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Polarizabilities of the Rydberg states of helium

Zong-Chao Yan
Department of Physics, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3

~Received 24 January 2000; published 11 October 2000!

The static dipole, quadrupole, and octupole polarizabilities of helium are calculated for the four Rydberg
series 1sns1S, 1sns3S, 1snp1P, and 1snp3P with n up to 10, using variational wave functions in Hylleraas
coordinates. The large-n expansions for polarizabilities are presented for these series.

PACS number~s!: 31.15.Pf, 32.10.Dk
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I. INTRODUCTION

Recently, a series of high-precision work@1–6# has been
done for the calculations of polarizabilities and dispers
coefficients for helium and heliumlike ions. However, a
these calculations are limited to the ground state 1s2 1S, the
metastable 1s2s 1S and 1s2s 3S states, and the lowestP
states 1s2p 1P and 1s2p 3P. On the other hand, polarizabi
ities of an atom in Rydberg states are important in the stu
of threshold behavior of photodetachment cross sections
negative ions such as He2, Li2, Na2, and K2 @7#. The re-
cent experimental work by Kiyanet al. @8# on the doubly
excited states of He2 has shown that the polarizabilities o
excited states of the parent atom He are crucial in the de
mination of the number of bound states below a particu
excited state of the parent atom. However, for helium R
berg states, to our knowledge, there have been no prec
calculations of polarizabilities reported in the literature. T
purpose of this paper is to present accurate values of po
izabilities for Rydberg series of helium using fully correlat
Hylleraas variational basis sets.

II. CALCULATIONS

The static 2l-pole polarizability for an atom is defined i
terms of a sum over all intermediate states, including
continuum~in atomic units throughout!:

a l5 (
nÞ0

f n0
( l )

~En2E0!2
, ~1!

with f n0
( l ) being the 2l-pole oscillator strength

f n0
( l )5

8p

2l 11
~En2E0!ZK C0U(

i
r i

lYlm~ r̂ i !UCnL Z2, ~2!

where the sumi runs over all the electrons in the atom,C0 is
the state of interest,E0 is the corresponding energy, andCn
is one of the intermediate states with the associated en
eigenvalueEn . In practice, instead off n0

( l ) , an averaged os

cillator strengthf̄ n0
( l ) which is independent of magnetic qua

tum numberm is used. Thef̄ n0
( l ) is obtained by averaging ove

the initial-state orientation degeneracy and summing over
final-state degeneracy. It is convenient to introduce redu
matrix elements through the Wigner-Eckart theorem@9#
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lYlm~ r̂ i !ugLM &

5~21!L82M8S L8 l L

2M 8 m MD
3K g8L8UU(

i
r i

lYl~ r̂ i !UUgLL . ~3!

With the aid of a sum rule for the 3j symbols, we have

f̄ n0
( l )5

8p

~2l 11!2~2L011!
~En2E0!

3U K C0UU(
i

r i
lYl~ r̂ i !UUCnL U2

, ~4!

whereL0 is the total angular momentum for the initial sta
~the state of interest!. The allowed possible symmetries o
intermediate states can be obtained by the selection rule
the 3j symbol and parity. Thus, if the symmetry of the initi
state isS, then the allowed symmetries areP, D, andF for
the dipole, quadrupole, and octupole polarizabilities, resp
tively; if the symmetry of the initial state isP, then the al-
lowed symmetries areS1P1D, P1D1F, andD1F1G
respectively. A more detailed discussion on the construc
of configurations for the intermediate states can be found
Ref. @6#. It should be pointed out that in the latter case one
the intermediate states ofP symmetry, which overlaps with
the initial state, should be excluded in the summation oven
in Eq. ~1!.

One difference between a Rydberg state and the gro
state~and metastable states as well! is that not all the virtual
excitation energiesEn2E0 are positive for the Rydberg
state. LetC0 be a Rydberg state and all the intermedia
states of correct symmetry belowC0 be $f i% i 51

g . One ap-
proach is to calculate the contributions to the polarizabilit
from f i explicitly and to treat the contributions from th
states aboveC0, including the continuum, by diagonalizin
the Hamiltonian in a restricted basis set,

S 12(
i 51

g

uf i&^f i u D 3~basis function!. ~5!

The resulting eigenvalues are all above the energy of
initial state and the problem thus becomes similar to
problem for the ground-state case. This method works w
for low-lying states. For instance, consider the 1s3s 1S state.
©2000 The American Physical Society02-1
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For the calculation of dipole polarizabilitya1, the only state
of P symmetry which is below 1s3s 1S is the state ofuf1&
5u1s2p 1P&. The contribution toa1 from f1 can be calcu-
lated directly and the value is237.155 811 9~5!. After diago-
nalizing the Hamiltonian in a restricted functional space E
~5!, one obtains the contribution from all the states abo
1s3s 1S to be 16 924.31~2!. Combining these two contribu
tions together yields the totala1 of 16 887.15(2). Forhigh-
lying states, however, where$f i% i 51

g becomes more com
plete, the gram matrix becomes more singular, lead
eventually to numerical instabilities. Therefore, the strate
we adopt is to diagonalize the Hamiltonian directly witho
using projection operators. The reliability of the method c
be judged by the convergence pattern as the size of basi
for a given intermediate symmetry increases progressive

For a two-electron atomic system, the basis set is c
structed using Hylleraas coordinates

$x i jk5r 1
i r 2

j r 12
k e2ar 12br 2Y l 1l 2

LM ~r1 ,r2!%, ~6!

where Y l 1l 2
LM (r1 ,r2) is the vector coupled product of soli

spherical harmonics for the two electrons forming an eig
state of total angular momentumL defined by

Y l 1l 2
LM ~r1 ,r2!5 (

m1m2

^ l 1l 2m1m2uLM &Yl 1m1
~r1!Yl 2m2

~r2!,

~7!

and r 125ur12r2u is the distance between electron 1 and
The wave functions are expanded from doubled basis s
The explicit form for the wave function is

C~r1 ,r2!5(
i jk

@ai jk
(1)x i jk~a1 ,b1!1ai jk

(2)x i jk~a2 ,b2!#

6~exchange!, ~8!

andi 1 j 1k<V. A complete optimization is then performe
with respect to the two sets of nonlinear parametersa1 , b1,
anda2 ,b2 by first calculating the derivatives analytically i

]E

]g
52K CUHU]C

]g L 22EK CU]C

]g L , ~9!

where g represents any nonlinear parameter,E is the trial
energy,H is the Hamiltonian, and̂CuC&51 is assumed, and
then locating the zeros of the derivatives by Newto
method. These techniques yield much improved converge
relative to single basis-set calculations@10#. The energy ei-
genvalues for the Rydberg series 1sns and 1snp are accu-
rate to about 12 to 15 significant figures, for the largest si
of basis sets around 500 for the 1snsseries and 800 for the
1snp series. For the intermediate states of given symme
the nonlinear parameters are optimized such that the en
eigenvalue closest to the energy of initial stateE0 is mini-
mized.

The basic integrals that appear in our variational calcu
tions are of the form
05250
.
e

g
y
t
n
set
.
n-

-

.
ts.

ce

s

y,
gy

-

I ~a,b,c;a,b!5E dr1dr2Y l
18 l

28
L8M8~r1 ,r2!* Y l 1l 2

LM ~r1 ,r2!

3r 1
ar 2

br 12
c e2ar 12br 2. ~10!

For the nonrelativistic eigenvalue problem, it is only nece
sary to consider the case ofc>21 in Eq. ~10!. Equation
~10! can be decoupled by first expandingr 12 @11#,

r 12
c 5 (

q50

L1

Pq~cosu12!(
k50

L2

Ccqkr ,
q12kr .

c2q22k , ~11!

where r ,5min(r1,r2) and r .5max(r1,r2). For c>21, for
even values ofc, L15 1

2 c, L25 1
2 c2q; for odd values of

c, L15`, L25 1
2 (c11). Also in Eq. ~11!, the coefficients

are given by

Ccqk5
2q11

c12 S c12
2k11D )

t50

Sqc 2k12t2c

2k12q22t11
, ~12!

whereSqc5min@q21,1
2 (c11)#. Then after applying the ad

dition theorem for spherical harmonics,

Pq~cosu12!5
4p

2q11 (
m52q

q

Yqm~ r̂1!* Yqm~ r̂2!, ~13!

we can arrive at the final result

I ~a,b,c;a,b!5(
q,k

CcqkG~q!I R~a,b,c;a,b;q,k!,

~14!

where the angular partG(q) is

G~q!5~21!L1q~ l 1 ,l 2 ,l 18 ,l 28!1/2S l 18 l 1 q

0 0 0
D S l 28 l 2 q

0 0 0
D

3H L l 1 l 2

q l28 l 18
J dMM8dLL8 , ~15!

and the radial partI R is

I R~a,b,c;a,b;q,k!

5
s!

~a1b!s11 F 1

a131q12k

3 2F1S 1,s11;a141q12k;
a

a1b D1
1

b131q12k

3 2F1S 1,s11;b141q12k;
b

a1b D G , ~16!

where 2F1(a,b;c;x) is the hypergeometric function, an
s5a1b1c15. Further details can be found in Ref.@12#.
It should be pointed out that in Eq.~14! the range ofq
is limited by the triangular rule of the 3-j symbols in
Eq. ~15!,
2-2
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qm<q<qM , ~17!

where

qm5max~ u l 12 l 18u,u l 22 l 28u!, ~18!

qM5min~ l 11 l 18 ,l 21 l 28!. ~19!

Thus, the summation overq in Eq. ~14! is always finite even
whenc is odd.

III. RESULTS

Table I contains a typical convergence pattern for
contributions to the dipole polarizability of 1s4p 3P from
the three intermediate3S, 3P, and 3D symmetries, where
3P is from the doubly excited (pp8) configuration. Tables II
and III list the values of the polarizabilitiesa1 , a2, anda3
for the Rydberg series of 1sns1S, 1sns3S, 1snp1P, and
1snp3P with n up to 10. For the sake of completenes

TABLE I. Convergence of the contributions to the dipole pola
izability of 1s4p 3P from theS, P, andD symmetries with respec
to the sizes of basis setsNP , NS , NPP , andND , whereNP is for
1s4p 3P, andNS , NPP , andND are for the three intermediate sym
metries. Units are a.u.

NP NS NPP ND a1(3S) a1„(pp8)3P… a1(3D)

405 264 504 390220 555.204 97 0.067 5 190 945.03

516 330 616 509220 555.204 87 0.070 9 190 945.04

644 405 744 649220 555.204 83 0.076 9 190 945.05

790 490 888 811220 555.204 60 0.079 6 190 945.06
05250
e

,

we have also included the results for the two metasta
states@2# 1s2s 1S and 1s2s 3S, as well as for the lowestP
states@6# 1s2p 1P and 1s2p 3P. A comprehensive compari
son for the metastable states can be found in Ref.@2#. The
contributions from doubly excited configurations are negli
bly small for n>4. The dipole polarizabilities derived b
Kiyan et al. @8# from a photodetachment experiment of He2

are 147 392 for 1s4p 3P and 1 389 170 for 1s5p 3P. The
discrepancies between their values and the present one
15% and 35%, respectively, almost the same as what
have estimated.

The polarizabilities of states withn higher than 10 are
estimated by extrapolation. The leading asymptotic fo
has been found to bea l;n4l 13, except for the octupole
polarizabilities ofP states where the contribution from theG
symmetry seems to obey the power lawnp, where p;17
or 18, instead of 15. This problem needs to be further inv
tigated. This power law also does not apply to hydrog
@13#, since the correct power law for the dipole polarizabili
of hydrogen isn6, rather thann7. The extrapolated result
for He are

a1~n1S!59.119 20~14!n720.168 99~36!n6

214.144 23~80!n516.629 5~13!n4

21.233 0~90!n3,

a1~n3S!55.402 518 2~27!n722.468 013 6~63!n6

212.926 768~64!n5115.070~15!n4

25.782~44!n320.945~88!n2,
-
TABLE II. Values of the static polarizabilitiesa1 , a2, anda3 of helium in S states. Numbers in paren
theses represent the estimated error in the last digit of the listed values. Units are a.u.

State a1 a2 a3

2 1S 8.003 1633(7)3102 7.106 0537(5)3103 2.937 0350(6)3105

2 3S 3.156 3147(1)3102 2.707 8773(3)3103 8.837 732 53(7)3104

3 1S 1.688 717(1)3104 1.642 205 35(2)3106 1.265 947(5)3108

3 3S 7.93 758(1)3103 6.084 2945(3)3105 5.501 232 10(4)3107

4 1S 1.358 514 30(1)3105 5.145 136 68(3)3107 1.798 5860(3)31010

4 3S 6.865 0061(2)3104 1.938 308 499(1)3107 7.395 2178(3)3109

5 1S 6.695 858 982(2)3105 6.775 3678(3)3108 6.928 708(3)31011

5 3S 3.517 960 60(2)3105 2.571 839 250(2)3108 2.809 1258(3)31011

6 1S 2.443 248 402(4)3106 5.375 5389(2)3109 1.253 9990(6)31013

6 3S 1.314 954 806(3)3106 2.044 651 220(2)3109 5.055 7379(5)31012

7 1S 7.267 9455(5)3106 3.046 670 53(1)31010 1.392 3951(7)31014

7 3S 3.975 757 687(3)3106 1.157 979 718(3)31010 5.589 4738(4)31013

8 1S 1.864 310 000(5)3107 1.357 2798(3)31011 1.096 328(4)31015

8 3S 1.031 807 06(3)3107 5.147 9399(2)31010 4.381 9370(1)31014

9 1S 4.273 4453(1)3107 5.044 090 20(5)31011 6.682 733(1)31015

9 3S 2.38597670(3)3107 1.907 934 90(3)31011 2.659 1476(5)31015

101S 8.967 369(1)3107 1.627 015(3)31012 3.340 35(5)31016

103S 5.040 935(1)3107 6.135 950(2)31011 1.323 170(2)31016
2-3
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TABLE III. Values of the static polarizabilitiesa1 ,a2, and a3 of helium in P states. Numbers in
parentheses represent the estimated error in the last digit of the listed values. Units are a.u.

State a1 a2 a3

2 1P 26.00 285 140(2)3101 5.482 670 95(5)3103 4.734 5635(2)3105

2 3P 4.670 774 82(3)3101 3.622 790 34(2)3103 2.722 1258(2)3105

3 1P 29.790 7993(4)3104 5.842 515(5)3105 21.016 674 81(6)3109

3 3P 1.730 5598(3)3104 4.274 6155(5)3105 2.954 9840(5)3108

4 1P 29.439 2388(5)3105 21.630 120 80(2)3108 21.140 121 56(1)31011

4 3P 1.703 8998(4)3105 3.792 294 56(4)3107 3.016 5426(5)31010

5 1P 24.945 334 55(6)3106 23.147 6175(6)3109 25.371 7303(1)31012

5 3P 9.001 208 16(3)3105 6.443 442 65(1)3108 1.220 941 599(2)31012

6 1P 21.857 154 85(6)3107 22.899 331 17(2)31010 21.093 956 34(1)31014

6 3P 3.392 252 880(2)3106 5.707 335 25(3)3109 2.331 7365(5)31013

7 1P 25.613 7425(2)3107 21.774 815 28(2)31011 21.300 511 282(5)31015

7 3P 1.026 954 840(2)3107 3.430 2432(2)31010 2.686 2828(3)31014

8 1P 21.454 327 43(5)3108 28.277 338 75(5)31011 21.068 757 194(2)31016

8 3P 2.662 000 85(5)3107 1.582 9125(1)31011 2.168 740 72(3)31015

9 1P 23.355 674(5)3108 23.169 1170(1)31012 26.704 807(1)31016

9 3P 6.142 814 30(1)3107 6.018 3969(3)31011 1.345 477(2)31016

101P 27.074 025(3)3108 21.043 5045(3)31013 23.420 460(4)31017

103P 1.294 7615(3)3108 1.971 875(2)31012 6.812 36(6)31016
abil-
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a2~n1S!517.022 4~28!n1112.692 4~10!n10

2111.266~17!n9185.355~36!n8

162.292~60!n7252.75~40!n6,

a2~n3S!55.945 70~14!n1119.490 31~36!n10

288.587 70~78!n91133.321 4~13!n8

262.312 7~20!n7,

a3~n1S!536.546~42!n15129.978~51!n14

2732.212~48!n1311 180.76~40!n12,

a3~n3S!512.926~56!n15139.890~68!n14

2444.536~64!n131761.64~52!n12,

a1~n1P!5273.344 51~73!n712.863 2~15!n6

1227.475 2~28!n5147.367 9~46!n4

280.157 2~58!n31380.866~41!n2,

a1~n3P!513.269 67~50!n712.443 20~70!n6

257.697 32~90!n5112.301 0~70!n4

217.05 21~80!n3,

a2~n1P!52119.432~28!n1115.786~57!n10

11494.54~10!n92180.33~17!n8

22400.66~22!n722142~2!n6,
05250
a2~n3P!521.763 39~12!n1117.276 30~20!n10

2291.694 56~29!n9183.650 86~32!n8

1610.055 3~24!n7.

From the above expressions one can see that the polariz
ities for the 1sns1S, 1sns3S, and 1snp3P series are posi-
tive, whereas the polarizabilities for the 1snp1P series are
asymptotically negative. Table IV gives a comparison of p
larizabilities between the directly calculated values and
values predicted by the above formulas for the states on
513. The agreement is excellent fora1 for the S states and
for the 131P state. For 133P, the percentage difference i
0.4%. Fora2, the largest discrepancy is at the 2% level f
the 133P state.

TABLE IV. Comparison of polarizabilities between the direct
calculated values~the first entry! and the values predicted by th
asymptotic formulas~the second entry! for the states ofn513.
Units are a.u.

State a1 a2 a3

131S 5.663 355 863108 2.955 831013 1.74031018

5.663 355 763108 2.977 131013 1.79431018

133S 3.227 052 73108 1.105 431013 6.74931017

3.227 053 03108 1.112 931013 7.01731017

131P 24.503 073109 21.978 5931014

24.502 733109 21.977 0331014

133P 8.199 73108 3.628 931013

8.233 33108 3.701 931013
2-4
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In summary, accurate Hylleraas basis sets have been
plied to the calculations of polarizabilitiesa1 , a2, and a3
for the Rydberg series of helium 1sns1S, 1sns3S,
1snp1P, and 1snp3P, with n up to 10. We hope that the
reliability of our data will be confirmed by other independe
calculations.
ys
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