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Buz̆ek-Hillery cloning revisited using the bures metric and trace norm
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Buz̆ek and Hillery have recently analyzed the possibility of cloning imperfectly arbitrary states using a
universal quantum cloning machine. They have analyzed their result using the Hilbert-Schmidt norm, although
a better measure of fidelity is the Bures metric. In this paper, we repeat the Buz˘ek and Hillery result using the
Bures metric and show that we can still obtain the same result with an improved measure. However, unlike the
Hilbert-Schmidt norm, this computation may be extended to the case of continuous variable, infinite-
dimensional spaces, or even Hilbert spaces of larger dimensions. For completeness, a similar analysis using the
trace norm is also performed.

PACS number~s!: 03.65.Bz, 03.67.2a
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I. INTRODUCTION

Quantum information theory differs in many aspects fro
classical information theory. An important difference is t
impossibility of reproducing arbitrary unknown pure qua
tum states faithfully@1#. For mixed states, such an imposs
bility condition continues to plague the quantum version a
the proof has been provided by Barnum, Caves, Fuc
Jozsa, and Schumacher@2#. Specifically, they have show
that if a mixed state is fed into a cloning device, it is still n
possible for the reduced density matrices of the output to
identical to the input density matrix.

Despite the impossiblity of constructing perfect cloni
machines, the no-cloning theorem does not forbid imper
cloning. The idea of imperfect cloning is to duplicate a qua
tum state such that the fidelity between the reduced den
matrices of the output is closed to the input density mat
There are several ways of performing imperfect cloning a
one such machine is the universal quantum cloning mac
@3#. This machine has also been shown to be optimal@4,5# in
the sense that the errors in the output can be minimiz
Recently, a series of state-dependent cloning machines
also been proposed@6–8#.

In Buz̆ek and Hillery~BH! cloning, the fidelity between
the input and output states were computed using the Hilb
Schmidt norms. But the reduced density matrices for the o
put are generally mixed states. It is well-known that t
Hilbert-Schmidt norm is generally not the preferred meas
of distinguishing mixed states although it serves as a g
measure of quantifying the distance between pure sta
Computationally however, it is the most convenient one.
deed, in quantum information theory, a better way of dist
guishing mixed states and quantifying distance between
ferent states is the Bures metric. However, as noted by Bu˘ek
and Hillery @3#, it is generally more complicating to compu
distances between different states using this metric. I
therefore the aim of this paper to re-analyze and compare
results in Buz˘ek and Hillery cloning using other well-know
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measures such as Bures fidelity and trace norm.
In Sec. II, we briefly describe the various notions of d

tances for quantum states in a projective Hilbert space.
note that in an infinite-dimensional Hilbert space, t
Hilbert-Schmidt distance or norm may not be an appropri
measure of distance between quantum states and it is ne
sary to introduce a more general concept of Bures fidelity
distance. In this section, we also introduce the idea of tr
norm, which is sometimes used as a measure of nonclas
distance@9#. In Sec. III, we re-analyze BH cloning usin
Bures distance. It is reassuring to note that the result for
cloning using Hilbert-Schmidt norm remains essentially t
same even for Bures distance. A similar computation us
the trace norm serves to reconfirm the general results.
nally, in Sec. IV, we reiterate our main points and summar
our findings.

II. BURES FIDELITY

A Hilbert space is a complete inner product space and
therefore a normed space. Quantum states are objects i
Hilbert space and should therefore be distinguisha
through a metric defined through a suitably chosen no
The simplest choice of metric may not be the most suita
one, for instance the discrete metric@10#.

For pure states, it is sufficient to employ the Fubini-Stu
distance defined in the projective Hilbert space of rays
tween two statesC1 andC2 by the relation@11–13#

dFS
2 ~C1 ,C2!5 inff1 ,f2

uuC1eif12C2eif2uu2, ~1!

wheref i ,(i 51,2) are the phases associated with the sta
C i . This definition is not appropriate for mixed state
Mixed states are described by density operators or matri
These operators are trace class operators that also fo
normed space. For two mixed states described by the den
matricesr1 andr2, the distance can be defined by the tra
norm or by the Hilbert-Schmidt norm. The trace norm
defined as

dtrace5trA~r12r2!†~r12r2!. ~2!

This distance has been used to study the idea of nonclas
distance @9#. The Hilbert-Schmidt distance, on the oth
©2000 The American Physical Society13-1



c
he
oc

e-

fy

sm
p

as
th
te

fo
c

o
u

es

f
,
b

on

ity

tor

ing

he
d

the
le to
. In
e

and
tter
lity.

L. C. KWEK, C. H. OH, XIANG-BIN WANG, AND Y. YEO PHYSICAL REVIEW A 62 052313
hand, is a more popular measure of distances and is in fa
generalization of Frobenius norm for finite matrices. T
Hilbert-Schmidt distance between two mixed states ass
ated with the density matricesr1 and r2 is defined by the
relation

dHS
2 5tr ~r12r2!† ~r12r2!. ~3!

More generally, ifr1 andr2 are the density operators corr
sponding to two arbitrary mixed states, a good measure
the distance,d(r1 ,r2), between the two states should satis
the following properties:

~i! d(r1 ,r2)>0 andd(r1 ,r2)50 if and only if r15r2;
~ii ! d(r1 ,r2)5d(r2 ,r1);
~iii ! d(r1 ,r2)1d(r2 ,r3)<d(r1 ,r3) ~triangle inequal-

ity!;
~iv! if r1 is a pure state,r15uc&^cu then d(r1 ,r2)

5^cur2uc&.

Based on this general premise, Uhlmann and Hubner@14–
17# showed that it is possible to construct a better formali
suitable for infinite-dimensional Hilbert spaces. This a
proach possesses elegant geometric properties@18# and its
corresponding connection forms have been proposed
generalization of Berry phase for mixed states. Under
general formalism, the distance between two mixed sta
described by the density matricesr1 andr2, is defined by a
generalized Fubini-Study distance through the relation

dBures
2 ~r1 ,r2!52 ~12trAAr1r2Ar1!. ~4!

It is instructive to note that for pure states, the distances
mixed states all reduce to the original Fubini-Study distan

Finally, we note that the term tr@Ar1r2Ar1#1/2[F12 in
Eq. ~4! is also used as a measure of the distinguishability
quantum states and entanglement, being the analogous q
tity of the modulus of the inner product for pure stat
@2,19–21#.

III. BUZ̆ EK-HILLERY CLONING

A. Case of Bures fidelity

In Buz̆ek and Hillery ~BH! cloning, one starts a set o
rules regarding the cloning of basis states. In particular
was assumed that the following transformation could
achieved:

u0&auQ&x→u0&au0&buQ0&x1@ u0&au1&b1u1&au0&bu0&] uY0&x ,
~5!

u1&auQ&x→u1&au1&buQ1&x1@ u0&au1&b1u1&au0&bu0&] uY1&x ,
~6!

where the copying machine states$uQi&,uYi&%, i 50,1, ~Note
that the subscripsx have been dropped for convenience! are
not necessarily orthonormal and satisfy the conditions

^Qi uYi&50, i 50,1, ~7!

^Q0uQ1&50. ~8!
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It can be shown easily that unitarity of the transformati
imposes the condition that

^Qi uQi&12^Yi uYi&51, i 50,1, ~9!

^Y0uY1&5^Y1uY0&50. ~10!

To reduce the number of free parameters, Buz˘ek and Hillery
further assumed that

^Y0uY0&5^Y1uY1&5j, ~11!

^Y0uQ1&5^Q0uY1&5^Q1uY0&5^Y1uQ0&5
h

2
. ~12!

Starting with the input state

uc&a5au0&1bu1&, ~13!

with a21b251, one can easily obtain the output dens
matrix rab

(out) as

rab
(out)5a2~122j! u00&^00u1abh$u00&^01u1u00&^10u

1u01&^00u1u01&^11u1u10&^00u1u10&^11u

1u11&^01u1u11&^10u%1j$u01&^01u1u01&^10u

1u10&^01u1u10&^10u%1b2 ~122j!u11&^11u.

~14!

Tracing out modeb, one gets the reduced density opera
for modea, ra

(out) as

ra
(out)5@a21j~b22a2!# u00&^00u1abh ~ u01&^10u

1u10&^01u!1@b21j ~a22b2!#u11&^11u. ~15!

This is in general a mixed state. In fact, the entire clon
process is symmetric, namely, if one traces out modea, the
reduced density operator for modeb,

rb
(out) ,

is exactly the same as that for modea. However, the two
reduced density matrices are not individually similar to t
input density matrix, so that this form of cloning is distorte
and imperfect.

To reduce the distortion so that the difference between
input and output density matrices are as close as possib
each other, one needs to introduce an appropriate norm
BH cloning, the Hilbert-Schmidt norm was used. Th
Hilbert-Schmidt norm was used because it is convenient
simple to compute. However, as shown in Sec. II, a be
measure for mixed states is the Bures distance or fide
Indeed it is easy to diagonalize the density matrixra

(in) , as

ra
(in)5US 0 0

0 1DU21, ~16!

where
3-2
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b

a

a

b

1 1
D . ~17!

A straightforward computation then gives the squared Bu
distanceDa

2 between the input and output density operat
ra

(in) andra
(out) as

Da
25Db

25222A12j22a2 ~a221!~2j1h21!.
~18!

As in the Buz̆ek and Hillery paper@3#, for an input inde-
pendent cloning machine, we need to ensure that this
tanceDa

2 is independent of the parametera. To do this, one
eliminates one of the parameters from the set$j,h% by using
the condition

]

]a2
Da

250. ~19!

From Eq.~18!, we find that the above condition yields

h5122j, ~20!

so that the distanceDa
2 takes on the value

Da
25222A12j. ~21!

It is interesting to note that the condition in Eq.~20! for the
distanceDa

2 to be independent of the input parametera re-
mains the same whether we are using the Hilbert-Schmid
Bures distance. However, the expression for the Bures
tance in Eq.~21!, differs from the expression for the distanc
based on the Hilbert-Schmidt norm. Figure 1 shows the
tance graph of the distances computed using the Hilb
Schmidt norm and the Bures metric. It is indeed interest
to observe that the two distances are never the same exce
when j50,1 or (A521)/2, the golden ratio. We can als
compare the output density operatorrab

(out) with a tensor prod-
uct of the two input density operatorsra

(in) and ^ rb
(in) using

the Bures distance. Since

FIG. 1. A comparison of the distance between the input a
output density matrices using the various measures: the Bures
tance, the Hilbert-Schmidt distance and the trace norm for var
values ofj.
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ra
(in)

^ rb
(in)5a4u00&^00u1a3b~ u00&^01u1u00&^10u

1u01&^00u1u01&^11u1u10&^00u1u10&^11u

1u11&^01u1u11&^10u!a2b2 ~ u01&^01u

1u01&^10u1u10&^01u1u10&^10u1u00&^11u

1u11&^00u!1b4u11&^11u, ~22!

the Bures fidelity between the output density matrix and
tensor product of the input density matrix, namely,rab

(out) and
ra

(in)
^ rb

(in) , respectively, can be computed using

Fab5 trAAra
(in)

^ rb
(in)rab

(out)Ara
(in)

^ rb
(in). ~23!

Using the Bures fidelity, the square of the Bures distan
Dab

2 [2(12Fab) is given by

Dab
2 52@12A11a2~a221!~322h210j!22j#.

~24!

If one then substitutes the condition in Eq.~21! for the
single-mode output device to be independent of the par
eters in the input device and demands the additional crite
that

]

]a2
Dab

2 50, ~25!

we see thatj51/6, as in the case of the Hilbert-Schmi
norm. However, the distanceDab

2 attains the slightly larger
value of 222A2/3 compared with the value of 2/9 for th
Hilbert-Schmidt case.

B. Case of trace norm

Aside from the Hilbert-Schmidt norm and Bures fidelit
one sometimes employs the trace norm for measuring
tances of nonclassical states@9#. As noted in Ref.@9# and
shown in Ref.@22# , the value of the trace norm must alway
be greater than the Hilbert-Schmidt norm. Since the tr
norm involves the computation of the square root of an
erator prior to taking the trace, unlike the Hilbert-Schm
norm in which the process is somewhat reversed, it is g
erally more complicating to compute distances using
trace norm.

To compute the trace normdtrace(r1 ,r2), one simply
computes the square of the difference between the den
matricesr1 andr2, that is (r12r2)2, extracts the eigenval
uesl1 ,l2 , . . . ,ln , and then sums the square root of ea
eigenvalue so thatdtrace5Al11Al21•••1Aln.

Thus, following the method in Ref.@3#, the distancesDa
2

~or Db
2) between the input and output density matricesra

(in)

andra
(out) can be found to be

Da
25Db

254$j21a2 ~12a2!@~11h!22j2#%, ~26!

so that for an input-state-independent cloning machine,
gets h5122j as before. It is interesting to note that th
distance is exactly twice the magnitude of the analogous
tance obtained in Ref.@3# for the Hilbert-Schmidt norm. It is

d
is-
s

3-3



p
e
ce
itiv
-
e

u
e

rd
te
to
,

al
ul
ls

re
n
o

rre

ar

ail
ffi

that
m-

-

the
ally
m-
one
lity.
lly
nts

.

e
n-

ty

er-
ish

-
een
, for

van-
g.

L. C. KWEK, C. H. OH, XIANG-BIN WANG, AND Y. YEO PHYSICAL REVIEW A 62 052313
therefore not surprising that the distance between the in
and output density matrices,Da

2 , computed using the trac
norm is 4j2. Incidentally, the graphs for the Bures distan
and the trace norm intersect precisely at the least pos
root of 4j324j1150, that isj'0.2695. The determina
tion of the optimum value ofj from the assumption that th
distance between the two-mode density operatorsrab

(out) and
ra

(in)
^ rb

(in) be input-state-independent is more involved, b
the result is similar to the Hilbert-Schmidt norm with th
optimal value ofj being 1/6 and the distanceDab

2 being 4/9.

IV. DISCUSSION AND CONCLUSION

The Bures metric or distance has generally been rega
as a better measure of distinguishability of quantum sta
@17#. Nevertheless, it is also more tedious and difficult
compare density matrices using the Bures metric. Indeed
the original proposal by Buz˘ek and Hillery, only the Hilbert-
Schmidt ~HS! metric was employed. For finite-dimension
problems, one does not expect drastically different res
through the use of a different metric. However, there is a
no reason to assume that the optimal value forj should
continue to be 1/6 with a different metric.

In this paper, we repeat quantum cloning using the Bu
metric ~and trace norm! and show that the results are esse
tially the same, namely, that for optimal cloning, the value
j should take the value 1/6. Moreover, although the co
sponding values of the distances, namely,Da

2 andDab
2 , differ

in absolute terms, the condition@Eq. ~20#, for the norm to be
independent of the parametera, namely, h5122j, re-
mains the same for all the different norms. Our results
consistent with the previous results in Ref.@3#. Thus, al-
though the Hilbert-Schmidt norm is not the best norm av
able for comparing density matrices, it is generally a su
ciently appropriate norm.
ch

-
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In fact, the same analysis using the trace norm shows
the condition for the norm to be independent of the para
eter a is also the same as Eq.~20! so that the distanceDa

2

assumes the value of 4j2, a result consistent with the well
known relation thatdtrace.dHS @22#.

The trace norm is not always a useful measure since
computation of the square root prior to the trace is gener
harder than the Hilbert-Schmidt norm. Moreover, if the co
putation of square roots of a large matrices can be d
readily, then a better measure would be the Bures fide
This is because the Bures fidelity lends itself more natura
to the formalism of positive operator-valued measureme
@19#. Using the trace norm, the value ofj for the minimiza-
tion of Dab

2 is still 1/6 with Dab
2 54/9. Indeed, from the re-

sults, one would like to surmise that Eq.~19! seems to lead
to the same condition in Eq.~20! so that the condition in Eq
~20! is norm-independent.

It is well known that the Bures fidelity reduces to th
Hilbert-Schmidt norm for pure states. Moreover, for the sta
dard optical coherent statesua&, defined by

ua&[D~a!u0&5e2uau2/2 (
n50

`
an

An!
un&, ~27!

the Hilbert-Schmidt norm or equivalently, the Bures fideli
for two pure statesua& andua11& is always a constant. This
result appears to contradict our intuitive perception of coh
ent states. Experimentally, we should be able to distingu
physically between the ground~vacuum! statea50, and the
low-photon excited statea51, but not for largea in which
the two coherent statesua& andua11& describe macroscopi
cally indistinguishable states. Recently, there have b
some proposals to distinguish states using other means
instance the mutual information measures@23#. It would be
interesting to compare and contrast advantages and disad
tages associated with these new measures for BH clonin
.
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