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We present a general method to construct fault-tolerant quantum logic gates with a simple primitive, which
is an analog of quantum teleportation. The technique extends previous results based on traditional quantum
teleportation[Gottesman and Chuang, Natufleondon 402, 390 (1999] and leads to straightforward and
systematic construction of many fault-tolerant encoded operations, including/&hand Toffoli gates. The
technique can also be applied to the construction of remote quantum operations that cannot be directly
performed.

PACS numbd(s): 03.67—a

[. INTRODUCTION they have been largely constructed by hand and offer neither
an explanation of why a particular ancilla state is required
Practical realization of quantum information processingnor a systematic path for generalization.
requires specific types of quantum operations that may be A general framework for addressing such problems has
difficult to construct. In particular, to perform quantum com- been presented if8]; it uses quantum teleportation as a ba-
putation robustly in the presence of noise, one needs fauliC primitive to enable construction of quantum operations
tolerant implementation of quantum gates acting on stateffiat cannot be directly performed through unitary operations.
that are block-encoded using quantum error-correcting codeEhis framework provides systematic and generalizable con-
[1_4] Fault-tolerant quantum gates must prevent propagaStI’UCtion for an infinite famlly of fault-tolerant gates, includ-
tion of single qubit errors to multiple qubits within any code ing the 7/8 and Toffoli gates. It does not, however, lead to
block so that small correctable errors will not grow to exceedtircuits equivalent t@or as simple asprior ad hocconstruc-
the correction capability of the code. This requirementtion for the same gates.
greatly restricts the types of unitary operations that can be In this paper, we provide an extension to the teleportation
performed on the encoded qubits. Certain fault-tolerant opmethod of gate construction with a similar but simpler primi-
erations can be implemented easily by performing directive, which we call “one-bit teleportation” because it uses
transversaloperations on the encoded qubits, in which eactPne qubit instead of two as ancilla. This method simplifies
qubit in a block interacts only with one corresponding qubit,theé construction of9] and, furthermore, provides strikingly
either in another block or in a specialized ancilla. Unfortu-unified construction of ther/8, controlled-phase, and Toffoli
nately, for a given code, only a few useful operations can b@ates. An infinite hlerarchy of gates, including the controlled
done transversely, and these are not universal in that thaytations diag(1,1 33'2”’2) used in the quantum factoring
cannot be composed to approximate an arbitrary quanturalgorithm[10], can be constructed with the present scheme.
circuit. To obtain a universal set of gates, additional gates The structure of the paper is as follows. First, in Sec. Il
have to be constructed using ancilla states and fault-tolerante define one-bit teleportation, and describe its properties
measurement. Although these additional gates have beend various guises. Its application to fault-tolerant gate con-
constructed successfullsL,3,5,8, their ad hocconstruction  struction is presented in Sec. lll, which is followed in Sec.
is complicated and is not easily generalized. IV with specific circuits for thew/8, controlled-phase, and
Another kind of application in which we are challenged to Toffoli gates. In Sec. V, we describe the use of one-bit tele-
construct useful quantum operations from a limited set oportation to derive the two-bit quantum teleportation proto-
primitives is in distributed quantum information processing.col and to construct a remote quantum gate. We summarize
In this problem, certain kinds of communication betweenour results in Sec. VI.
different parties are constrained or prohibited, but prior dis-
tribution of standarq states may be allowed. For example, Il. ONE-BIT TELEPORTATION
quantum teleportatiorf7] demonstrates how an unknown
guantum state can be sent between two parties without send- In standard quantum teleportation, Alice performs a joint
ing any quantum information, using only classical communi-measurement of the unknown qubit and some ancilla, and
cation and prior entanglement. Protocols for distributed statgsends the classical measurement outcome to Bob, who sub-
preparation and computation are also kndBh but again, sequently reconstructs the unknown state. No quantum op-
eration is performed jointly by Alice and Bob, but they need
a certaintwo-qubit entangledancilla state.(We refer to any

*Electronic address: xlz@snow.stanford.edu state other than the original unknown qubit state as an ancilla
"Electronic address: wcleung@leland.stanford.edu state) The same objective, communicating a qubit, can be
*Electronic address: ichuang@almaden.ibom.com accomplished in a simpler manner if Alice and Bob are al-
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lowed to perform a quantum gafsuch as a controlledoT Using Z-teleportation we can derive other one-bit telepor-
gate, acNOT) between their respective qubits. In this case,tation circuits. For instance, the following circuit first tele-
only asingle qubit ancilla in Bob’s possession is required. ports the statéd|y) using Z-teleportation, and then applies
We call such a quantum circuit one-bit teleportation, whichH"=H to the teleported statél|) to obtain the original
can be derived using the following facts. state|y):

Fact 1.An unknown qubit stat¢) can be swapped with

the state|0) using only twocNOT gates, as shown in the
following circuit: 0) H ’— )
|0) ) ) —{ | Y (6)

()
) >— [0) o o
This circuit can be simplified to
Note that in all circuits we show, time proceeds from left to
right as is usual, and conventions are alif]. Throughout |0)

this section, the first and second qubits refer to the registers
with respective initial statel0) and|).

Fact 2. X=HZH, whereX andZ are Pauli operators, and |y ———4
H is the Hadamard gate defined as

@)

which we refer to as X-teleportation.” Similarly, we can
1 (2)  derive other one-hit teleportation circuits as discussed in Ap-
NA pendix A. We will focus onX- and Z-teleportation circuits
because they are sufficient for our construction in this paper.
Then Eq.(1) is equivalent to the following circuit: X- and Z-teleportation circuits can both be represented
using the same general structure:

3 10y —{ 4] D} ¥
— E

1 1

H= :
1 -1

& [z}

|
Fact 3. A quantum-controlled gate can be replaced by a ) ———— E EE ®
classically controlled operation when the control qubit is

measured. where the first qubitthe ancilla qubit is initially in the |0)
state. FoiZ-teleportationA=1 (I is the 2x 2 identity opera-
tor), B=H, D=Z, andE is acNOT gate with the first qubit

= | as its target. FoK-teleportationA=H, B=1, D=X, and

EE E‘ (4) E is acNoT gate with the first qubit as its control.

Ill. FAULT-TOLERANT GATE CONSTRUCTION USING

The meter represents the measuremer#,ofthich projects ONE-BIT TELEPORTATION

the measured state on@) or |1). The double line coming
out of the meter carries thetassicalmeasurement result, and In this section, we develop a general method for fault-
U is performed if the measurement resulf 13. tolerant gate construction using one-bit teleportation as a ba-
In Eqg. (3), the two qubits are disentangled before the secsic primitive. We will confine our attention to the
ond Hadamard gate. Therefore, the second qubit can be me@alderbank-Shor-Stean €S9 codes that are doubly even
sured before the second Hadamard gate without affecting thend self-dua[12,13,1, although the results can be extended
unknown state in the first qubit. Applying fact 3 to E®§)  to any other stabilizer codé9].
results in the following circuit:

A. Fault-tolerant gate hierarchy

|0) —¢ |¥) We first summarize the fault-tolerant gate hierarchy intro-
duced in[9]. Let C; denote thePauli group Then for k

|4) EIE (5) =2, we can recursively defing, as

C={uluc,u'cCy_}. 9)

The circuit in Eq.(5) uses a controlledioT (CNOT) gate and

only one qubit for the ancilla. Therefore it is a one-bit tele- For everyk, C,DCy_;, and the set differenc€\Cy_; is
portation circuit, which we refer to asZ-teleportation” be- nonempty. For instance, diag(aflz,”’zk) e C\Cy_1.

cause a classically controlletlis applied after the measure-  C, is a group called th€lifford group [8], which is the
ment. set of operators that conjugate Pauli operators into Pauli op-
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erators. Besides the Pauli operatd€s, also contains other on _m

important gates, such as tbeoT gate,H, and the phase gate 102 B ? Uly)
S (defined byS|x)=i*x) for xe{0,1}). For doubly even n (10)
and self-dual CSS codes, any enco@idgate has transver- W) +—— . ﬂ

sal unitary implementatiofil,5], which is fault-tolerant.

C, gates alone, however, are not sufficient for universaln Eq. (10), a register(wire) with the symbol “/"” repre-
quantum computatiofi8]. An additional gate outsid€, is  sents a bundle ofi logical qubits.A is a bitwise operation,
necessary and sufficient to complete universli#y]. In par- A=A;®---®A,, whereA; acts on theith logical qubit
ticular, adding any one of the following gates@\C, to  only. B is a bitwise operation similar té\. E is a tensor
the Clifford group results in a universal set of unitary opera-product such thae=E;® - - - ® E;,, where eaclk; is acNOT
tions: the 7/8 gate T (T|x)=¢€™"*|x) for xe{0,1}), the gate between théth logical qubits of|¢) and the known
controlled-phase gatd ;(S) [A1(S)|xy)=i*Y|xy) for x,y  ancilla. The measurement box measurebitwise and the
={0,1], and the Toffoli gate(controlled-controllecvoT)  double line represents thebit classical outcome. Thih
[1,15,6. classical bit controls whether an operalris performed on

The construction of an encoded operationGg\C, is  theith logical state in the first register. This is denotedlby
much more complicated than that of an encoded operation ifor the sake of simplicity.

C,, and requires quantum measurement and a particular an- According to Sec. Il, ifZ-teleportation is applied to the

cilla state. But applying €3\ C, gate to certaitknownstates ith logical qubit,Aj=I, Bi=H, D;=2Z, andE; is aCcNOT
can be replaced by direct preparation of the final stateggate with the first qubit as its target; X teleportation is
which can be relatively easier as stated in the following. applied insteadA;j=H, B;j=1, D;=X, andE; is a cCNOT

Theorem 1l.lLet U be ann-qubit gate inC5;. Then the gate with the first qubit as its control.
encoded stat&J(|0)*") can be prepared fault-tolerantly by ~ We now commutel backwards in time. Commuting
applying and measurinG, operators. with the classically controlled operatiod changesD to
Proof. See Appendix B. UDU'. AsDeC,; andU e C;, UDU'eC, can still be per-
SinceCj is closed under multiplication by elements@ ~ formed transversely. Likewise, commutibgwith E changes
[16], theorem 1 is also applicable whi)®" is replaced by E to UEUT [17]. As thecNoOT gate ¢ C,, the resulting op-
V(|0)#™ for Ve C,, becausdJ|)=UV(]0)*") with UV erationUEU"T may not be inC, for an arbitraryU e C5. To
e C3. We will use theorem 1 in our fault-tolerant logic gate ensuretUEU" e C,, we only considet) that commutes with

construction. E such thatUEUT=E e C,. Then Eq.(10) becomes
B. C; gate construction using one-bit teleportation Cen a1
We now consider a general method of constructing fault- l) - ” ) E 1)
tolerant gates ifC5 using the one-bit teleportation scheme as "
a primitive. The basic idea is the following. To apply the %) . Eﬁ (11)

encoded operatiok) to an encoded state/), we can first
teleport|¢) by eitherX- or Z-teleportation, and apply to
the reconstructediy). The extra teleportation step can be

done fault-tolerantly bec - i S
u y because both andZ-teleportation use jout ancilla in the stat&JA(|0)*"), we can applyJ € C; to

C, gates only. It further reduces the problem of fault-toleran .
29 y P any encoded state/) fault-tolerantly. AsAe C,, UA is also

construction of a quantum logic gate to fault-tolerant prepa“

. ) P
ration of a particular ancilla state. The reason for the reduc Cs operation. By theorem 1, the ancilla State\(|0) ")

tion is thatU is applied to the ancilla, which is originally in €a@n be created fault-tolerantly. The stabilizers of such an

the knownstate|0). If U can be commuted backwards until ancilla state, whiqh will be measured in preparing the state,
it is applied to aknownstate without introducing more com- €an be easily derived. Recall that whap=1, D;=Z7;, and
plicated gates, we can prepare the resulting known statayhenA;=H, D;=X;. Therefore A;Z,Al=D; is always true
without applyingU directly, as the input ancilla. Using such [18], and the stabilizers olUA(]0)®") are UAZ,A/UT

All the circuit elements outside the dotted box can be per-
formed fault-tolerantly. Therefore, if we can prepare the in-

an ancilla, the reconstructed state after thedifiedone-bit =UD;UTeC,.
teleportation circuit will belJ| ). That is, the encoded has Using the above method, we can systematically construct
been applied to the encodédl) fault-tolerantly. interesting gates ifC3\C,, including the /8, controlled-

We now detail the formal construction. LBte C; be an  phase, and Toffoli gate, as will be shown in Sec. IV.
n-qubit gate to be applied tas), an encoded quantum state  Finally, we remark that th€; gates commuting withe
with n logical qubits. We first teleport each logical qubit are not the only gates that can be performed by the one-bit
using eitherX- or Z-teleportation such thaftys) is recon- teleportation scheme. Ang; gate of the formU =G,V G,
structed in the ancilla, which is initially in thg9)®" state.  for V commuting withE andG,,G, e C, can be performed
We then applyU to the reconstructeti)) to obtainU| ). using the generalized one-bit teleportation circuits. We dis-
This is described by the following quantum circuit: cuss this in Appendix A.
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C. Recursive construction A. The #/8 gate

The 7/8 gate,T, has the following matrix representation:
In this section, we extend our discussion to the gat&3in
and characterize a class of gates that can be recursively con-
structed with one-bit teleportation as a basic primitive. T=
We prove by induction that the diagonal subsetGyf,
defined byF,={U e Cy and U is diagonaj, can be recur-
sively constructed.
First, whenU e F,, we choose to applX teleportation to )
each logical qubit. In this case, eaEhis aCNOT gate taking |4

1 0

0 ei 4| (12)

As T is diagonal, following the recipe in Sec. lll, we choose
to apply X-teleportation td ) and applyT to the teleported

theith logical qubit in the ancilla as the control bit. There-

fore, E commutes withU and Eg. (11) holds with A, 10) . 1

=H, B;=1, andD;=X; fori=1,...n. Second, since for

UeF, andPeC,, UPUT=UP for someUeF,_, [16], |¢>__J (13

UD;UT=UX;UT=U,X; for someU,eF,_;. Therefore, if
the gates i, _; can be performed, the classically controlled ) ] ‘
operationUD;U" for U e F, can also be performed. Third, We commuteT backwards using two facts. FirsT,XT

the required ancillaUH®"(]0)*") can be prepared fault- =€ '~ SX where the phase gafis defined in Sec. Il A.
tolerantly with recursive construction as shown in AppendixS€cond,T commutes with thecNOT gate by construction.
B. Finally, the gates ifF ,C C, have transversal implemen- Thus, we obtain a circuit to implement the8 gate(where
tation. By induction, all the gates iR, can be performed @n irrelevant overall phase has been igngired
fault-tolerantly with recursive application of the one-bit tele-

portation scheme.

The setsF, contain many interesting gates, such\ds 10) ’_@— T¥)

=diag(1e'™2"), which are the single qubit/2X rotations, (14)
and A,(V< Y =diag(1,1,2¢'™2 "), which are the con- %) & @

trolled rotations used in the quantum Fourier transform cir-

cuit [10,19 essential to Shor’s factoring algorithfa0]. F

also includes the multiple-qubit gates,(V') for n+I<k All the circuit elements outside the dotted box can be

[16], whereA (V') appliesV' to the (+1)th qubit if and  performed fault-tolerantly. The dotted box, then, can be re-
only if the firstn qubits are all in the statd ). By the closure placed by an ancilla in the state

property ofF, [16], all products ofA (V') for n+I<k are

in F.. To perform gates irF, for k small, the recursive

construction we have described can be more efficient than |0)+e'™|1)

approximating these gates to the same accuracy using a uni- |¢+>:TH|0>:T, (15
versal set of fault-tolerant quantum logic gates.

The gates inF, are not the only ones that can be con- . .
structed using the one-bit teleportation scheme. For instanc¥/Nich can be prepared fault-tolerantly as described in Ap-
if UeC, is related to an element i, by conjugation with ~ Pe€ndix B. Thus, we have derived a circuit and the corre-
Hadamard gates in thgth, ... ,ith qubits,E can be made sponding anC|IIz_i for pe_rformlng the fau_lt-t(_)leraniS gf'ite.
to commute withU by applying Z-teleportation to theth, We note that this rederives the same circuit and ancilla state
..., ijth qubits andX-teleportation to the rest. The Toffoli used in[6].
gate is an example. More generally, any gate that is a product
o_f C|2 gates and a singlE, gate can be constructed recur- B. The controlled-phase gate
sively.

Y The controlled-phase gate;(S) (defined in Sec. lll Ais
V. EXAMPLES in C3, and forms a universal set of gatfkb,11] together
with H and thecNoOT gate.
We use the following circuit symbol fah 1(S):

In this section, we systematically construct three impor-
tant fault-tolerant gates i€3\C, using the general method %
described in Sec. lll. Any one of these gates, together with (16)
the Clifford group, forms a universal set of gates. For each S
construction, we will derive the required circuit and the an-
cilla. The ancilla can always be prepared fault-toleratdge  A;(S) commutes withZ;, and conjugates(; (i=1,2) as
Appendix B. follows:

052316-4



METHODOLOGY FOR QUANTUM LOGIC GATE CONSTRUCTION PHYSICAL REVIEW A2 052316

’ ' {5 —Axbr=
- 17
=
(23)
= (18)
where the controlle@ operation,A ;(Z), acts on basis states B =
as A1(2)[x)]yy=(—1)"Y|x)|y). To constructA,(S), we - L@' 24
first teleport the two-qubit statey) and applyA,(S). This (24)
linear transformation preserves phase coherence, and thus, it ——@ @—

suffices to consider its action on the basis stétg$. Since
A4(S) is diagonal, we applyX-teleportation to both qubit  ag i he controlled-phase gate construction, we demonstrate

states such that thenoT gates in the circuit commute with the construction on basis states/2) for three qubits. We

Aq(9). first teleport|xyz) and then apply a Toffoli gate. Since the
Toffoli gate is diagonalized by a Hadamard transform on the

'0)—@ s |z) target qubit, the choice oK-teleportation for the control
qubits andZ-teleportation for the target qubit ensures that the
[s}— =) three cNOT gates commute with the Toffoli gate.

10y —{ &} % I]

) 19 10— (x] |z)
) o) —{] L'YH lv)
(1

. . . |0) \Z] |z & zy)
CommutingA 1(S) backwards using the commutation rules )
in Egs.(17) and(18), we obtain a circuit for the controlled- 1) ES’
phase gate: 25

10—} T » W &\
§|°)f ZX iz S U ) ————— N

|z) % Commuting the Toffoli gate backwards to the far left using
rj (20 Eqgs.(23) and(24), Eqg. (25) is equivalent to
ly) N

10— ] X lz)
where the double lines control all the operations in the cor: &l
responding boxes. All the circuit elements in E20), except §'°)_@ zj—{x} Iy}
those in the dotted box, can be performed fault-tolerantly 7 2@ 2)
Finally, we can replace the dotted box by an input ancilla in”™""""""" =
the following state: |
|64)=A1(S)(H1®H)|00) @) = (29
1
=5(100)+(01)+[10) +i[11)), 22 ™ a8

All the circuit elements except those in the dotted box can be

wh|c_h can be prepared_fault-tolerantly. This completes theperformed fault-tolerantly. It remains to prepare the state cre-
requirement for performing the controlled-phase gate fault—ateol in the dotted box

tolerantly.
[¢+)=U(H1®H3)[000) (27)
C. The Toffoli gate
To construct the Toffoli gatécontrolled-controlledNoT), _ l
we begin with some useful commutation rules: 2(|OOO>+ 010 +]100 +]111), (28)
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whereU denotes the Toffoli gate. Again this ancilla state can ) —————4
be prepared fault-tolerantly, as described in Appendix B. A{ )
The ancilla and the quantum circuit derived here are the 0y —{ &}

same as those in Shor’s original construcfibh The one-bit (31

teleportation scheme elucidates the choice of the ancilla state B{0)
and the procedure ifL].

In Eqg. (31), the prohibitedcNOT gate acts on thknownstate
inside the dotted box, which can be replaced by the follow-
V. REMOTE GATE CONSTRUCTION USING ONE-BIT ing state it creates:

TELEPORTATION

The one-bit teleportation scheme, in addition to being |$)=A1(X)H,|00)= i(|oo>+|11>)_ (32
useful for fault-tolerant gate construction, can also be used to \/5

design a variety of remote quantum operations. Constructinﬂ1 o ) )
remote quantum operations is related to constructing faultln other words, if Alice shares this entangled state with Bob,
tolerant gates in that both require a particular ancilla state t1e statd ) can be sent to Bob without quantum communi-
replace a prohibited operation. In this section, we use one-bfation. .

teleportation as a basic primitive to derive the quantum cir- Note that the classically controlled-on the second reg-
cuits and the required ancilla states for the two-bit quantunister only affects its overall sign, and can be omitted since

teleportation and the remotvoT gate. the second register is subsequently measured.
An alternative circuit, which accomplishes the same task,

can be derived whe#- and X-teleportation are used for the

A. Two-bit teleportation two steps instead. We start with the following circuit:

Suppose Alice needs to send a qubit stat® to Bob. Lo rQl
Direct quantum communication is not allowed, but Alice and A ,W) Ei
Bob can share some ancilla state. The question is, how can ; | L
Alice send| ) to Bob? A well-known solution to this prob- . [0) © Zr (33)
lem is quantum teleportatiofv], which uses an EPR state
and classical communication. Using one-bit teleportation, we B{|0) ———.——< .
give an alternative derivation of the requirezhtangled an- T
cilla and the required teleportation circuit. ; ;

) o ... Using the commutation rule

We first construct a circuit to send the unknown state with 9

a prohibited operation. Then we remove the requirement of
— (34

municated from Alice to Bob. Alice can sefd) to Bob by =
applying one-bit teleportation twice. Step 1: Alice swaps
with an ancilla)0) usingX-teleportation. Step 2: Alice sends
the teleported¢) to Bob usingZ-teleportation(with a pro-
hibited cNOT gate in this step The circuit representation for
the process is

such a prohibited operation. Lgy) be the state to be com- _@ L@"
-

we can commute the prohibitexhoT gate backwards to ob-
tain an equivalent quantum teleportation circuit,

.
A 35
{|0) %

(29 B0

The disallowed element in the dotted box can be replaced by

terisk, can be commuted backwards using the commutatiofontrolledZ on the second register can be omitted.
relation The two-bit teleportation circuits of Eq&1) and(35) are

equivalent to that if20], but as mentioned above, they are
_@ @_ derived differently.

B{l0)

= (30
@_ B. RemotecNoT gate
Suppose Alice and Bob have in their possession quantum
states|a) and |B), respectively. How can they perform a
This leads to the usual quantum teleportation circuit simple distributed computation,aioT gate from|a) to | 8),
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without communicating any quantum information between VI. CONCLUSION
them, but perhaps with the aid of some initially shared stan-

dard quantum state? A solution to this problem is given 'nvariety of quantum operations, by using a primitive one-bit
[8]. The ad hoc r_nethod _employed, ho_wever, does_ not Sug'teleportation scheme. Such a scheme reduces the problem of
gest a systematic technique for deriving the solution, or SOgonstructing a quantum logic gate to preparing an ancilla
Iutions_ to general_ized versions of this problem. Here, We USQiate created by the same gate applied to a known state. The
one-bit teleportation to present a general technique and dgmefulness of this technique is particularly manifest for two
rive a different circuit that accomplishes the same task.  kinds of application: fault-tolerant quantum computation and

Alice and Bob first swap their states with their respectiveremote quantum computation, as demonstrated in our con-
ancilla state|0) by one-bit teleportation, and then apply a struction of therr/8, controlled-phase, and Toffoli gates, and
prohibited cNOT gate. The quantum circuit is chosen so thatthe remotesNOT gate. With recursive application of the one-
Alice usesX teleportation and Bob usesteleportation: bit teleportation scheme, we can also construct an infinite
hierarchy of gates fault-tolerantly.

The idea of teleporting quantum logic gates has been used
in [9], with two-bit teleportation as a primitive, to perform
universal quantum computation. The two-bit teleportation
scheme allowsll C5 gates to be teleported fault-tolerantly,
andall C, gates to be teleported with recursive application
of the scheme. For one-bit teleportation, however, we can
only providesufficientconditions for gates iIC5 to be tele-
portable, namely, an¢ 3 gate that can be written as a prod-
uct of C, gates and a singl€; gate that commutes with the
CNOT gate. It is not known if this includes all th€; gates.

The difficulty in describing the exact set of one-bit teleport-

The prohibitedcNOT gate can be commuted backwards toable C; gates arises from the requirement fo€a\ C, gate
obtain a remote&NOT circuit: in the one-bit teleportation circuit. SuchGy\C, gate may
be conjugated outsidg, by aC5 gate, and therefore cannot
be directly performed fault-tolerantly. This places a further
constraint on the teleportablg e C, for k>3. Because of
our present lack of understanding of the general structure and
nature ofC, gates, the distinction between the ultimate ca-
pabilities of the one- and two-bit teleportation schemes re-

We have presented a systematic technique to construct a

{Ia) .
A e
o —{z)

0) ———¢ mains an interesting and difficult question.
B Nevertheless, as we have shown, one-bit teleportation can
18) @ provide much simpler protocols than two-bit teleportation in

constructing quantum logic gates. This is because one-bit
geleportation only requires projective measurement ahd
g@s many ancilla qubits as the state to be transformed; two-bit
teleportation, however, requires Bell measurement and twice
as many ancilla qubits as the original state.

The prohibited operation in the dotted box is applied to
known state, and can be replaced by the EPR state of
(32). Provided such a shared entangled state is initially avail

able to Alice and Bob, they can perform a remateoT . :
operation using two bits of classical communication. At a very general level, the logical gate teleportation

Note that a remoteNoT gate can also be constructed by schemes reduce the difficulty of constructing quantum logic
using two-bit teleportation twice in an obvious way: Bob first 92t€s by using special ancilla states. This can be useful not
sends his qubitg) to Alice with two-bit teleportation, and NIy for simplifying hardware requirements, but also for de-
then Alice applies theNnoT operation to|a)|8) and sends signing and optimizing computation and communication pro-
the qubit|a® B) to Bob with two-bit teleportation. Such tocols [21,22. Even more intriguing, perhaps, is that this

construction, however, requires two pairs of maximally en-/6Sult gives us a first glimpse at what might someday be a

tangled states and four bits of classical communicationStandard architecture for a quantum computer: a simple as-

which is twice that required for the one-bit teleportation sembly of one-bit teIepprtation primitives, capa_ble of univerj
scheme sal quantum computation on quantum data, given the assis-

Our remotecNOT construction in Eq.(37) is different tance of standard quantum states that are obtained as

from that in[8], which can also be derived using the one-bitcommercial resources. The definition of such a stored-
teleportation scheme, as described in Appendix C. program architecture could be pivotal in the development of

Finally, we remark that the two examples of constructingth's field, much as the von Neumann or Harvard architecture

remote operations strengthen the concept of teleportinézg] was important in classical computation.
guantum logic gates with one-bit teleportation, as we have

: . P . ACKNOWLEDGMENTS
shown that if the input ancilla is a special state related to the
CNOT gate, the reconstructed state is the one to whickar The relation between fault-tolerant quantum logic gate
gate has been applied. construction and teleportation is first alluded to by SfHdr
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The X andZ teleportation circuits presented in this paper arg: e
due to Charles Bennett and Daniel Gottesrfmpublishegt 10)®" +—H®" :
We are grateful to Daniel Gottesman for introducing us to = |

the interesting subject of th&, hierarchy, and for enlight- [y +~ @ d
ening discussions. We thank Professor James Harris and Yo-

shihisa Yamamoto for support and encouragement. This

work was supported by the DARPA Ultra-scale Program unNote that the new classically controlled operation is
der the NMRQC initiative, Contract No. DAAG55-97-1- GpVX®"V'GJ, which is in C, becauseVX®"V'eC,.
0341, administered by the Army Research Office. D.L. ac-Therefore, all the circuit_ elements can be pe.rformed fault-
knowledges support from IBM and Nippon Telegraph andtolerantly, except those in the dotted box, which can be re-

Telephone CorporatiofNTT). placed by an ancilla in the statéH®"(|0)®").
There areC; gates that cannot be constructed usiig

and Z-teleportationdirectly, but can be constructed using
other one-bit teleportation circuits. For instance, the
controlled-Hadamard gat&;(H,) € C3\C, does not com-
mute with E in Eq. (10) for all possible combinations oX
] ) o ) and Z teleportation circuits, but\ ;(H,) can be written as
The one-b|t teleportation circuit u.sed in fault-tqlerant gateGbVGa with GaZQZ- Gp=A1(X2)Qs, andV=T1A1(S;),
construction has three components: a particular input am'"‘%hereQzS"HSa C,. Thus,A;(H,) can still be performed
a sequence o€, gates, and finally the measurement andyging the general one-bit teleportation scheme.
classmally co_ntrolled operation. The teleportability of one-bit  \we remark that aC, gate U=G,VG, with G,, G,
teleportation is governed by the sequenc€egfgates before . C,, andVeF; can be performedndirectly by applying
the measurement. Using te andZ-teleportation circuits of G,,V, andGy, in sequence, wheré is applied byX telepor-
Eg. (11), any Ue C5 that commutes withE can be tele- tation. If the operations in the generalized one-bit teleporta-
ported. In this appendix, we derive other one-bit teleportation circuit[G,,A,(X), andG, of Eq. (A3)] are also con-
tion circuits, which use differenC, gates, and then discuss sidered, the total requirements to perfothby such indirect
their application in constructing fault-tolerant gates. implementation and by direct one-bit teleportation are almost
By teleportingG|#) using X-teleportation and applying the same. But if we are given different one-bit teleportation
G' to the teleporteds| ), we obtain the following general- circuits as primitives, we can use them to directly teleport
ized one-bit telelportation circuit: different sets ofc; gates. In other words, if we are given the
circuit of Eq. (11), using an input ancilla in the state
UA(]0)*"), we can teleport) e C5 that commutes with; if
0)®" 4 frén Gt atxeng 1) we are given the circuit of EA3), using an input ancilla in
o H |_0_| H |—— the stateVH®"(]0)®*"), we can telepory in the form of
| L (A1) GpVG,. Inthis sense, then, the generalized one-bit telepor-
)7 1G] tation circuits are interesting and allow more gate€into
be teleported directly.

Uly)

(A3)

APPENDIX A: GENERALIZATIONS OF THE ONE-BIT
TELEPORTATION CIRCUITS

WhenG=1®" andH®", Eq. (A1) reduces to th& and Z-
teleportation circuits. APPENDIX B: FAULT-TOLERANT STATE PREPARATION

In Sec. lll, we showed that all the operationsHg can be
performed fault-tolerantly using-teleportation. Here, we
generalize the result to show that, leC; and U
=GLVG,, whereVeF; and G,,G,eC,, thenU can be
performed fault-tolerantly using the general one-bit telepor
tation scheme by the following procedure:

Step 1Using the circuit of Eq(A1) with G=G,, we first
teleport the statéy) to the ancilla initialized in the state
[0)®", and then applyJ to the ancilla. This can be repre- A stabilizer of a quantum state is a quantum operator that
sented by transforms the state to itself. Létbe the codeword space

corresponding to aff m,n]] stabilizer code, which encodes
n logical qubits usingn physical qubits. The stabiliz&of C

|0)&n % cixeng, GV G, }_ Ul) is an Abelian subgroup of the Pauli group, @y, such that

|y eC if and only if V M e S,M|¢)=|¢). By performing

In this section, we first prove theorem 1 in Sec. Il A by
construction. We then show how to create the three ancilla
states in Sec. |V fault-tolerantly. Finally, we explain how to
prepare a class of encoded quantum states fault-tolerantly by
recursive application of the one-bit teleportation scheme.

1. Fault-tolerant preparation of quantum states

) -2 Ia] (A2) error correction for the stabilizer code, we can project an
7 1Ze] arbitrary state onto an encoded stateCif8,2].
The stabilizerS has 2" " elements generated bm—n
independent operators {@;, and defines a quantum code of
Step 2.CommutingU backwards, one obtains dimension 2. Each encoded state is then determinednby
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extra independent stabilizer@n the following, we will re-

PHYSICAL REVIEW A2 052316

encoded state id ¢ M)|¢), the — 1 eigenstate oM, which

strict our discussion to the codeword space and exclude th@ay pe transformed to & 1 eigenstate oM by the follow-
stabilizers of the code from the stabilizers of an encodeghq'lemma.

state) For instance, the encodé@)®" is determined byz;
for i=1,...,n, whereZ; is the encoded on each logic

Lemma 2If M e C,,M?=1, and there exist® € C, such
that{M,Q}=MQ+QM=0, then we can always transform

qubit. In general, stabilizers need not commute with one ang, arpitrary encoded statey) onto a+1 eigenstate oM
other and need not square to the identity. But an independeqing fault-tolerant operations. The resultingl eigenstate

set of stabilizers can always be chosen to be a mutually comg gither (+M)|) or (1+M)Q|), which can be written
muting set of elements that square to the identity. This isjointly as (I +M)Q?y) for a=0 orll.

becausg #)=U(|0)*") for some encoded), leading to a
possible choiceS(|¢))={UZ;UT,i=1,... n} with the de-
sired properties. We restate the above as a lemma:
Lemma 1For any|¢), S(|#)) can be chosen such thdt
M,NeS(|#)), (@ M?=1 and (b) [M,N]J=MN—NM=0.
Note that the elements i§(|¢)) are all valid encoded op-
erations, and their actions preserve the codeword space.
As a quantum state is the simultanecu4 eigenstate of

Proof. We have shown that we can project an arbitrary

encoded statgy) onto (I =M)|#), the =1 eigenstate oi.

If the resulting state isI(+M)|), we are done; otherwise,
we applyQ e C, fault-tolerantly to (—M)| ). SinceQ an-
ticommutes withM, it transforms the- 1 eigenstate o to

a +1 eigenstate ofM as follows: Q(I—M)|y)y=(l
+M)(Q|)). Thus, we can always obtain-al eigenstate
of M, which is ( +M)Q?|¢) for a=0 or 1.

its stabilizers, the state can be prepared by projecting an next we will show that a special class of quantum states

arbitrary encoded state onto the simultaneés eigenstate

of its stabilizers. In the following we will show how to create

can be created fault-tolerantly.

Lemma 3.1f S(|¢))={M., ... M,}CC, and V M;,

a class of quantum states fault-tolerantly by measuring their. S(|¥)), there existsQ; e C, such that{M;,Q;}=0, and
! | [ ] ]

stabilizers.
Given a quantum states) encoded with afif m,n]] sta-
bilizer code, the operatav e C, with M2=1 can be mea-

sured fault-tolerantly omy) as follows. First, we prepare a

cat state defined by

1
|Cat>E—2(|0>+|1>), (B1)

V2

where i) consists ofm physical qubits in the statg) (i

=0,1). (The cat state cannot be created fault-tolerantly, but
it can always be verifiefil].) For the doubly even and self-

dual CSS codes, the encodbtle C, can be written asv
=M!®..-®M™ whereM’ acts only on thejth physical
qubit of each block of the encoded staie. For eachj, we
perform a controlledv! gate with thejth qubit of the cat
state as the control bit and thH& qubit of | ) as the target
qubit. Effectively, a cat-state-controlléd-gate is applied to

[M;,Qj]=0 fori#j; then| ) can be created fault-tolerantly
by measuring the elements &(|)) fault-tolerantly.

Proof. By Lemma 1,V i, Mi2=l. Starting fromany en-
coded staté¢), we measurd,, ... M, sequentially, and
after each measurement we apply the corresponding opera-
tion Q; if the projected state is the 1 eigenstate oM, . By
lemma 2, the resulting state is

[y =(1+M)Q - - (1+ M) Q5 ¢) (B4)

=(1+Mp)---(I+M)Q"- - - QT ¢), (B5)
wherea;=0 or 1, and we have used the fact tht; ,Q; ]

=0 for i#j. As [M;,M;]=0, it is easily verified that
Vi, M;|¢)=|4), and|y) is the desired state that has been
created fault-tolerantly.

Theorem 1 in Sec. Il A immediately follows.

Theorem 1V Ue Cj, U can be applied to the encoded

the state/cab)|¢) with transversal operations leading to the |0)®" state usingC, operators and fault-tolerant measure-

state

1 1

\/§|O>|l//>+ ﬁ|l>'\/||¢> (B2

1 - — 1 —
=5 ([0 +[IN(+M) [+ 5 ([0)=[1)) (1 M) ).
(B3)

Note that as?=1, (1 +M)|¢) are =1 eigenstates d¥l for
any |y).

We can measure the cat state fault-tolerantly using th

procedure described ifil,2] to distinguish|0)+|1) from

|0)—|1). (We omit the unimportant normalization factors.
If we obtain |0)+]|1), the encoded state is projected onto|®) and|¢’) with S(|¢))={M, ..

(1+M)|#), the +1 eigenstate oM; otherwise the resulting

ment of C, operators.

Proof. Applying U e C; to the encoded0)®" state is
equivalent to preparing the stat#)=U(|0)“"), which has
stabilizersM;=UZ,U" fori=1, ... n. DefineQ,=UX;U"
eC, for each i. Then {Z;,X;}=0 implies {M;,Q;}
=U{z; Xj}u'=0, and for i#j, [Z;,X;]=0 implies
[M;,Q;1=U[Z; ,X;]JUT=0. Thus by lemma 3, the stalté)
can be created fault-tolerantly.

2. Examples

To prepare a specific encoded state fromuaknownen-

8oded state, we need to measatieits independent stabiliz-

ers. When the initial state iskmownencoded state related to
the desired state, we may not have to measure all the inde-
pendent stabilizers. For instance, given two encoded states
MMy, L M)

andS(|¢'))={Mq, ... M ,M{,q, ... M/}, the state
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. an ak+l with stabilizers M|:A1(S)(Hl® H2)Z|(Hl® Hz)Al(ST)
(M) (1 M) Q' - Qi #1) (E6) for i=1,2. Using Eqs(17) and(18),

is the simultaneoust1 eigenstate oM; for i=1,... n. _
Thus, starting from¢'), we can prepare the encoded state Mi= (X8 3)A(2), (B12
|¢) by measuring only th@—k different stabilizers. In the M,=(S;®X,)A(Z). (B13)
following, we will construct an initial state, with which the
desired state can be obtained by measuring only a singl€he corresponding operator that anticommutes Withis
stabilizer. Qi=A1(S)(H1®@H)X;(Hi®Hy)A(SHh=2Z, for i=1,2.

Assume we want to prepare the encoded sfate) |,) is an entangled state, and bdth, and M, are two-
=U(]0)®") for Ue Cs,. DefineM; andQ; fori=1,...,n  qubit operators. But the state
as in the proof of theorem 1. The®;|¢, ) is a —1 eigen-

state ofM; such thaty |Q;|¢,)=0, and the state )= %(|'/’+>+Q1W+>) (B
1 2
|¢>:E(|¢+>+Qi|¢+>) ®7) _i|o>(|o)+|1> (B19
-3 )

is different from|, ) by only one independent stabilizep;

has replacedM; . Therefore, the statpy) also satisfies the s a product of single qubit states and has stabiliZgrand
conditions of lemma 3, and can be prepared fault-tolerantlyx,. Thus, we can first prepaies) fault-tolerantly by mea-

It follows that to obtain the statéy,), we only need t0  suringZ, andX,, and then measund ; alone to get the state
measure the single stabilizét; on |¢). |.). Equivalently, we can also first prepare the state
To prepare an encoded Steﬁtﬁ+> by preparing|#) first (|, )+ Q,|w. ))/v2=(|0)+|1))|0)/v2, which has stabi-

can be simpler than directly preparipg. ) from an arbitrary  |izers X, andZ,, and measuré, to obtain the statéy, ).
encoded state ify) itself can be prepared easily. For in-

stance, wherj#) is a product state, it can be prepared by c. Fault-tolerant preparation of the required ancilla
measuring only single qubit operators. We will describe how for the Toffoli gate

to prepare the required ancilla states for the three gates in
Sec. IV. When the required ancillg_ ) is an entangled state
with multiple-qubit stabilizers, we will construct it by pre- |, )=U(H;®H,)|000) (B16)
paring an easier stafe) first.

The required ancilla for the Toffoli gate construction is

1
a. Fault-tolerant preparation of the ancilla required =§(|000>+ |010) +]100) +(111)), (B17)
for the T gate
The required ancilla for constructing the'8 gate,T, is where U is the Toffoli gate. The stabilizer of this state is
M,=U(H;®H,)Z(H,;®H,)UT for i=1, 2, and 3. Using
|O>+eiﬂ'/4l 1> Eq5(23) and (24),
=TH|0)= , B8

) 1) 2 (B8) M,=X,®CNOT23, (B18)

with stabilizer M,=X,®CNOT13, (B19)
M=(TH)Z(TH)T=e"'"SX, (B9) M3=2Z3®CZ712, (B20)

which anticommutes with TH)X(TH)'=2Z. Then starting where cz represents a controlled- and theordered sub-
from any encoded state, we can measMreand applyZ if scripts forcNOT and cz specify the control and target bits.

the projected state is the 1 eigenstate, to create the state | "€ Operator that anticommutes with; is Q=U(H,

|yr,) fault-tolerantly. ®@H,)X{(H;®@H,)U", orz,,Z, andX; fori=1, 2, and 3,
respectively. Again, each d¥l; is a two-qubit operator, but
the state

b. Fault-tolerant preparation of the ancilla required
for the controlled-phase gate

1 1
The required ancilla for constructing the controlled-phase ly=—(| )+ Q1| ))=—=]0)(]0)+|1))|0)
gate is V2 V2

(B21)
|#+)=A1(S)(H1®H2)|00) (B10) can be prepared easily by measuring its stabilizgrs X,,
and Z;. Then we only need to measure a single two-qubit
1 . operatorM; on |¢) to obtain |, ). Equivalently, we can
_§(|00>+|01>+|1O>+'|11>)' (B1D also first prepare the stafes)=(1/y2)(I+Q,)|,) with
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stabilizers X;, Z,, and Z; or the state|y)=(1/\2)(l performed fault-tolerantly. This completes the proof of
+Q3)| ¢, ) with stabilizersX,, X,, andX3, and measure the lemma 5.

corresponding single stabilizer to obtain, ). In fact, what we have shown in the proof of lemma 5 is
that if operations i, _; and the cat-state-controlléd op-
3. Recursive preparation eration forVe Fy_, can be performed fault-tolerantly, then

. . . . the cat-state-controlled-operation forU e F,_; and opera-
[n th|s subsgctlon, we will prove the following theorem, tions inF, can be performed fault-tolerantly. This is because
which is used in Sec. Il C. Onrlmy ®n according to Sec. Il C, fault-tolerant construction Bf
Theorem 2The encoded stafgy)=UH®"(|0)*") for U gates only requires fault-tolerafft,_, gates and an ancilla
e Fy can be_prepared fgult-tolerantly by recursive appllca-UH®n(|O>®n) for U e Fy.
tion .Of one-bit teleportatlon: S . Since both the operations i, and the -cat-state-
'.:'rSt we have the following lemma, which is a generall'controlledU operation forU e F,; can be performed fault-
zation of lemma 3. . tolerantly, by induction, operations iR, and the cat-state-
Lemma 4.[y) can be created fault-tolerantly if given controlled U operation forUeF,_; can be constructed

‘,\SA(W»:{tMl' e 't')\/l“}’ }_1 hj: d(if) tlr;et cI:at—sta}F()a—t(k:‘ontrolled fault-tolerantly, with which we can fault-tolerantly prepare
i operation can be performed fault-tolerantly) there ex- =" o0 statgH"(|0Y*") for U e F,.

ists Q; such thatQ; can be performed fault-tolerantly,
{Mi ,Qi}=0, and fOI’i ?&] ,[Mi ,Q]]ZO

Proof. SinceMizz I, by applying the cat-state-controlled
M; operation and measuring the cat state fault-tolerantly as In this appendix, we rederive the remat®0T construc-
before, we can project any encoded state ontblaeigen-  tion, given in[8], using one-bit teleportation. A remotaloT
state ofM;. Then applyQ; if a —1 eigenstate is obtained. construction between the statps) and |B) belonging to
Using the same argument as in the proof of lemma 3, we caAlice and Bob, respectively, can be performed by a four-step
fault-tolerantly prepare the stafe). procedure{i) Alice swaps her stathr) with an ancilla|0),

Lemma 5.If operations in F,_; and the cat-state- (ii) Alice sends the teleportgd) to Bob usingX teleporta-
controlledV operation for anW e F,_, can be performed tion, (iii) Bob appliescNOT construction from|a) to |B),
fault-tolerantly using the one-bit teleportation scheme, therand (iv) Bob teleports a) back to Alice usingZ teleporta-
UH®"(]0)*") for U e F, can be created fault-tolerantly. tion. Stepdii) and(iv) involve prohibited operations. Here is

Proof. The stabilizers of|¢#)=UH®"(|0)*") are M;  a circuit representation:
=UH®"Z,(UH®MT=UX,UT=U,X; for someU,eF,_;.

APPENDIX C: ALTERNATIVE REMOTE cnoTt CIRCUIT

DefineQ,=UZ,U'=7,. Q, satisfies conditioriii) of lemma A{'a) € o)
0) — -
SinceM;=U,X;, the cat-state-controllelt; operation is 0 { * .
the product of cat-state-controllédy and cat-state- [— (C)
controlledX; operations. The cat-state-controll¥gd-opera- B{ = -
tion is easily performed fault-tolerantly. Thus it remains to 1) 18 & a)

show how to perform the cat-state-controlléd-operation o . .
P d-op The two prohibitedcNOT gates are labeled with asterisks.

for U, e F\_; fault-tolerantly. . )
AsU,eF, , is constructed with the one-bit teleportation They can be commuted backwards to obtain the equivalent

scheme using the circuit of E¢l1), whereA;=H, B;=1I, cireuit

andD; =X, to perform the cat-state-controllét, operator, la) 7 )

we need to perform the cat-state-controlednd cat-state- A{

controlled UXXiUI operations and to prepare the ancilla 10) ————— g

U,H®"(]0Y®") fault-tolerantly. As EeC, and U,X;U} . @ c2
=U;X; with U, e F,_,, both the cat-state-controlled and 10} —@ - X H (€2
cat-state-controlled},D;U] operations can be performed B{ o

fault-tolerantly. Next, the state),H*"|0)*" has stabilizers 18) (X} 1B o)

M/ =U,XUl=U.X; with U, eF,_,, which satisfies both
conditions of lemma 4 and can therefore be prepared faultwhich again reduces prohibited operations to some specific
tolerantly. Thus the cat-state-controlleld-operation can be shared entangled state.
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