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Buzek-Hillery cloning revisited using the bures metric and trace norm
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Buzek and Hillery have recently analyzed the possibility of cloning imperfectly arbitrary states using a
universal quantum cloning machine. They have analyzed their result using the Hilbert-Schmidt norm, although
a better measure of fidelity is the Bures metric. In this paper, we repeat thek Bod Hillery result using the
Bures metric and show that we can still obtain the same result with an improved measure. However, unlike the
Hilbert-Schmidt norm, this computation may be extended to the case of continuous variable, infinite-
dimensional spaces, or even Hilbert spaces of larger dimensions. For completeness, a similar analysis using the
trace norm is also performed.

PACS numbd(ps): 03.65.Bz, 03.6%a

[. INTRODUCTION measures such as Bures fidelity and trace norm.
In Sec. I, we briefly describe the various notions of dis-

Quantum information theory differs in many aspects fromtances for quantum states in a projective Hilbert space. We
classical information theory. An important difference is thenote that in an infinite-dimensional Hilbert space, the
impossibility of reproducing arbitrary unknown pure quan- Hilbert-Schmidt distance or norm may not be an appropriate
tum states fanhfu”%l] For mixed states, such an impossi_ measure of distance between quantum states and it is neces-
bility condition continues to plague the quantum version andsary to introduce a more general concept of Bures fidelity or
the proof has been provided by Barnum, Caves, Fuchglstance._ln phls section, we also introduce the idea of trace
Jozsa, and Schumachg2]. Specifically, they have shown norm, which is sometimes used as a measure of nonclassical
that if a mixed state is fed into a cloning device, it is still not distance[9]. In Sec. lll, we re-analyze BH cloning using
possib]e for the reduced density matrices of the Output to bgures distance. It is reassuring to note that the result for BH
identical to the input density matrix. cloning using Hilbert-Schmidt norm remains essentially the

Despite the impossiblity of constructing perfect cloning Same even for Bures distance. A similar computation using
machines, the no-cloning theorem does not forbid imperfecthe trace norm serves to reconfirm the general results. Fi-
cloning. The idea of imperfect cloning is to duplicate a quan-nally, in Sec. IV, we reiterate our main points and summarize
tum state such that the fidelity between the reduced densit9ur findings.
matrices of the output is closed to the input density matrix.

There are several ways of performing imperfect cloning and Il. BURES FIDELITY

one such machine is the universal quantum cloning machine
[3]. This machine has also been shown to be optimd] in
the sense that the errors in the output can be minimize
Recently, a series of state-dependent cloning machines ha\[/h
also been proposg@-—8§].

In Buzek and Hillery(BH) cloning, the fidelity between ) .
the input and output sétes were cogmputed usilénlg the HilberE"®: for instance th_e_d|scre_zt_e metrlo). -
Schmidt norms. But the reduced density matrices for the out-,. For pure states, it Is sufﬂqen_t to employ the Fubini-Study
out are generally mixed states. It is well-known that thed|stance defined in the projective H|Ib¢rt space of rays be-
Hilbert-Schmidt norm is generally not the preferred measurd V€N Wo stated; and¥'; by the relation(11-13
of distinguishing m_ix_ed states _although it serves as a good dlzis(‘PL\PZ):inqu s ||W,d¢1—,d%2, (1)
measure of quantifying the distance between pure states. 172
Compl_JtationaIIy hpwever, _it is the most convenient one. _'”'where #.,(i=1,2) are the phases associated with the states
deed, in quantum information theory, a better way of distin-y,  This definition is not appropriate for mixed states.
guishing mixed states and quantifying distance between difyixeq states are described by density operators or matrices.
ferent states is the Bures metric. However, as noted DeBUZ Thege operators are trace class operators that also form a
and Hillery[3], it is generally more complicating to compute \\qrmeqd space. For two mixed states described by the density

distances betvyeen di_fferent states using this metric. It i?natriceSpl andp,, the distance can be defined by the trace
therefore the aim of this paper to re-analyze and compare thg, . o py the Hilbert-Schmidt norm. The trace norm is
results in Buek and Hillery cloning using other well-known

A Hilbert space is a complete inner product space and it is
herefore a normed space. Quantum states are objects in the
(Lglbert space and should therefore be distinguishable
rough a metric defined through a suitably chosen norm.
The simplest choice of metric may not be the most suitable

defined as
. . . Oirace™ tr\/(Pl_PZ)T(Pl_ p2)- (2
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"Email address: phyohch@leonis.nus.edu.sg This distance has been used to study the idea of nonclassical
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hand, is a more popular measure of distances and is in factlacan be shown easily that unitarity of the transformation
generalization of Frobenius norm for finite matrices. Theimposes the condition that
Hilbert-Schmidt distance between two mixed states associ-
ated with the density matricgs, and p, is defined by the (QilQn+2(YilY;)=1, =01, 9
relation

e o : . (YolY1)=(Y1|Yq)=0. (10

=tr(p,— —po).
Hs Propal ihimbe To reduce the number of free parameters, &uand Hillery

More generally, ifp; andp, are the density operators corre- further assumed that
sponding to two arbitrary mixed states, a good measure of

the distanced(p; ,p»), between the two states should satisfy (YolYoy=(Y4|Y1)=¢, (11)
the following properties:
(i) d(p1,p2)=0 andd(ps,p,)=0 if and only if p1=p5; Yol Q1) =(Qul Y1) =(QulYo) = (YilQ) = 2. (12
(”) d(pl:pZ):d(p21pl); < 0|Q1> <Q0| 1> <Ql| 0> < 1|Q0> 2" ( )

(i) d(p1,p2)+d(p2,p3)<d(p1,p3) (triangle inequal- o _
ity); Starting with the input state

=<(<Zi)2i|f¢;1 is a pure statep,=|y)(¢| then d(p1,p2) )uz al0)+ A1), 3

Based on this general premise, Uhimann and Hubbér ~ With «®+B°=1, one can easily obtain the output density
17] showed that it is possible to construct a better formalisnimatrix P(OUO as

suitable for infinite-dimensional Hilbert spaces. This ap- (Qu_ 2

proach possesses elegant geometric propetigsand its Pap = a*(1—2¢) |00)(00 + aS7{|00)(01| +|00)(10

corresponding connection forms have been proposed as a

generalization of Berry phase for mixed states. Under this +102)00/+02)(12+[10)00| + |210(14
general formalism, the distance between two mixed states, +|11)(01] +]12)(10} + £{|01)(01] +|02)( 10|
described by the density matriceg andp,, is defined by a

generalized Fubini-Study distance through the relation +]10)(01f +[10)(10]} + B (1—2¢)|11)(11.

(14)
Bred p1.p2)=2 (1=trV\p1pa o). (4) . |
Tracing out modeb, one gets the reduced density operator

It is instructive to note that for pure states, the distances fofor modea, pg"“t) as
mixed states all reduce to the original Fubini-Study distance.

Finally, we note that the term [tk/p1p,vp1]Y2=F 4, in p=[a’+ (B>~ a*)]]00)(00 + a7 (|01)(10
Eq. (4) is also used as a measure of the distinguishability of +|10)(01) +[ B2+ & (a— BD)]|11D(11.  (15)

guantum states and entanglement, being the analogous quan-
tity of the modulus of the inner product for pure stateStps is in general a mixed state. In fact, the entire cloning

[2,19-21. process is symmetric, namely, if one traces out madine

. reduced density operator for mobe
I1l. BUZ EK-HILLERY CLONING

(out)
A. Case of Bures fidelity Po "

In Buzek and Hillery (BH) cloning, one starts a set of is exactly the same as that for mode However, the two
rules regarding the cloning of basis states. In particular, iteduced density matrices are not individually similar to the
was assumed that the following transformation could benput density matrix, so that this form of cloning is distorted
achieved: and imperfect.

To reduce the distortion so that the difference between the
10)al Q)x—10)al0)6|Qo)x+ [10)al L)n+[1)a| 0} 0| Yo)x input and output density matrices are as close as possible to
®  each other, one needs to introduce an appropriate norm. In
BH cloning, the Hilbert-Schmidt norm was used. The
[1)al Q0x—11)a1)6|Qu)xF[10)al 1)p+2)al 06| O)T Y1), Hilbert-Schmidt norm was used because it is convenient and
) simple to compute. However, as shown in Sec. Il, a better

where the copying machine sta®;),|Y:)}, i=0,1, (Note measure for mixed states is the Bures distance or fidelity.

that the subscripg have been dropped for conveniehege ~ INdeed it is easy to diagonalize the density mapriR) , as
not necessarily orthonormal and satisfy the conditions

(in) — 00 -1
(QilY;)=0, i=0,1, @) pa =Uly /U (16)
(QolQ1)=0. (8)  where
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4 7 i@ pl" = a*00)(00 + a*B(|00)(01) +|00)(10
. 3 Trace ] +|01)(00|+ |01><11| +|10)(00|+|10)<11|
S +|11)(01] +]11)(10)) 2?42 (|01)(01
- +]02)(10/+|10)(01 +|10)(10 +|00)(11]
S +]12)(00) + B4 11)(11), (22

the Bures fidelity between the output density matrix and the
tensor product of the input density matrix, namei{f,"” and
p{Wep{" | respectively, can be computed using

— (in) (in) _(out) (in) (in)
FIG. 1. A comparison of the distance between the input and Fab tl’\/\/pa ©Pb " Pab \/pa ©pp (23

output density matrices using the various measures: the Bures di?JSing the Bures fidelity, the square of the Bures distance
tance, the Hilbert-Schmidt distance and the trace norm for Var'ouf)ngZ(l— F..) is given by

values ofé¢.
D2,=2[1— V1+a?(a®?—1)(3—27—10&)— 2£].
B e (24
U= a B 17 If one then substitutes the condition in E@1) for the
1 1 single-mode output device to be independent of the param-

eters in the input device and demands the additional criterion
A straightforward computation then gives the squared Bureghat
distanceD§ between the input and output density operators

(in) and (out) as 9
Pa S Pa —D2,=0, (25
da’?

Di=D{=2-2{1-¢—2a%(a?—1)(2é+n—1).
(18 we see thatt=1/6, as in the case of the Hilbert-Schmidt
norm. However, the distandbgb attains the slightly larger

As in the Buzk and Hillery papef3], for an input inde- 3146 of 2-2,2/3 compared with the value of 2/9 for the
pendent cloning machine, we need to ensure that this disgjihert-Schmidt case.

tanceDg1 is independent of the parameter To do this, one
eliminates one of the parameters from the{get;} by using B. Case of trace norm

th diti
© condition Aside from the Hilbert-Schmidt norm and Bures fidelity,

one sometimes employs the trace norm for measuring dis-

—2D§=0- (199 tances of nonclassical statfg]. As noted in Ref[9] and
da shown in Ref[22] , the value of the trace norm must always
From Eq.(18), we find that the above condition yields be greater than the Hilbert-Schmidt norm. Since the trace
norm involves the computation of the square root of an op-
n=1-2¢, (200 erator prior to taking the trace, unlike the Hilbert-Schmidt
norm in which the process is somewhat reversed, it is gen-
so that the distancB? takes on the value erally more complicating to compute distances using the
trace norm.
D2=2-2\1-¢. (21

To compute the trace normdy..dp1,p2), one simply

L . e computes the square of the difference between the density
It is interesting to note that the condition in EQO) for the matricesp; andp,, that is (o, — p,)?, extracts the eigenval-

distanceD to be independent of the input parametere- UesA;,\, ... A, and then sums the square root of each

mains the same whether we are using the Hilbert-Schmidt of.
; : . =N F ot N
Bures distance. However, the expression for the Bures dlsé-'g_?ﬁleu;"z (\)ngi;rﬁcee me)t\ﬁo d i)r\12Re[3] th;\:jistanceﬁ)z
y ’ a

tance in Eq(21), differs from the expression for the distance . . i
based on the Hilbert-Schmidt norm. Figure 1 shows the dis(©" D) between the input and output density matripg?

t
tance graph of the distances computed using the Hilber@nd p™"” can be found to be
Schmidt norm and the Bures metric. It is indeed interesting 2 N2 afs2. 204 2 2 2
to observe that the two distances are never the same except at Da=Dp=4{¢"+ 2" (1= a1+ )"~ &} (26
when ¢=0,1 or (\/5—1)/_2, the goldetn ratio. We can also s that for an input-state-independent cloning machine, one
compare the output density operapdfy" with a tensor prod-  gets »=1—2¢ as before. It is interesting to note that this
uct of the two input density operatopé'”) and ®p§,'”) using distance is exactly twice the magnitude of the analogous dis-
the Bures distance. Since tance obtained in Ref3] for the Hilbert-Schmidt norm. It is
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therefore not surprising that the distance between the input In fact, the same analysis using the trace norm shows that
and output density matriceﬁ)g, computed using the trace the condition for the norm to be independent of the param-
norm is 42. Incidentally, the graphs for the Bures distance€ter @ is also the same as E(RO) so that the distancB3

and the trace norm intersect precisely at the least positivassumes the value ofé3, a result consistent with the well-
root of 4£3—4£+1=0, that isé~0.2695. The determina- known relation thatl > dys [22].

tion of the optimum value of from the assumption that the ~ The trace norm is not always a useful measure since the

distance between the two-mode density operap§t¥ and ~ Computation of the square root prior to the trace is generally
pgn)@)pgn) be input-state-independent is more involved, pytharder than the Hilbert-Schmidt norm. Moreover, if the com-

the result is similar to the Hilbert-Schmidt norm with the Putation of square roots of a large matrices can be done

; ; ; 2 hai readily, then a better measure would be the Bures fidelity.
optimal value of being 1/6 and the distand;, being 4/9. This is because the Bures fidelity lends itself more naturally

to the formalism of positive operator-valued measurements
[19]. Using the trace norm, the value éffor the minimiza-

The Bures metric or distance has generally been regarddipn of D2, is still 1/6 with D3,=4/9. Indeed, from the re-
as a better measure of distinguishability of quantum statesults, one would like to surmise that E4.9) seems to lead
[17]. Nevertheless, it is also more tedious and difficult toto the same condition in Eg20) so that the condition in Eq.
compare density matrices using the Bures metric. Indeed, if20) is norm-independent.
the original proposal by Bigk and Hillery, only the Hilbert- It is well known that the Bures fidelity reduces to the
Schmidt(HS) metric was employed. For finite-dimensional Hilbert-Schmidt norm for pure states. Moreover, for the stan-
problems, one does not expect drastically different resultslard optical coherent statgs), defined by
through the use of a different metric. However, there is also ®  q
no reason to assume that the optimal value §oshould |a>ED(a)|O>=e_|”‘|2/22 a_|n>, (27)
continue to be 1/6 with a different metric. A=0 \/n!

In this paper, we repeat quantum cloning using the Bureghe Hilbert-Schmidt norm or equivalently, the Bures fidelity
metric (and trace normand show that the results are essen-for two pure statesa) and|a+ 1) is always a constant. This
tially the same, namely, that for optimal cloning, the value ofresult appears to contradict our intuitive perception of coher-
¢ should take the value 1/6. Moreover, although the correent states. Experimentally, we should be able to distinguish
sponding values of the distances, nam@l§,andD?,, differ ~ physically between the grouracuun) statea=0, and the
in absolute terms, the conditidiq. (20], for the norm to be  low-photon excited state= 1, but not for largex in which
independent of the parameter, namely, n=1-2¢&, re-  the two coherent statéa) and|a+ 1) describe macroscopi-
mains the same for all the different norms. Our results areally indistinguishable states. Recently, there have been
consistent with the previous results in RgB]. Thus, al- some proposals to distinguish states using other means, for
though the Hilbert-Schmidt norm is not the best norm avail-instance the mutual information measuf28§]. It would be
able for comparing density matrices, it is generally a suffi-interesting to compare and contrast advantages and disadvan-
ciently appropriate norm. tages associated with these new measures for BH cloning.

IV. DISCUSSION AND CONCLUSION
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