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Evaluation of two-photon exchange graphs for excited states of highly charged heliumlike ions
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Energy shifts arising from two-photon-exchange graphs are calculated forn52 triplet states of heliumlike
ions and tabulated for the range of nuclear chargesZ530– 92. The results are compared with second-order
many-body perturbation theory~MBPT!, and the differences are identified as QED effects associated with
retardation and negative energy states not included in MBPT.

PACS number~s!: 31.25.Jf, 31.30.Jv, 12.20.Ds
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I. INTRODUCTION

S-matrix theory@1# provides a systematic approach to t
calculation of the properties of highly charged ions in a w
that includes both correlation and QED effects. The meth
has been applied@2,3# to the calculation of two-photon ex
change diagrams for the ground state of heliumlike ions,
more recently to the calculation of vertex corrections in t
state@4#. While the ground state is of experimental intere
@5#, much more data are available for transitions involvi
then52 excited states. In this paper we extend the treatm
of Ref. @2# to these states. While the basic formalism is
sentially the same as applied to the ground state, there
two novel features to the calculation. The first has to do w
the more complicated structure of cuts associated with
photon propagators in the complex plane. This leads to
introduction of new integrals around contours not presen
the ground-state calculation. The second has to do w
reference-state contributions@6#, which have a considerabl
more complicated structure than in the ground-state case
play a more important numerical role.

The plan of the paper is the following. Section II prese
the basic equations for the energy shifts arising from tw
photon exchange for excited states of heliumlike ions
which one electron is in the ground state. In Sec. III,
numerically evaluate these corrections forn52 states, and in
the final section we compare these results with the appr
mate treatment provided by many-body perturbation the
~MBPT!.

II. FORMALISM

In S-matrix theory, the fourth-order energy is

E(4)5 lim
e→0

i e

2
@4^Se

(4)&c22^Se
(2)&c

2#. ~1!

The subscriptc means only connected diagrams are includ
and

Se5T~e2 ie*d4x e2eux0uc̄(x)gmc(x)Am(x)!. ~2!
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In this paper we consider two-photon exchange contri
tions toSe

(4) where the photons are either uncrossed~L!,

^Se
(4)&L5

8a2

p2 E dx4E dx3E dx2E dx1E
2`

`

dq2E
2`

`

dq1

3E
2`

`

dz2E
2`

`

dz1 (
n4n3n2n1

^an4

† an2

† an1
an3

&

3
e

e21~En4
2z22q2!2

e

e21~En3
2z21q1!2

3
e

e21~En2
2z11q2!2

e

e21~En1
2z12q1!2

3fn4

† ~x4!amG~x4 ,x3 ,uz2!anfn3
~x3!

3H~x42x2 ,q2!fn2

† ~x2!amG~x2 ,x1 ,uz1!

3anfn1
~x1!H~x32x1 ,q1!, ~3!

or crossed~X!,

^Se
(4)&X5

8a2

p2 E dx4E dx3E dx2E dx1E
2`

`

dq2E
2`

`

dq1

3E
2`

`

dz2E
2`

`

dz1 (
n4n3n2n1

^an4

† an2

† an1
an3

&

3
e

e21~En4
2z22q2!2

e

e21~En3
2z21q1!2

3
e

e21~En2
2z11q1!2

e

e21~En1
2z12q2!2

3fn4

† ~x4!amG~x4 ,x3 ,uz2!anfn3
~x3!

3H~x42x1 ,q2!fn2

† ~x2!anG~x2 ,x1 ,uz1!

3amfn1
~x1!H~x32x2 ,q1!, ~4!
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where u511 id. We will refer to these henceforth as th
ladder~L! and crossed ladder~X! terms. In the above expres
sions, the photon Green’s function is given by

H~rW,z!52
e2burWu

4purWu
, ~5!

whereb52 iAz21 id, Re(b).0, and the electron Green’
function has the spectral representation

G~xW2 ,xW1 ,uz!5(
i

f i~xW2!f i
†~xW1!

Ei2uz
. ~6!

We also have

^Se
(2)&E54iaE dx2E dx1E

2`

`

dq (
n4n3n2n1

^an4

† an2

† an1
an3

&

3
e

e21~En4
2En3

2q!2

e

e21~En2
2En1

1q!2

3fn4

† ~x2!amfn3
~x2!fn2

† ~x1!

3amfn1
~x1!H~x22x1 ,q!. ~7!

We specialize here to the case of two-electron atoms w
zero-order states of the form

Fvaav
†aa

†u0&, ~8!

wherea is taken to represent a 1s orbital with energyEa and
magnetic quantum numberma , andv is taken to represen
an excited orbital with energyEv and magnetic quantum
numbermv . A combination of these energies we will us
frequently in this paper is

Ev2Ea[dE. ~9!

The explicit form ofFva for a state of angular momentum
JM is

Fva5 (
mvma

^ j vmv j amau j v j aJM&. ~10!

In the following, we will have occasion to also useb,c, and
d to represent a 1s state with magnetic quantum numb
mb , mc , andmd , andw, x, andy for the same excited stat
but with magnetic quantum numbersmw , mx , andmy . We
note that 23P1 and 21P1 states at lowZ will not be well
described by this method because they involve strong mix
of states withv52p1/2 and v52p3/2; however, a Green’s-
function approach does allow treatment of these states@7#.

The electron Green’s functions can be treated either
spectral representation or else in terms of solutions to
Dirac equation regular at infinity or the origin. Because
the present calculation we use the former technique, i
convenient to define the frequently encountered obj
which we will refer to as the Coulomb matrix element,
05250
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gi jkl ~z![24paE d3r d3r 8H~rW2rW 8,z!f i
†~rW !

3amfk~rW !f j
†~rW 8!amf l~rW 8!. ~11!

We note that it is an even function ofz and obeys the sym
metry relationgi jkl 5gjilk . We also define for future refer
ence two related forms,

g̃i jkl ~z![aE d3r d3r 8
eizurW2rW 8u

urW2rW 8u

3f i
†~rW !amfk~rW !f j

†~rW 8!amf l~rW 8! ~12!

and

ḡi jkl ~z![aE d3r d3r 8
sin~zurW2rW 8u!

urW2rW 8u

3f i
†~rW !amfk~rW !f j

†~rW 8!amf l~rW 8!. ~13!

If we now use

^0uabawan4

† an2

† an1
an3

av
†aa

†u0&

5~dn4wdn2b2dn4bdn2w!~dn3vdn1a2dn3adn1v!

~14!

along with the above-noted properties ofgi j lk , we find that
the fourth-orderS-matrix terms we are considering becom

^Se
(4)&L5FvaFwbE

2`

`

dq2E
2`

`

dq1E
2`

`

dz2E
2`

`

dz1

3(
i j

1

~Ei2uz2!~Ej2uz1!
@gbwi j~q2!gi jav~q1!

3De~Ea2z22q2!De~Ea2z21q1!

3De~Ev2z11q2!De~Ev2z12q1!2gbwi j~q2!

3gi j va~q1!De~Ea2z22q2!De~Ev2z21q1!

3De~Ev2z11q2!De~Ea2z12q1!# ~15!

and

^Se
(4)&X5FvaFwbE

2`

`

dq2E
2`

`

dq1E
2`

`

dz2E
2`

`

dz1

3(
i j

1

~Ei2uz2!~Ej2uz1!
@gb jiv~q2!giwa j~q1!

3De~Ea2z22q2!De~Ea2z21q1!

3De~Ev2z11q1!De~Ev2z12q2!2gb jia~q2!

3giwv j~q1!De~Ea2z22q2!De~Ev2z21q1!

3De~Ev2z11q1!De~Ea2z12q2!#. ~16!

Here
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De~x![
1

p

e

e21x2 ~17!

acts like ad function in the limite→0; however, it is nec-
essary in general to keep its exact form until it is safe to t
that limit. The first and second terms of the above equati
will be referred to in the following as the direct~D! and
exchange~E! terms, respectively, so that we will be dealin
with four terms, the direct and exchange parts of the lad
~LD and LE! and the direct and exchange parts of the cros
ladder~XD and XE!.

The fourth-order terms just considered, if treated by the
selves, lead to an energy that diverges as 1/e. This diver-
gence is canceled by the second term of Eq.~1!, which de-
pends on the second-orderS matrix,

^Se
(2)&E522p iF vaFwbE

2`

`

dq@gbwav~q!De
2~q!

2gbwva~q!De
2~q1dE!#. ~18!

The explicit form of this energy shift, which we denote
DE1/e , is

DE1/e5 lim
e→0

4ip2eFvaFwbE
2`

`

dq1@gbwav~q1!De
2~q1!

2gbwva~q1!De
2~q12dE!#FxcFyd

3E
2`

`

dq2@gdycx~q2!De
2~q2!

2gdyxc~q2!De
2~q22dE!#. ~19!

At this point we divide the calculation into two parts. I
the first, we restrict the summation overi and j to exclude
states in whichEi1Ej5Ea1Ev for the direct and exchang
parts of the ladder. In addition, for the direct part of t
crossed ladder we exclude the caseEi5Ea ,Ej5Ev , and for
the exchange part of the crossed ladder we exclude the c
Ei5Ej5Ea and Ei5Ej5Ev . The excluded states coincid
with those considered by Shabaev and Fokeeva@6#. Once
these restrictions have been made, the limite→0 can be
taken, and expressions for the associated energy shifts
rived.

The excluded states must be treated with greater c
They contain terms proportional to 1/e that cancel exactly
againstDE1/e . However, after this cancellation a finite pa
remains, which we refer to as a reference-state contribut
We now present formulas first for the case in which t
intermediate states are restricted, and second for
reference-state contributions.

A. Nondegenerate intermediate states

After making the restrictions described above, to der
energy shifts we may expand the photon functions about
dominant contribution to the energy parameter

H~x22x1 ,q!5H~x22x1 ,q0!1O~q2q0!. ~20!
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In Eq. ~15!, the dominant contributions are in the regions

q2'z12Ev ,
~21!

q1'Ev2z1 ,

in the direct term, and

q2'z12Ev ,
~22!

q1'Ea2z1 ,

in the exchange term. Taking the leading term in the exp
sion and integrating overq2 andq1 yields

^Se
(4)&L5FvaFwbE

2`

`

dz2E
2`

`

dz1(
i j

D2e
2 ~z21z12Ev2Ea!

3
gbwi j~z12Ev!@gi jav~Ev2z1!2gi j va~Ea2z1!#

~Ei2uz2!~Ej2uz1!

1O~1!. ~23!

Carrying out thez2 integration and definingz5z12Ev , we
find

EL
(4)5 lim

e→0
2i e^Se

(4)&L

52
i

2p
FvaFwbE

2`

`

dz

3(
i j

gbwi j~z!@gi jav~z!2gi j va~z2dE!#

~z1Ea2u* Ei !~z2Ev1u* Ej !
. ~24!

The dominant contributions to the crossed photon d
gram in Eq.~16! are in the regions

q2'Ev2z1 ,
~25!

q1'z12Ev

for the direct term, and

q2'Ea2z1 ,
~26!

q1'z12Ev

for the exchange term. The leading term yields

^Se
(4)&X5FvaFwbE

2`

`

dz2E
2`

`

dz1(
i j

FD2e
2 ~z22z11dE!

3
gbwiv~Ev2z1!giwa j~z12Ev!

~Ei2uz2!~Ej2uz1!
2D2e

2 ~z22z1!

3
gb jia~Ev2z1!givw j~z12Ev!

~Ei2uz2!~Ej2uz1! G1O~1! ~27!

and the same kind of manipulations as applied to the lad
lead to
1-3
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EX
(4)5 lim

e→0
2i e^Se

(4)&X

5
i

2p
FvaFwbE

2`

`

dz(
i j

gb jiv~z!giwa j~z!

~z1Ea2u* Ei !~z1Ev2u* Ej !

2
i

2p
FvaFwbE

2`

`

dz

3(
i j

gb jia~z!giwv j~z2dE!

~z1Ea2u* Ei !~z1Ea2u* Ej !
. ~28!

Equations~24! and ~28! are the basic formulas of this se
tion.

Were it not for thez dependence of theg factors in these
formulas, which is associated with cuts in the complex pla
one could directly evaluate them using Cauchy’s theorem
fact, if the Coulomb gauge is used, this approach can
applied to the Coulomb photon part of the calculation, a
expressions closely related to many-body perturbation the
result@8#. However, for an exact calculation in the Feynm
gauge, we follow the treatment of Ref.@2# and carry out a
Wick rotation. While this was straightforward for th
ground-state case, for excited states the poles and cuts
ciated with the electron and photon propagators create
nificant complications. Each of the four terms~LD, LE, XD,
and XE! requires an individual treatment, which we no
present.

1. Ladder direct

The poles and cuts for the direct part of the ladder
shown in Fig. 1. Poles associated with negative energy st
are off scale in the second and fourth quadrants, and do
play a role in the Wick rotation. The casei 5a leads to a
pole just below the origin that is avoided by the semicircle
quadrant III, and the casej 5v leads to a pole just above th
origin that is avoided by the semicircle in quadrant I.
addition, a set of poles associated with more deeply bo

FIG. 1. Contours used for the evaluation of LD.
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states lies above the positive real axis, and is encircled by
contour in quadrant I. The number of these poles varies
pending on which state is being considered. While the m
deeply boundj 5a state is always encircled, the number
other contributing states ranges between zero and two,
the most complex case being the 23P2 state, in which both
j 52s1/2 and j 52p1/2 contribute. We denote these states w
the indexj p . Applying Cauchy’s theorem to the contours
quadrants I and III and settingk05 iv to account for the
integrations along the complex axis then allows the deter
nation

ELD
(4)52

1

p
FvaFwbE

0

`

dv(
i j

gbwi j~ iv!gi jav~ iv!

3
~Ei2Ea!~Ej2Ev!1v2

@~Ei2Ea!21v2#@~Ej2Ev!21v2#
2

1

2
FvaFwb

3 (
c j

EjÞEv gbwc j~0!gc jav~0!

Ej2Ev
2FvaFwb

3(
i j p

gbwi jp
~Ev2Ej p

!gi j pav~Ev2Ej p
!

Ei1Ej p
2Ev2Ea

Aj p
, ~29!

where the factorAj p
is 1/2 whenj p5v, and unity otherwise.

2. Ladder exchange

While the location of the poles is the same for LE as
LD, one photon propagator has argumentz2dE, which ex-
tends a cut into the first quadrant, as shown in Fig. 2.
choose to Wick rotate toz5bdE1 iv, with b a number
between 0 and 1 chosen so that the contours encircle on
single pole each. The valueb50.5 was usually used, with
occasionally different values used to test the coding: wheb
is changed, both the integration parallel to the imaginary a
and the terms that wrap around the two cuts change, bu
sum has to remain unchanged. The sign of the exponen
one of the photon propagators is different above and belo
cut, which leads to the modified Coulomb matrix eleme
ḡi jkl (z) defined in Eq.~13!. We find

FIG. 2. Contours used for the evaluation of LE.
1-4
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ELE
(4)5

1

p
FvaFwb ReE

0

`

dv

3(
i j

gbwi j~bdE1 iv!gi j va@~b21!dE1 iv#

~Ei2Ea2bdE2 iv!~Ej2Ev1bdE1 iv!

1FvaFwb (
c j

EjÞEv gbwc j~0!gc jva~dE!

Ej2Ev
1FvaFwb

3 (
ic

EiÞEv gbwic~dE!gicva~0!

Ei2Ev
2

1

p
FvaFwb(

i j
E

0

bdE

dz

3
ḡbwi j~z!gi j va@2~z2dE!#

~z1Ea2u* Ei !~z2Ev1u* Ej !
1

1

p
FvaFwb

3(
i j

E
bdE

dE

dz
gbwi j~z!ḡi j va~z2dE!

~z1Ea2u* Ei !~z2Ev1u* Ej !
. ~30!

We note two features of the cut terms. The first is that
presence of the sin functions leads to additional converge
at the end of the cuts, which controls singularities associa
with poles at the end. Second, the infinitesimal imagin
terms id in the denominators have been retained, beca
there can be poles along the path of the line integral. As w
the direct part of the ladder, these poles occur if there
n52 states more deeply bound than the statev. When this
situation is encountered, we use the standard identity

1

z2z02 id
5PP

1

z2z0
1 ipd~z2z0!. ~31!

We thus can putd50 in the cut terms in Eq.~30! as long as
we carry out the integrals as principal parts. However,
d-function term leads to the additional contribution

DELE~extra!

52 iF vaFwb(
i j b

ḡbwi jb
~Ev2Ej b

!gi j bva~Ea2Ej b
!

~Ev1Ea2Ei2Ej b
!

1 iF vaFwb(
i bj

gbwibj~Ei b
2Ea!ḡi bj va~Ei b

2Ev!

~Ev1Ea2Ei b
2Ej !

, ~32!

wherei b and j b in this case range over anyn52 states more
deeply bound thanv. It is noteworthy that these contribu
tions would affect only the decay rate if theg and ḡ factors
were real, but as they are in general complex, a finite, tho
extremely small, energy shift is present.

3. Crossed ladder direct

Figure 3 shows the poles and cuts that affect XD: in t
case the pole structure affects only the contour in the th
quadrant. However, the pole just below the origin can co
either from the casei 5a or j 5v, so two contributions re-
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sult. We recall that the casei 5v, j 5a, which has a double
pole, is treated separately. An analysis similar to that of
LD gives

EXD
(4)52

1

p
FvaFwbE

0

`

dv(
i j

gb jiv~ iv!giwa j~ iv!

3
~Ei2Ea!~Ej2Ev!2v2

@~Ei2Ea!21v2#@~Ej2Ev!21v2#
2

1

2
FvaFwb

3 (
c j

EjÞEv gb jcv~0!gcwa j~0!

Ej2Ev
2FvaFwb

3( 8
i j b

gb jbiv~Ej b
2Ev!giwa jb

~Ej b
2Ev!

Ei2Ej b
1Ev2Ea

Aj b
. ~33!

4. Crossed ladder exchange

The pole and cut structure of XE is shown in Fig. 4. A
with LE, the displacement of the photon cuts requires c

FIG. 3. Contours used for the evaluation of XD.

FIG. 4. Contours used for the evaluation of XE.
1-5



p
de

er

ri
e
d
o

di-
fi
m
os
a
in
ig

nt
oc
ou

q.

-

PETER J. MOHR AND J. SAPIRSTEIN PHYSICAL REVIEW A62 052501
tours that wrap around them as indicated in the figure. A
plying Cauchy’s theorem to the two contours allows the
termination

EXE
(4)5

1

p
FvaFwb ReE

0

`

dv

3(
i j

gb jia~bdE1 iv!giwv j@~b21!dE1 iv#

~Ei2Ea2bdE2 iv!~Ej2Ea2bdE2 iv!

1FvaFwb (
c j

EjÞEa gb jca~0!gcwv j~2dE!

Ej2Ea
1FvaFwb

3 (
ic

EiÞEa gbcia~0!giwvc~2dE!

Ei2Ea
2

1

p
FvaFwb

3(
i j

E
bdE

dE

dz
gb jia~z!ḡiwv j~z2dE!

~z1Ea2u* Ei !~z1Ea2u* Ej !

1
1

p
FvaFwb(

i j
E

0

bdE

dz

3
ḡb j ia~z!giwv j@2~z2dE!#

~z1Ea2u* Ei !~z1Ea2u* Ej !
. ~34!

As with LE, the integrations in the cut terms can be und
stood as principal value integrations, but an extra term
generated,

DEXE~extra!

5 iF vaFwb(
i j b

gb jbia~Ej b
2Ea!ḡiwv j b

~Ej b
2Ev!

Ej b
2Ei

1 iF vaFwb(
i bj

gb ji ba~Ei b
2Ea!ḡi bwv j~Ei b

2Ev!

Ei b
2Ej

. ~35!

As with the LE case, this extra term is very small nume
cally. An interesting feature of this term is the fact that ev
with the restriction on the state that we have made, the
nominator can vanish when the valence state is not the m
deeply boundn52 state. In this case, the divergence in
cates a more careful analysis is needed. In principle, to de
the integral it is necessary to deform the contour in a se
circle around the double pole. However, in practice it is p
sible to obtain the correct answer by symmetrically integr
ing with two different numbers of Gaussian points and tak
a certain linear combination. This effect is numerically ins
nificant except at very highZ.

B. Reference-state contributions

When it is not permissible to approximate the argume
of the photon propagators as done above, a different pr
dure must be followed. In sensitive cases we first carry
the z1 andz2 integrals. As in the ground-state case@2#, it is
convenient to define the integral
05250
-
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f e~q2 ,q1![p2E
2`

`

dz
1

E2uz
De~E2z2q2!De~E2z1q1!

52
p2

2
D2e~q21q1!

q22q124i e

~q22 i e!~q11 i e!
. ~36!

In terms of this function, the energy shift associated with E
~15! can be written as

DEL5
2i e

p4 E
2`

`

dq2E
2`

`

dq1 FvaFwb(
i j

@gbwi j~q2!

3gi jav~q1! f e~q21Ei2Ea ,q11Ea2Ei !

3 f e~q11Ej2Ev ,q21Ev2Ej !2gbwi j~q2!

3gi j va~q1! f e~q21Ei2Ea ,q11Ev2Ei !

3 f e~q11Ej2Ea ,q21Ev2Ej !# ~37!

and the energy shift associated with Eq.~16! as

DEX5
2i e

p4 E
2`

`

dq2E
2`

`

dq1FvaFwb(
i j

@gb jiv~q2!giwa j~q1!

3 f e~q21Ei2Ea ,q11Ea2Ei !

3 f e~q21Ej2Ev ,q11Ev2Ej !2gb jia~q2!giwv j~q1!

3 f e~q21Ei2Ea ,q11Ev2Ei !

3 f e~q21Ej2Ea ,q11Ev2Ej !#. ~38!

Equation ~37! contains a term that diverges as 1/e, which
cancels with Eq.~19!. In order to isolate it we use the iden
tity

f e~q2 ,q1! f e~q1 ,q2!5
1

2
@ f e~q2 ,q1!1 f e~q1 ,q2!#2

2
1

2
@ f e

2~q2 ,q1!1 f e
2~q1 ,q2!#

522p6De
2~q2!De

2~q1!

2
1

2
@ f e

2~q2 ,q1!1 f e
2~q1 ,q2!#.

~39!

We now insert the first part of this identity into Eq.~37!
for the casesi 5a, j 5v and i 5v, j 5a, and find

DELS 1

e D524p2i e(
cx

FvaFwbE
2`

`

dq2E
2`

`

dq1

3@gbwcx~q2!gcxav~q1!De
2~q2!De

2~q2!

1gbwxc~q2!gxcav~q1!De
2~q21dE!De

2~q12dE!

2gbwcx~q2!gcxva~q1!De
2~q2!De

2~q11dE!

2gbwxc~q2!gxcva~q1!De
2~q21dE!De

2~q1!#.

~40!
1-6
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The integrals overq1 andq2 are identical toDE1/e , given in
Eq. ~19!, but the indices of theg factors are not. However, i
we use the identity

(
JM

^ j vmxj amcuJM&^JMu j vmy j amd&5dmxmy
dmcmd

,

~41!

we can rewrite

DELS 1

e D524p2i e (
cxdy

FvaFwb (
J8M8

^ j vmxj amcuJ8M 8&

3^J8M 8u j vmy j amd&E
2`

`

dq2E
2`

`

dq1

3@gbwcx~q2!gdyav~q1!De
2~q2!De

2~q1!

1gbwxc~q2!gydav~q1!De
2~q21dE!De

2~q12dE!

2gbwcx~q2!gdyva~q1!De
2~q2!De

2~q11dE!

2gbwxc~q2!gydva~q1!De
2~q21dE!De

2~q1!#.

~42!

Because the exchange of a photon is a scalar operator
cannot change angular momentum,J8M 8 will be forced to
equalJM, and the above becomes

DELS 1

e D524p2i eFvaFxcFwbFydE
2`

`

dq2E
2`

`

dq1

3@gbwcx~q2!gdyav~q1!De
2~q2!De

2~q1!

1gbwxc~q2!gydav~q1!De
2~q21dE!De

2~q12dE!

2gbwcx~q2!gdyva~q1!De
2~q2!De

2~q11dE!

2gbwxc~q2!gydva~q1!De
2~q21dE!De

2~q1!#,

~43!

which can be seen to cancelDE1/e after rearrangement o
dummy indices and use of symmetry. It is important to n
that no approximations have been made in manifesting
cancellation, since otherwise the presence of the factor ofe
could lead to a residual finite term.

After isolating and canceling the divergent terms, fin
terms, which we will refer to as reference-state contributio
remain. The LD terms in the casei 5a, j 5v give

DELD
ref ~av !52

i e

p4FvaFwbE
2`

`

dq2E
2`

`

dq1(
cx

gbwcx~q2!

3gcxav~q1!@ f e~q2 ,q1!21 f e~q1 ,q2!2#. ~44!

Because thef functions emphasize the regionq11q250, we
can approximategbwcx(q2)5gbwcx(2q1) in the above,
which allows the integral overq2 to be carried out, with the
result
05250
hat

e
is
/

,

DELD
ref ~av !52

i

4p
FvaFwbE

2`

`

dq(
cx

gbwcx~q!

3gcxav~q!D~q!, ~45!

where

D~q![
q15i e

~q1 i e!2~q13i e!
1

q25i e

~q2 i e!2~q23i e!
. ~46!

The first term ofD(q) has a pole and a double pole in qua
rant IV, and the second has a pole and a double pole
quadrant I. The position of these poles will be important
the following, where we use Cauchy’s theorem to analy
theq integrations, but once that is done we will replaceD(q)
with its e→0 limit, 2/q2. Individual terms obtained with this
procedure will have logarithmic singularities, which, how
ever, cancel in the sum, as will be discussed below.

The contour used for the evaluation ofDELD
ref (av) is

shown in Fig. 5, and leads to

DELD
ref ~av !5

i

2p
FvaFwbE

2`

0 dq

q2(
cx

@ g̃bwcx~q!g̃cxav~q!

2g̃bwcx~2q!g̃cxav~2q!#. ~47!

In the above, Fig. 5 was actually applied only to the fi
term of D(q), as the second term would involve enclos
poles: however, symmetry arguments show that the sec
term ofD(q) in fact gives the same contribution. The appa
ent linear divergence of this integral atq50 is softened to a
logarithmic divergence because the combination ofg factors
vanishes asq in that limit. The remaining divergence cance
against the XD reference-state term treated below.

The LE term for thei , j 5a,v case is

FIG. 5. Contours used for the evaluation of LD and X
reference-state terms.
1-7
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DELE
ref~av !5

i e

p4 FvaFwbE
2`

`

dq2E
2`

`

dq1(
cx

gbwcx~q2!

3gcxva~q1!@ f e~q2 ,q11dE!2

1 f e~q11dE,q2!2#. ~48!

In this case we approximategbwcx(q2)5gbwcx(2q12dE),
and after carrying out the integral overq2 we find

DELE
ref~av !5

i

4p
FvaFwbE

2`

`

dq(
cx

gbwcx~q!gcxva~ q̄!D~q!,

~49!

whereq̄[q2dE. The contour we use in this case is show
in Fig. 6. The first term ofD(q) has a double pole inside th
contour which leads to an additional derivative term, and
total contribution is

DELE
ref~av !52

1

p
FvaFwbE

0

dE dq

q2(
cx

ḡbwcx~q!g̃cxva~2q̄!

1
i

2p
FvaFwbE

dE

` dq

q2 (
cx

@ g̃bwcx~q!g̃cxva~ q̄!

2g̃bwcx~2q!g̃cxva~2q̄!#

1
1

2
FvaFwb(

cx
gbwcx~0!gcxva8 ~2dE!. ~50!

We have used the fact thatgi jkl8 (0)50 in the above. The firs
term has a logarithmic singularity atq50 that cancels with
the part of XE associated with the exclusion ofi 5a, j 5a.

We now consider the ladder direct term wheni 5v, j 5a.
After removing the divergent term, there remains

DELD
ref ~va!52

i e

p4 FvaFwbE
2`

`

dq2E
2`

`

dq1(
xc

gbwxc~q2!

3gxcav~q1!@ f e~q21dE,q12dE!2

1 f e~q12dE,q21dE!2#. ~51!

FIG. 6. Contours used for the evaluation of LE(av) and
XE(aa) reference-state terms.
05250
e

Approximatinggbwxc(q2)5gbwxc(2q1) and carrying out the
q2 integration gives

DELD
ref ~va!52

i

4p
FvaFwbE

2`

`

dq(
cx

gbwxc~q!

3gxcav~q!D~ q̄!. ~52!

We again use the contour shown in Fig. 5 for the evaluat
of this term. One term ofD(q̄) again leads to a derivative
term, with a total result of

DELD
ref ~va!5

1

2
FvaFwb(

xc
@gbwxc8 ~dE!gxcav~dE!

1gbwxc~dE!gxcav8 ~dE!#1
i

2p
FvaFwb

3(
xc

E
2`

0 dq

q̄2
@ g̃bwxc~q!g̃xcav~q!

2g̃bwxc~2q!g̃xcav~2q!#. ~53!

The analysis of LE for the casei , j 5v,a gives

DELE
ref~va!5

i e

p4 FvaFwbE
2`

`

dq2E
2`

`

dq1(
xc

gbwxc~q2!

3gxcva~q1!@ f e~q21dE,q1!2

1 f e~q1 ,q21dE!2#, ~54!

which leads to

DELE
ref~va!5

i

4p
FvaFwbE

2`

`

dq(
cx

gbwxc~q!gxcva~ q̄!D~ q̄!.

~55!

Using the contour of Fig. 7 then leads to

DELE
ref~va!52

1

2
FvaFwb(

xc
gbwxc8 ~dE!gxcva~0!

1
1

p
FavFbw(

xc
E

0

dE dq

q̄2
g̃bwxc~q!ḡxcva~ q̄!

2
i

2p
FvaFwbE

2`

0 dq

q̄2
@ g̃bwxc~q!g̃xcva~ q̄!

2g̃bwxc~2q!g̃xcva~2q̄!#. ~56!

The second term has a logarithmic singularity atq5dE
which cancels with the part of XE associated withi 5v, j
5v.

Turning now to XD, we recall that onlyi 5a, j 5v was
restricted, which leads, after an analysis similar to that
plied to LD, to the contribution
1-8
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DEXD
ref 5

i

2p
FvaFwb(

cx
E

2`

`

dq gbxcv~q!

3gcwax~q!
q15i e

~q1 i e!2~q13i e!
, ~57!

which when evaluated with the contour of Fig. 5 become

DEXD
ref ~av !52

i

2p
FvaFwbE

2`

0 dq

q2 (
cx

@ g̃bxcv~q!g̃cwax~q!

2g̃bxcv~2q!g̃cwax~2q!#. ~58!

We note the close similarity toDELD(av). However, while
the two terms are of a form to cancel, the indices on
Coulomb matrix elements are different, and in fact the c
cellation is not exact. The divergences present in the in
vidual terms are, however, not present in their sum.

Finally, XE has reference-state contributions from a se
states of equal energy. When the states are the ground
we have

DEXE
ref ~aa!52

i

2p
FvaFwb(

cd
E

2`

`

dq gbdca~q!

3gcwvd~q2dE!
q15i e

~q1 i e!2~q13i e!
~59!

and when they aren52 states, we have

DEXE
ref ~xx!52

i

2p
FvaFwb(

xy
E

2`

`

dq gbyxa~q!

3gxwvy~q2dE!
q̄15i e

~ q̄1 i e!2~ q̄13i e!
. ~60!

In the former case we use the contour of Fig. 6 to find

FIG. 7. Contours used for the evaluation of LE(va) and
XE(vv) reference-state terms.
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DEXE
ref ~aa!52FvaFwb(

cd
gbdca~0!gcwvd8 ~2dE!

1
1

p
FvaFwb(

cd
E

0

dE

dq ḡbdca~q!g̃cwvd~2q̄!

3
q15i e

~q1 i e!2~q13i e!
2

i

2p
FvaFwb

3(
cd

E
dE

` dq

q2 @ g̃bdca~q!g̃cwvd~ q̄!

2g̃bdca~2q!g̃cwvd~2q̄!#. ~61!

In the latter, use of the contour of Fig. 7 gives

DEXE
ref ~vv !52

1

p
FvaFwb(

xy
E

0

dE

dq g̃byxa~q!ḡxwvy~ q̄!

3
q̄15i e

~ q̄1 i e!2~ q̄13i e!
1

i

2p
FvaFwb

3(
xy

E
2`

0 dq

q̄2
@ g̃byxa~q!g̃xwvy~ q̄!

2g̃byxa~2q!g̃xwvy~2q̄!#. ~62!

The logarithmic singularities atq50 and q5dE cancel
against similar terms in the LE reference-state term.

The reference-state terms were grouped into se
classes, referred to in the following asR02R6. These are
finite rearrangements of the expressions forDELD

ref (av) @Eq.
~46!#, DELD

ref (va) @Eq. ~52!#, DELE
ref(av) @Eq. ~49!#,

DELE
ref(va) @Eq. ~55!#, DEXD

ref (av) @Eq. ~57!#, DEXE
ref (aa) @Eq.

~60!#, andDEXE
ref (vv) @Eq. ~61!#. Specifically,R0 is defined

to be the sum ofDELD
ref (av) andDEXD

ref (av). R1 is the sum of
the first term ofDELE

ref(av), the second term ofDELE
ref(va),

the second term ofDEXE
ref (aa), and the first term of

DEXE
ref (vv). R2 is defined as the sum of the second term

DELE
ref(av) and the third term ofDELE

ref(va). R3 is the second
part of DELD

ref (va), R4 the third part ofDEXE
ref (aa), andR5

the second part ofDEXE
ref (vv). Finally, R6 is the sum of the

derivative terms appearing inDELE
ref(av), DELD

ref (va), and
DEXE

ref (aa).

III. NUMERICAL RESULTS AND COMPARISON WITH
MANY-BODY PERTURBATION THEORY

In this section we numerically evaluate the formulas d
rived above for a set of heliumlike ions. The basic numeri
technique is that of finite basis sets@9#. A basis set with 50
positive and 50 negative energy states was formed in a ca
of radiusRm5100/Z a.u. Larger and smaller basis sets we
used to ensure that basis-set dependences were neglig
The integrations parallel to the imaginary axis were carr
out with Gaussian methods. Particular care is required for
direct diagrams at low values of the integration variablev
because of the structure arising from nearby poles. In p
1-9
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ticular, the 2s1/2 and 2p1/2 states are split only by finite
nuclear size effects, and this splitting is quite small at
lower values ofZ used here.

We give the detailed breakdown of the calculation
heliumlike zinc,Z530. Usingc54.4454 fm, the energies o
the 2s1/2, 2p1/2, and 2p3/2 states are2114.228 104 a.u.
2114.228 639 a.u., and2112.839 015 a.u., respectively
which illustrates the near-degeneracy mentioned above
Table I, we present a summary of the calculation for
three states 23S1 , 2 3P0, and 23P2: as mentioned earlier
the presence of mixing for the 23P1 state requires a modifi
cation of the present method@10#. The parameterb is chosen
to be 1/2.

The terms in the exchange graphs in which integrals al
the cut are involved are seen to be relatively small, and ar
fact pure QED effects, as they vanish in the absence of
tardation.

Some of the reference-state terms are individually div
gent, though these divergences cancel pairwise. These

TABLE I. Summary ofZ530 calculation.

2 3S1 2 3P0 2 3P2

l 50 0.010 446 24 0.008 139 42 0.008 228 5
l 51 20.000 627 05 20.005 028 20 20.002 299 07
l 52 20.000 156 59 0.000 291 40 0.001 009 7
l 53 20.000 026 69 0.000 007 99 0.000 041 5
l 54 20.000 006 95 20.000 005 52 0.000 007 89
l 55 20.000 002 37 20.000 004 48 0.000 001 99
l 56 20.000 000 98 20.000 002 98 0.000 000 61
l 57 20.000 000 47 20.000 001 99 0.000 000 21
l 58 20.000 000 25 20.000 001 36 0.000 000 07
l 59 20.000 000 14 20.000 000 96 0.000 000 02
l 510 20.000 000 09 20.000 000 70 0.000 000 00
l 50 – 10 0.009 624 67 0.003 392 61 0.006 991
poles 20.061 032 74 20.093 800 18 20.084 302 16
cuts 20.000 008 48 0.000 008 65 0.000 009 6
reference states 0.001 866 47 0.001 791 90 0.002 02

total 20.049 550 08 20.088 607 03 20.075 275 12

TABLE II. Breakdown of reference-state contributions atZ
530.

2 3S1 2 3P0 2 3P2

R0 20.000 000 07 0.000 000 59 20.000 000 09
R1 0.000 000 72 0.000 000 13 0.000 000 21
R2 20.003 908 49 20.002 886 97 20.003 086 88
R3 0.000 060 88 0.000 033 69 0.000 040 02
R4 0.003 858 75 0.002 578 20 0.002 809 64
R5 0.001 479 21 0.001 129 84 0.001 246 52
R6a 20.000 182 61 20.000 594 65 20.000 612 12
R6b 0.000 019 27 0.000 034 76 0.000 040 31
R6c 0.000 538 81 0.001 496 31 0.001 588 21

total 0.001 866 47 0.001 791 90 0.002 025 81
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TABLE III. Comparison of exact two-photon exchange calcu
tion with MBPT: Z530.

2 3S1 2 3P0 2 3P2

2g 20.049 550 08 20.088 607 03 20.075 275 12
MBPT 20.049 541 34 20.088 752 05 20.075 352 75
QED 20.000 008 74 0.000 145 02 0.000 077 63

TABLE IV. Comparison of exact two-photon exchange calcu
tion with MBPT: Z540.

2 3S1 2 3P0 2 3P2

2g 20.051 309 68 20.102 226 23 20.077 006 51
MBPT 20.051 317 15 20.102 742 32 20.077 298 42
QED 20.000 007 47 0.000 516 09 0.000 291 91

TABLE V. Comparison of exact two-photon exchange calcu
tion with MBPT: Z550.

2 3S1 2 3P0 2 3P2

2g 20.053 698 20.121 820 20.079 182
MBPT 20.053 762 20.123 159 20.079 949
QED 0.000 064 0.001 340 0.000 767

TABLE VI. Comparison of exact two-photon exchange calcu
tion with MBPT: Z560.

2 3S1 2 3P0 2 3P2

2g 20.056 799 20.149 366 20.081 771
MBPT 20.057 023 20.152 243 20.083 427
QED 0.000 224 0.002 877 0.001 656

TABLE VII. Comparison of exact two-photon exchange calc
lation with MBPT: Z570.

2 3S1 2 3P0 2 3P2

2g 20.060 812 20.187 937 20.084 734
MBPT 20.061 312 20.193 398 20.087 903
QED 0.000 500 0.005 460 0.003 168

TABLE VIII. Comparison of exact two-photon exchange calc
lation with MBPT: Z580.

2 3S1 2 3P0 2 3P2

2g 20.065 988 20.242 396 20.088 127
MBPT 20.066 954 20.251 982 20.093 609
QED 0.000 966 0.009 586 0.005 482
1-10
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grals were evaluated by Gaussian methods, with the
point always a finite distance from the singularity, whi
served as a regulator. As long as the same order Gaus
was used to evaluate the canceling terms, the sum was
defined. The finite remainder of all such terms was num
cally quite small, and scaled as (Za)5, as was found in the
ground-state case.

The nondivergent reference-state terms were found to
much larger. This is in contrast to the ground-state ca
where even before inclusion of the reference-states, v
close agreement between MBPT and the calculation
found. For the excited-state case, however, significant
crepancies between MBPT and theS-matrix calculation
without reference states are present. This is because o
use of the Feynman gauge, which gives cut structure to p
tons with timelike indices: in the Coulomb gauge such ph
tons have no cut structure, and do not contribute to the
erence states. A breakdown of the reference-s
contributions is given in Table II.

While many methods have been applied to the calcula
of the structure of highly charged ions, one that is parti
larly closely related to theS-matrix approach of this paper i
MBPT. Had we carried out the calculation in the Coulom
gauge, it would have been straightforward to show th
when both photons are Coulomb photons~C! and negative
energy states are neglected, the energy calculated with
methods of this paper precisely reproduces the second-o
energyE(2) of MBPT @11#. The neglected negative energ
state terms are QED effects that scale as (Za)3 a.u. at lowZ.
When one or both of the photons is a transverse photonT),
magnetic effects are involved. An approximate way of
cluding them, often used in MBPT and configuration inte
action ~CI! @12# calculations, is to treat the instantaneo
Breit interaction as a perturbation, again neglecting nega
energy states. It is of interest to compare second-o
MBPT, which we define to be the sum ofE(2) (CC), B(2)

(CT1TC), andB3B (TT), with the present calculation.
We do this for Z530, 40, 50, 60, 70, 80, and 92 i

Tables III–IX, where the two-photon calculation of this p
per is given in the row labeled ‘‘2g,’’ second-order MBPT
~with partial wave expansion limits chosen to be identical
the 2g) given in the row labeled ‘‘MBPT,’’ and the differ-
ence labeled ‘‘QED.’’ It is important to note that this is ju
a convention: QED encompasses all of atomic physics,
here we are defining it to be the physics beyond that
scribed by a many-body Hamiltonian with neglect of neg
tive energy states and retardation.

The most notable feature of the two methods of calcu
tion is their relatively close agreement. Even for the 23P0
state of heliumlike uranium, where the QED correction
largest, it is only a 0.5 eV effect, which is to be compared
the 8 eV experimental uncertainty@13#. This then explains
why the procedure of calculating energy levels of high
charged ions by first applying relativistic MBPT, or the e
sentially equivalent CI method, is relatively successf
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while in principle a full QED treatment, such as present
here, should be given, the extra physics is relatively sm
However, experiments on heliumlike uranium accurate
several tenths of an eV are possible@14#, and these will
require the kind of QED treatment presented here.

At lower Z, the QED effects are smaller, but on the oth
hand the experiments are more accurate. We mention in
ticular experiments on heliumlike argon@15#, which are ac-
curate to 22 microHartrees. This is just at the level of t
QED effect in the 23P0 state if the approximate scaling o
Z4 is used to extrapolate fromZ530 down toZ518. How-
ever, until the related vertex diagrams are carried out, as
been recently done for lithiumlike ions@16#, comparison
with experiment cannot be made. Of particular note is thZ
dependence of the QED effects. The change in sign betw
Z540 andZ550 present for the 23S1 state can be under
stood as an as yet uncalculated (Za)4 overwhelming a
known (Za)3 contribution of

DEQ52
7~Za!3

6p K 1

r 12
3 L , ~63!

where 1/r 12
3 50.013 142.

This allows a complementary approach to the determi
tion of contributions of ordera4 a.u. in neutral helium, a
problem that has been addressed using effective Hamilto
methods@17#. However, before the accurate fits required
compare with the known low-Z behavior can be carried ou
better control of the partial wave expansion is needed: i
necessary to carry out an extrapolation of the expansio
infinity, which we have not done in this paper. We estima
that to do this accurately will require the calculation of abo
10 more partial waves, which is difficult to do with finit
basis-set methods. However, differential equation meth
allow much higher values of angular momentum to be ac
rately treated, and the next step of this calculation is
application of such methods to heliumlike ions with smal
nuclear charges.
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TABLE IX. Comparison of exact two-photon exchange calcu
tion with MBPT: Z592.

2 3S1 2 3P0 2 3P2

2g 20.074 246 20.340 886 20.092 692
MBPT 20.076 230 20.358 222 20.102 548
QED 0.001 984 0.017 336 0.009 856
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