_g(lnﬂ“_lnﬂl+2_ln4), (417}
n=0
The first coefficients are also given in Table I. We thus find ! Q
) _ = O TI =Y
the important result that the first-order variational perturba- 0,= TTM 2 l+47782' (4.18

tion solution possesses a perturbative behavior with respect

to j[he sguare magnetlc-f|eld streng®f n the weak-ﬂ'e!d Let us first consider the last equation. Utilizing the second of
limit, thus yielding the correct asymptotics. The Coeﬁ'c'emsconditions(4.14) we expand the second root around unity
differ in higher order from the exact ones, but are improve%eIding the exp’ression '

in higher orders of the variational perturbation the¢Ref.
[17] Chap. 5.
B

af
I
2. Asymptotical behavior in the strong-field regime Q=5 2— =+, (419

T @B B3

In the discussion of the pure magnetic field below Eg.
(4.6), we mentioned that the variational calculation for the
ground-state energy, which is thus associated with the zero
Landau level, yields a frequenc{), =B, while ;=0.
Therefore, we use the assumption

here the terms are sorted with regard to their contribution

arting with the largest. Since we are interested in the
strongB limit, we can obviously neglect terms suppressed
by powers of 1B. Thus we only consider the following terms

0,0, O<B (4.14 for the moment:
for the consideration of the ground-state enefdyd) of a B Q
hydrogen atom in a strong magnetic field. In a first step we Q,~ §+ P (4.20

expand the last expression of the expectation vdtg)

which corresponds to conditio®.14) in terms of (/) . . . .
and reinsert this expansion into the equation of the ground'—nsert'ng this into the other conditiof.17), expanding the

state energy4.4). Then we omit all terms proportional to corresponding Iogarithm, and, once again, neglecting terms
C/Q, whereC stands for any expression with a value muchOf order 1B, we find
smaller than the field strengtB. In natural units, we thus

obtain the strong-field approximation for the first-order bind- 2
ing energy(4.7): \/Q—”~\/—;(In B—InQ+In2-2). (4.2

2
8(1) :E_ &_{_B__F%_F _”| ﬂ T btai bl . - f6) f
Q.07 5 2 80, 4 740, ) 0o ftaln a tracta e approximation |, we perform
(4.15 some iterations starting from

As usual, we consider the zeros of the derivatives with re-

2
spect to the variational parameters QY= \/—_In 2Be 2. (4.22
o
f78§113 ot ’7883 ot
Q) T, =0, (4.16 Reinserting this on the right-hand side of Ed.21), one

obtains the second iteratiopQ{?). We stop this procedure
which lead to the self-consistence equations after an additional reinsertion which yields
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TABLE Il. Example for the competing leading six terms in £4.29 at B=10°B,~2.35x 10 T.

(1/m)In’B —(4/m)nBIninB  (4/7) In2InB  —(4b/m)InnB  [2(b+2)/7]InB b%/
42.1912 —35.8181 7.6019 4.8173 3.3098 0.7632
2 2 tion for the binding energy4.15, and expanding the loga-
QO )= —| In2Be 2-2In|—1{ In2Be 2 rithmic term once more as described, we find, up to the order
Vm Vm In~2B,
“oin| Zin2ge? (4.23 1
Jr : : 8(1)(B)=; IN°B—4 InBIninB+4 InYiInB—4b IninB

The reader may convince himself that this iteration proce- , 1 )

dure indeed converges. For a subsequent systematical extrac- +2(b+2)InB+b*— mw In“inB—8bIninB
tion of terms essentially contributing to the binding energy,

expression(4.23 is not satisfactory. Therefore, it is better to )
separate the leading term in the curly brackets and expand +2b%]
the logarithm of the remainder. Then this proceeding is ap-

plied to the expression in the angular brackets and so of\gte that the prefactor 4 of the leading IRB term differs

+0(In"?B). (4.29

Neglecting terms of order Ii¥B, we obtain from a value 1/2 obtained by Landau and LifscHi3. Our
) different value is a consequence of using a harmonic trial
- . ) ; T
N o 2 system. The calculation of higher orders in variational per-
of 77( In2Be “+In 2 2Inin2Be ) turbation theory would improve the value of the prefactor.
(4.24 At a magnetic-field strengtlB=10°B,, which corre-

sponds to 2.38 10 T, the contribution from the first six
The double-logarithmic term can be expanded in a similaterms is 22.872 Ry]. The next three terms suppressed by a
way as described above: factor In !B contribute—2.29[ 2 Ry], while an estimate for
the In 2B terms yields nearly-0.3[2 Ry]. Thus we find
" In2— 2”

-2_
InIn2Be In nB

InB

¢1)(10°)=20.58+0.3[2 Ry]. (4.30

In2—2 1 (In 2-2)? L O(In~%B) This is in very good agreement with the value 2q.B(Ry]
InB 2  In’B ' obtained from the full treatment.
Table Il lists the values of the first six terms of E4.29).
(429 This shows, in particular, the significance of the second lead-
ing term — (4/m)InBInIn B, which is of the same order of
the leading term (I#)In?B but with an opposite sign. In Fig.

=IninB+

Thus expressior¥.24 may be rewritten as

v 2 INnB—2 InInB+ 28 + a? N 3, we plot the expression
=—|INB=2InInB+— +-
| \/; InB |nZB .
e (B)=>In?B, (4.30)
+0(In"3B), (4.26) 3
with abbreviations from Landau and Lifschit{6], to illustrate that it gives far

too large binding energies even at very large magnetic fields,
e.g. at 200B,x10° T.

This strength of magnetic field appears on surfaces of
neutron stars (19-10° T). A recently discovered type of
The first observation is that the variational paraméleris ~ neuton star is the so-called magneft22]. In these, charged
always much smaller thafd | in the highB-field limit as has  particles such as protons and electrons produced by decaying
been assumed if.14). Thus we can further simplify ap- neutrons give rise to the giant magnetic field of410. Mag-

a=2-In2~1.307, b=In g _2~-1548. (4.27

proximation(4.20 by replacing netic fields of white dwarfs reach only up to2:aL.0* T. All
these magnetic-field strengths are far from direct realization
B 2 Q) B in experiments. The strongest magnetic fields ever produced
QL~§ 1+§ w2 (428 iy 4 laboratory were only of the order 10 T, an order of

magnitude larger than the fields in sun spots, which reach
without affecting the following expression for the binding about 0.4 T. Recall, for comparison, that the Earth’'s mag-
energy. Inserting solutiongt.26) and (4.28 into the equa- netic field has the small value of x6.0 * T.
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It should, however, be noted that there are systems iThe action of a particle in a magnetic field in théirection
solid-state physics, where a rescaling of variables correand a harmonic oscillator reads
sponds to extremly strong magnetic fields. In a donor-
impured semiconductor like GaAs, the properties of the sys- A% x:i]= hﬁd
tem of an electron bound to a positively charged donor [xj1= 0 T
nucleus in an external magnetic field of strength 6.57 T are
comparable to a hydrogen atom in a field of strength 2.35
X 10° T [23]. The reason for this is the strongly reduced
effective mass of the electron bound to the donor nucleus,
the large dielectric constant of the semiconductor, and thus
the much larger radius of the orbit of the electron. Hence the
Coulomb interaction between the donor nucleus and the elec-
tron is much weaker than in the hydrogen atom. This apwhereQ, >Qg, for stability. The position-dependent terms
proximate analogy between both systems can thus be usedate centered arounch=(Xg,Yo), which is the temporal av-
investigate the effects of extremely strong magnetic fields irerage of the path(7), and thus equal to the zero-frequency
earthbound experiments. component of the Fourier path,

As we see in Fig. 3, the nonleading terms in E429
give important contributions to the asymptotic behavior even - o x o
at such large magnetic fields. It is an unusual property of the x( T):XOJFle (Xm€' M7+ Xpe ™), (A3)
asymptotic behavior that the absolute value of the difference
between the Landau expressioh3]) and our approxima- yiith the Matsubara frequencies,=2m/% 8 and complex
tion (4.29 dlverges Wlth increasing magnetic-field strengthsgqrier coeﬁicientsxm=x[ﬁ+ixLT. Introducing a similar
B; only the relative difference decreases. Fourier decomposition for the currejt’) with Fourier com-

ponentsg,, and using the orthonormality relation

M. _ .
7X2(T) —iMQg([x(7) —Xo]XX(7)),

1
+ 5 M(Q2 —0F)[x(7) = xo]®

+j(7)- (X(1) = Xo) |, (A2)

V. SUMMARY

We have calculated the effective classical potential for the ifﬁﬁdTei(wm, oT= § (A%)
hydrogen atom in a magnetic field. For this we have gener- hBJo m
alized variational perturbation theory to make it applicable to
physical systems with a uniform external magnetic field. —the generating functional can be written as

The effective classical potential containing the complete .
quantum statistical information of the system was deter- _
mined in first-order variational perturbation theory. For zero Z9[j1= H

— A Xl i) |

f dxdxmdyidyin

. =1 IM Bw?)?
temperature, it gave the energy of the system. Our result " (m/M Ber) (A5)
consists of a single analytic expression which is quite accu-
rate at all temperatures and magnetic-field strengths. with
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(M.B.) is grateful for support from the Studienstiftung des Expression(A5) is equivalent to the path integréhl) and
deutschen Volkes. after performing integrations and retransforming the currents

+ 20 B(Xird ximF Xemxem+ Yied yim

APPENDIX A: GENERATING FUNCTIONAL FOR N I
PARTICLE IN MAGNETIC FIELD AND Im=75), dri(neem, (A7)
HARMONIC-OSCILLATOR POTENTIAL

For the determination of the correlation functions of aWe obtain the resulting generating functional
system, we need to know the solution of the two-dimensional ey i
generating functional in the presence of an external SOUICExqri1— 7% ex _J de dr" j(n)G(r,7")j(7") |,
i=0x.dy): 242Jo 0
(A8)
Xol 17—y 2 2 _ — A%o[x;j1/ %
ZOL1= Ny fﬁ DX 8(xo=x(7)) & - (AD " yith the partition function
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o w? Therefore the partition functiofA9) can be split into two
Z%o=7%[0]= || B mz > (A9)  products, each of which known from the harmonic oscillator
m=1 4Qgwn+ (0n+Q7) (Ref.[17] Chap. 5
and the 2<2 matrix of the Green functions: % o w2
zo=1] IL
Sn) Gn) N P

G*Xo(7,7")=

hBOLI2  RBQ_I2

) . (A10)
~ Sinh% B0, /2 sinhh BQ_12°

X ' X ’
Gy?(( T,7) Gy‘;( T,7)

(A17)

The elements of this matrix are position-position correlation
functions what can be easily proved by applying two func-Now we apply propertyA15) to decompose the Green func-
tional derivatives with respect to the desired component ofion (A13) into partial fractions, yielding

the current to functionalAl), for example,

G, 7)= G;(;( 7,7')

G (7, 7)=((X(7) = Xo) (X(7') = X0))"®

oo

1 1

2 =— | a Z —e_iwm(T_T/)
Sl —"_qp| MBL T m& e wh +02
29[} 8jx(7) 8ix(7") i=0 B . .
(A1) ta, 2 ———e tenl -
2mfle w2+ 02 Q.0
mT Q2
where we have defined expectation values by (A18)
2 . —_
(- Yo= ﬁ jg D2X ... S(xg—X(7))e A K0l with coefficients
Z%0
(A12) L 000y 0,10,
. : : Yoo2-0? 20,
From the above calculation, we find the following expres-
sions for the Green functions in Fourier space<(f7’ ) ) )
' =— = A19)
“2 0% -2 20, (

Gf;(m')=&<r>§<r'>>X°=G§<;<r,r'>=<§<r>9<r'>>X0
Following Ref.[17] Chap. 3, sums of the kind occuring in

i w2 +92 —QZ expression{A18) are spectral decompositions of the correla-
=1 40202 + (03 + 02— 02)2 tion function for the harmonic oscillator, and can be summed
m RC up as
X e iom(T= T'), (A13) .
L et ). a20)
———e “mT T =—ug,(7,7").
GR(r.7)=(X() Y(r'))o=—G(7,7') m e w2t 02 20, 9=
=—{y(n)x(7")) Here we introduced the expression
405 < . . coshQ(|7—7'| -4 pBI2) ,
- MB =1 40305+ (03407~ 03)? 9:(n )= gnhrpagz 0 7 =(04A)
m m 1 B (A21)

Xe lom(m=7), (A14) _ _
with e e {+,—,L,|}. Thus, thexx andyy correlation func-

where, for simplicity x(7) =x(7) —Xo. It is desirable to find tions can be expressed by

analytical expressions for the Green functions and the parti-

tion function(A9). All these quantities possess the same de- Go(r,7)= GXO(T "= ( hB g.(77)
nominator, which can be decomposed as MB14Q,
hB
4050n+ (05 + Q% —0F)*=(0h+ Q7)) (0h+02) -

m mT Q%) (o, (ALS) a0, 9T e A2

with frequencies where, from Eq(A16), Q. =Q.(Qg,Q,) are functions of
the original frequencie§)g from the magnetic field anf |
0.(Q5,0,)=0,+05. (A16) from the additional harmonic oscillatofA2). It is ob-
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vious that expressioA22) reduces to the Green function of sinhQ,(7— 7' —#B12)
the harmonic oscillator fof)g—0, hy(7,7")= snhiga. 2 ' " ' e(0ApB),
A29
im GXo(r, )= —— | -1 -
Q'TO i (T 7') = MBOZ\ 2 9u(7.7) =1/, with e e{+,—,1,|}. Note that classicallyfxy)®=0, such
B + (23 that Eq.(A26) reduces to
with i e {x,y}. In this limit, partition function(A17) turns out G (7, 7)=GH\(7,7). (A30)
to be the usual on&Ref.[17] Chap. 5 for such a harmonic . . i _ _
oscillator: The Heaviside function in EqA28) is defined symmetri-
cally:
hBQ, 12
; X0 — 1, >7'
m 2= Snha Q. 2 (A24) T
B ’ — !
O(r—7")=4 12, 7=71 (A31)
It is worth mentioning that with the last term in Green func- 0, =<7

tion (A22), the classical harmonic fluctuation width
In the quantum-mechanical limit of zero temperatug@ (

—o), the Green functiorfA22) simplifies to

c¢ :<X2>C|: (A25)
* MB(Qf - 0g) lim GJ9(7,7')= lim G}9(,7')
is subtracted. This is the consequence of the exclusion of the ?
zero frequency mode of the Fourier pd#3) in the gener- _h 07| am O |= |
ating functional(A1). The necessity to do this was already M, (e te ),
discussed in Sec. Il. The other terms in E422) are those
which we would have obtainedithout separation of the (A32)
component. Thus these terms represent the quantunjie in Eq. (A28) only h. (7,7') changes:
mechanical Green function containing all quantum fluctua- -
tions as well as thermal fluctuations. It is a nice property of limh.(r,7)=—e 2=(r—7), (A33)
all Green functions discussed in this paper that B
X N — m ’ cl
G 7)=Gl(r. 1) = G- (A26) APPENDIX B: PROPERTIES OF GREEN FUNCTIONS

Such a relation exists for all other Green functions appropri- |n this section we list properties of Green functidA®2)

ately_, including momentum-position correlations which weand (A28), which are important for the forthcoming consid-

consider subsequently. o eration of the generating functional with sources coupling
The knowledge of relatioitA20) makes it quite easy to |inearily to position or momentum in Appendix C. For all

determine the algebraic expression for the mixgctorrela-  relations, we suppose that0r, 7' <# .

tion functions. Rewriting Eq(A14) as

1. General properties

G (r.7)=~GY(r,7) | o TEnerR PR o

A first observation is the temporal translational invariance

i 9 ( < 1 o) of the Green function,
- —e—lwm T—T
ZMBQL or m=—o© (,()ﬁ,f"Qi G?(jO(T’T/):GinO(T_ 7_/)’ (Bl)
+ 1 —iwm(r—7") A27 where each of the indicesand] stands forx or y, respec-
2 2 € ' (A27) ivel | ti find
m=—x w?+02 tively. For equal times we fin

hp

and applying the derivative with respect toto relation ot hp B
MB 4QLg+(TvT)+4QJ_g—(TvT) Q+Q_

(A20), we obtain the following expression for the mixed
Green function:

X
GijO(T,T):

1, i=]j
X[o i#] (B2)
X "N — _ X A . o 2 y .
GX())/(TiT)_ Gy?((T'T)_4|MQL{(T T)[h+(T,T)
, Moreover we read off the following symmetries from expres-
—h_(7r,7")]=0(7"=7)[h (7',7) sions(A22) and (A28):
_h_(’T,,T)]}, (A28) 1 |:J
(77 =GO, r)x | B
where we have used the abbreviation Gif(n ) =G 7) |—1, i#]j. B3)
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Otherwise, ~ X h 2 2
G (r )=~ W[Q+g+(7ﬂ")+9797(T-T’)],
X ’ X ’
Gijo( T ):GjiO(T ,T). (B4) (B10)
Throughout the paper we always use periodic paths. Hence fYhich is finite for equal times. _ .
is obvious that all Green functions are also periodic: Applying derivatives with respect to the first respective
second argument to the mixed correlation functia@s), we

G(0)=GohB,T), G(7.0=Grhp). find
(59 G (1) = [0 N-Q '

A7 7)= v, (2494 (n7) = Qg (7,7)]
2. Derivatives of Green functions

: - . =—G 7,71 B11
We now proceed with derivatives of the Green functions XV(T ™) (B1Y)

(A22) and(A28), since these are essential for the derivationgq

of the generating functional of position- and momentum-

dependent correlations in Appendix C. ‘GO(r,7')=—"G(r,7). (B12)
Before considering concrete expressions, we introduce a yx ©

new symbol indicating uniquely to which argument the de-Differentiating each argument of the mixed Green function

rivative is applied. A dot on the left-hand side means toresults in

perform the derivative with respect to the first argument and

the dot on the right-hand side indicates that to differentiate

with respect to the other argument. Having a dot on both

sides, the Green function is derived with respect to both ar-

if
Ghr, )= amq, L0~ T)fn )

guments: —0O(r' = 7)fy(7,7)]
e 0G0(n) =—"G (7). (B13)
Gy T with
) 9G(r,1) f2<r,r'>=<ﬂl+QB>2h+<r.T')—mL—QB)Zh,(r,Qﬂ)
G ijO(T: 7',): , )
o An additional property we read off from Eq®7) and(B11)
is (i.j e{x.y}):
. c?ZGinO(T, 7')
.G‘ijO(T, T'):T. (BG) .« %o a0 , _1, |:J
TOT Gij(T,T)— Gij(T,T)X 1i4, (B15
Applying such derivatives to Green functio%22), we ob- 1 0=
tain (i e {x, oX N — (eX0f 1 o
(ie{xy}) GijO(T,T)—G”O(T,T)x[ L izj. (19
h
'Gixio(r, T')= W[@(r— )7, 7") The double-sided derivativé89), (B10), and(B13) imply
' ' 1, i=j
—O(r' =iy (7", 7)] 'G'iXJ.O(T,T')='G'in°(T',T)><[ 1 .i.J (B17)
-1, i#j.
=-G 1, 7), (B7)
Derivatives(B7), (B10), (B11), and(B13) are periodic:
with . . . e ,
G2(m,0="G(r,hp), ‘G(0,7)="G(hB,T"),
f1(7,7')=(Q, + Q). (7,7) + (1, — Qg)h_(r,7"), (B18)
B8 . . . / . /
B8 (0= h8), G0 =GB,
where h..(7,7) was defined in Eq(A29). Performing the (B19)

derivatives to both arguments leads to the expression o %o
G A7,00="G" (7,4 pB),

~ h ~ -
G o(r,7)="G ﬁO(T,T')+M5(T— '), (B9) "Go(0,7)="G (4B, T'), (B20)
e ~eX e ~eX
where we have introduced the partial function G ijo( 7,00="G ijo( mhpB),
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'G'inO(O,T/):'G'inO(ﬁﬁ’T/) (i#]). (B21) be considgred here to point in tlz_edirection. The last com-
ponent()| is the frequency of a trial oscillator parallel to the
field lines.

APPENDIX C: GENERATING FUNCTIONAL FOR Due to the periodicity of the paths, we suppose that the
POSITION- AND MOMENTUM-DEPENDENT sources might also be periodic:

CORRELATION FUNCTIONS

. o . . j(0)=j(%B), V(0)=V(p). (C5)

With the discussion of the generating functional for
position-dependent correlation functions and, in particularsince we want to simplify expressi@f2), such that we can
the Green functions in Appendix A, and that of their proper-yse the results obtained in Appendix A, the momentum path
ties in Appendix B, we have laid the foundation to derive aintegral is solved in the following. In a first step we re-
generating functional for correlation functions depending orexpress the momentui function in Eq.(C2) by
both position and momentum. Following the framework pre-
sented in an earlier work1], such a functional involving — d3¢ 1 (%8
sources coupled to the momentum can always be reduced @Po~ P( T)):f Py Sexp{ - gfo d7vo-[p( T)_po]}'
one containing position-coupled sources only. (2a#)

We start from a three-dimensional effective classical rep- (C6)
resentation for the generating functional where
d3x,d3pg i
Z -iV :f —ZpO’XO -lv 1 (Cl) V, = 7 C

with zero-frequency componemtg=(Xo,Yo,Zo) =const and is an additional current which is coupled to the momentum
Po= (Pxo.Pyo.Pyo) = const of the Fourier path separated. Theand is constant in time. Defining the sum of all sources
reduced functional is coupled to the momentum by

— V(7)) =V(r , C8
z;’g'XO[j,v]z(zwﬁ)SfﬁD'3xD3p5(xo—x(T)) (En=v(n*v(® 8

functional (C2) can be written as
- 1
X 8(po—p(7)) eXD{ - AG TP x|V

Z?{):XOU,V]:J d3¢ §> D"3xD3p 5(xo—X(7))
(€2

p?(7)
2M

—ip(7)-X(7)+

1 (hB
where the path integral measure is that defined in(Ed). Xexp{ B gfo dr
Extending action2.3) by source terms, considering a more
general Hamilton function than E¢2.18), and introducing ~ 1 2 ~o ~,
an additional harmonic oscillator in thzedirection, the action — Ql(p(7) X(7)+ 5 MOT{X(7) +y();
functional in Eq.(C2) reads ]

(C9

1 -2 i Y
+§MQ”Z (7‘)+J(T)-X(T)+V(§,T)‘p(’T)

hp - 1.
A?i”x°[p,x;j,VJ=fo dr[—ip(r)-X(r)er (1)

-~ 1 5~ ~
~ gl (px)+ EMQL[XZ(THVZ(T)] where we have used the translation invariapeep of the
path integral. To solve the momentum path integral, it is
useful to express it in its discretized form. Performing qua-
dratic completions such that the momentum path integral

separates into an infinite product of simple Gaussian inte-

+%Mnﬁ'é‘(r)ﬂ(r)&(rﬁv(r)-5(7)

(C3) grals which are easily calculated, the remaining functional is

with shifted positions and momenta reduced to the configuration space path integral

~ ~ M (4B

%=x(7) %o, B=P(7)po. co - d%exp{gf arvi(g )| § D

0

The orbital angular momenturh,(p,x) is defined in Eq. 1
(2.19, and used in Eq(C3) with shifted phase-space coor- X 8(Xo— X( T))exp[ _ _A(p)o,xo[x;jlv]]
dinates(C4). We have introduced three different frequencies h
in Eq. (C3), 2=(Qg,Q, ,Q), where the first both compo- (C10

nents are used in regard to the oscillations in the plane per-
pendicular to the direction of the magnetic field which shallwith the measuré2.10 for D=3. The action functional is
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M. . ~
7x2(r)+iMQB{x(r)y(T)

AQ7™x),V]= f:ﬁdr
\ ™ 1 2 2\ry2
—Y(DX(1}+ 5 MQT—Qp){X(7)

~ 1 ~
+YA)}H+ S MOFZA (1) +X(7[ix(7)

+MQgVy(£7)]+Y(D)jy(7)

~MQeV,(&7)]+2(7)jo(7)

—iMF'Bd X(7)-V C1
7 o TX(T)' (gaT)v ( 1)

where the last term simplifies by the following consideration.
A partial integration of this term yields

hp . hB .
J'o dTX(T)-V(f,T):—fo d7 (X(7)—Xg)- V(& 7).
(C12

The surface term vanishes as a consequence of the period

ity of the path and the source. This periodicity is also the

reason why we could shift(7) by the constank, on the
right-hand side of Eq(C12). Obviously, the importance of
this expression lies in the coupling of the time derivative of

V(£ 7) to the pathx(7). ThusV(& 7) can be handled like a
j(7) current[21], the action(C11) can be written as

AR V= AG 1% 9.0]
= AR[x;0,0]- Efwdr'iuu(f )
Q T flo n

(C13

with a new current vectad( &, 7) which has the components

JLED) =D+ MQgV (&) —iIMV, (£ 1),
Jy(f,r>=jy(7)—MQBVX<§.T>—iny(§,r>, (C14
JAET) =] 1) — Mn”vz(gr)

and couples to the patt{7) only. With expressiofC10) for
the generating functional, and actig@13), we have derived
a representation similar to EGA1) with action (A2), ex-
tended by an additional oscillator in taelirection. We iden-
tify

1x=J (C1H
Inserting substitution$C15) into solution(A8) for the gen-
erating functional in two dimensions, and performing the
usual calculation for a harmonic oscillator with external
source (Ref. [17] Chaps. 3 and $5in the z direction, we

xr Jy=Jy

PHYSICAL REVIEW A62 052509

. —_ y M ﬁﬁ
Z007j V=N, ZP0 x"f d3§exp{ﬁfo dTV2(§,T)}

><exp{2 f drf dr’ J(&7)

X G*o(1,7") (&, T’)]. (C19

The partition function follows from EqgA17) and (A24),
Z9070=707910,0]

QL2 hBQ_I2 h BLY)12
~ sinh% B0, /2 sinhh Q12 sinhh /2
(C17)
andG*o(7,7") is the 3x 3 matrix of Green functions:
GYUnT) GYmT) 0
N X ’ X ’
GXo(7,7')= Gy?((T,T ) Gy(;/(T,T ) 0
. 0 0 G, 7
(C18

Except forGé‘;(r, 7'), the Green functions are given by the
expressions in EqgA22) and(A28). The Green function of
the pure harmonic oscillator in thedirection,

ﬁﬁ’ I

2

1

xO(

)= g7, 7)—1 (C19

follows directly from limit (A23). Since the curreni in Eq.
(C149 still depends on time derivatives &f, we have to
perform some partial integrations in functiori@l16). This is
a very extensive but straightforward work, and thus we only
present an instructive example. For that we apply the prop-
erties and the time derivatives of the Green functions which
we presented in Appendix B. Consider the integral

M2

Y y
= 2720 drf dr’ V(§T)G°(TT’)V(§ )

(C20

occuring in the second exponential of EGC16) with i
e{x,y,z}. A partial integration in ther’ integral leads to

2 '=hpB
he . Xo ’ : ’
| _ﬁ . drVi(& )| G°(7,7") Vi(§ 1) .
np IG; O(7'7') )
- fo dr’ —V i(&7)

th drf dr'Vi(&7) G o7, 7') V(& 7).

obtain an intermediate result for the generating functional in

three dimensiongEq. (C2)]:

(C21)
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The surface term in the first line vanishes as a consequence 1 (4B 1
of the periodicity of the currentC5) and Green function — ZP0[j v]=x3 250 *%ex —2J dr| d7' s(7)
(B5). A second partial integration, now in the integral, 2h=Jo 0

results in
XHXO(T,T')S(T’)}stf
M2 (#p B oo ,
II—% o dr o dr Vi(g,T) Gii(’T,T)Vi(g,T) % 4 M §2+ M g Jﬁﬁd ( )]
expy — | —&- TV(T
2 2
M2 (1p (4B e , 2h°B hep” Jo
:_ﬁ . drfo d7r’' Vi(§7) G (7,7") Vi(§1") (C25
M [# 5 with the new six vector
_ﬁj drVi(&). (C22
0

S(1)=((7),v(7) (C206
Eaerrmz \év:ril\q/?\;/i\?eagf Igrdeézefﬁfg?gg%),p{g;;% ?; :u\a/a::]g_ht cqnsisting .of the original sourcg’aandv only. The Gaussian
ishing surface term in this case too. In the second line, wé integral in Eq.(C25 can be easily solved, and the terms
have used the decompositiéB9) of the double-sided differ- &PP€aring from quadratic completion modify the above ma-
entiated Green function. Note that the last term just canceli H°(7,7"). The final result for the generating functional
the appropriate term in the first exponential of the right-hancf @ll position and momentum dependent correlations is
side of Eq.(C16). Eventually, after performing all such par- 91Ven by

tial integrations, we reexpress E16) by 1 (48 iy
Z??’XO[J- V)= Z?{”Xo ex %J‘ de dr’
0 0

1 hp hB
280 =2 280 | dsgexp{%ﬂ ar|, o
X (1) GPo*o( 7, 7") S(T')}. (C27
XS(& 1) HO(7,7") I &, r')} : (C23

The complete & 6 matrix GPo*o( 7, 7') contains all possible
Green functions describing position-position, position-
momentum, and momentum-momentum correlations. As a
_ consequence of separating the fluctuations into those perpen-
S(&7)=((7),V(&71)) (C29 dicular and parallel to the direction of the magnetic field, all
correlations betweer andy on the one hand anzlon the
other hand vanish, as well as those for the appropriate mo-
and the 6<6 matrixH (7, 7"), which has no significance as menta. The symmetries for the position-position Green func-
long as we have not done tifeintegration. We explicitly  tions and their derivatives were investigated in detail in Ap-
insert decomposition(C8) into expression(C24) of the  pendix B, and lead to a further reduction of the number of
source vectors. Sincevy(£) from Eq. (C7) is constant in  significant matrix elements. It turns out that only nine ele-
time, some temporal integrals in the exponential of @23) ments are independent of each other. Therefore we can write

with six-dimensional sources

can be calculated, and we obtain the matrix
Gpo’xo ’ Gpo~xo ’ 0 GPOvXO(T 7./) GpO'XO(T 7./) 0
XX (TIT ) Xy (T!T ) XPy ! Xpy !
Gpo(r' 1) GR(r,T) 0 —Go ) Gp(nT) 0
0 0 GPoXo(7,7') 0 0 Gy (7,7
Gpoixo(r )=
! Po:Xo/ .1 _ ~PoXos 1 Po:Xo ’ Po X0 ’
Gup, (727) =Gy (77) 0 Gpp, (T7) Gpp A(TT) 0
o7 m) GR(r7) 0 Gpop (77) GRre(r, ") 0
Po X0 .1 Po X0 ’
0 0 GEo o+, 7) 0 0 Groo(r, 7
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The matrix decays into four 83 blocks, each of which
describes another type of correlation: the upper left a
position-position correlation, the upper rigas well as the
lower leff) position-momentum correlation, and the lower

right a momentum-momentum correlation. The different el- GS(Z’F’,)Z(O(T, ) =(PATIPAT)) g

PHYSICAL REVIEW A62 052509

—O(r" = 7[h. (7", 7)—h_(7", 7]},
(C36

~ M
PoXo— 2Gr ) - —

ements of the matrix are
GRoX0o(7, 1) = (X()X(7))p0 =G 7,7"), (C29
G, 7') = X(NY(r )R *O=G(r,7'), (C30
GH (1) = (& MU )) R 0= Gy 7, 7), (C3D
G (7 ) = (X(7)Pu(7 )
=iMG (7, 7') ~MQeGS(7,7")
h , , ’
=4 10(r=7)[h.(r,7)+h_(7,7")]

-0O(r'—7)h. (7", n+h_(7,1]},
(C32
Gop (7, ) =(X(1)py(7)) g™
=iMG" (7, 7')+MQG (7, 7)

_h , , 1 Qp
__Z[g+(7-17- )_g—(TaT )]_E Q+Q_'

(C33
Gl (.7 ) =(n)p,7)g O =IMG (7, 7")
fi
= z[@(r— ™)h(7,7)=0(r" = 7n)h(7', 7],
(C34
G, 1) = (B 7B )0
=—M*G(1,7)—2IM*Qg'G (7, ')

M
+M2QEGO(1,7)— —

B
AMQ,
= T[ng(T,T,)“'g,(T,’T,)]
M( 03
"\t an) (€39

Gpop (1,7 =(P 1Py (7)) g = 2IM Q' Gl (7,7")

~MZG (7, 7') + M2QEG (7, 7))

AMQ,
= — 10— (n7)=h (r,7)]

B

AMQ,

— ’ M
_TQH(T!T)_EI (C37)

where the expectation values are defined by(Bd.2). Note
that all these Green functions are invariant under time trans-
lations, such that

GPo™o(r, ) =GR (7 1') (C38)

with u,ve{X,y,z,px, Py, P}

It is quite instructive to prove that all these Green func-
tions can be decomposed into quantum-statistical and classi-
cal parts as we did it in EqA22). Since we know that the
classical correlation functions do not depend on the Euclid-
ean time, all derivative terms in EqeC29—(C37) do not
contribute a classical term. We can write each Green func-
tion as

Po X N — ’ |
Gy (1) =Gi)(7,7) =G}, . (C39

This relation was already checked for EG€29—(C31) in
Appendix A. The classical contribution is zero in E¢S32),
(C34), and (C36 following from the absence of classical
terms in derivatives of the Green functions and mixed corre-
lations like Eq.(A30). It seems surprising that correlation
(C33 contains a classical term, while E(C32) possesses
none. This is, however, a consequence of the cross product
of the orbital angular momentum appearing in acti@3),

and the explicit classical calculation entails

Gcl =<xp >cI:0 Gcl =(xp >cI:£ QB
XPy X v X y )
P Py B 0%-03
(C40

where the latter is the subtracted classical term in(Bg2)
when considering the first two substitutions in EG15). In

Eq. (C37), the second term is obviously the classical one,
since

M
Gglzpf <pzpz>d=E- (C4Y

The extraction of the classical terms

QZ
1+—Bz) (C42
B

GY =<|ox|0x>°'=M
PP B\ 07-0

in the case of the Green funCtidBEO‘;XO(T, 7') requires the
XFX

consideration of the last two terms in E@q35. Thus we
have shown that the decompositig®39 holds for each of
the Green functionC29—(C37). Note the necessity of sub-
tracting the classical terms since they all diverge in the clas-
sical limit of high temperaturesd—0).
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