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Evaluation of two-photon exchange graphs for excited states of highly charged heliumlike ions
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Energy shifts arising from two-photon-exchange graphs are calculatet=f@rtriplet states of heliumlike
ions and tabulated for the range of nuclear chaiges80—92. The results are compared with second-order
many-body perturbation theofMBPT), and the differences are identified as QED effects associated with
retardation and negative energy states not included in MBPT.

PACS numbgs): 31.25.Jf, 31.30.Jv, 12.20.Ds

[. INTRODUCTION In this paper we consider two-photon exchange contribu-
tions toS(f) where the photons are either uncrossey

S matrix theory[1] provides a systematic approach to the
calculation of the properties of highly charged ions in a way 8a? o o
that includes both correlation and QED effects. The method (S(€4)>L=?f dX4f dng dxzf dxlf dCI2f da;
has been applief2,3] to the calculation of two-photon ex- _°° o
change diagrams for the ground state of heliumlike ions, and o o
more recently to the calculation of vertex corrections in that X f dz, f dz
state[4]. While the ground state is of experimental interest o e M
[5], much more data are available for transitions involving
then=2 excited states. In this paper we extend the treatment X
of Ref. [2] to these states. While the basic formalism is es- €+ (En,~ 22— 02)? €+(Ep,—2,+01)°
sentially the same as applied to the ground state, there are
two novel features to the calculation. The first has to do with y € €
the more complicated structure of cuts associated with the 2 _ 2 2 2
photon propagators in the complex plane. This leads to the €+ (En,m21%0p)" €4 (En =217 0a0)
introduction of new integrals around contours not present in
the ground-state calculation. The second has to do with
reference-state contributiof§], which have a considerably
more complicated structure than in the ground-state case, and
play a more important numerical role. X a’ b (X)) H(Xz—X1,q41), (3)

The plan of the paper is the following. Section Il presents !
the basic equations for the energy shifts arising from two-
photon exchange for excited states of heliumlike ions in°" crossedX),
which one electron is in the ground state. In Sec. lll, we
numerically evaluate these corrections fiet 2 states, and in (4) 8a? - -
the final section we compare these results with the approxi- (S >X_?f dx4f dx3f dxzf dxlf,xdqu,xd%
mate treatment provided by many-body perturbation theory

T4t
nsznznl <an4an2anlan3>

€ €

X}, (Xa) @, G(Xa X3, UZp) @, b, (Xs)

XH(X3—X2 aQ2)¢;2(X2)a“G(X2 X1,UZy)

(MBPT), xf d22f dz, S (alala, a.)
—o0 — ngnznong 4 72 7178
Il. FORMALISM c c
. : X
In Smatrix theory, the fourth-order energy is €2+(En4—22—Q2)2 €2+(En3—22+Q1)2
3 € €
E@=lim —[4(S™),—2(S®)2], @ %
oo 2 ¢ ° €+ (En,~ 21+ 01)? €+(Ep,— 21— qp)°

N
. . . X X G(X4,X3,UZ) a,, X
The subscript means only connected diagrams are included, ¢”4( 4)@,G(Xq,X3,Uz) ¢”3( 3

and ><H(X4—X1,q2)¢>§2(Xz)a”G(Xz,Xl.uzl)
S,=T(e iefd* e Py, u(r () 2) X at¢n (X1)H(X3—X2,01), 4
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whereu=1+i6. We will refer to these henceforth as the PR -
ladder(L) and crossed laddéK) terms. In the above expres- gijkI(Z)E_47Taf dord?r'H(r—r"',z)¢;(r)
sions, the photon Green’s function is given by

o X a,dN)](F)arei(r). (1D
e~ Ir]

H(r,z)=— il (5 We note that it is an even function afand obeys the sym-
mrl metry relationg;ji = gji - We also define for future refer-

whereb=—i\Zz?+i6, Re(p)>0, and the electron Green's ence two related forms,
function has the spectral representation iz|r—r |

aijkl(Z)Eaf drd¥' ———

- bi(X2) & (X1) [r=r"|
G(Xz,Xl'UZ)ZZ IEfl.llz (6) Lras N Tl cr
! : Xgi(Na,du(r)gy(rare(r') (12
We also have and
(SPye=gia | d | dx [ dqg S (alala,a,) - 3 s, ST =T "))
e /E a 2 1 . qn4n3n2n1 n,“n,“n;%ny gijkl(Z)Ea’ d°rd°r ﬁ
x € € Xl (Na, bl (Fake(r'). (13
2 _ _ 2 2 _ 2
€+ (En,mEnm0)" €4 (Br,mEn @) If we now use
+ t
8 ¢n4(X2) aM¢n3(X2) ¢n2(X1) <O| abawal4a;2an1an3ala;| 0>
X ok (X1)H(X2=X1,0). (7)

= (5n4w5n2b_ é\n4b5n2w)( 5n3u 5nla_ 5n3a5nlv)

We specialize here to the case of two-electron atoms with (14)

zero-order states of the form _ _ .
along with the above-noted properties®fy, , we find that

Fvaa;rago), (8)  the fourth-orderiS-matrix terms we are considering become

wherea is taken to represent ssbrbital with energye, and (S“‘)) _FEF bfw quJ'w dquw dzsz 0z
magnetic quantum number,, andv is taken to represent e /Lo Teatwb | — —w —w

an excited orbital with energ¥, and magnetic quantum 1

number i, . A combination of these energies we will use % [ N
frequently in this paper is % (Ei—uz)(E; —Uzl)Lng”(qZ)g”a"(ql)

E,—E,=6E. (9) XD(Ea—2—-02)D(Es—2,+0y)
The explicit form of F,, for a state of angular momentum XD (E, =21+ 02)DAE, — 21— 01) — Gpwij(d2)
M is X Gijva(d1)D(Ea—2,—02)D(E, —2,+03)
S . XDE,—=21+02)DA(Ez—21—Q1)] (15
Fra= E <Jv#v]aﬂa|]v]a‘JM>- (10 2
My Mg and

In the following, we will have occasion to also ubgc, and . o @ w o

d to represent a 4 state with magnetic quantum number (S )>X:FvaFbe dQ2f dqlf dzzf dz,
My, Mc, andug, andw, x, andy for the same excited state - - o o
but with magnetic quantum numbegs,, wuy, andu, . We 1

note that 2P, and 2'P, states at lowZ will not be well x> (E—uz,)(E—uz )[gbjiv(qz)giwaj(Q1)
described by this method because they involve strong mixing ! : 2745 1
of states withv =2p,,, andv =2p3,; however, a Green’s- XD (Ey—2Z,—Qy)D (E;— 2,4 qy)
; dEa= 22— 02)D (Ea— 2103

function approach does allow treatment of these sfates

The electron Green’s functions can be treated either as a XD (E,~21+01)D(E,—21—02) — Gpjia(Q2)
spectral representation or else in terms of solutions to the o o B
Dirac equation regular at infinity or the origin. Because in X Giwoj(02)D (Ea=2,=02)D(E, =2+ 0y)
the present calculgtion we use the former technique, 'it is XD (E,~2;+q1)D(Ea—21— )] (16)
convenient to define the frequently encountered object,
which we will refer to as the Coulomb matrix element, Here
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In Eq. (15), the dominant contributions are in the regions

€
(X)— — (17)
€ +X
me Qx~z;—E,,
acts like aéd function in the limite—0; however, it is nec- “E —7 (21)
essary in general to keep its exact form until it is safe to take d1~E,~ 21,

that limit. The first and second terms of the above equat|onﬁ1 the direct term, and
will be referred to in the following as the dire¢D) and

exchangdE) terms, respectively, so that we will be dealing 0,~2,—E,,
with four terms, the direct and exchange parts of the ladder (22)
(LD and LE) and the direct and exchange parts of the crossed 0~E,—2;,

ladder(XD and XE).

The fourth-order terms just considered, if treated by themin the exchange term. Taking the leading term in the expan-
selves, lead to an energy that diverges as This diver-  sion and integrating ovey, andq, yields
gence is canceled by the second term of &g, which de-

pends on the second-ord8matrix, * *
(S =F,aFuwp - dz, - le%: D3(2z+2,—E,—E,)

(2)\ _— _
<S >E ZWIFUaFbe dQ[gbwaU(Q)D (Q) gbwu( —-E )[gIJaU(E )_gijua(Ea_Zl)]
(Ej—uz)(Ej—uzy)
~ Gowoa(0)DE(q+ 5E)]. (18) ; '
+0(1). (23
The explicit form of this energy shift, which we denote as
AEy., is Carrying out thez, integration and defining=z,—E,, we
find
AEq=lim4i 71'26FuaFWbJ dql[gbwau(ql)DE(ql) EI(_4): lim 2i e<8(4)>|_
e—0 - e—0 ‘

- ngua(ql)Di(ql_ 5E)]Fchyd

i )
" , __ZFUaFWbJ,de
X f _4%[9uyeld2)De(a2)
9owij(2)[Gijar(2) — Gijvalz— 6E) ] (24)
~Qayxd d2)D2(0z— SE)]. (19 T (z+E,—U*E)(z—E,+U*E))

At this point we divide the calculation into two parts. In. The dominant contributions to the crossed photon dia-
the first, we restrict the summation ovieandj to exclude gram in Eq.(16) are in the regions
states in whiclg; + E;=E,+E, for the direct and exchange

parts of the ladder. In addition, for the direct part of the g,~E,—1z4,
crossed ladder we exclude the c&se-E, ,E;=E,, and for (25)
the exchange part of the crossed ladder we exclude the cases a,~z,—E,

Ei=E;=E, andE;=E;=E, . The excluded states coincide )
with those considered by Shabaev and FokddjaOnce for the direct term, and
these restrictions have been made, the limit0 can be

taken, and expressions for the associated energy shifts de- 92~Ea=21,
rived. N (26)
The excluded states must be treated with greater care. Au~z-E

They contain terms proportional to elthat cancel exactly
againstAE,,.. However, after this cancellation a finite part
remains, which we refer to as a reference-state contribution. % w

We now present formulas first for the case in which the <S(E4))X=FUawaf dzzf dz, >, {D%E(zz—zﬁ 5E)
intermediate states are restricted, and second for the - - !

reference-state contributions.

for the exchange term. The leading term yields

Fbwiv (Ey = 2Z1) Qiwaj(Z1— E,)
(Ei—uz)(Ej—uzy)

—D3.(2,-2y)
A. Nondegenerate intermediate states
After making the restrictions described above, to derive Objia Ev —21)Gipwj(Z1—E,)

energy shifts we may expand the photon functions about the (Ei—uz)(Ej—uzy)
dominant contribution to the energy parameter

+0(1) (27)

and the same kind of manipulations as applied to the ladder
H(Xo=X1,d0) =H(X2—=X1,d0) +O(q—do). (200  lead to
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S~ FIG. 2. Contours used for the evaluation of LE.

EIG. 1. Contours used for the evaluation of LD. states lies above the positive real axis, and is encircled by the
contour in quadrant I. The number of these poles varies de-
E@— im 2ie(S@ pending on which state is being considered. While the most
X'= €(S:7)x _ : -
deeply bound =a state is always encircled, the number of
other contributing states ranges between zero and two, with
the most complex case being théR, state, in which both
j =2sy;pandj =2p4, contribute. We denote these states with
the indexj, . Applying Cauchy’s theorem to the contours in
i P quadrants | and lll and settingy=iw to account for the
- ZFuawaﬁde int(Egrations along the complex axis then allows the determi-
nation

e—0

i ® - (z . (z
IEFUaFWbJ' dzz gb“:( )Giwaj(2) -
-« 0] (z+Ea—U*Ej)(z+E,—U*E))

Objia(2) Giwwj(Z— 6E)

1 0
(2 Ea wE)(2+ By u"E))| 2 e ZRuFw 40T guiio)gio)
Equations(24) and (28) are the basic formulas of this sec- (Ei—Ea)(Ej—E,) +o?
tion. “[EE 2 o7l )2t 07 2 v
Were it not for thez dependence of thg factors in these e
formulas, which is associated with cuts in the complex plane, 'S’ Ibwej(0)9cjan(0)
one could directly evaluate them using Cauchy’s theorem. In X ;J T E.—-E. FuaFup
fact, if the Coulomb gauge is used, this approach can be b
applied to the Coulomb photon part of the calculation, and gbwijp(EU—Ejp)gijpav(EU—Ejp)
expressions closely related to many-body perturbation theory X E ETE _E_E Ajp, (29
result[8]. However, for an exact calculation in the Feynman Up b =lp v A

gauge, we follow the treatment of R¢2] and carry out a } ] ) ]
Wick rotation. While this was straightforward for the Where the factod; 'is 1/2 whenj,=v, and unity otherwise.
ground-state case, for excited states the poles and cuts asso-

ciated with the electron and photon propagators create sig- 2. Ladder exchange

nificant complications. Each of the four teriisD, LE, XD, While the location of the poles is the same for LE as for

and XB requires an individual treatment, which we now LD, one photon propagator has argumentsE, which ex-
present. tends a cut into the first quadrant, as shown in Fig. 2. We
choose to Wick rotate ta=B6E+iw, with B a number
1. Ladder direct between 0 and 1 chosen so that the contours encircle only a
The poles and cuts for the direct part of the ladder aresingle pole each. The valyg=0.5 was usually used, with
shown in Fig. 1. Poles associated with negative energy stat@casionally different values used to test the coding: when
are off scale in the second and fourth quadrants, and do ndg changed, both the integration parallel to the imaginary axis
play a role in the Wick rotation. The case-a leads to a and the terms that wrap around the two cuts change, but the
pole just below the origin that is avoided by the semicircle inSum has to remain unchanged. The sign of the exponent in
quadrant IIl, and the cage=v leads to a pole just above the one of the photon propagators is different above and below a
origin that is avoided by the semicircle in quadrant |. IncCut, which leads to the modified Coulomb matrix element

addition, a set of poles associated with more deeply bounajk,(z) defined in Eq(13). We find
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@_1 -
E(Y=—F,aFup Re| dw
0

Ibwif( BOE+iw)Gij,al (B—1)SE+iw]

7 (Ei— Ea_B5E_iw)(Ej— E,+BSE+iw)

Ej#E,
+Fvawa 02]

X

gbwcj(o)gcjva( 5E)
E—E,

+Fvawa

E,#E
I v gbwic(éE)gicva(O) 1 BOE
X % E-E, ;FvaFWbizj . dz

a. AL IT —(z— SE 1

gbwu( )gljva[ ( )] + _FuaFWb

(z+E,—U*E)(z—E,+U*E) 7

XZ dz ngIj(*)gI]Ua( )* )
i JpsE (z+E,—U*E))(z—E,+u Ej)

(30
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FIG. 3. Contours used for the evaluation of XD.

We note two features of the cut terms. The first is that thesult. We recall that the case=v,j =a, which has a double

presence of the sin functions leads to additional convergenggole, is treated separately. An analysis similar to that of the
at the end of the cuts, which controls singularities associatedD gives

with poles at the end. Second, the infinitesimal imaginary
termsié§ in the denominators have been retained, because
there can be poles along the path of the line integral. As with
the direct part of the ladder, these poles occur if there are
n=2 states more deeply bound than the stat&hen this
situation is encountered, we use the standard identity

1
Z2—29—1i6

1
=PPZ_ZO+|775(Z—ZO). (31

We thus can pub=0 in the cut terms in Eq30) as long as
we carry out the integrals as principal parts. However, the
S-function term leads to the additional contribution

AE, g(extrg

a)wijb(Ev_ Ej,)9ijva(Ea—Ej)
(E,+Ea—Ei—Ej)

== iFvawa;
b

S Ibwi i (Ei, ~Ea)¥i joalEi, —E,) -

Ip) (Ev+Ea_Eib_Ej)

wherei, andjy, in this case range over amy=2 states more
deeply bound thamw. It is noteworthy that these contribu-

4y _
£t~

1 e ) )
- ;FvaFWbJ dw X, Gpjiv(i @) Giwaj(i®)
0 i

(Ei—Ea)(Ej—E,)— 0 1o
[(Bi—E)?+ o’I(E—E,) 0] 270%™
Ej+E

% J}: ’ gbjw(o)gcwaj(o) _
3 EJ_EU va’ wb

X;' Obj,iv(Ej, ~ Eu)Giwaj,(Ej,— EU)A- @
b Ei—Ej,tE,~Ea Ib

4. Crossed ladder exchange

The pole and cut structure of XE is shown in Fig. 4. As
with LE, the displacement of the photon cuts requires con-

tions would affect only the decay rate if tl@andafactors
were real, but as they are in general complex, a finite, though
extremely small, energy shift is present.

3. Crossed ladder direct

Figure 3 shows the poles and cuts that affect XD: in this
case the pole structure affects only the contour in the third
guadrant. However, the pole just below the origin can come
either from the casé=a or j=v, so two contributions re-

052501-5
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tours that wrap around them as indicated in the figure. Ap-
plying Cauchy’s theorem to the two contours allows the de- f(d2,0;)=7? J dze— PE-2=02)D(E-2+qy)
termination
—q,—4
1 D (gt 36
B =—FuaFu ReJ do ~ 7 D ql)(0| —Ie)(q1+|e) 39
_ _ In terms of this function, the energy shift associated with Eq.
D Opjia( BOE+10)Giw,j[(B—1)E+iw] (15) can be written as
< (E—E,— BOE—iw)(E;—E,— BOE—iw)
. AE =—f d f day F,aF
Eﬁ&Ea gbjca(o)gcwz)j(_gE) L (o7} o[} a sz [gbwu(qz)
+FvaFWb 2 E—E +Fuawa
° b X Gijav(d1) f(d2+E—E5,01+ Ea— E)
Ei#E4
2 gbua OégiWEC(_ 5E) o EFUaFWb Xfe(ql+ EJ_ EU ,q2+ EU_ EJ)_ng|J(q2)
i o
I ? o Xgijva(ql)fe(q2+Ei_Eavql+Ev_Ei)
«S e dz Objia(Z)Giwyj(Z— OE) Xfd:+E—Es,0.+E,—E))] (37)
7 +Ea— U*E;)(z+Ea— U*E;
e (2P EamUTE)(zH B uTEy) and the energy shift associated with E46) as
E ,BzSE
+= FU Fub dz Die (= -
e 0 AEXZ?f_ d%f_ dquvaFWb; [Objiv(d2) Giwaj(d1)

ObjialZ) Giwsj[ — (z— 5E)]

- —. (34) Xf(dotEi—E4,0: T Ea—E))
(z+Ea—U*Ej)(z+E;—U*Ej)

Xf(a2+E;j—E, a1+ E, —Ej) = Opjia(92) Giwyj(d1)
X fe(q2+Ei_ Ea!q1+ Ev_ EI)

As with LE, the integrations in the cut terms can be under-
stood as principal value integrations, but an extra term is

generated, Xt +Ej—Eq, a1 tE,—Ep]. (38)
AExg(extra Equation(37) contains a term that diverges ase,livhich
. cancels with Eq(19). In order to isolate it we use the iden-
RS Objyia(Ej, ~ Ea)Qiwoj,(Ej, —Ey) tity
=i
va Wbllb Ejb_ EI

1
o fe(qZ 1ql)fe(qlvq2): E[fe(q21ql)+fe(qliq2)]2
ObjiyalEi, ~Ea) i woi(Ei, —E,)

+ |FvaFWbZ Eib_ E,

Ip)

(395 1
— 51f2d2,00) +f2(a1.02)]

As with the LE case, this extra term is very small numeri- =—2mD?(q,)D?(qy)

cally. An interesting feature of this term is the fact that even

with the restriction on the state that we have made, the de- 2 2

nominator can vanish when the valence state is not the most ~5[e(d2,02) + Fe(d1,02)]-
deeply boundch=2 state. In this case, the divergence indi-

cates a more careful analysis is needed. In principle, to define (39
the integral it is necessary to deform the contour in a semi- We now insert the first part of this identity into E(R7)
circle around the double pole. However, in practice it is posfor the cases=a,j=v andi=v,j=a, and find

sible to obtain the correct answer by symmetrically integrat-

ing with two different numbers of Gaussian points and taking 1 5 * *

a certain linear combination. This effect is numerically insig- AE €= —Am '6§ Fvawaf_mquJ_mdql

nificant except at very higQ.
X[ Gowen 02)Gexa (1) DE(A2) D ()

B. Reference-state contributions + gwac(qz)gxcav(ql)Di(qz-l— 5E)Df(q1— OoE)

When it is not permissible to approximate the arguments

of the photon propagators as done above, a different proce- ~ Obwex U2)Uexoa( 41) D2(A2)DZ(qy + SE)

dure must be followed. In sensitive cases we first carry out B 2 2

the z, andz, integrals. As in the ground-state cd&, it is Ibwxd d2)Ixevald1) De(dz2+ SE)D(qy) ].
convenient to define the integral (40)
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The integrals oveq, andq, are identical tAAE,,., given in

Eqg. (19), but the indices of thg factors are not. However, if
we use the identity

JEM <] il aMC|J M><‘] M | j v:“yj aMd) = 5[Lxﬂy5Mc;Ld’
(41)

we can rewrite

AE,

1 . . . VY,
z) = — 472 52 FoaFwb 2 <JUIU'XJ a:u'c"] M >
cxdy J'Mm’

@Ml pyiane) | dap | da,

X[ Gpwed U2)Yayar (A1) D2(d2)D2(qy)
+ Gbwxd 02) Yy dar (A1) D2(0o+ SE)DZ(q; — SE)
— Obwed U2)Gayeald1) D2(d2) DZ(qy + SE)

— Gbwxd 92)Gyava(d1) D2(do+ SE)D2(qy)].
(42)

PHYSICAL REVIEW A 62 052501

FIG. 5. Contours used for the evaluation of LD and XD
reference-state terms.

i o
AE[B(av)=— EFvawaf a2 Gowed @)
— o0 cX

X Gexar(A)D(0), (49

Because the exchange of a photon is a scalar operator that

cannot change angular momentudM '’ will be forced to
equalJM, and the above becomes

1 . ) i
AEL( Z) =4 fFvanchbededqzﬁxdql

X [gbwck(qz)gdyay(ch) Di(qZ)Di(ch)
+ Opwd U2) Oyda (A1) DZ(0y+ SE)DZ(qg;, — SE)
— Gbwe U2) Yaywa( A1) D2(02) DZ(dy + SE)

— Obwxd U2)Oyava(d1) D2(dp+ SE)D2(qy) ],
(43)

which can be seen to cancalE,, after rearrangement of

where

q+5ie
(q+ie)’(q+3ie)

g—>5ie
9-ie2q-3ie)

D(q)= (46)

The first term ofD(q) has a pole and a double pole in quad-
rant IV, and the second has a pole and a double pole in
quadrant I. The position of these poles will be important in
the following, where we use Cauchy’s theorem to analyze
theqintegrations, but once that is done we will replézé)

with its e—0 limit, 2/g2. Individual terms obtained with this
procedure will have logarithmic singularities, which, how-
ever, cancel in the sum, as will be discussed below.

The contour used for the evaluation &fE[%(av) is

dummy indices and use of symmetry. It is important to noteshown in Fig. 5, and leads to
that no approximations have been made in manifesting this

cancellation, since otherwise the presence of the factoreof 1/

could lead to a residual finite term.

After isolating and canceling the divergent terms, finite
terms, which we will refer to as reference-state contributions,

remain. The LD terms in the casea,j=v give

iE lo'e] oo
AErL%(av): - FFUaFbe,wdqu,wdqlé Fbwed d2)

X Gexar (A1) fe(02,01)° + fo(01,02)%].  (44)
Because thé functions emphasize the regiop+qg,=0, we
can approximategyywed2) =0pwe —d1) in the above,
which allows the integral over, to be carried out, with the
result

i 0 dq ~ ~
AErL?Df(aU): _Fuawaf ?% [owed d)Gexa(Q)

2 —

— Obwerd — D Gexar(— )] (47)

In the above, Fig. 5 was actually applied only to the first
term of D(q), as the second term would involve enclosed
poles: however, symmetry arguments show that the second
term of D(q) in fact gives the same contribution. The appar-
ent linear divergence of this integral @t 0 is softened to a
logarithmic divergence because the combinatio €dctors
vanishes ag in that limit. The remaining divergence cancels
against the XD reference-state term treated below.

The LE term for the,j=a,v case is
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Approximatinggpwxd d2) = Jpwxd — d1) @and carrying out the
g, integration gives

AErL%(Ua): 4 FvaFbe dqz owxd d)

X Gyear(4)D(Q). (52)

We again use the contour shown in Fig. 5 for the evaluation

of this term. One term oD(E) again leads to a derivative
term, with a total result of

1
ErLeI;(Ua) FvaFWbE [gwac( OE)Qycay(OE)

FIG. 6. Contours used for the evaluation of laz) and
XE(aa) reference-state terms. + Obwsd 5E)9xcay(5E)]+ FvaFWb

AR (a0)= S F awafx dqux A0y Gowe 02) dg - -
m v —» — cX XXE ?[gwac(q)gxcav(Q)

X Oexoa( A1) f (02,01 + SE)?

) — Obwxd — @) Oxcar(— )] (53)
+1f (0, + 6E,q,)?]. (48)

The analysis of LE for the casej=v,a gives
In this case we approxima@y,yc(d2) = Jpwed —d1— OE), y A=vag

and after carrying out the integral ovgy we find i - -
AErL?Ef(Ua): ?FvawaledQZJ;wdqlxzc Fowxd d2)
AE[E(av )— —FuaFup f da2, Ghwed 9)Gexa(MD(Q),

49 X Oxeoa(A1)[ f (A2 + SE,01)?

_ o , +f 01,02+ 5E)?], (54)
whereq=q— SE. The contour we use in this case is shown

in Fig. 6. The first term oD (qg) has a double pole inside the which leads to
contour which leads to an additional derivative term, and the
total contribution is

1 5 d AErLeé(va) 4 FvawaJ qu Fbwxd d) gxwa(Q)D(Q)
Qe — - _
AErLeEf(av): - ;FvawafO EZ; Ibwed ) exval —d) (55

i = dq 5 _ o Using the contour of Fig. 7 then leads to
+ %FuawaJ’ 2 2 [gbwcx(q)gcn;a(q)
SE 07 “cx

1
- - AB[E0@)= = 5F saFun ouwxd 9E)Gxeua(0)
_gbwcx(_q)gc><va(_q)] 2 a ! e -

1 , 1 SE dq -~ _ _
+ _FvawaE gbwcx(o)gcxm(_ 5E)' (50) + _Favawz J’ — gwac(q)gxcva(q)
2 cX o xc Jo q2

We have used the fact thaf,, (0)=0 in the above. The first i 0 dqg .~ - _
term has a logarithmic singularity gt=0 that cancels with - EFvawaLm = [9owxd ) xeval Q)
the part of XE associated with the exclusioniefa,j=a. q

We now consider the ladder direct term whenv,j=a.

~Towxd — @) xcoal — D). 56
After removing the divergent term, there remains Gowxe ~ W) Gxeval )] (56

ie o o The second term has a logarithmic singularity cgt SE
AErLeEf,(va)z— ?FUawaf dqu dqlz Obwxd d2) which cancels with the part of XE associated withv,j
—o0 —o0 XC

=0.
% f + OE,q;— 5E)2 Turning now to XD, we recall that only=a,j=v was
Oxcan ()L Tl 1 ) restricted, which leads, after an analysis similar to that ap-
+f.(q,— 6E,q,+ SE)?]. (52 plied to LD, to the contribution
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f
AEJE(aa)=— FvaFWb% Obdea 0)Gewpa( — OE)

1 oE — - _
+ ;FuawaE f dq gbdca(q)gcwvd(_q)
cd 0

—) g+5ie i EE
- ><(q—i—ie)z(q—i-Sie)_E val wb

o dq - - o
XE _Z[gbdca(q)gcww( )
cd Jeoe Q

—Obacd — D Jewva( — D). (61)

In the latter, use of the contour of Fig. 7 gives
FIG. 7. Contours used for the evaluation of &) and

XE(vv) reference-state terms.

1 SE - J—
AE;?I;(UU) == ;FvawaE f dqg gbyxa(q)gxww( )
Xy 0

i o _
AErxe$=ngawa§ f_wdq Obxe () q+5ie

X —F,.F
| (q+ie)2(q+3ie) 2m °2 P
XGcwaxd) aoe (57) 0 dq
. 2 T , ~ ~ —_
wat™ (g +ie)?(q+3ie) x% ) ?[gbyxa(q)gxwvy(q)
which when evaluated with the contour of Fig. 5 becomes — Obyxe — D) Gxwoy(— D 1- (62

" i dq ~ ~ The logarithmic singularities aj=0 and q= 6E cancel
AEsp(av)=— EFvawaJ rd > [Goxa (D Iewad @) against similar terms in the LE reference-state term.
o x The reference-state terms were grouped into seven
~ ~ lasses, referred to in the following &— Rg. These are
— — — i 58 c ’ g 6
Obxw( ~ @) Gowad = )] 58 finite rearrangements of the expressions A& (av) [Eq.
L . (48], AE(va) [Eq. (52], AE[(av) [Eq. (49)],
We note the close similarity tAE, (av). However, while AE’LeEf(va) [Eq. (55)], AE%(av) [Eq. (57)], Angé(aa) [Eq.

the two terms are of a form to cancel, the indices on the § . . ;
Coulomb matrix elements are different, and in fact the can®9] andAE;?E(vUr)ef[Eq' (61)]. Srp;?mﬁcally,RO is defined
cellation is not exact. The divergences present in the indit© Pe the sum OAELrIgf(aU) andAExp(av). Ry is th(?efum of
vidual terms are, however, not present in their sum. the first term OfAELE(aU)réfthe second term OAE g(va),
Finally, XE has reference-state contributions from a set ofhe second term ofAEyg(aa), and the first term of

states of equal energy. When the states are the ground stathQ?é(vv). R, is defined as the sum of the second term of

we have AE™(av) and the third term oAE[¥(va). R; is the second
part of AE[® (va), R, the third part ofAE}(aa), andRs

" i o the second part OAngé(vv). Finally, Rg is the sum of the
AErer(aa)=—szawaZ f dq Ghacaq) derivative terms appearing iAE[%(av), AE[%(va), and
el AEX (aa)
X Gewal G- 9E) —— 2 (59
cwud (q+ie)2(q+3i €) I1l. NUMERICAL RESULTS AND COMPARISON WITH
MANY-BODY PERTURBATION THEORY

and when they are=2 states, we have In this section we numerically evaluate the formulas de-
rived above for a set of heliumlike ions. The basic numerical

rof i o technique is that of finite basis sd&]. A basis set with 50

ABXe(xx)=— ZFvawaxzy f_mdq Goyxd( Q) positive and 50 negative energy states was formed in a cavity
of radiusR,,= 100/Z a.u. Larger and smaller basis sets were
q+5ie used to ensure that basis-set dependences were negligible.

X Oxwoy(q— OE) The integrations parallel to the imaginary axis were carried
out with Gaussian methods. Particular care is required for the
direct diagrams at low values of the integration variafble

In the former case we use the contour of Fig. 6 to find because of the structure arising from nearby poles. In par-

(q+ie)X(q+3ie)
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TABLE I. Summary ofZ=230 calculation. TABLE IIl. Comparison of exact two-photon exchange calcula-

tion with MBPT: Z=30.

23s; 23%P, 23p,

23s, 23pP, 23%p,
=0 0.01044624  0.00813942  0.008 22857
=1 —0.00062705 —0.00502820 —0.00229907 2y —0.04955008 —0.08860703 —0.07527512
=2 —0.00015659 0.00029140  0.00100977 MBPT ~ —0.04954134 -0.08875205 —0.07535275
=3 ~0.00002669  0.00000799  0.00004154 QED —0.000 008 74 0.000 145 02 0.000077 63
=4 —0.000006 95 —0.00000552  0.000 007 89
=5 —0.00000237 —0.00000448  0.000 001 99
=6 —0.00000098 —0.00000298  0.00000061 TABLE IV. Comparison of exact two-photon exchange calcula-
=7 —0.00000047 —0.00000199  0.00000021 tion with MBPT: Z=40.
=8 —0.00000025 —0.00000136  0.000 000 07
1=9 —0.00000014 —0.00000096  0.000 000 02 233, 2°%p, 2°%p,
0, s 0ammoTe UMW 5 o pwsamm dorioms
poles 0.06103274 —0.09380018 —0.08430216 or1  ~005181715=0.102 74232 ©=0.077298 42
cuts 000000848  0.00000865  0.000009 63 2" 0.000007 47 0.00051609 0.00029191
reference states 0.001 86647 0.001 79190 0.002 02581

total

—0.04955008 —0.08860703 —0.07527512

ticular, the %,, and 2pq, states are split only by finite

nuclear size effects, and this splitting is quite small at the

lower values ofZ used here.

We give the detailed breakdown of the calculation formBPT
heliumlike zinc,Z=30. Usingc=4.4454 fm, the energies of QED

the 25450, 2py, and g, states are—114.228104 a.u.,

—114.228639 a.u., and-112.839015 a.u., respectively,

TABLE V. Comparison of exact two-photon exchange calcula-
tion with MBPT: Z=50.

23s, 23p, 23p,
2y —0.053 698 —0.121 820 —0.079182
—0.053 762 —0.123159 —0.079 949
0.000 064 0.001 340 0.000 767

which illustrates the near-degeneracy mentioned above. In TABLE VI. Comparison of exact two-photon exchange calcula-
Table I, we present a summary of the calculation for thejon with MBPT: Z=60.

three states 3S,, 23P,, and 23P,: as mentioned earlier,
the presence of mixing for the®P; state requires a modifi-
cation of the present meth¢0]. The parameteB is chosen
to be 1/2.

The terms in the exchange graphs in which integrals alon
the cut are involved are seen to be relatively small, and are i
fact pure QED effects, as they vanish in the absence of re=
tardation.

23, 23p, 23p,
2y —-0.056799  -0.149366  —0.081771
BPT —-0.057023  -0.152243  —0.083427
ED 0.000 224 0.002 877 0.001 656

Some of the reference-state terms are individually diver-

gent, though these divergences cancel pairwise. These int%—ti

TABLE Il. Breakdown of reference-state contributions At
=30.
23s, 23P, 23p,

Ro —0.000 00007 0.00000059 —0.00000009
Ry 0.000 00072 0.00000013 0.000 000 21
R, —0.00390849 —0.00288697 —0.003086 88
Rs 0.000 060 88 0.00003369 0.000 04002
R, 0.00385875 0.002578 20 0.002809 64
Rg 0.00147921 0.00112984 0.001 24652
Rea —0.00018261 —0.00059465 —0.00061212
Reb 0.000 019 27 0.000034 76 0.000040 31
Rec 0.00053881 0.001 496 31 0.00158821
total 0.001 866 47 0.001 791 90 0.002 02581

TABLE VII. Comparison of exact two-photon exchange calcu-
on with MBPT: Z=70.

2%, 23p, 23p,
2y —-0.060812  -0.187937  —0.084734
MBPT —-0.061312  -0.193398  —0.087903
QED 0.000 500 0.005 460 0.003 168

TABLE VIIl. Comparison of exact two-photon exchange calcu-
lation with MBPT: Z=80.

2%, 23%p, 23%p,
2y —-0.065988  -0.242396  —0.088127
MBPT —-0.066954  —0.251982  —0.093609
QED 0.000 966 0.009 586 0.005 482
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grals were evaluated by Gaussian methods, with the first TABLE IX. Comparison of exact two-photon exchange calcula-
point always a finite distance from the singularity, which tion with MBPT: Z=92.

served as a regulator. As long as the same order Gaussian
was used to evaluate the canceling terms, the sum was well 2°%s, 2°Pg 2°P,
defined. The finite remainder of all such terms was numeri-

I auit L and sealod ag 615 Ption —0.074246  —0.340886  —0.092 692
;?oZn%UIs?atsemcz S'ea” scaled ag4)”, as was found in the \\ppy —0.076230  —0.358222  —0.102548
~Stale case. ED 0.001 984 0.017 336 0.009 856
The nondivergent reference-state terms were found to bg

much larger. This is in contrast to the ground-state case,
where even before inclusion of the reference-states, verywhile in principle a full QED treatment, such as presented
close agreement between MBPT and the calculation wakere, should be given, the extra physics is relatively small.
found. For the excited-state case, however, significant disHowever, experiments on heliumlike uranium accurate to
crepancies between MBPT and ttf@matrix calculation several tenths of an eV are possifii4], and these will
without reference states are present. This is because of ougquire the kind of QED treatment presented here.
use of the Feynman gauge, which gives cut structure to pho- At lower Z, the QED effects are smaller, but on the other
tons with timelike indices: in the Coulomb gauge such pho-hand the experiments are more accurate. We mention in par-
tons have no cut structure, and do not contribute to the reficular experiments on heliumlike arg¢m5], which are ac-
erence states. A breakdown of the reference-stateurate to 22 microHartrees. This is just at the level of the
contributions is given in Table II. QED effect in the 2P, state if the approximate scaling of
While many methods have been applied to the calculatiorz# js uysed to extrapolate frod=30 down toZ=18. How-
of the structure of highly charged ions, one that is particu-ever, until the related vertex diagrams are carried out, as has
larly closely related to th&matrix approach of this paper is peen recently done for lithiumlike iongl6], comparison
MBPT. Had we carried out the calculation in the Coulombwith experiment cannot be made. Of particular note iszhe
gauge, it would have been straightforward to show thatdependence of the QED effects. The change in sign between
when both photons are Coulomb photdi® and negative 7—40 andZ=50 present for the 2S; state can be under-

energy states are neglected, the energy calculated with thgood as an as yet uncalculateda)* overwhelming a
methods of this paper precisely reproduces the second-ordRfown (Za)® contribution of

energyE® of MBPT [11]. The neglected negative energy
state terms are QED effects that scalezs)C a.u. at lowZ. 7(za)3< 1 >

When one or both of the photons is a transverse phofn ( ABo=——F%——\ =% (63
magnetic effects are involved. An approximate way of in-
cluding them, often used in MBPT and configuration inter—Where 1/3.=0.013 142
action (Cl) [12] calculations, is to treat the instantaneous 12 y
Breit interaction as a perturbation, again neglecting negativvﬁ0
energy states. It is of interest to compare second-ord
MBPT, which we define to be the sum & (CC), B®
(CT+TC), andBXB (TT), with the present calculation.
We do this forZz=30, 40, 50, 60, 70, 80, and 92 in
Tables Il1-1X, where the two-photon calculation of this pa-

3
EP)

This allows a complementary approach to the determina-
n of contributions of ordem® a.u. in neutral helium, a
e;Sroblem that has been addressed using effective Hamiltonian
methods[17]. However, before the accurate fits required to
compare with the known lovi- behavior can be carried out,
better control of the partial wave expansion is needed: it is

o . necessary to carry out an extrapolation of the expansion to
per is given in the row labeled “2,” second-order MBPT y y P P

ith al ion limits ch be identical infinity, which we have not done in this paper. We estimate
(wit part!a wave expansion IMits chosen 1o be | en'tlca ©that to do this accurately will require the calculation of about
the 2y) given in the row labeled “MBPT,” and the differ-

beled Lo hat this is i 10 more partial waves, which is difficult to do with finite
ence labeled “QED.” It is important to note that this is just j,5qjs_set methods. However, differential equation methods

a convention: QED encompasses all of atomic physics, bufyo, mych higher values of angular momentum to be accu-
here we are defining it to be the physics beyond that degge\y treated, and the next step of this calculation is the

scribed by a many-body Hamiltonian with neglect of nega-,jication of such methods to heliumlike ions with smaller
tive energy states and retardation. nuclear charges.

The most notable feature of the two methods of calcula-
tion is their relatively close agreement. Even for th&Pg
state of heliumlike uranium, where the QED correction is
largest, it is only a 0.5 eV effect, which is to be compared to  This work was supported in part by NSF Grant No. PHY-
the 8 eV experimental uncertainfiL3]. This then explains 98-70017. We gratefully acknowledge very useful conversa-
why the procedure of calculating energy levels of highlytions with Dr. S. Blundell and Dr. A. E. Livingston. We also
charged ions by first applying relativistic MBPT, or the es-thank Dr. V. Shabaev for communications regarding the
sentially equivalent CI method, is relatively successful:mixed-state problem.
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