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Methodology for quantum logic gate construction
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We present a general method to construct fault-tolerant quantum logic gates with a simple primitive, which
is an analog of quantum teleportation. The technique extends previous results based on traditional quantum
teleportation@Gottesman and Chuang, Nature~London! 402, 390 ~1999!# and leads to straightforward and
systematic construction of many fault-tolerant encoded operations, including thep/8 and Toffoli gates. The
technique can also be applied to the construction of remote quantum operations that cannot be directly
performed.

PACS number~s!: 03.67.2a
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I. INTRODUCTION

Practical realization of quantum information process
requires specific types of quantum operations that may
difficult to construct. In particular, to perform quantum com
putation robustly in the presence of noise, one needs fa
tolerant implementation of quantum gates acting on sta
that are block-encoded using quantum error-correcting co
@1–4#. Fault-tolerant quantum gates must prevent propa
tion of single qubit errors to multiple qubits within any cod
block so that small correctable errors will not grow to exce
the correction capability of the code. This requireme
greatly restricts the types of unitary operations that can
performed on the encoded qubits. Certain fault-tolerant
erations can be implemented easily by performing dir
transversaloperations on the encoded qubits, in which ea
qubit in a block interacts only with one corresponding qub
either in another block or in a specialized ancilla. Unfor
nately, for a given code, only a few useful operations can
done transversely, and these are not universal in that
cannot be composed to approximate an arbitrary quan
circuit. To obtain a universal set of gates, additional ga
have to be constructed using ancilla states and fault-tole
measurement. Although these additional gates have b
constructed successfully@1,3,5,6#, their ad hocconstruction
is complicated and is not easily generalized.

Another kind of application in which we are challenged
construct useful quantum operations from a limited set
primitives is in distributed quantum information processin
In this problem, certain kinds of communication betwe
different parties are constrained or prohibited, but prior d
tribution of standard states may be allowed. For exam
quantum teleportation@7# demonstrates how an unknow
quantum state can be sent between two parties without s
ing any quantum information, using only classical commu
cation and prior entanglement. Protocols for distributed s
preparation and computation are also known@8#, but again,
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they have been largely constructed by hand and offer nei
an explanation of why a particular ancilla state is requir
nor a systematic path for generalization.

A general framework for addressing such problems
been presented in@9#; it uses quantum teleportation as a b
sic primitive to enable construction of quantum operatio
that cannot be directly performed through unitary operatio
This framework provides systematic and generalizable c
struction for an infinite family of fault-tolerant gates, includ
ing thep/8 and Toffoli gates. It does not, however, lead
circuits equivalent to~or as simple as! prior ad hocconstruc-
tion for the same gates.

In this paper, we provide an extension to the teleportat
method of gate construction with a similar but simpler prim
tive, which we call ‘‘one-bit teleportation’’ because it use
one qubit instead of two as ancilla. This method simplifi
the construction of@9# and, furthermore, provides strikingl
unified construction of thep/8, controlled-phase, and Toffol
gates. An infinite hierarchy of gates, including the controll
rotations diag(1,1,1,ei2p/2k

) used in the quantum factorin
algorithm @10#, can be constructed with the present schem

The structure of the paper is as follows. First, in Sec.
we define one-bit teleportation, and describe its proper
and various guises. Its application to fault-tolerant gate c
struction is presented in Sec. III, which is followed in Se
IV with specific circuits for thep/8, controlled-phase, and
Toffoli gates. In Sec. V, we describe the use of one-bit te
portation to derive the two-bit quantum teleportation pro
col and to construct a remote quantum gate. We summa
our results in Sec. VI.

II. ONE-BIT TELEPORTATION

In standard quantum teleportation, Alice performs a jo
measurement of the unknown qubit and some ancilla,
sends the classical measurement outcome to Bob, who
sequently reconstructs the unknown state. No quantum
eration is performed jointly by Alice and Bob, but they ne
a certaintwo-qubit entangledancilla state.~We refer to any
state other than the original unknown qubit state as an an
state.! The same objective, communicating a qubit, can
accomplished in a simpler manner if Alice and Bob are
©2000 The American Physical Society16-1
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lowed to perform a quantum gate~such as a controlled-NOT

gate, aCNOT! between their respective qubits. In this ca
only a single qubit ancilla in Bob’s possession is require
We call such a quantum circuit one-bit teleportation, wh
can be derived using the following facts.

Fact 1.An unknown qubit stateuc& can be swapped with
the stateu0& using only twoCNOT gates, as shown in th
following circuit:

~1!

Note that in all circuits we show, time proceeds from left
right as is usual, and conventions are as in@11#. Throughout
this section, the first and second qubits refer to the regis
with respective initial statesu0& and uc&.

Fact 2. X5HZH, whereX andZ are Pauli operators, an
H is the Hadamard gate defined as

H5
1

A2
F1 1

1 21G . ~2!

Then Eq.~1! is equivalent to the following circuit:

~3!

Fact 3. A quantum-controlled gate can be replaced by
classically controlled operation when the control qubit
measured.

~4!

The meter represents the measurement ofZ, which projects
the measured state ontou0& or u1&. The double line coming
out of the meter carries theclassicalmeasurement result, an
U is performed if the measurement result isu1&.

In Eq. ~3!, the two qubits are disentangled before the s
ond Hadamard gate. Therefore, the second qubit can be
sured before the second Hadamard gate without affecting
unknown state in the first qubit. Applying fact 3 to Eq.~3!
results in the following circuit:

~5!

The circuit in Eq.~5! uses a controlled-NOT ~CNOT! gate and
only one qubit for the ancilla. Therefore it is a one-bit te
portation circuit, which we refer to as ‘‘Z-teleportation’’ be-
cause a classically controlled-Z is applied after the measure
ment.
05231
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UsingZ-teleportation we can derive other one-bit telepo
tation circuits. For instance, the following circuit first tele
ports the stateHuc& using Z-teleportation, and then applie
H†5H to the teleported stateHuc& to obtain the original
stateuc&:

~6!

This circuit can be simplified to

~7!

which we refer to as ‘‘X-teleportation.’’ Similarly, we can
derive other one-bit teleportation circuits as discussed in
pendix A. We will focus onX- and Z-teleportation circuits
because they are sufficient for our construction in this pap

X- and Z-teleportation circuits can both be represent
using the same general structure:

~8!

where the first qubit~the ancilla qubit! is initially in the u0&
state. ForZ-teleportation,A5I (I is the 232 identity opera-
tor!, B5H, D5Z, andE is a CNOT gate with the first qubit
as its target. ForX-teleportation,A5H, B5I , D5X, and
E is a CNOT gate with the first qubit as its control.

III. FAULT-TOLERANT GATE CONSTRUCTION USING
ONE-BIT TELEPORTATION

In this section, we develop a general method for fau
tolerant gate construction using one-bit teleportation as a
sic primitive. We will confine our attention to the
Calderbank-Shor-Steane~CSS! codes that are doubly eve
and self-dual@12,13,1#, although the results can be extend
to any other stabilizer codes@9#.

A. Fault-tolerant gate hierarchy

We first summarize the fault-tolerant gate hierarchy int
duced in @9#. Let C1 denote thePauli group. Then for k
>2, we can recursively defineCk as

Ck[$UuUC1U†#Ck21%. ~9!

For everyk, Ck.Ck21, and the set differenceCk\Ck21 is
nonempty. For instance, diag(1,ei2p/2k

)PCk\Ck21.
C2 is a group called theClifford group @8#, which is the

set of operators that conjugate Pauli operators into Pauli
6-2
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erators. Besides the Pauli operators,C2 also contains othe
important gates, such as theCNOT gate,H, and the phase gat
S ~defined bySux&5 i xux& for xP$0,1%). For doubly even
and self-dual CSS codes, any encodedC2 gate has transver
sal unitary implementation@1,5#, which is fault-tolerant.

C2 gates alone, however, are not sufficient for univer
quantum computation@8#. An additional gate outsideC2 is
necessary and sufficient to complete universality@14#. In par-
ticular, adding any one of the following gates inC3\C2 to
the Clifford group results in a universal set of unitary ope
tions: the p/8 gate T (Tux&5eipx/4ux& for xP$0,1%), the
controlled-phase gateL1(S) @L1(S)uxy&5 i x•yuxy& for x,y
5$0,1%], and the Toffoli gate~controlled-controlled-NOT!
@1,15,6#.

The construction of an encoded operation inC3\C2 is
much more complicated than that of an encoded operatio
C2, and requires quantum measurement and a particular
cilla state. But applying aC3\C2 gate to certainknownstates
can be replaced by direct preparation of the final sta
which can be relatively easier as stated in the following.

Theorem 1.Let U be ann-qubit gate inC3. Then the
encoded stateU(u0& ^ n) can be prepared fault-tolerantly b
applying and measuringC2 operators.

Proof. See Appendix B.
SinceC3 is closed under multiplication by elements inC2

@16#, theorem 1 is also applicable whenu0& ^ n is replaced by
V(u0& ^ n) for VPC2, becauseUuc&5UV(u0& ^ n) with UV
PC3. We will use theorem 1 in our fault-tolerant logic ga
construction.

B. C3 gate construction using one-bit teleportation

We now consider a general method of constructing fa
tolerant gates inC3 using the one-bit teleportation scheme
a primitive. The basic idea is the following. To apply th
encoded operationU to an encoded stateuc&, we can first
teleport uc& by eitherX- or Z-teleportation, and applyU to
the reconstructeduc&. The extra teleportation step can b
done fault-tolerantly because bothX- andZ-teleportation use
C2 gates only. It further reduces the problem of fault-tolera
construction of a quantum logic gate to fault-tolerant pre
ration of a particular ancilla state. The reason for the red
tion is thatU is applied to the ancilla, which is originally in
the knownstateu0&. If U can be commuted backwards un
it is applied to aknownstate without introducing more com
plicated gates, we can prepare the resulting known s
without applyingU directly, as the input ancilla. Using suc
an ancilla, the reconstructed state after themodifiedone-bit
teleportation circuit will beUuc&. That is, the encodedU has
been applied to the encodeduc& fault-tolerantly.

We now detail the formal construction. LetUPC3 be an
n-qubit gate to be applied touc&, an encoded quantum sta
with n logical qubits. We first teleport each logical qub
using eitherX- or Z-teleportation such thatuc& is recon-
structed in the ancilla, which is initially in theu0& ^ n state.
We then applyU to the reconstructeduc& to obtainUuc&.
This is described by the following quantum circuit:
05231
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In Eq. ~10!, a register~wire! with the symbol ‘‘/n’’ repre-
sents a bundle ofn logical qubits.A is a bitwise operation,
A5A1^ •••^ An , where Ai acts on thei th logical qubit
only. B is a bitwise operation similar toA. E is a tensor
product such thatE5Ei ^ •••^ En , where eachEi is aCNOT

gate between thei th logical qubits ofuc& and the known
ancilla. The measurement box measuresZ bitwise and the
double line represents then-bit classical outcome. Thei th
classical bit controls whether an operatorDi is performed on
the i th logical state in the first register. This is denoted byD
for the sake of simplicity.

According to Sec. II, ifZ-teleportation is applied to the
i th logical qubit,Ai5I , Bi5H, Di5Z, andEi is a CNOT

gate with the first qubit as its target; ifX teleportation is
applied instead,Ai5H, Bi5I , Di5X, and Ei is a CNOT

gate with the first qubit as its control.
We now commuteU backwards in time. CommutingU

with the classically controlled operationD changesD to
UDU†. As DPC1 andUPC3 , UDU†PC2 can still be per-
formed transversely. Likewise, commutingU with E changes
E to UEU† @17#. As theCNOT gate¹C1, the resulting op-
erationUEU† may not be inC2 for an arbitraryUPC3. To
ensureUEU†PC2, we only considerU that commutes with
E such thatUEU†5EPC2. Then Eq.~10! becomes

~11!

All the circuit elements outside the dotted box can be p
formed fault-tolerantly. Therefore, if we can prepare the
put ancilla in the stateUA(u0& ^ n), we can applyUPC3 to
any encoded stateuc& fault-tolerantly. AsAPC2 , UA is also
a C3 operation. By theorem 1, the ancilla stateUA(u0& ^ n)
can be created fault-tolerantly. The stabilizers of such
ancilla state, which will be measured in preparing the sta
can be easily derived. Recall that whenAi5I , Di5Zi , and
whenAi5H, Di5Xi . Therefore,AiZiAi

†5Di is always true
@18#, and the stabilizers ofUA(u0& ^ n) are UAiZiAi

†U†

5UDiU
†PC2.

Using the above method, we can systematically const
interesting gates inC3\C2, including thep/8, controlled-
phase, and Toffoli gate, as will be shown in Sec. IV.

Finally, we remark that theC3 gates commuting withE
are not the only gates that can be performed by the one
teleportation scheme. AnyC3 gate of the formU5GbVGa
for V commuting withE andGa ,GbPC2 can be performed
using the generalized one-bit teleportation circuits. We d
cuss this in Appendix A.
6-3
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C. Recursive construction

In this section, we extend our discussion to the gates inCk

and characterize a class of gates that can be recursively
structed with one-bit teleportation as a basic primitive.

We prove by induction that the diagonal subset ofCk ,
defined byFk5$UPCk and U is diagonal%, can be recur-
sively constructed.

First, whenUPFk , we choose to applyX teleportation to
each logical qubit. In this case, eachEi is aCNOT gate taking
the i th logical qubit in the ancilla as the control bit. Ther
fore, E commutes withU and Eq. ~11! holds with Ai

5H, Bi5I , andDi5Xi for i 51, . . . ,n. Second, since for

UPFk and PPC1 , UPU†5ŨP for someŨPFk21 @16#,
UDiU

†5UXiU
†5UxXi for someUxPFk21. Therefore, if

the gates inFk21 can be performed, the classically controlle
operationUDiU

† for UPFk can also be performed. Third
the required ancillaUH ^ n(u0& ^ n) can be prepared fault
tolerantly with recursive construction as shown in Appen
B. Finally, the gates inF2,C2 have transversal implemen
tation. By induction, all the gates inFk can be performed
fault-tolerantly with recursive application of the one-bit tel
portation scheme.

The setsFk contain many interesting gates, such asVk

5diag(1,eip/2k
), which are the single qubitp/2k rotations,

and L1(Vk21)5diag(1,1,1,eip/2k21
), which are the con-

trolled rotations used in the quantum Fourier transform
cuit @10,19# essential to Shor’s factoring algorithm@10#. Fk

also includes the multiple-qubit gatesLn(Vl) for n1 l<k
@16#, whereLn(Vl) appliesVl to the (n11)th qubit if and
only if the firstn qubits are all in the stateu1&. By the closure
property ofFk @16#, all products ofLn(Vl) for n1 l<k are
in Fk . To perform gates inFk for k small, the recursive
construction we have described can be more efficient t
approximating these gates to the same accuracy using a
versal set of fault-tolerant quantum logic gates.

The gates inFk are not the only ones that can be co
structed using the one-bit teleportation scheme. For insta
if UPCk is related to an element inFk by conjugation with
Hadamard gates in thei 1th, . . . , i l th qubits,E can be made
to commute withU by applyingZ-teleportation to thei 1th,
. . . , i l th qubits andX-teleportation to the rest. The Toffo
gate is an example. More generally, any gate that is a pro
of C2 gates and a singleFk gate can be constructed recu
sively.

IV. EXAMPLES

In this section, we systematically construct three imp
tant fault-tolerant gates inC3\C2 using the general metho
described in Sec. III. Any one of these gates, together w
the Clifford group, forms a universal set of gates. For ea
construction, we will derive the required circuit and the a
cilla. The ancilla can always be prepared fault-tolerantly~see
Appendix B!.
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A. The pÕ8 gate

The p/8 gate,T, has the following matrix representation

T5F1 0

0 eip/4G . ~12!

As T is diagonal, following the recipe in Sec. III, we choos
to applyX-teleportation touc& and applyT to the teleported
uc&:

~13!

We commuteT backwards using two facts. First,TXT†

5e2 ip/4SX, where the phase gateS is defined in Sec. III A.
Second,T commutes with theCNOT gate by construction.
Thus, we obtain a circuit to implement thep/8 gate~where
an irrelevant overall phase has been ignored!:

~14!

All the circuit elements outside the dotted box can
performed fault-tolerantly. The dotted box, then, can be
placed by an ancilla in the state

uf1&5THu0&5
u0&1eip/4u1&

A2
, ~15!

which can be prepared fault-tolerantly as described in A
pendix B. Thus, we have derived a circuit and the cor
sponding ancilla for performing the fault-tolerantp/8 gate.
We note that this rederives the same circuit and ancilla s
used in@6#.

B. The controlled-phase gate

The controlled-phase gateL1(S) ~defined in Sec. III A! is
in C3, and forms a universal set of gates@15,11# together
with H and theCNOT gate.

We use the following circuit symbol forL1(S):

~16!

L1(S) commutes withZi , and conjugatesXi ( i 51,2) as
follows:
6-4
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~17!

~18!

where the controlled-Z operation,L1(Z), acts on basis state
as L1(Z)ux&uy&5(21)x•yux&uy&. To constructL1(S), we
first teleport the two-qubit stateuc& and applyL1(S). This
linear transformation preserves phase coherence, and th
suffices to consider its action on the basis statesuxy&. Since
L1(S) is diagonal, we applyX-teleportation to both qubi
states such that theCNOT gates in the circuit commute with
L1(S).

~19!

CommutingL1(S) backwards using the commutation rul
in Eqs.~17! and ~18!, we obtain a circuit for the controlled
phase gate:

~20!

where the double lines control all the operations in the c
responding boxes. All the circuit elements in Eq.~20!, except
those in the dotted box, can be performed fault-toleran
Finally, we can replace the dotted box by an input ancilla
the following state:

uf1&5L1~S!~H1^ H2!u00& ~21!

5
1

2
~ u00&1u01&1u10&1 i u11&), ~22!

which can be prepared fault-tolerantly. This completes
requirement for performing the controlled-phase gate fa
tolerantly.

C. The Toffoli gate

To construct the Toffoli gate~controlled-controlled-NOT!,
we begin with some useful commutation rules:
05231
, it

r-

.
n

e
t-

~23!

~24!

As in the controlled-phase gate construction, we demonst
the construction on basis statesuxyz& for three qubits. We
first teleportuxyz& and then apply a Toffoli gate. Since th
Toffoli gate is diagonalized by a Hadamard transform on
target qubit, the choice ofX-teleportation for the contro
qubits andZ-teleportation for the target qubit ensures that t
three CNOT gates commute with the Toffoli gate.

~25!

Commuting the Toffoli gate backwards to the far left usi
Eqs.~23! and ~24!, Eq. ~25! is equivalent to

~26!

All the circuit elements except those in the dotted box can
performed fault-tolerantly. It remains to prepare the state c
ated in the dotted box,

uf1&5U~H1^ H2!u000& ~27!

5
1

2
~ u000&1u010&1u100&1u111&), ~28!
6-5
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whereU denotes the Toffoli gate. Again this ancilla state c
be prepared fault-tolerantly, as described in Appendix B.

The ancilla and the quantum circuit derived here are
same as those in Shor’s original construction@1#. The one-bit
teleportation scheme elucidates the choice of the ancilla s
and the procedure in@1#.

V. REMOTE GATE CONSTRUCTION USING ONE-BIT
TELEPORTATION

The one-bit teleportation scheme, in addition to be
useful for fault-tolerant gate construction, can also be use
design a variety of remote quantum operations. Construc
remote quantum operations is related to constructing fa
tolerant gates in that both require a particular ancilla stat
replace a prohibited operation. In this section, we use one
teleportation as a basic primitive to derive the quantum
cuits and the required ancilla states for the two-bit quant
teleportation and the remoteCNOT gate.

A. Two-bit teleportation

Suppose Alice needs to send a qubit stateuc& to Bob.
Direct quantum communication is not allowed, but Alice a
Bob can share some ancilla state. The question is, how
Alice senduc& to Bob? A well-known solution to this prob
lem is quantum teleportation@7#, which uses an EPR stat
and classical communication. Using one-bit teleportation,
give an alternative derivation of the required~entangled! an-
cilla and the required teleportation circuit.

We first construct a circuit to send the unknown state w
a prohibited operation. Then we remove the requiremen
such a prohibited operation. Letuc& be the state to be com
municated from Alice to Bob. Alice can senduc& to Bob by
applying one-bit teleportation twice. Step 1: Alice swapsuc&
with an ancillau0& usingX-teleportation. Step 2: Alice send
the teleporteduc& to Bob usingZ-teleportation~with a pro-
hibitedCNOT gate in this step!. The circuit representation fo
the process is

~29!

The prohibited operation~CNOT!, which is marked by an as
terisk, can be commuted backwards using the commuta
relation

~30!

This leads to the usual quantum teleportation circuit
05231
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In Eq. ~31!, the prohibitedCNOT gate acts on theknownstate
inside the dotted box, which can be replaced by the follo
ing state it creates:

uf&5L1~X!H1u00&5
1

A2
~ u00&1u11&). ~32!

In other words, if Alice shares this entangled state with B
the stateuc& can be sent to Bob without quantum commun
cation.

Note that the classically controlled-X on the second reg
ister only affects its overall sign, and can be omitted sin
the second register is subsequently measured.

An alternative circuit, which accomplishes the same ta
can be derived whenZ- andX-teleportation are used for th
two steps instead. We start with the following circuit:

~33!

Using the commutation rule

~34!

we can commute the prohibitedCNOT gate backwards to ob
tain an equivalent quantum teleportation circuit,

~35!

The disallowed element in the dotted box can be replaced
the EPR state of Eq.~32!. The irrelevant classically
controlled-Z on the second register can be omitted.

The two-bit teleportation circuits of Eqs.~31! and~35! are
equivalent to that in@20#, but as mentioned above, they a
derived differently.

B. RemoteCNOT gate

Suppose Alice and Bob have in their possession quan
statesua& and ub&, respectively. How can they perform
simple distributed computation, aCNOT gate fromua& to ub&,
6-6
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without communicating any quantum information betwe
them, but perhaps with the aid of some initially shared st
dard quantum state? A solution to this problem is given
@8#. The ad hocmethod employed, however, does not su
gest a systematic technique for deriving the solution, or
lutions to generalized versions of this problem. Here, we
one-bit teleportation to present a general technique and
rive a different circuit that accomplishes the same task.

Alice and Bob first swap their states with their respect
ancilla stateu0& by one-bit teleportation, and then apply
prohibited CNOT gate. The quantum circuit is chosen so th
Alice usesX teleportation and Bob usesZ teleportation:

~36!

The prohibitedCNOT gate can be commuted backwards
obtain a remoteCNOT circuit:

~37!

The prohibited operation in the dotted box is applied to
known state, and can be replaced by the EPR state of
~32!. Provided such a shared entangled state is initially av
able to Alice and Bob, they can perform a remoteCNOT

operation using two bits of classical communication.
Note that a remoteCNOT gate can also be constructed b

using two-bit teleportation twice in an obvious way: Bob fir
sends his qubitub& to Alice with two-bit teleportation, and
then Alice applies theCNOT operation toua&ub& and sends
the qubit ua % b& to Bob with two-bit teleportation. Such
construction, however, requires two pairs of maximally e
tangled states and four bits of classical communicati
which is twice that required for the one-bit teleportati
scheme.

Our remoteCNOT construction in Eq.~37! is different
from that in@8#, which can also be derived using the one-
teleportation scheme, as described in Appendix C.

Finally, we remark that the two examples of constructi
remote operations strengthen the concept of telepor
quantum logic gates with one-bit teleportation, as we h
shown that if the input ancilla is a special state related to
CNOT gate, the reconstructed state is the one to which aCNOT

gate has been applied.
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VI. CONCLUSION

We have presented a systematic technique to constru
variety of quantum operations, by using a primitive one-
teleportation scheme. Such a scheme reduces the proble
constructing a quantum logic gate to preparing an anc
state created by the same gate applied to a known state.
usefulness of this technique is particularly manifest for t
kinds of application: fault-tolerant quantum computation a
remote quantum computation, as demonstrated in our c
struction of thep/8, controlled-phase, and Toffoli gates, an
the remote-CNOT gate. With recursive application of the one
bit teleportation scheme, we can also construct an infin
hierarchy of gates fault-tolerantly.

The idea of teleporting quantum logic gates has been u
in @9#, with two-bit teleportation as a primitive, to perform
universal quantum computation. The two-bit teleportati
scheme allowsall C3 gates to be teleported fault-tolerantl
and all Ck gates to be teleported with recursive applicati
of the scheme. For one-bit teleportation, however, we
only providesufficientconditions for gates inC3 to be tele-
portable, namely, anyC3 gate that can be written as a pro
uct of C2 gates and a singleC3 gate that commutes with th
CNOT gate. It is not known if this includes all theC3 gates.
The difficulty in describing the exact set of one-bit telepo
ableC3 gates arises from the requirement for aC2\C1 gate
in the one-bit teleportation circuit. Such aC2\C1 gate may
be conjugated outsideC2 by aC3 gate, and therefore canno
be directly performed fault-tolerantly. This places a furth
constraint on the teleportableUPCk for k.3. Because of
our present lack of understanding of the general structure
nature ofCk gates, the distinction between the ultimate c
pabilities of the one- and two-bit teleportation schemes
mains an interesting and difficult question.

Nevertheless, as we have shown, one-bit teleportation
provide much simpler protocols than two-bit teleportation
constructing quantum logic gates. This is because one
teleportation only requires projective measurement ofZ and
as many ancilla qubits as the state to be transformed; two
teleportation, however, requires Bell measurement and tw
as many ancilla qubits as the original state.

At a very general level, the logical gate teleportati
schemes reduce the difficulty of constructing quantum lo
gates by using special ancilla states. This can be useful
only for simplifying hardware requirements, but also for d
signing and optimizing computation and communication p
tocols @21,22#. Even more intriguing, perhaps, is that th
result gives us a first glimpse at what might someday b
standard architecture for a quantum computer: a simple
sembly of one-bit teleportation primitives, capable of unive
sal quantum computation on quantum data, given the as
tance of standard quantum states that are obtained
commercial resources. The definition of such a stor
program architecture could be pivotal in the developmen
this field, much as the von Neumann or Harvard architect
@23# was important in classical computation.
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APPENDIX A: GENERALIZATIONS OF THE ONE-BIT
TELEPORTATION CIRCUITS

The one-bit teleportation circuit used in fault-tolerant ga
construction has three components: a particular input anc
a sequence ofC2 gates, and finally the measurement a
classically controlled operation. The teleportability of one-
teleportation is governed by the sequence ofC2 gates before
the measurement. Using theX- andZ-teleportation circuits of
Eq. ~11!, any UPC3 that commutes withE can be tele-
ported. In this appendix, we derive other one-bit telepo
tion circuits, which use differentC2 gates, and then discus
their application in constructing fault-tolerant gates.

By teleportingGuc& using X-teleportation and applying
G† to the teleportedGuc&, we obtain the following general
ized one-bit telelportation circuit:

~A1!

When G5I ^ n and H ^ n, Eq. ~A1! reduces to theX and Z-
teleportation circuits.

In Sec. III, we showed that all the operations inF3 can be
performed fault-tolerantly usingX-teleportation. Here, we
generalize the result to show that, ifUPC3 and U
5GbVGa , whereVPF3 and Ga ,GbPC2, then U can be
performed fault-tolerantly using the general one-bit telep
tation scheme by the following procedure:

Step 1.Using the circuit of Eq.~A1! with G5Ga , we first
teleport the stateuc& to the ancilla initialized in the state
u0& ^ n, and then applyU to the ancilla. This can be repre
sented by

~A2!

Step 2.CommutingU backwards, one obtains
05231
e
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~A3!

Note that the new classically controlled operation
GbVX^ nV†Gb

† , which is in C2 becauseVX^ nV†PC2.
Therefore, all the circuit elements can be performed fa
tolerantly, except those in the dotted box, which can be
placed by an ancilla in the stateVH^ n(u0& ^ n).

There areC3 gates that cannot be constructed usingX-
and Z-teleportationdirectly, but can be constructed usin
other one-bit teleportation circuits. For instance, t
controlled-Hadamard gateL1(H2)PC3\C2 does not com-
mute with E in Eq. ~10! for all possible combinations ofX
and Z teleportation circuits, butL1(H2) can be written as
GbVGa with Ga5Q2

† , Gb5L1(X2)Q2, andV5T1L1(S2
†),

whereQ5S†HSPC2. Thus,L1(H2) can still be performed
using the general one-bit teleportation scheme.

We remark that aC3 gate U5GbVGa with Ga , Gb
PC2, and VPF3 can be performedindirectly by applying
Ga ,V, andGb in sequence, whereV is applied byX telepor-
tation. If the operations in the generalized one-bit telepo
tion circuit @Gb ,L1(X), andGa of Eq. ~A3!# are also con-
sidered, the total requirements to performU by such indirect
implementation and by direct one-bit teleportation are alm
the same. But if we are given different one-bit teleportati
circuits as primitives, we can use them to directly telep
different sets ofC3 gates. In other words, if we are given th
circuit of Eq. ~11!, using an input ancilla in the stat
UA(u0& ^ n), we can teleportUPC3 that commutes withE; if
we are given the circuit of Eq.~A3!, using an input ancilla in
the stateVH^ n(u0& ^ n), we can teleportU in the form of
GbVGa . In this sense, then, the generalized one-bit telep
tation circuits are interesting and allow more gates inC3 to
be teleported directly.

APPENDIX B: FAULT-TOLERANT STATE PREPARATION

In this section, we first prove theorem 1 in Sec. III A b
construction. We then show how to create the three anc
states in Sec. IV fault-tolerantly. Finally, we explain how
prepare a class of encoded quantum states fault-tolerantl
recursive application of the one-bit teleportation scheme.

1. Fault-tolerant preparation of quantum states

A stabilizer of a quantum state is a quantum operator t
transforms the state to itself. LetC be the codeword spac
corresponding to an@@m,n## stabilizer code, which encode
n logical qubits usingm physical qubits. The stabilizerSof C
is an Abelian subgroup of the Pauli group, orC1, such that
uc&PC if and only if ; MPS,M uc&5uc&. By performing
error correction for the stabilizer code, we can project
arbitrary state onto an encoded state inC @8,2#.

The stabilizerS has 2m2n elements generated bym2n
independent operators inC1, and defines a quantum code
dimension 2n. Each encoded state is then determined bn
6-8
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extra independent stabilizers.~In the following, we will re-
strict our discussion to the codeword space and exclude
stabilizers of the code from the stabilizers of an encod
state.! For instance, the encodedu0& ^ n is determined byZi
for i 51, . . . ,n, where Zi is the encodedZ on each logic
qubit. In general, stabilizers need not commute with one
other and need not square to the identity. But an indepen
set of stabilizers can always be chosen to be a mutually c
muting set of elements that square to the identity. This
becauseuc&5U(u0& ^ n) for some encodedU, leading to a
possible choiceS(uc&)[$UZiU

†,i 51, . . . ,n% with the de-
sired properties. We restate the above as a lemma:

Lemma 1.For anyuc&, S(uc&) can be chosen such that;
M ,NPS(uc&), ~a! M25I and ~b! @M ,N#5MN2NM50.
Note that the elements inS(uc&) are all valid encoded op
erations, and their actions preserve the codeword space

As a quantum state is the simultaneous11 eigenstate of
its stabilizers, the state can be prepared by projecting
arbitrary encoded state onto the simultaneous11 eigenstate
of its stabilizers. In the following we will show how to crea
a class of quantum states fault-tolerantly by measuring t
stabilizers.

Given a quantum stateuc& encoded with an@@m,n## sta-
bilizer code, the operatorMPC2 with M25I can be mea-
sured fault-tolerantly onuc& as follows. First, we prepare
cat state defined by

ucat&[
1

A2
~ u0̄&1u1̄&), ~B1!

where u ī & consists ofm physical qubits in the stateu i & ( i
50,1). ~The cat state cannot be created fault-tolerantly,
it can always be verified@1#.! For the doubly even and self
dual CSS codes, the encodedMPC2 can be written asM
5M1

^ •••^ Mm, whereM j acts only on thej th physical
qubit of each block of the encoded stateuc&. For eachj, we
perform a controlled-M j gate with thej th qubit of the cat
state as the control bit and thej th qubit of uc& as the target
qubit. Effectively, a cat-state-controlled-M gate is applied to
the stateucat&uc& with transversal operations leading to th
state

1

A2
u0̄&uc&1

1

A2
u1̄&M uc& ~B2!

5
1

2
~ u0̄&1u1̄&)~ I 1M !uc&1

1

2
~ u0̄&2u1̄&)~ I 2M !uc&.

~B3!

Note that asM25I , (I 6M )uc& are61 eigenstates ofM for
any uc&.

We can measure the cat state fault-tolerantly using
procedure described in@1,2# to distinguish u0̄&1u1̄& from
u0̄&2u1̄&. ~We omit the unimportant normalization factors!

If we obtain u0̄&1u1̄&, the encoded state is projected on
(I 1M )uc&, the11 eigenstate ofM; otherwise the resulting
05231
he
d

-
nt
-

is

n

ir

t

e

encoded state is (I 2M )uc&, the21 eigenstate ofM, which
may be transformed to a11 eigenstate ofM by the follow-
ing lemma.

Lemma 2.If MPC2 ,M25I , and there existsQPC2 such
that $M ,Q%5MQ1QM50, then we can always transform
an arbitrary encoded stateuc& onto a 11 eigenstate ofM
using fault-tolerant operations. The resulting11 eigenstate
is either (I 1M )uc& or (I 1M )Quc&, which can be written
jointly as (I 1M )Qauc& for a50 or 1.

Proof. We have shown that we can project an arbitra
encoded stateuc& onto (I 6M )uc&, the61 eigenstate ofM.
If the resulting state is (I 1M )uc&, we are done; otherwise
we applyQPC2 fault-tolerantly to (I 2M )uc&. SinceQ an-
ticommutes withM, it transforms the21 eigenstate ofM to
a 11 eigenstate of M as follows: Q(I 2M )uc&5(I
1M )(Quc&). Thus, we can always obtain a11 eigenstate
of M, which is (I 1M )Qauc& for a50 or 1.

Next we will show that a special class of quantum sta
can be created fault-tolerantly.

Lemma 3. If S(uc&)5$M1 , . . . ,Mn%,C2 and ; Mi
PS(uc&), there existsQiPC2 such that$Mi ,Qi%50, and
@Mi ,Qj #50 for iÞ j ; thenuc& can be created fault-tolerantl
by measuring the elements inS(uc&) fault-tolerantly.

Proof. By Lemma 1,; i, Mi
25I . Starting fromany en-

coded stateuf&, we measureM1 , . . . ,Mn sequentially, and
after each measurement we apply the corresponding op
tion Qi if the projected state is the21 eigenstate ofMi . By
lemma 2, the resulting state is

uc&5~ I 1Mn!Qn
an
•••~ I 1M1!Q1

a1uf& ~B4!

5~ I 1Mn!•••~ I 1M1!Qn
an
•••Q1

a1uf&, ~B5!

whereai50 or 1, and we have used the fact that@Mi ,Qj #
50 for iÞ j . As @Mi ,M j #50, it is easily verified that
; i , Mi uc&5uc&, and uc& is the desired state that has be
created fault-tolerantly.

Theorem 1 in Sec. III A immediately follows.
Theorem 1.; UPC3 , U can be applied to the encode

u0& ^ n state usingC2 operators and fault-tolerant measur
ment ofC2 operators.

Proof. Applying UPC3 to the encodedu0& ^ n state is
equivalent to preparing the stateuc&5U(u0& ^ n), which has
stabilizersMi5UZiU

† for i 51, . . . ,n. DefineQi[UXiU
†

PC2 for each i. Then $Zi ,Xi%50 implies $Mi ,Qi%
5U$Zi ,Xi%U

†50, and for iÞ j , @Zi ,Xj #50 implies
@Mi ,Qj #5U@Zi ,Xj #U

†50. Thus by lemma 3, the stateuc&
can be created fault-tolerantly.

2. Examples

To prepare a specific encoded state from anunknownen-
coded state, we need to measureall its independent stabiliz-
ers. When the initial state is aknownencoded state related t
the desired state, we may not have to measure all the in
pendent stabilizers. For instance, given two encoded st
uf& and uf8& with S(uf&)5$M1 , . . . ,Mk ,Mk11 , . . . ,Mn%
andS(uf8&)5$M1 , . . . ,Mk ,Mk118 , . . . ,Mn8%, the state
6-9
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~ I 1Mn!•••~ I 1Mk11!Qn
an
•••Qk11

ak11uf8& ~B6!

is the simultaneous11 eigenstate ofMi for i 51, . . . ,n.
Thus, starting fromuf8&, we can prepare the encoded sta
uf& by measuring only then2k different stabilizers. In the
following, we will construct an initial state, with which th
desired state can be obtained by measuring only a si
stabilizer.

Assume we want to prepare the encoded stateuc1&
5U(u0& ^ n) for UPC3. DefineMi and Qi for i 51, . . . ,n
as in the proof of theorem 1. ThenQi uc1& is a 21 eigen-
state ofMi such that̂ c1uQi uc1&50, and the state

uc&5
1

A2
~ uc1&1Qi uc1&) ~B7!

is different fromuc1& by only one independent stabilizer:Qi
has replacedMi . Therefore, the stateuc& also satisfies the
conditions of lemma 3, and can be prepared fault-toleran
It follows that to obtain the stateuc1&, we only need to
measure the single stabilizerMi on uc&.

To prepare an encoded stateuc1& by preparinguc& first
can be simpler than directly preparinguc1& from an arbitrary
encoded state ifuc& itself can be prepared easily. For in
stance, whenuc& is a product state, it can be prepared
measuring only single qubit operators. We will describe h
to prepare the required ancilla states for the three gate
Sec. IV. When the required ancillauc1& is an entangled stat
with multiple-qubit stabilizers, we will construct it by pre
paring an easier stateuc& first.

a. Fault-tolerant preparation of the ancilla required
for the T gate

The required ancilla for constructing thep/8 gate,T, is

uc1&5THu0&5
u0&1eip/4u1&

A2
, ~B8!

with stabilizer

M5~TH!Z~TH!†5e2 ip/4SX, ~B9!

which anticommutes with (TH)X(TH)†5Z. Then starting
from any encoded state, we can measureM, and applyZ if
the projected state is the21 eigenstate, to create the sta
uc1& fault-tolerantly.

b. Fault-tolerant preparation of the ancilla required
for the controlled-phase gate

The required ancilla for constructing the controlled-pha
gate is

uc1&5L1~S!~H1^ H2!u00& ~B10!

5
1

2
~ u00&1u01&1u10&1 i u11&), ~B11!
05231
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with stabilizers Mi5L1(S)(H1^ H2)Zi(H1^ H2)L1(S†)
for i 51,2. Using Eqs.~17! and ~18!,

M15~X1^ S2!L~Z!, ~B12!

M25~S1^ X2!L~Z!. ~B13!

The corresponding operator that anticommutes withMi is
Qi5L1(S)(H1^ H2)Xi(H1^ H2)L1(S†)5Zi for i 51,2.
uc1& is an entangled state, and bothM1 and M2 are two-
qubit operators. But the state

uc&5
1

A2
~ uc1&1Q1uc1&) ~B14!

5
1

A2
u0&~ u0&1u1&) ~B15!

is a product of single qubit states and has stabilizersZ1 and
X2. Thus, we can first prepareuc& fault-tolerantly by mea-
suringZ1 andX2, and then measureM1 alone to get the state
uc1&. Equivalently, we can also first prepare the sta
(uc1&1Q2uc1&)/A25(u0&1u1&)u0&/A2, which has stabi-
lizers X2 andZ1, and measureM2 to obtain the stateuc1&.

c. Fault-tolerant preparation of the required ancilla
for the Toffoli gate

The required ancilla for the Toffoli gate construction is

uc1&5U~H1^ H2!u000& ~B16!

5
1

2
~ u000&1u010&1u100&1u111&), ~B17!

where U is the Toffoli gate. The stabilizer of this state
Mi5U(H1^ H2)Zi(H1^ H2)U† for i 51, 2, and 3. Using
Eqs.~23! and ~24!,

M15X1^ CNOT23, ~B18!

M25X2^ CNOT13, ~B19!

M35Z3^ CZ12, ~B20!

where CZ represents a controlled-Z, and theordered sub-
scripts forCNOT and CZ specify the control and target bits
The operator that anticommutes withMi is Qi5U(H1
^ H2)Xi(H1^ H2)U†, or Z1 ,Z2 andX3 for i 51, 2, and 3,
respectively. Again, each ofMi is a two-qubit operator, bu
the state

uc&5
1

A2
~ uc1&1Q1uc1&)5

1

A2
u0&~ u0&1u1&)u0&

~B21!

can be prepared easily by measuring its stabilizersZ1 , X2,
and Z3. Then we only need to measure a single two-qu
operatorM1 on uc& to obtain uc1&. Equivalently, we can
also first prepare the stateuc&5(1/A2)(I 1Q2)uc1& with
6-10
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stabilizers X1 , Z2, and Z3 or the state uc&5(1/A2)(I
1Q3)uc1& with stabilizersX1 , X2, andX3, and measure the
corresponding single stabilizer to obtainuc1&.

3. Recursive preparation

In this subsection, we will prove the following theorem
which is used in Sec. III C.

Theorem 2.The encoded stateuc&5UH ^ n(u0& ^ n) for U
PFk can be prepared fault-tolerantly by recursive appli
tion of one-bit teleportation.

First we have the following lemma, which is a genera
zation of lemma 3.

Lemma 4.uc& can be created fault-tolerantly if give
S(uc&)5$M1 , . . . ,Mn%, ; i , j : ~i! the cat-state-controlled
Mi operation can be performed fault-tolerantly;~ii ! there ex-
ists Qi such that Qi can be performed fault-tolerantly
$Mi ,Qi%50, and foriÞ j ,@Mi ,Qj #50.

Proof. SinceMi
25I , by applying the cat-state-controlle

Mi operation and measuring the cat state fault-tolerantly
before, we can project any encoded state onto a61 eigen-
state ofMi . Then applyQi if a 21 eigenstate is obtained
Using the same argument as in the proof of lemma 3, we
fault-tolerantly prepare the stateuc&.

Lemma 5. If operations in Fk21 and the cat-state
controlled-V operation for anyVPFk22 can be performed
fault-tolerantly using the one-bit teleportation scheme, th
UH ^ n(u0& ^ n) for UPFk can be created fault-tolerantly.

Proof. The stabilizers of uc&5UH ^ n(u0& ^ n) are Mi
5UH ^ nZi(UH ^ n)†5UXiU

†5UxXi for some UxPFk21.
DefineQi[UZiU

†5Zi . Qi satisfies condition~ii ! of lemma
4.

SinceMi5UxXi , the cat-state-controlled-Mi operation is
the product of cat-state-controlled-Ux and cat-state-
controlled-Xi operations. The cat-state-controlled-Xi opera-
tion is easily performed fault-tolerantly. Thus it remains
show how to perform the cat-state-controlled-Ux operation
for UxPFk21 fault-tolerantly.

As UxPFk21 is constructed with the one-bit teleportatio
scheme using the circuit of Eq.~11!, whereAi5H, Bi5I ,
andDi5Xi , to perform the cat-state-controlledUx operator,
we need to perform the cat-state-controlled-E and cat-state-
controlled UxXiUx

† operations and to prepare the anci
UxH

^ n(u0& ^ n) fault-tolerantly. As EPC2 and UxXiUx
†

5Ux8Xi with Ux8PFk22, both the cat-state-controlledE and
cat-state-controlled-UxDiUx

† operations can be performe
fault-tolerantly. Next, the stateUxH

^ nu0& ^ n has stabilizers
Mi85UxXiUx

†5Ux8Xi with Ux8PFk22, which satisfies both
conditions of lemma 4 and can therefore be prepared fa
tolerantly. Thus the cat-state-controlled-Ux operation can be
un
s
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performed fault-tolerantly. This completes the proof
lemma 5.

In fact, what we have shown in the proof of lemma 5
that if operations inFk21 and the cat-state-controlledV op-
eration forVPFk22 can be performed fault-tolerantly, the
the cat-state-controlled-U operation forUPFk21 and opera-
tions inFk can be performed fault-tolerantly. This is becau
according to Sec. III C, fault-tolerant construction ofFk
gates only requires fault-tolerantFk21 gates and an ancilla
UH ^ n(u0& ^ n) for UPFk .

Since both the operations inF2 and the cat-state
controlled U operation forUPF1 can be performed fault-
tolerantly, by induction, operations inFk and the cat-state
controlled U operation for UPFk21 can be constructed
fault-tolerantly, with which we can fault-tolerantly prepa
the encoded stateUH ^ n(u0& ^ n) for UPFk .

APPENDIX C: ALTERNATIVE REMOTE CNOT CIRCUIT

In this appendix, we rederive the remoteCNOT construc-
tion, given in@8#, using one-bit teleportation. A remoteCNOT

construction between the statesua& and ub& belonging to
Alice and Bob, respectively, can be performed by a four-s
procedure:~i! Alice swaps her stateua& with an ancillau0&,
~ii ! Alice sends the teleportedua& to Bob usingX teleporta-
tion, ~iii ! Bob appliesCNOT construction fromua& to ub&,
and ~iv! Bob teleportsua& back to Alice usingZ teleporta-
tion. Steps~ii ! and~iv! involve prohibited operations. Here i
a circuit representation:

~C1!

The two prohibitedCNOT gates are labeled with asterisk
They can be commuted backwards to obtain the equiva
circuit

~C2!

which again reduces prohibited operations to some spe
shared entangled state.
.
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