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An entanglement witness~EW! is an operator that allows the detection of entangled states. We give neces-
sary and sufficient conditions for such operators to be optimal, i.e., to detect entangled states in an optimal way.
We show how to optimize general EW, and then we particularize our results to the nondecomposable ones; the
latter are those that can detect positive partial transpose entangled states~PPTES’s!. We also present a method
to systematically construct and optimize this last class of operators based on the existence of ‘‘edge’’ PPTES’s,
i.e., states that violate the range separability criterion@Phys. Lett. A232, 333 ~1997!# in an extreme manner.
This method also permits a systematic construction of nondecomposable positive maps~PM’s!. Our results
lead to a sufficient condition for entanglement in terms of nondecomposable EW’s and PM’s. Finally, we
illustrate our results by constructing optimal EW acting onH5C2

^ C4. The corresponding PM’s constitute
examples of PM’s with minimal ‘‘qubit’’ domains, or—equivalently—minimal Hermitian conjugate
codomains.

PACS number~s!: 03.67.Hk, 03.65.Bz, 03.65.Ca
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I. INTRODUCTION

Quantum entanglement@1,2#, which is the essence o
many fascinating quantum-mechanical effects@3–6#, is a
very fragile phenomenon. It is usually very hard to crea
maintain, and manipulate entangled states under labora
conditions. In fact, any system is usually subjected to
effects of external noise and interactions with the envir
ment. These effects turnpure-state entanglementinto mixed-
state, or noisy, entanglement. The separability problem, tha
is, the characterization of mixed entangled states, is hig
nontrivial, and has not been accomplished so far. Even
apparently innocent question—Is a given state entangled an
does it contain quantum correlations, or is it separable, a
does not contain any quantum correlations?—will, in gen-
eral, be very hard~if not impossible! to answer.

Mathematically, mixed-state entanglement can be
scribed as follows. A density operatorr>0, acting on a
finite Hilbert spaceH5HA^ HB describing the state of two
quantum systemsA and B, is called separable@7# ~or not
entangled! if it can be written as a convex combination
product vectors; that is, in the form

r5(
k

pkuek , f k&^ek , f ku, ~1!

wherepk>0, anduek , f k&[uek&A^ u f k&B are product vectors
Conversely,r is nonseparable~or entangled! if it cannot be
written in this form. Physically, a state described by a se
rable ~nonseparable! density operatorr can always~never!
be prepared locally. Most applications in quantum inform
tion are based on the nonlocal properties of quantum
chanics,@3–6,8# and therefore on nonseparable states. Thu
criterion to determine whether a given density operato
nonseparable, i.e. useful for quantum information purpo
or not is of crucial importance. On the other hand, posit
partial transposed entangled states~PPTES’s!, are objects of
1050-2947/2000/62~5!/052310~16!/$15.00 62 0523
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special interest since they represent so-called bound
tangled states, and therefore provide evidence of irrevers
ity in quantum information processing@9#.

For low-dimensional systems@10,11# there exist opera-
tionally simple necessary and sufficient conditions for se
rability. In fact, in H5C2

^ C2 and H5C2
^ C3 the Peres-

Horodecki criterion@10,11# establishes thatr is separable iff
its partial transpose is positive. Partial transpose mean
transpose with respect to one of the subsystems@12#. For
higher-dimensional systems all operators with nonposit
partial transposition are entangled. However, there e
PPTES’s@13,14#. Thus the separability problem reduces
finding whether density operators with positive partial tran
pose are separable or not@15,16#.

In the recent years there has been a growing effort
searching for necessary and sufficient separability crite
and checks which would be operationally simple@15,16#.
Several necessary@7,17# or sufficient@13,18–21# conditions
for separability are known. A particularly interesting nece
sary condition is given by the so-calledrange criterion@13#.
According to this criterion, if a stater acting on a finite-
dimensional Hilbert space is separable then there must e
a set of product vectors$uek , f k&% that spans the rangeR(r),
such that the set of partial complex conjugated product st
$uek , f k* &% spans the range of the partial transpose ofr with
respect to the second system, i.e.,rTB. Among PPTES’s that
violate this criterion there are particular states with the pr
erty that if one subtracts a projector onto a product vec
from them, the resulting operator is no longer a PPT
@20,21#. In this sense, these states lie in theedgebetween
PPTES’s and entangled states with nonpositive partial tra
position, and therefore we will call them ‘‘edge’’ PPTES’s

An approach involving the analysis of the range of de
sity operators initiated in Ref.@13# turned out to be very
fruitful. In particular, it led to an algorithm for the optima
decomposition of mixed states into a separable and an
separable part@22–24#, and to a systematic method of con
©2000 The American Physical Society10-1
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structing examples of PPTES’s using unextendible prod
bases@14,25#. For low rank operators it has allowed to sho
that one can reduce the separability problem to the one
determining the roots of certain complex polynomial equ
tions @20,21#.

From a different point of view, a very general approach
analyze the separability problem is based on the so-ca
entanglement witnesses~EW’s! and positive maps~PM’s!
@11#. Entanglement witnesses@25# are operators that detec
the presence of entanglement. Starting from these opera
one can define PM’s@26# that also detect entanglement. A
example of a PM is precisely partial transposition@10,27,28#.
The importance of EW’s stems from the fact that a giv
operator is separable iff there exists an EW that detec
@11#. Thus, if one was able to construct all possible EW’s~or
PM’s! one would have solved the problem of separabili
Unfortunately, it is not known how to construct EW’s th
detect PPTES’s in general. The only result in this direct
so far was given in Ref.@25#, although some preliminary
results exist in the mathematical literature@29#. Starting from
a PPTES fulfilling certain properties~related to the existenc
of unextendible basis of product vectors@14#!, it has been
shown how to construct an EW~and a corresponding PM!
that detects it. Perhaps, one of the most interesting g
regarding the separability problem is to develop a constr
tive and operational approach using EW’s and PM’s t
allows us to detect mixed entanglement.

In this paper we realize this goal partially: we introduce
powerful technique to construct EW’s and PM’s that, amo
other things, allows us to study the separability of cert
density operators . In particular, we show how to constr
optimal EW’s; that is, operators that detect the presenc
entanglement in an optimal way. We specifically concentr
on nondecomposable EW’s, which are those that detect
presence of PPTES’s. Furthermore, we present a way of
structing optimal EW’s for edge PPTES’s. Our method ge
eralizes the one introduced by Terhal@25# to the case in
which there are no unextendible basis of product vect
When combined with our previous results@20,21# regarding
subtracting product vectors from PPTES’s, the construc
of nondecomposable optimal EW’s starting from ‘‘edge
PPTES’s gives rise to a sufficient criterion for nonsepara
ity of general density operators with positive partial transp
sition. We illustrate our method by constructing optim
EW’s that detect some known examples of PPTES’s@13# in
H5C2

^ C4. The corresponding PM’s constitute the first e
amples of PM’s with minimal ‘‘qubit’’ domains, or—
equivalently—minimal Hermitian conjugate codomains.

This paper is organized as follows. In Sec. II we revie
the definition of EW’s and fix some notation. In Sec. III w
study general EW’s. We define optimal witnesses, and fin
criterion to decide whether an EW is optimal or not. In S
IV we restrict the results of Sec. III to nondecomposa
EW’s. In particular, we show how to optimize them by su
tracting decomposable operators. In Sec. V we give an
plicit method to optimize both general and nondecomposa
EW’s. We also show how to construct nondecomposa
EW’s, and that this leads to a sufficient criterion of nonse
rability. The construction and optimization are based on
05231
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use of ‘‘edge’’ PPTES’s. In Sec. VI we extend our results
positive maps. In Sec. VII we illustrate our methods a
results starting from the examples of PPTES’s given in R
@13#. The paper also contains two appendixes. In Appen
A we describe in detail a method to check whether an EW
optimal or not. In Appendix B we discuss separately so
important properties of the edge PPTES’s, and show
they provide a canonical decomposition of mixed states w
positive partial transpose.

II. DEFINITIONS AND NOTATION

We say that an operatorW5W† acting onH5HA^ HB is
an EW if @11,25#. ~I! ^e, f uWue, f &>0 for all product vectors
ue, f &, ~II ! it has at least one negative eigenvalue~i.e. is not
positive!; and ~III ! tr(W)51. Property~I! implies that^r&W
[tr(Wr)>0 for all r separable. Thus, if we have^r&W,0
for somer>0, thenr is nonseparable. In that case we s
thatW detectsr. Property~II ! implies that every EW detect
something, since in particular it detects the projector on
subspace corresponding to the negative eigenvalues oW.
Property~III ! is just normalization condition that we need
order to compare the action of different EW’s@30#.

In this paper we will denote the kernel and range ofr by
K(r) andR(r), respectively. The partial transposition of a
operatorX will be denoted byXT @12,31#. On the other hand
we will encounter several kinds of operators~EW’s, positive
operators, decomposable operators, etc.! and vectors. In or-
der to help to identify the kind of operators and vectors
use, and not to overwhelm the reader by specifying at e
point their properties, we will use the following notation:W
will denote an EW.P andQ will denote positive operators
Unless specified they will have unit trace@ tr(P)5tr(Q)
51#. D will denote a decomposable operator. That is,D
5aP1bQT, wherea,b>0. Unless stated, all decomposab
operators that we use will have unit trace~i.e., b512a). r
will denote a positive operator~not necessarily of trace 1!.
ue, f & will denote product vectors withue&PHA and u f &
PHB . Unless especified, they will be normalized.

III. GENERAL ENTANGLEMENT WITNESSES

In this section we first give some definitions directly r
lated to EW’s. Then we introduce the concept of optim
EW’s. We derive a criterion to determine when an EW
optimal. This criterion will serve us to find an optimizatio
procedure for these operators.

A. Definitions

Given an EW, W, we define the following.DW5$r
>0, such that̂r&W,0%; that is, the set of operators detecte
by W. Finer: Given two EW’s, W1 and W2, we say
that W2 is finer than W1, if DW1

#DW2
; that is, if all

the operators detected byW1 are also detected byW2. Opti-
mal entanglement witness~OEW!: We say thatW is an OEW
if there exists no other EW which is finer.PW5$ue, f &
PH, such that̂ e, f uWue, f &50%; that is, the set of produc
0-2
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OPTIMIZATION OF ENTANGLEMENT WITNESSES PHYSICAL REVIEW A62 052310
vectors on whichW vanishes. As we will show, these vecto
are closely related to the optimality property.

Note the important role that the vectors inPW play re-
garding entanglement~for a method to determinePW in prac-
tice, see Appendix A!. If we have an EW,W, which detects
a given operatorr, then the operatorr85r1rw , where

rw5(
k

pkuek , f k&^ek , f ku, ~2!

with pk>0, anduek , f k&PPW is also detected byW. In fact,
this means that any operator of the form of Eq.~2! is in the
border between separable states and nonseparable sta
the sense that if we add an arbitrarily small amount ofr to it
we obtain a nonseparable state. Thus the structure of the
PW characterizes the border between separable and non
rable states. In fact, from the results of this section it w
become clear that we can restrict ourselves to the structu
the set ofPW corresponding to OEW’s.

B. Optimal entanglement witnesses

According to Ref.@11# r is nonseparable iff there exist
an EW which detects it. Obviously, we can restrict oursel
to the study of OEW. For that, we need criteria to determ
when an EW is optimal. In this subsection we will derive
necessary and sufficient condition for this to happen~theo-
rem 1 below!. In order to do this, we first have to introduc
some results that tell us under which conditions an EW
finer than another one.

Lemma 1:Let W2 be finer thanW1, and

l[ inf
r1PDW1

U^r1&W2

^r1&W1

U . ~3!

Then we have the following.~i! If ^r&W1
50 then^r&W2

<0.

~ii ! If ^r&W1
,0, then^r&W2

<^r&W1
. ~iii ! If ^r&W1

.0 then

l^r&W1
>^r&W2

. ~iv! l>1. In particular,l51 iff W15W2.

Proof: SinceW2 is finer thanW1 we will use the fact that
for all r>0 such that̂ r&W1

,0 then^r&W2
,0.

~i! Let us assume that̂r&W2
.0. Then we take anyr1

PDW1
so that for allx>0, 0<r̃(x)[r11xrPDW1

. But for

sufficiently largex we have that̂ r̃(x)&W2
is positive, which

cannot be since thenr(x)P” DW2
.

~ii ! We definer̃5r1u^r&W1
u1>0. We have that̂ r̃&W1

50. Using~i! we have that 0>^r&W2
1u^r&W1

u.

~iii ! We take r1PDW1
and define r̃5^r&W1

r1

1u^r1&W1
ur>0, so that ^r̃&W1

50. Using ~i! we have

u^r1&W1
u^r&W2

<u^r1&W2
u^r&W1

. Dividing both sides by

u^r1&W1
u.0 and^r&W1

.0, we obtain

^r&W2

^r&W1

<U^r1&W2

^r1&W1

U . ~4!
05231
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Taking the infimum with respect tor1PDW1
on the right-

hand side of this equation, we obtain the desired result.
~iv! From ~ii ! it immediately follows thatl>1. On the

other hand, we just have to prove that ifl51 then W1
5W2 ~the only if part is trivial!. If l51, using~i! and ~iii !
we have that̂rv&W1

>^rv&W2
for all rv5ue, f &^e, f u projector

on a product vector. Since tr(W1)5tr(W2) we must have
tr@(W12W2)rv#50 for all rv , since we can always find a
product basis in which we can take the trace. But now,
any givenr>0 we can definer̃(x)5r1x1 such that for
large enoughx, r̃(x) is separable@18#. In that case we have

^r̃(x)&W1
5^r̃(x)&W2

which implies that^r&W1
5^r&W2

, i.e.

W15W2.
Corollary 1: DW1

5DW2
iff W15W2.

Proof: We just have to prove the only if part. For that, w
definel as in Eq.~3!. On the other hand, defining

l̃[ inf
r2PDW2

U^r2&W1

^r2&W2

U , ~5!

we have thatl̃>1 sinceW1 is finer thanW2 @lemma 1~iv!#.
Equivalently,

1> sup
r1PDW1

U^r1&W2

^r1&W1

U>l>1, ~6!

where for the last inequality we have used thatW2 is finer
thanW1. Now, sincel51 we have thatW15W2 according
to lemma 1~iv!.

Next we introduce one of the basic results of this paper
basically tells us that one EW is finer than another one
they differ by a positive operator. That is, if we have an E
and we want to find another one which is finer, we have
subtract a positive operator.

Lemma 2: W2 is finer thanW1 iff there exists aP and 1
.e>0 such thatW15(12e)W21eP.

Proof: ~If ! For all rPDW1
we have that 0.^r&W1

5(1

2e)^r&W2
1e^r&P which implies^r&W2

,0 and thereforer

PDW2
. ~Only if! We definel as in Eq.~3!. Using lemma

1~iv! we havel>1. First, if l51 then according to lemma
1~iv! we haveW15W2 ~i.e., e50). For l.1, we defineP
5(l21)21(lW12W2) and e5121/l.0. We have that
W15(12e)W21eP, so that it only remains to be show
that P>0. But this follows from lemma 1~i!–~iii !, and the
definition of l, l5 infr1PDW1

u^r1&W2
/^r1&W1

u.

The previous lemma provides us with a way of determ
ing when an EW is finer than another one. With this res
we are now at the position of fully characterizing OEW.

Theorem 1: Wis optimal iff for all P ande.0, W85(1
1e)W2eP is not an EW@does not fulfill ~I!#.

Proof: ~If ! According to lemma 2, there is no EW whic
is finer thanW; therefore,W is optimal.~Only if! If W8 is an
EW, then according to lemma 2W is not optimal.

The previous theorem tells us thatW is optimal iff when
we subtract any positive operator from it, the resulting o
0-3



no

e
w

e
W

pl
n

sh

o
t

io
p-
th

n
ot
e

e
en

e

t

ar
ss
e

of
ti-

-

-

ws

s
e to
r to
sses
f
s.
is

s

le.

and
ed

ich

-

LEWENSTEIN, KRAUS, CIRAC, AND HORODECKI PHYSICAL REVIEW A62 052310
erator is not positive on product vectors. This result is
very practical for two reasons:~1! For a givenP it is typi-
cally very hard to check whether there exists somee.0 such
that W2eP is positive on all product vectors.~2! It may be
difficult to find a particularP that can be subtracted fromW
among all possible positive operators. In Appendix A w
show how to circumvent these two drawbacks in practice:
give a simple criterion to determine when a givenP can be
subtracted fromW. This allows us to determine which are th
positive operators which can be subtracted from a given E

In the rest of this subsection we will present some sim
results related to these two questions. First, it is clear that
every positive operatorP can be subtracted from an EW,W.
In particular, the following lemma tells us that it must vani
on PW .

Lemma 3:If PPWÞ0 thenP cannot be subtracted from
W.

Proof: There exists someue0 , f 0&PPW such that
^e0 , f 0uPue0 , f 0&.0. Substituting this product vector int
condition~I! for anyW2eP, we see that the inequality is no
fulfilled for any e.0, i.e.P cannot be subtracted.

Corollary 2: If PW spansH, thenW is optimal.
Note that, as announced at the beginning of this sect

the setPW plays an important role in determining the pro
erties of the separable states which lie on the border with
entangled states. We see here that this set also plays a
portant role in determining whether an EW is optimal or n

On the other hand, in order to check whether a giv
operatorP can be subtracted or not fromW, one has to check
whether there exists somee.0 such that̂ e, f uW2ePue, f &
.0 for all ue, f &. The following lemma gives an alternativ
way to do this. In fact, it gives a necessary and suffici
criterion for an EW to be optimal. For a givenue&PHA , we
will denote byWe[^euWue&.

Lemma 4: Wis optimal iff for all uC& orthogonal toPW :

e[ inf
ue&PHA

@^Cue&We
21^euC&#2150. ~7!

Proof: ~If ! Let us assume thatW is not optimal; that is, there
existsW8ÞW, finer thanW. Then, according to lemma 2 w
have that there existse0.0 and P>0 such thatW85(W
2e0P)/(12e0). Imposing thatW8 is positive on product
vectors ~i.e., We8>0 for all ue&PHA) we obtain 0<^euW
2e0Pue&<We2e0lC^euC&^Cue&, whereuC& is any eigen-
state ofP with nonzero eigenvalue,lC . According to Ref.
@20#, this last operator is positive iff both~i! ^euC& is in the
range of^euWue&, which imposes thatuC& is orthogonal to
PW ; and ~ii ! lCe0<@^Cue&We

21^euC&#21, which imposes
thate>lCe0.0 for that givenuC&. ~Only if! Let us assume
that there exists someuC& orthogonal toPW such thate
.0. Then using the same arguments one can show thaW8
[(W2euC&^Cu)/(12e)ÞW is an EW. According to
lemma 2,W8 is finer thanW, so thatW is not optimal.

C. Decomposable entanglement witnesses

There exists a class of EW which is very simple to ch
acterize, namely, decomposable entanglement witne
~DEW’s! @28#. These are EW’s that can be written in th
form
05231
t

e

.
e
ot

n,

e
im-
.
n

t

-
es

W5aP1~12a!QT, ~8!

where aP@0,1#. As it is well known ~see Sec. IV!, these
EW’s cannot detect PPTES’s. In any case, for the sake
completeness, we will give some simple properties of op
mal DEW’s.

Theorem 2:Given a DEW,W, if it is optimal then it can
be written asW5QT, whereQ>0 contains no product vec
tor in its range.

Proof: SinceW is decomposable, it can be written asW
5aP1(12a)QT. W8}W2aP is also a witness, which ac
cording to lemma 2 is finer thanW, and thereforeW is not
optimal. On the other hand, ifue, f &PR(Q) then for some
l.0 we have thatW}(Q2lue, f &^e, f u)T is finer thanW,
and therefore this last is not optimal.

This previous result can be slightly generalized as follo
Theorem 2’:Given a DEW’s,W, if it is optimal then it

can be written asW5QT, whereQ>0 and there is no op-
eratorPPR(Q) such thatPT>0.

Proof: Is the same as in previous theorem.
Corollary 3: Given a DEW,W, if it is optimal thenWT is

not an EW@does not fulfill ~II !#.
Proof: Using theorem 2 we have thatW5QT with Q

>0. ThenWT5Q>0, which does not satisfy property~ii !.

IV. NONDECOMPOSABLE ENTANGLEMENT
WITNESSES

In Sec. III we were concerned with EW’s in general. A
mentioned above, when studying separability we just hav
consider those EW’s that can detect PPTES’s. In orde
characterize these, one defines nondecomposable witne
~NDEW’s! as EW’s which cannot be written in the form o
Eq. ~8! @28#. This section is devoted to this kind of witnes
The importance of NDEW’s in order to detect PPTES’s
reflected in the following

Theorem 3:An EW is nondecomposable iff it detect
PPTES’s.

Proof: ~If ! Let us assume that the EW is decomposab
Then it cannot detect a PPTES, since ifr,rT>0 we have
tr@(aP1(12a)QT)r#5a tr(Pr)1(12a)tr(QrT)>0.
~Only if! The set of decomposable witnesses is convex
closed, andW, as a set containing one point, is a clos
convex set itself. Thus from Hahn–Banach theorem@32# it
follows that there exists an operatorr such that~i! tr@r„aP
1(12a)QT

…#>0 for all P,Q>0, aP@0,1#; and ~ii !
tr(rW),0. From~i!, takinga51 we infer thatr>0; on the
other hand, takinga50 we obtain that tr@rTQ#>0 for all
Q>0, and thereforerT>0. Thus,W detectsr which is a
PPTES.

Corollary 4: Given an operatorD, it is decomposable iff
tr(Dr)>0 for all r,rT>0.

A. Definitions

In this subsection we introduce some definitions wh
are parallel to those given in Sec. III. Given a NDEW,W, we
define dW5$r>0, such thatrT>0 and^r&W,0%; that is,
the set of PPT operators detected byW. Nondecomposable
0-4
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OPTIMIZATION OF ENTANGLEMENT WITNESSES PHYSICAL REVIEW A62 052310
finer ~ND-finer!: Given two NDEW’s,W1 and W2, we say
that W2 is ND-finer thanW1, if dW1

#dW2
; that is, if all the

operators detected byW1 are also detected byW2. Nonde-
composable optimal entanglement witness~NDOEW!: We
say thatW is an NDOEW if there exist no other NDEW
which is ND-finer. pW5$ue, f &PH, such that̂ e, f uWue, f &
50%; that is, the product vectors on whichW vanishes.

Note again the important role that the vectors inpW play
regarding PPTES’s. If we have a NDEW,W, which detects a
given PPTESr, then the operatorr85r1rw whererw has
the form of Eq.~2! with pk>0, and uek , f k&PpW also de-
scribes a PPTES. Thus any operator of the form of Eq.~2!
lies in the border between separable states and PPTES’

B. Optimal nondecomposable entanglement witness

The goal of this section is to find a necessary and su
cient condition for a NDEW to be optimal. We start by pro
ing a similar result to the one given in lemma 1, but f
NDEW’s:

Lemma 1(b):Let W2 be ND-finer thanW1,

l[ inf
r1PdW1

Utr~W2r1!

tr~W1r1!
U, ~9!

and now bothr,rT>0. Then we have~i!–~iv! as in lemma 1.
Proof: The proof is basically the same as in lemma 1, a

will be omitted here.
Corollary 1(b): Given two NDEW’s, W1,2, then dW1

5dW2
iff W15W2.

Proof: The proof is basically the same as corollary 1, a
will be omitted here.

Lemma 2(b):Given two NDEW’s,W1,2, W2 is ND-finer
than W1 iff there exists a decomposable operatorD and 1
.e>0, such thatW15(12e)W21eD.

Proof: ~If ! Given anyr,rT>0, we have that ifrPdW1

then 0.^r&W1
5(12e)^r&W2

1e^r&D>(12e)^r&W2
, where

in the last inequality we have used that^r&D>0 sinceD is
decomposable~see corollary 4!. ThereforerPdW2

. ~Only if!

We definel as in Eq.~9!, so thatl>1 according to Lemma
1~b!~iv!. If l51 we haveW15W2. If l.1 we defineD
5(l21)21(lW12W2) and e5121/l. We have thatW1
5(12e)W21eD, so that it only remains to be shown thatD
is decomposable. But from Lemma 1~b!~i!–~iii ! and the defi-
nition of l it follows that ^r&D>0 for all r,rT>0. Using
corollary 4 we then have thatD is decomposable.

Now we are able to fully characterize NDOEW’s.
Theorem 1(b):Given an NDEW,W, it is ND optimal iff

for all decomposable operatorsD ande.0, W85(11e)W
2eD is not an EW@does not fulfill ~I!#.

Proof: Same as for Theorem 1.
Theorems 1 and 1~b! allow us to relate OEW’s and

NDOEW’s. In this way we can directly translate the resu
for general OEW’s to NDOEW’s. We have

Theorem 4:Given a NDEW,W, W is a NDOEW iff both
W andWT are OEW’s.

Proof: ~If ! Let us assume thatW is not a NDOEW. Then,
according to theorem 1~b! there existse.0, and a decom-
05231
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posable operatorD such that W85(11e)W2eD is a
NDEW. We can writeD5aP1(12a)QT, with aP@0,1#. If
aÞ0, then W15(11ae)W2aeP fulfills ^e, f uW1ue, f &
>^e, f uW8ue, f &>0, and therefore, according to lemma 2,W
is not optimal. If aÞ1 then W25@11(12a)e#WT2(1
2a)eQ fulfills ^e, f uW2ue, f &>^e, f u(W8)Tue, f &>0, i.e. is
an EW, and thereforeWT is not optimal.~Only if! According
to theorem 1~b!, if W is ND optimal then for allD5aP
1(12a)QT, with aP@0,1#, and alle.0 we have thatW8
5(12e)W2eD does not satisfy~I!. Taking a51 we have
for all P and e.0, W15(12e)W2eP does not fulfill ~I!,
and therefore~theorem 1! W is optimal; analogously, taking
a50 we have thatWT is optimal also.

Corollary 5: W is a NDOEW’s iff WT is a NDOEW.

V. OPTIMIZATION

In this section we give a procedure to optimize EW
which is based on the results of the previous sections.

A. Optimization of general entanglement witnesses

Our method is based in the following lemma. It tells
how much we can subtract from an EW. Here we will deno
We5^euWue& and Pe5^euPue& where ue&PHA , by
@•••#min , the minimum eigenvalue, and by@•••#max, the
maximum eigenvalue. On the other hand,X21/2 will denote
the square root of the pseudoinverse ofX @33#.

Lemma 5:If there exists someP such thatPPW50, and

l0[ inf
ue&PHA

@Pe
21/2WePe

21/2#min

5~ sup
ue&PHA

@We
21/2PeWe

21/2#max!
21.0, ~10!

then

W8~l![~W2lP!/~12l!, ~11!

wherel.0 is an EW iff l<l0.
Proof: Let us find out for which values ofl>0 W8(l) is

an EW. We have to impose condition~I!, which can be writ-
ten as^euW8(l)ue&>0, i.e.,

We2lPe>0. ~12!

Multiplying by Pe
21/2 on the right and left of this equation

we obtainPe
21/2WePe

21/2>l, which immediately gives tha
l<l0 given in the first part of Eq.~10!. On the other hand
multiplying by We

21/2 on the right and left of Eq.~12!, we
obtain We

21/2PeWe
21/2<1/l, which immediately gives tha

l<l0 given in the second equality of Eq.~10!.
Lemma 5 provides us with a direct method to optimi

EW’s by subtracting positive operators for which the e
ments ofPW are contained in their kernels. The method th
consists of~1! determiningPW ; ~2! choosing an operatorP
so thatPPW50, and determiningl using~10!; and~3! sub-
tracting the operatorP according to lemma 5 iflÞ0. Con-
tinuing in the same vein we will reach an OEW. In Append
A, we show how to accomplish steps~1! and~2! in practice.
0-5
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B. Optimization of nondecomposable entanglement witnesses

For NDEW’s we have the following generalization o
lemma 5:

Lemma 5(b):Given a NDEW,W, if there exists some
decomposable operatorD such thatDpW50 and

l0[ inf
ue&PHA

@De
21/2WeDe

21/2#min

5~ sup
ue&PHA

@We
21/2DeWe

21/2#max!
21.0, ~13!

then

W8~l![~W2lD !/~12l!, ~14!

wherel.0 is a NDEW iff l<l0.
Proof: Same as for lemma 5.
With the help of lemma 5~b!, we can optimize NDEW’s

by subtracting decomposable operators as follows:~1! deter-
mining pW and pWT; ~2! choosingP andQ so thatPpW50
and QpWT50, building D5aP1(12a)QT with aP@0,1#,
and determiningl0 using ~13!; and, ~3! subtracting the op-
eratorD according to Lemma 5~b! if l0Þ0.

C. Detectors of ‘‘edge’’ PPTES

In the previous subsections we have have given two o
mization procedures. In both of them, starting from a gene
EW one can obtain one which is optimal~or ND optimal!. It
may well happen that the EW found in this way is nond
composable, even though the original one was decom
able. To check this one simply has to use corollary 3, tha
check whetherWT is an EW or not. In case it is, then th
OEW,W, is nondecomposable. However, nothing guarant
that the final EW is nondecomposable if the original one
not. In this subsection we describe a general method to c
struct NDEW’s using the optimization procedures introduc
earlier. This method generalizes the one presented in
@25#.

We are going to use the results presented in Refs.@20,21#.
There we already used and discussed ‘‘edge’’ PPTE
though without naming them. Let us now introduce the f
lowing definition:

Definition ~see Ref.@20#!: A PPTESd is an edge PPTES
if, for all product vectorsue, f & ande.0, d2eue, f &^e, f u is
not a PPTES.

This definition implies that the edge states lie on t
boundary between PPTES’s and entangled states with
positive partial transposes. In this subsection we will sh
how, out of an edge PPTES, we can construct a NDO
that detects it. As we mentioned in Sec. I, edge PPTES’s
of special importance. In particular, they allow one to p
vide a canonical form to write PPTES’s in arbitrary Hilbe
spaces. For these reasons, some properties of the
PPTES’s are discussed in Appendix B.

In order to check whether a PPTES is an edge PPTES
can use a range criterion@13# ~also see Ref.@20#!. That is,d
is an edge PPTES iff for allue, f &PR(d), ue, f * &¹R(dTB).
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Let d be an edge PPTES, and let us denote the proje
onto K(d) by P1 and the projector ontoK(dT) by Q1. We
define

Wd5a~P11Q1
T!, ~15!

wherea51/tr(P11Q1). Let us also define

e1[ inf
ue, f &

^e, f uWdue, f &. ~16!

Then we have the following lemma.
Lemma 6:Given an edge PPTESd, thenW1}Wd2e11 is

a NDEW, wheree1 andWd are defined in Eqs.~16! and~15!,
respectively.

Proof: We have that ^e, f uWdue, f &5a(^e, f uP1ue, f &
1^e, f * uQ1ue, f * &)>0. This quantity is zero iff
^e, f uP1ue, f &5^e, f * uQ1ue, f * &50. But this is not possible
since d is an edge PPTES. Thuŝe, f uWdue, f &.0 for all
ue, f &. Defininge1 as in Eq.~16!, and taking into account tha
^e, f uWdue, f & is a continuous function of~the coefficients of!
ue, f &, and that the set in which we are taken the infimum
compact, we obtaine1.0. Then we obviously have thatW1
fulfills properties ~I! and ~III !. On the other hand,̂d&W1

}a(^d&P1
1^dT&Q1

)2e1,0, since P1d5Q1dT50. Thus

W1 detects a PPTES, and therefore, according to theore
is nondecomposable.

Note that lemma 6 provides an important generalizat
of the method of Terhal@25#, based on the use of unexten
ible product bases@14#. Our method works in Hilbert space
of arbitrary dimensions, and in particular when dim(HA)
52 @in (23N)-dimensional systems# for which unextend-
ible product basis do not exist. By combining lemma 6 a
the optimization procedure introduced earlier, we obtain
way of creating NDOEW’s. Once we haveW1 we find pW1

and pW
1
T. We denote the projector operators orthogonal

these two sets byP2 andQ2 , respectively,

e25 inf
ue, f &

^e, f uW1ue, f &

^e, f uP21Q2
Tue, f &

, ~17!

and W2}W12e2(P21Q2
T). According to lemma 2~b! we

have thatW2 is ND-finer than W1. Now we can define
pW2

, pW
2
T, P3 , Q3, andW3 in the same way, and continue i

this vein until for somek, ek50. If Wk is not yet optimal, we
still have to find other projectors such that we can optim
as explained in the previous subsections.

In Sec. VII we illustrate this method with a family of edg
PPTES’s from Ref.@13#. In fact, as we will mention in that
section, we have checked that the optimization method ty
cally works as well by starting with three random vecto
and following a similar procedure to the one indicated he
This means that in our construction method we do not n
in practice to start from an edge PPTES.

D. Sufficient condition for PPTES’s

In this subsection we use the results derived in Sec. IV
to construct a sufficient criterion for nonseparability
0-6



ls
n

io

e

In

ve

s

s
e
th
th

-

c

nt
t
o

an
s
d

s

e
f

the

ng
of
en-

a
n

s.

is

ay
re-
d to

OPTIMIZATION OF ENTANGLEMENT WITNESSES PHYSICAL REVIEW A62 052310
PPTES’s. As shown in Refs.@20,21#, given an operatorr
>0, with rT>0, we can always decompose it in the form

r5rs1d, ~18!

wherers is separable andd is an edge PPTES. More detai
concerning this decomposition, and in particular its cano
cal optimal form are presented in Appendix B. In this sect
we use this decomposition together with the following.

Lemma 7: Given a nonseparable operatorr5rs1d,
where rs>0 is separable, then for all EW’s,W, such that
^r&W,0 we have that̂d&W,0.

Proof: Obvious from the definition of EW.
Lemma 7 tells us that ifr is nonseparable, then ther

must exist some EW that detects bothd andr. Actually, it is
clear that there must exist an OEW with that property.
particular, ifrT>0, it must be a NDOEW. In Sec. IV C we
showed how to build these out of edge PPTES’s. Thus, gi
r we can always decompose it in the form of Eq.~18!, con-
struct an OEW that detectsd, and check whether it detectsr.
In that case, we will have thatr is nonseparable. Thus thi
provides a sufficient criterion for nonseparability.

We stress the fact that for PPTES’s only a special clas
states, namely, the class of edge PPTES’s, is responsibl
the entanglement properties. In fact, one should stress
many of the examples of PPTES’s discussed so far in
literature belong to the class of edge PPTES’s: the 2^ 4
family from Ref.@13#, then^ n states obtained via unextend
ible product basis construction@14#, the 3̂ 3 states obtained
via the chessboard method@34#~b!, and projections of con-
tinuous variable PPTES onto finite-dimensional subspa
@34#~c!.

VI. POSITIVE MAPS

It is known that PM’s allow for necessary and sufficie
conditions for separability~or, equivalently, entanglemen!
of bipartite mixed states@11#. Positive maps have been als
applied in the context of distillation of entanglement@35# and
information theoretic analyses of separability@36#. In this
section we will use the isomorphism between operators
linear maps to extend the properties derived for witnesse
PM’s @26#. We will first review some of the definitions an
properties of linear maps.

Let us consider a linear mapE:B(HA)→B(HC). We say
thatE is positive if for allYPB(HA) positive,E(Y)>0. One
can extend a linear map as follows. GivenE:B(HA)
→B(HC), we define its extensionE^ 1B :B(HA) ^ B(HB)
→B(HC) ^ B(HB) according toE^ 1C(( iYi ^ Zi)5( iE(Yi)
^ Zi , where YiPB(HA) and ZiPB(HB). A linear map is
completely positive if all extensions are positive. The clas
fication and characterization of positive~but not completely
positive! maps is an open question~see, e.g., Refs.@28,29#!.

An example of a positive~but not completely positive!
map is transposition~in a given basisOA); that is, the map
ET such thatET(Y)5YT. The corresponding extension is th
partial transposition@12#. A mapE is called decomposable i
it can be written asE5E11E2•ET , whereE1,2 are completely
positive.
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One can relate linear maps with linear operators in
following way. We will assumedA[dim(HA)<dim(HC),
but one can otherwise exchangeHA by HC in what follows.
Given XPB(HA^ HC) and an orthonormal basisOA

5$uk&%k51
dA in HA , we define the linear mapEX :B(HA)

→B(HC) according to

E~Y!5trA~XTAY! ~19!

for all YPB(HA), where trA denotes the trace inHA , and the
partial transpose is taken in the basisOA . Similarly, given a
linear map we can always find an operatorX such that Eq.
~19! is fulfilled. For instance, if we chooseT5(uC&^Cu)TA,
where

uC&5 (
k51

dA

uk&A^ uk&C , ~20!

then the corresponding mapET is precisely the transposition
in the basisOA .

Given a linear mapEX , one can easily show the following
relations:~a! EX is completely positive iffX>0; ~b! EX is
positive but not completely positive iffX is an EW@except
for the normalization condition~III !#; and ~c! EX is decom-
posable iffX is decomposable. Thus the problem of studyi
and classifying PM’s is very much related to the problem
EW’s. Furthermore, PM’s can be also used to detect
tanglement @11#. Let us consider the extensionĒX
[EX^ 1:B(HA) ^ B(HB)→B(HC) ^ B(HB), where we take
dB[dim(HB)5dim(HC). Then we have that, givenrP
B(HA^ HB),

^r&X15^CuĒX~r!uC&, ~21!

where

uC&5 (
k51

dB

uk&C^ uk&B . ~22!

Thus, if an EW,W, detectsr, then ĒW(r) is a nonpositive
operator. Consequently,r>0 is entangled iff there exists
PM such that acting onr gives a nonpositive operator. I
that case we say that the PM ‘‘detects’’r. Actually, PM’s
are ‘‘more efficient’’ in detecting entanglement than EW’
The reason is that it may happen thatĒX(r) is nonpositive,
but still ^r&X1>0.

It is convenient to define finer and optimal PM’s as it
for EW’s. That is, given two PM’s,E1,2, we say thatE2 is
finer thanE1 if it detects more. We say that a PM,E, is
optimal if there exists no PM that is finer. In the same w
we can define ND-finer and ND-optimal. The results p
sented in the previous sections can be directly translate
PM given the following fact.

Lemma 8:If W2 is finer (ND-finer! thanW1 thenEW2
is

finer ~ND-finer! thanEW1
.

Proof: Using lemma 2 we can writeW15(12e)W2
1eP. According to Eq.~19! we have thatEW1

5(12e)EW2
0-7
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1eEP . SinceEP(r)>0 for all r>0, we have thatEW2
is

finer thanEW1
. Using lemma 2~b!, we can also prove that it is

ND-finer.
From this lemma it follows that optimizing EW’s implie

optimizing PM’s. In fact, the constructions that we gave
Sec. V C can be viewed as ways of constructing nondec
posable PM’s. In fact, since the method works f
dim(HA)52, the resulting PME:B(HA)→B(HC) has a
minimal ‘‘qubit’’ domain, or—equivalently—minimal Her-
mitian conjugate codomain. To our knowledge, our meth
is the first that permits one to construct nondecomposa
PM’s with these characteristics.

VII. ILLUSTRATION

In this section we explicitly give construct a NDOEW o
of edge PPTES. We use, as a starting point, the family
PPTES’s introduced in Ref.@13#!.

A. Family of ‘‘edge’’ PPTES’s

We considerHA5C2 and HB5C4, and denote$uk&%k50
da

(a5A,B) an orthonormal basis in these spaces, respectiv
Most of the time we will write the operators in those bas
that is, as matrices. For operators acting inHA^ HB we will
always use the order$u0,0&,u0,1&, . . . ,u1,0&,u1,1&, . . . %. On
the other hand, all partial transposes will be taken with
spect toHB .

We consider the following family of positive operato
@13#

rb5
1

7b11 1
b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0 0 0 0 b

0 0 0 b 0 0 0 0

0 0 0 0
11b

2
0 0

A12b2

2

b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0
A12b2

2
0 0

11b

2

2 ,

~23!

wherebP@0,1#. For b50 and 1 those states are separab
whereas for 0,b,1, rb is an edge PPTES. This can b
shown by checking directly that they violate the range cr
rion of Ref. @13#, i.e., the definition given in Sec. IV C.

If we take the partial transpose in the basis$uk&%, the
density operatorsrb have the property thatrb

T5UBrbUB
†

with UB5(sx)03% (sx)12. Here, the subscripti j denotes the
subspace,HBi j,HB spanned by$u i &,u j &%, andsx is one of
the Pauli operators. Note thatUB is a real unitary operato
acting only onHB . This immediately implies that

r̃b
T5 r̃b , ~24!
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where r̃b5VBrbVB
† and VB51A2@(11 isx)03% (11 isx)12#.

We will use property~24! to simplify the problem of con-
structing the NDOEW. Thus we will concentrate from no
on the operatorsr̃b @37#. Obviously,r̃b is an edge PPTES fo
1.b.0.

The projector onto the kernel ofr̃b , P1, is invariant under
the transformationTAB5TA^ TB , where

TA5S 1 0

0 ei2p/3D ,

TB5S 1 0 0 0

0 cos~2p/3! 2sin~2p/3! 0

0 sin~2p/3! cos~2p/3! 0

0 0 0 1

D . ~25!

Note that TB is a real matrix. Later on we will need it
eigenstates with real coefficients; they areu0&6u3&. Note
also thatTAB

3 51.

B. Construction of NDEW’s

We use now the methods developed in Sec. V to obta
NDOEW starting from r̃b . That is, we defineWb5P1

1P1
T , whereP1 is the projector ontoK( r̃b)5K( r̃b

T). Our
procedure consists of first subtracting the identity to obt
W15Wb2e11. Then we subtractP21Q2

T , P31Q3
T , etc. In

the nth step, we have

Wn5Wn212en~Pn1Qn
T!, ~26!

where Pn (Qn) is the projector orthogonal to the spac
spanned byPWn21

(PW
n21
T ). We will use the symmetries o

r̃b to better understand the structure ofWn .
~a! Wn5Wn

T . We can prove this by induction. First, it i
clear that W15W1

T . Let us now assume thatWn21

5Wn21
T . Then we show thatWn5Wn

T . For this, we just
have to show that the subspace spanned byPWn21

is the

same as the one spanned byPW
n21
T , so thatQn5Pn . But this

is clear sinceWn215Wn21
T .

~b! TABWnTAB
† 5Wn . We prove this by induction. First

for W15P11P1
T2e11 we have that TABW1TAB

†

5TABP1TAB
† 1TABP1

TTAB
† 2e115W1, since TABP1

TTAB
†

5(TABP1TAB
† )T ~given the fact thatTB is real! and P1 is

invariant under TAB . Then, let us assume tha
TABWn21TAB

† 5Wn21. In order to show thatTABWnTAB
†

5Wn we just have to show thatPn is invariant underTAB ,
or, equivalently, that the subspace spanned byPWn21

is in-

variant underTAB . But this follows immediately from the
fact thatTABWn21TAB

† 5Wn21.
Starting from property~a!, it follows that the vectors

ue, f &PPWn
will have u f & real ~unless we have degeneracies!.

This can be seen by noting that those vectors minim
^e, f uWnue, f &; defining We[^euWnue&, we have thatWe

T

5We5We
† is symmetric, and therefore the eigenstate cor
0-8
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sponding to its minimum eigenvalue can be chosen to
real. On the other hand, starting from the property~b!, it
follows that if ue, f &PPWn

, then TAB
† ue, f &,TAB

†2 ue, f &PPWn
.

According to this, we will typically have two kinds of prod
uct vectors inPWn

.

~1! ue, f & is an eigenstate ofTAB
† with u f & real: There are

only four possible product vectors which fulfill these cond
tions: $u0&,u1&% ^ $u0&1u3&,u0&2u3&%.

~2! ue, f & is not an eigenstate ofTAB
† : Then we will also

haveTAB
† ue, f & and (TAB

† )2ue, f &PPW .

We have carried out this procedure forr̃b and found
NDOEW’s for eachb. We find that for optimal EW’s we
have two vectors of type~1! and six of type~2!. In total we
find eight product vectors inPW , which span the whole Hil-
bert space, and therefore the corresponding EW’s are opt
~see corollary 2!. This means that any operator of type~2!
with uek , f k&PPW , the product vectors we have found, a
pk.0 will be a full range separable density operator that l
on the boundary between separable and PPTES’s. To
knowledge, this constitutes the first example of these op
tors @38#. We have also created PM’s corresponding
NDOEW’s, which we believe are the first examples of no
decomposable PM’s with minimal ‘‘qubit’’ domains, or—
equivalently—minimal Hermitian conjugate codomains.

In Fig. 1 we show for whichb8 r̃b8 is still detected by the
NDOEW created out ofr̃b . We find that for a givenb, the
optimal witness that we create detects allr̃ b̃ for b̃<b8. Thus,
in the figure we plotb8 as a function ofb. As explained
above, the corresponding positive map detects more than
witness itself. In this figure one can also see how much
detected by the positive map.

Obviously, the witnesses that we create do not only de
the density operatorsr̃b . For instance, one can check ho
much one can add to the identity of a certainr̃b but still keep
the state entangled, that is, for whichl the witness still de-
tectsr̃b1l1. This is shown in Fig. 2.

FIG. 1. Values ofb8 for which if b̃<b8, r̃ b̃ is detected by the

witness and the positive map created starting fromr̃b .
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Finally, let us note that using numerical calculations w
have observed that if one starts with a random projectorP of
rank 3, and optimizes the decomposable operatorW[P
1PTB in the same way as the one described here, then
will end up with a NDOEWW̃, wherepW̃ is complete. This
means that in order to create NDOEW one does not nee
know in practice an edge PPTES. In another words, opti
zation itself is a way to reach nondecomposableness.

C. Analytical procedure

In this subsection we will present an analytical way
create NDEW’s. Furthermore we will give an example
such a witness, which detectsrb for all bP(0,1). From Fig.
1 we see that the witness which detects the most is the
we created out ofr̃b , whereb is very close to 1. We will
work with the originalrb @Eq. ~23!#.

We consider two Hermitian operatorsA and B, with A
positive on product vectors, i.e.,^e, f uAue, f &>0, whereasB
does not have to. As before we denote byPA (PB) the ~not
necessarily complete! set of product vectors on whichA ~B!
vanishes. We require that for allue, f &PPA , ^e, f uBue, f &
>0. Then we defineW(x)[1/x(A1xB) for any realx. So
we have the following lemma

Lemma 9:If lim x→0^r&W(x),0, thenr is entangled.
Proof: We prove that limx→0^e, f uW(x)ue, f &>0. This im-

plies that if r is separable, then limx→0^r&W(x>0. Let us
therefore distinguish two cases:~i! if ue, f &PPA , then we
have that limx→0^e, f uW(x)ue, f &5^e, f uBue, f &, which is, per
assumption, positive. ~ii ! ue, f &P” PA ; then we have
limx→0^e, f uW(x)ue, f &5 limx→0(a/x)1b, where a
5^e, f uAue, f &.0 andb5^e, f uBue, f &. Thus this limit tends
to infinity, which proves the statement.

Note thatW(x) is not an EW, since it is not necessari
positive on product vectors. However, one can make it po
tive by adding the identity operator to convert it into an EW

FIG. 2. Maximuml such thatr̃b1l1 is still detected by the

witness, and the positive map created starting fromr̃b .
0-9
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Corollary 6: Given any x0.0, then W(x0)[(1/x0)(A
1x0B)1lx0

1, where lx0
52minue,f&^e,fu1/x0(A1x0B)ue, f &

is an EW.
Let us now illustrate how we can use lemma 9 to det

all the statesrb . We define

A51
0 0 0 0 0 0 0 0

0 1 0 0 0 0 22 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 22 0 0 0 0 1 0

0 0 0 0 0 0 0 0

2 , ~27!

B51
1 0 0 1 0 22 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 22

1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 21

22 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 22 0 21 0 0 1

2 . ~28!

One can easily show thatA5uc&^cu1(uf&^fu)TB, where
uc&5u01&2u12& and uf&5u02&2u11&. Thus this operator is
positive on product vectors, since it is decomposable.
us now use unnormalized states in order to pres
the set of product vectors on whichA vanishes, i.e.,
PA . PA5PA1

øPA2
, where PA1

5$(u0&1au1&) ^ (xu0&
1yu3&);a,x,y% and PA2

5$(u0&1eiFu1&) ^ @xu0&1yu3&
1z(u1&1e2 iFu2&] ;F,x,y,z%. OperatorB has to be positive
on those product vectors, i.e.,;ue, f &PPA , ^e, f uBue, f &>0.
In order to show that this is indeed like that let us distingu
the two casesue, f &PPA1

andue, f &PPA2
. In the first case we

have that

^euBue&5S 11uau2 22a 0 12uau2

22a* 11uau2 0 0

0 0 11uau2 22a

12uau2 0 22a* 11uau2
D ,

~29!

and so ^e, f uBue, f &5ux1yu21uau2ux2yu2>0. If ue, f &
PPA2

then

^euBue&5S 2 22eiF 0 0

22e2 iF 2 0 0

0 0 2 22eiF

0 0 22e2 iF 2

D ,

~30!
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which is a positive operator, and so^e, f uBue, f &>0. So those
two operatorsA andB fulfill all the required properties. Fur-
thermore, one can show that^rb&A50 and^rb&B,0 for all
0,b,1. Thus we have that limx→0^W(x)rb&,0 for all 0
,b,1, where we definedW(x)5(1/x)(A1xB).

As mentioned above, we can use nowW(x) in order to
create other PPTES’s just by adding product vectors
which W(x) vanishes. To find the product vectors we c
add, all we need to do is to determine the intersect
between PA and PB . Since PB5$(u0&1eifu1&)
^ @a(u0&1e2 ifu1&1b(u2&1e2 ifu3&)] ;f,a,b% we
have that S[PAùPB5PA2

ùPB5$(u0&1eifu1&) ^ (u0&
1e2 ifu1&1e2 i2fu2&1e2 i3fu3&);f%. Note thatS spans a
five dimensional subspace, and that the orthogonal subs
is spanned by the vectors$2u02&1u13&,2u01&1u12&,
2u00&1u11&%.

VIII. CONCLUSIONS

Entanglement witnesses allow us to study the separab
properties of density operators. We have defined OEW
which are those that detect entanglement in an optimal w
We have given necessary and sufficient conditions for
EW to be optimal, and we have shown a way to constr
them. We have also concentrated on NDEW’s, which
those that detect PPTES’s. We have extended the definit
of optimality and the optimization procedure to those EW
It turns out that one can optimize NDEW by subtracti
decomposable operators. We have also given an exp
method to construct NDEW’s starting from ‘‘edge
PPTES’s. We have also mentioned that this method wo
by starting out from random operators. We have exten
our techniques to PM’s, and therefore given a method
systematically construct nondecomposable positive ma
We have illustrated our methods with a family of ed
PPTES acting onC2

^ C4. The corresponding PM’s constitut
the first examples of PM’s with minimal ‘‘qubit’’ domains
or—equivalently—minimal Hermitian conjugate cod
mains. We have also constructed examples of separ
states of full range that lie on the boundary between se
rable states and PPTES’s. These states can be used fo
perimental realization of PPTES’s@38#.

In this paper we have also introduced the edge PPTE
which violate the range criterion of separability. As shown
Appendix B, edge PPTES’s allow us to construct a canon
form of PPTES’s in Hilbert spaces of arbitrary dimension
They also allow us to give a sufficient condition for nonsep
rability which applies to operators with positive partial tran
poses. It is based on the fact that among all PM’s~or EW’s!
only the subset$Ledge% of those PM’s that detect edg
PPTES’s are needed to study the separability of PPTE
This opens many interesting questions. Is it possible tha
the set$Ledge% there is some map that is globally finer tha
the transposition? In another words, is there a map detec
the entanglement ofall the states with nonpositive partia
transposes? What is the minimal subset of$Ledge% providing
such condition? Is it finite?

Finally, let us consider the implications of the our resu
for the very interesting problem of locality of PPTES. The
0-10
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is a conjecture@39# that those states can be local in the se
that they admit a local hidden variable~LHV ! model for any
set of possible local measurements. The problem is
trivial given the fact that it may be important to take in
account the role of sequential measurements and the pos
existence of many copies. Quite recently it was shown t
PPTES satisfy Bell-type inequalities introduced by Merm
@40#. It is not difficult to convince oneself that the set
states admitting a LHV model foranyfixed type of measure
ments is a convex set. Furthermore, extending the reaso
from Ref.@7#, it is easy to see that the set of separable sta
admits LHV models for any possible set of measureme
Hence, taking into account the results of this paper it follo
that in order to prove or disprove the locality of PPTES’s
is enough to study only edge PPTES’s.

Note that edge states typically have very small rank~the
minimal rank is four in 3̂ 3 systems, see Ref.@21#!. There
have been no examples of LHV models for states of l
rank, so far. Thus, perhaps, completely new techniques
be needed to study this problem. In this case the most s
metric PPTES’s provided recently@34#~c! seem to be the bes
suitable for the first test.
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APPENDIX A: OPTIMALITY OF EW’S

In this appendix we study necessary and sufficient con
tions for an EW to be optimal. According to theorem 1
Sec. III, an EW,W, is optimal iff no positive operator can b
subtracted fromW while retaining property~I!. This condi-
tion can be reexpressed in terms of the infimum of so
scalar products in lemma 4. This infimum is, in general, d
ficult to calculate~at least analytically!. In this section we
will give a different method to determine whether an EW
optimal or not. This method will turn out to be very simp
for the case in which dim(HA)52. The idea is to find the
conditions such that a given operatorP>0 can or cannot be
subtracted from an EW. This will automatically give us
criterion to determine whenW is optimal.

In all this appendix we will use that, given an EW,W, and
an operatorP>0, we say thatP cannot be subtracted fromW
if for all l.0, W2lP does not fulfill ~I!. In other words,
there existue(l)&PHA and u f (l)&PHB such that

^e~l!, f ~l!u~W2lP!ue~l!, f ~l!&,0. ~A1!

Note that ^e(l), f (l)uPue(l), f (l)& must be strictly posi-
tive, so that Eq.~A1! can be expressed as
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lim
l→0

^e~l!, f ~l!uWue~l!, f ~l!&

^e~l!, f ~l!uPue~l!, f ~l!&
50. ~A2!

In Appendix A 1 we will introduce some definitions and n
tation. In Appendix A 2 we give a method to determine t
set of product vectorsPW , on whichW vanishes. In Appen-
dix A 3 we find a necessary and sufficient condition und
which an operator cannot be subtracted from an EW. We
see that there must exist a vectorue0 , f 0&PPW , some other
vectorsue1& andu f 1&, and certain phasesfe, f andu such that
some quantity is zero. In Appendix A 1 we will see that t
problem can be reduced to finding only the vectorsue0,1& and
u f 0,1&. Finally, we will show that if dim(HA)52 we just have
to find ue0& and u f 0&, which is very simple.

1. Definitions and notation

In order to prove the results of this appendix in a comp
and readable form we have made an extensive number
definitions. We will always denote byue0 , f 0& a product vec-
tor in PW , and byue1&PHA and u f 1&PHB two vectors or-
thogonal toue0& and u f 0&, respectively. We will use the no
tation

Wi , j
k,l5^ei , f j uWuek , f l& ~ i , j ,k,l 50,1!, ~A3!

and we will write

W1,0
0,15uW1,0

0,1ueif0, ~A4a!

W0,0
1,15uW0,0

1,1ueif1. ~A4b!

We will also define the following operators:

wi , j
e [^ei uWuej&, ~A5a!

wi , j
f [^ f i uWu f j&. ~A5b!

The following vectors will be used in the context of E
~A2!:

ue~e!&5
1

A11ucos~u!eu2
@ ue0&1e cos~u!eifeue1&],

~A6a!

u f ~e!&5
1

A11usin~u!eu2
@ u f 0&1e sin~u!eif f u f 1&],

~A6b!

wheree is a real number, andfe, fP@0,p) and uP@0,p/2#
are certain constants. Given a product vectorue(e), f (e)& and
an operatorW, we will expand^e(e), f (e)uWue(e), f (e)& by
collecting terms with the same powers ine; that is, except
for a normalization constant,

^e~e!, f ~e!uWue~e!, f ~e!&}(
i 51

4

e iAi~W!, ~A7!

where
0-11
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A0~W!5W0,0
0,0, ~A8a!

A1~W!52 Re@cos~u!eifeW0,0
1,01sin~u!eif fW0,0

0,1#,
~A8b!

A2~W!5cos2~u!W1,0
1,01sin2~u!W0,1

0,112 sin~u!cos~u!

3Re@e2 i (fe2f f )W1,0
0,11ei (fe1f f )W0,0

1,1#, ~A8c!

A3~W!52 sin~u!cos~u!3Re@cos~u!eif fW1,0
1,1

1sin~u!eifeW0,1
1,1#, ~A8d!

A4~W!5sin2~u!cos2~u!W1,1
1,1. ~A8e!

On the other hand, we will define

uC0,1&[sin~u!eif f ue0 , f 1&1cos~u!eifeue1 , f 0&. ~A9!

Finally, the following quantity will play an important role
in determining whether there exist vectors and parameters
which @Eq. ~A2!#

X~W![W1,0
1,0W0,1

0,12~ uW1,0
0,1u1uW0,0

1,1u!2. ~A10!

2. Determining PW

As stated in lemma 3, not every positive operatorP can be
subtracted from an EW,W; it must vanish onPW . Thus, in
order to chooseP one has to know the setPW . In this sub-
section we give a method to determine it. We start by ch
acterizing the vectors inPW :

Lemma A1:Given an operatorW satisfying ~I!, then
ue0 , f 0&PPW iff

^e0uWue0&u f 0&50, ~A11a!

^ f 0uWu f 0&ue0&50. ~A11b!

Proof: ~If ! We just apply^ f 0u to Eq. ~A11a!. ~Only if!
SinceW fulfills ~I! then We0

[^e0uWue0& must be positive.

Thus, ^ f 0uWe0
u f 0&50 implies Eq.~A11a!. In the same way

we obtain Eq.~A11b!.
In practice, for a givenW the setPW can be found as

follows. Due to the fact thatW is an EW we have that for an
ue&PHA , We[^euWue& must be a positive operator~i.e.,
^ f uWeu f &>0 for all u f &PHB). Thus, the determinan
det(We)>0. According to lemma A1, this determinant
zero iff there exists someu f 0&PHB such that^ f 0uWe0

u f 0&
50, i.e., if ue0 , f 0&PPW . That is, the determinant as a fun
tion of ue& has a minimum~which is zero! at ue0&. We can
use this fact to findue0&. Then, we can easily obtainu f 0& via
Eq. ~A11a!. We can expand an unnormalized stateue& in an
orthonormal basis$uk&% as

ue&5 (
k51

dim(HA)

ckuk&, ~A12!

and impose that the corresponding determinant is zero.
gives us a polynomial equation for the coefficientsck , i.e.,
05231
or
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P~ck ,ck* !50. ~A13!

We also impose that, given the fact that the determinant
minimum,

]

]ck
P~ck ,ck* !5

]

]ck*
P~ck ,ck* !50, ~A14!

which also give a set of polynomial equations. These eq
tions can be solved using the method mentioned in Ref.@20#.

3. Necessary and sufficient conditions for subtracting an
operator

In this subsection we give a necessary and sufficient c
dition for an operatorP to be subtractable from an EW. W
start out by giving some properties of the coefficientsA(W)
defined above~A8!.

Lemma A2:Given W satisfying ~I! and ue0 , f 0&PPW ,
then for all ue1&PHA and u f 1&PHB we have ~i! A0(W)
5A1(W)50. ~ii ! A2(W)>0. ~iii ! If A2(W)50, then
A3(W)50.

Proof: ~i! It is a direct consequence from lemma A1.
order to prove~ii ! and~iii ! we use the fact thatW satisfies~I!.
We defineue(e)& andu f (e)& as in Eq.~A6!. We impose that
^e(e), f (e)uWue(e), f (e)&>0. Using expansion~A7! and
taking ~i! into account, we haveA(e)[A2(W)1eA3(W)
1e2A4(W)>0 for all e. This automatically implies~ii !,
since otherwise for sufficiently smalle we would have
A(e),0. It also implies~iii !, since if A3(W),0 „A3(W)
.0… then for sufficiently smalle.0 (e,0) we would have
A(e),0.

Now, we are at the position of giving a necessary a
sufficient condition under which an operator cannot be s
tracted from an EW:

Lemma A3:GivenP fulfilling PPW50, it cannot be sub-
tracted from W iff there exists ue0 , f 0&PPW , ue1&'ue0&,
u f 1&'u f 0&, fe, f , andu such thatA2(W)50 but A2(P)Þ0.

Proof: ~If ! We defineue(l)& and u f (l)& as in Eq.~A6!.
Using lemma A2~i!, we have A0(W)5A0(P)5A1(W)
5A1(P)50. Using lemma A2~iii !, we have thatA3(W)50.
Thus we can write limit~A2! as

lim
l→0

l2A4~W!

A2~P!1lA3~P!1l2A4~P!
, ~A15!

which obviously tends to zero given thatA2(P)Þ0. ~Only
if ! There exist two normalized vectorsuẽ(l)& and u f̃ (l)&
~continuous functions ofl) fulfilling Eq. ~A2!. Taking the
limit l→0 in this expression we have tha

^ẽ(0), f̃ (0)uWuẽ(0), f̃ (0)&50, and therefore ue0 , f 0&
[uẽ(0), f̃ (0)&PPW . This means that we can always choo
uẽ(l)&5ue@e(l)#& and u f̃ (l)&5u f @e(l)#& given in Eq.
~A6!, where ue1&'ue0& and u f 1&'u f 0& are two normalized
vectors, liml→0e(l)50, and ^e(e), f (e)uPue(e), f (e)&Þ0.
We use Eq.~A6! to expand the numerator and denomina
0-12
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of Eq. ~A2! as in Eq.~A7!. According to lemma A2~i!, we
have that A0(W)5A0(P)5A1(W)5A1(P)50. Thus we
must have

lim
e→0

A2~W!1eA3~W!1e2A4~W!

A2~P!1eA3~P!1e2A4~P!
50. ~A16!

This implies A2(W)50 and A2(P)Þ0. Note that if both
A2(W)5A2(P)50 then, according to lemma A2~iii ! we
have thatA3(W)5A3(P)50, so that Eq.~A15! would re-
quire A4(W)/A4(P)50. But this cannot be, sinceA4(W)
50 would imply that ue(e), f (e)&PPW , and therefore
^e(e), f (e)uPue(e), f (e)&50.

Finally, we show in the next lemma that conditio
A2(P)50 is equivalent to having a certain vector in th
kernel of P. We will use the vectoruC0,1& defined in Eq.
~A9!.

Lemma A4:Given a positive operatorP and a set of vec-
tors ue0 , f 0&PK(P), ue1&'ue0& u f 1&'u f 0& and parameters
fe, f andu, thenA2(P)50 iff uC0,1&PK(P).

Proof: SinceP>0 andue0 , f 0&PK(P), we haveP1,1
0,050.

Then we can writeA2(P)5^C0,1uPuC0,1&, with uC& is de-
fined in Eq.~A9!, from which it is obvious thatA2(P)50 iff
uC0,1&PK(P).

4. Necessary and sufficient conditions forA2„W…Ä0

The previous lemmas tell us that we cannot subtrac
given operatorP provided we can find some vectors an
parameters such thatA2(W)50. The task of finding these
vectors is difficult, in general. Here we will give a way
check whether these vectors exist. As before, we will den
by ue0 , f 0& a vector inPW , and two vectors orthogonal to th
first two by ue1& andu f 1&. The quantityX(W) defined in Eq.
~A10! will play an important role in determining whethe
there exist vectors and parameters for whichA2(W)50. In
this subsection, we will always have to choose the pha
fe, f that minimizeA2(W). That is,

e2 i (fe2f f2f0)521, ei (fe1f f1f1)521. ~A17!

We will denoteÃ2(W) the value ofA2(W) for this particular
choice of phases. We have

Ã2~W!5cos2~u!W1,0
1,01sin2~u!W0,1

0,1

22 sin~u!cos~u!AW1,0
1,0W0,1

0,12X~W!, ~A18!

where we have used Eq.~A10!.
Let us start showing thatX(W) is positive. We will use

this property later on to reexpress conditionA2(W)50 in
terms of one that is simpler to check.

Lemma A5: X(W)>0.
Proof: This follows from the fact thatA2(W)>0 for all

values offe, f . In particular,Ã2(W)>0, which according to
Eq. ~A18! implies X(W)>0.
05231
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The next lemma shows that we just have to check whe
X(W)50 if we want to see if there exist parametersfe, f and
u such thatA2(W)50. This first condition is therefore muc
more useful than the last one.

Lemma A6: X(W)50 iff there existfe, f
0 andu0, such that

A2(W)50.
Proof: ~If ! Given the phaseu5u0 we have that 0

5A2(W)>Ã2(W). ThusÃ2(W)50. According to Eq.~A18!
we can have two cases:~a! u0Þ0,p/2. In this case it is ob-
vious thatX(W)50. ~b! u050,p/2. In the first~second! case
we must haveW1,0

1,050 (W0,1
0,150). But this implies that

W0,0
1,15W0,1

1,050, since otherwise we could always find som

other value ofu such that Ã2(W),0. Then, X(W)50.
~Only if! We choosefe, f as in Eq.~A17!. For this value,
according to Eq.~A18! we have

Ã2~W!5@cos~u!AW1,0
1,02sin~u!AW0,1

0,1#2, ~A19!

which can always be zero for some particular value ofu.
Note that according to the proof of lemma A6, ifW1,0

1,0

50 thenA2(W)50 only for u50. But in that case one ca
easily check that the vectorue(l), f (l)&PPW @see Eq.~A6!#
which cannot be. Similarly, we conclude thatW1,0

1,0Þ0 if we
want A2(W)50. Thus from now on we will assume tha
both W1,0

1,0 andW1,0
1,0 are not zero.

5. Optimality test

We can now state the steps to check whether an EWW,
can be optimized or not.~1! For eachue0 , f 0&PPW we must
check whether there existue1&'ue0& andu f 1&'u f 0& such that
X(W)50. Let us denote byue0,1

( i )& andu f 0,1
( i )& the set of vectors

fulfilling that. ~2! For each of these vectors, we have to fi
the corresponding values offe, f

( i ) by using Eq.~A17! and of

u ( i ) by imposing thatÃ2(W)50 in Eq. ~A19!. ~3! Construct
uC ( i )& according to Eq.~A9!. ~4! See whether the spac
spanned byPW and $uC ( i )&% is equal toHA^ HB . If it is,
thenW is optimal. If it is not, we can always find someuc&
orthogonal to that subspace that can be subtracted fromW.

6. Necessary and sufficient conditions forX„W…Ä0

The hard part of the procedure outlined before to s
whether an EW is optimal is step~1!, namely, to findue1&
and u f 1& such thatX(W)50. We start out by giving a nec
essary and sufficient condition forX(W)50.

Lemma A7: Given ue0 , f 0&PPW , and ue1&'ue0& and
u f 1&'u f 0&, thenX(W)50 iff

w0,0
e u f 1&52AW0,1

0,1

W1,0
1,0

e2 if f~e2 ifew1,0
e 1eifew0,1

e !u f 0&,

~A20a!

w0,0
f ue1&52AW0,1

0,1

W1,0
1,0

e2 ife~e2 if fw1,0
f 1eif fw0,1

f !ue0&,

~A20b!

wherefe, f are given in Eq.~A17!.
0-13
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Proof: ~If ! We multiply by^ f 1u @Eq. ~A20a!#, and take the
square of the absolute value of the result. We obtain

W1,0
1,0W0,1

0,15ue2 i (fe1f f )W1,1
0,01ei (fe2f f )W0,1

1,0u2

<~ uW0,0
1,1u1uW1,0

0,1u!2. ~A21!

Using lemma A5 we conclude thatX(W)50. ~Only if! Since
X(W)50 and according to lemma A5,X(W)>0, then
X(W) must be a minimum with respect toue1& and u f 1&.
Taking the derivatives ofX(W) with respect to these two
vectors and imposing that they vanish, one obtains
~A20!.

Equations~A20! are particularly useful if the dimensio
of one of the Hilbert spaces is 2. Without loss of general
let us assume that dim(HA)52. In that case we can choos
ue1& as the one that is orthogonal toue0& ~with an arbitrary
choice of the global phase!. The determination offe can be
done as follows. Using Eq.~A20!, we write

AW1,0
1,0

W0,1
0,1

eif f u f 1&52
1

w0,0
e

~e2 ifew1,0
e 1eifew0,1

e !u f 0&,

~A22!

where 1/w0,0
e denotes the pseudoinverse@33#. We can use this

expression to impose

W1,0
0,1e2 i (fe2f f ),W0,0

1,1ei (fe1f f ),0, ~A23!

i.e. they are negative real numbers. We obtain that

e2 i2fe^ f 0uw1,0
e 1

w0,0
e

w1,0
e u f 0&,0, ~A24!

so that we determinefe . With these results, we can prov
the following necessary and sufficient condition forX(W)
50 when dim(HA)52.

Lemma A8: If dim(HA)52, given ue0 , f 0&PPW , then
there existsue1 , f 1& such thatX(W)50 iff

^ f 0uFw1,1
e 2w0,1

e 1

w0,0
e

w1,0
e 2w1,0

e 1

w0,0
e

w0,1
e G u f 0&

52U^ f 0uw0,1
e 1

w0,0
e

w0,1
e u f 0&U . ~A25!

Proof: ~If ! We define

u f 1&52
1

w0,0
e

~e2 ifew1,0
e 1eifew0,1

e !u f 0&, ~A26!

wherefe is determined by condition~A24!. Using this ex-
pression to calculateX(W) one finds that indeedX(W)50.
~Only if! Using lemma A7 we can writeu f 1& as in Eq.~A22!
so that the phasesfe, f ensure that Eq.~A23! is fulfilled.
Substitutingu f 1& into the equationX(W)50, one finds Eq.
~A25!.
05231
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In summary, for a givenue0 , f 0&PPW , in order to find
whether there existue1 , f 1& such thatX(W)50 we just have
to check condition~A25!. If it is fulfilled, we can easily find
u f 1& and the phasesfe, f using Eqs.~A23! and ~A22!.

APPENDIX B: CANONICAL FORMS OF PPTES’S

The concept of edge PPTES’s seems to play a very s
cial role in the characterization of PPTES’s. In particular,
view of the criterion given in Sec. V D, which is based on t
fact that any density operatorr can be decomposed into
separable part and an edge PPTES@Eq. ~18!#. Among all the
possible decompositions there might be one for which
trace of the separable part is maximal. When it exists, suc
decomposition was termed positive partial transpose b
separable approximation~PPT BSA! to r @21#. It extended
the idea of the BSA introduced in Refs.@23,22# to the case of
PPTES’s, which were based on the method of diminish
the range ofr by subtracting product vectors from its rang
while keeping the remainder and, at the same time, its pa
transpose, positive@23,22,20,21#. In this appendix we for-
malize the results regarding the existence and propertie
the PPT BSA. In particular, the proofs presented in
quoted papers were restricted to the case in which there
ists a finite or, at most, countable number of projectors
product vectors that can be subtracted fromr. We will ex-
tend them below to continuous families of product vecto
This appendix is written in a self-contained way, and can
read independently of the body of the paper.

We denote byGr the set of projectors on product vecto
$uea , f a&^ea , f au% such that uea , f a&PR(r) and uea , f a* &
PR(rTB). In Ref. @21# we showed that ifGr is finite then
there exists an optimal decomposition~the PPT BSA! r
5(12p)rsep1pd, where d is an edge PPTES, andp is
minimal. Note that the PPT BSA involves a stated which
violates the range criterion in a rather special way, i.e., w
the additional requirement thatGr is a finite set. It can hap-
pen that there is an uncountable family of product vect
depending on a continuous parameter that can be used
subtracting projectors. In the following we will show that
such case the above result is valid. In order to consider
case of continuous families of product vectors we first pro
the following lemma

Lemma B1:Let r will be a PPTES defined on a Hilber
spaceH, dimH,`. Then the set of product vectorsGr is
compact.

Proof: Obviously Gr is a bounded set in finite
dimensional space, so it is enough to show that it is clos
Consider any sequenceugn ,hn&→uf&, ugn ,hn&PR(r),
ugn ,hn* &PR(rTB). The limit vector must~i! respect the con-
dition of orthogonality toK(r) @i.e. they must belong to
R(r)#, ~ii ! belong to the sphere~i.e., set of all vectorsuf&
with uufuu51); and~iii ! must be a product state, because if
was entangled then its distance from the compact set of p
uct pure states@13# defined as minue,f&uuuf&2ue,f&uu would be
nonzero, which is obviously impossible. We conclude th
uf&5ug,h&PR(r) for someug&, anduh&, which implies~up
to irrelevant phase factors! that ugn&→ug& and uhn&→uh&.
We have~again up to an irrelevant external phase fact!
0-14
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ugn ,hn* &→ug,h* &. The latter must belong toR(rTB) as any
element of the corresponding sequence is orthogona
K(rTB).

Let us now prove the following general lemma, which is
generalization of one theorem from Ref.@22#:

Lemma B2:Let the PPTESr be defined on a finite-
dimensional Hilbert space. Consider the setSr consisting of
the trivial zero operator plus all unnormalized statesr̃(trr̃
<1) such thatd̃[r2 r̃ is positive and has positive partia
transpose. Then one can findr̂PSr , such that with tr(r̂)
<1 is optimal in the sense that~i! the trace ofd̂[r2 r̂ is
minimal with respect to all separabler̃ ’s, leading to positive
partial transposed̃ ’s; and~ii ! the stated5 d̂/tr( d̂) is an edge
PPTES.

Proof: To prove the existence ofr̂PSr , we just have to
show thatSr is compact. This can be done by showing th
Sr is a closed subset of another compact set, namelyC
5conv$Grø0%. The latter setC is compact as it is a conve
hull of the compact set$Grø0% in a finite-dimensional
space.

Note first thatSr,C. Indeed, by virtue ofd̃>0 any non-
zero r̃ cannot have any vector in its range not belonging
R(r). Analogously R( r̃TB),R(rTB). Hence, according to
the properties of the ranges of density operators in gen
@13#, r̃ must be a convex combination of vectors fromGr ,
and as such it belongs toC. Let us show thatSr is closed.
This follows immediately from the fact thatSr is a cross
section~performed over any projectionsP, andQ) of the sets
Sr,P

1 [$r̃: f P,r( r̃)[tr(Pr2Pr̃)>0% and Sr,Q
2 5$r̃:gQ,r( r̃)

[tr(QTBr2QTBr̃)>0%. Since the functionsf P,r ,gQ,r are
, a

or

ys

A
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continuous, all the sets participating in the cross section
closed. Now the cross section of closed sets is again a clo
one.

Now consider statement~ii !. Sinced,dTB>0, we always
have d5bPR(d)1A and dTB5b8PR(dTB)1A8 with b,b8
.0, some positive operatorsA and A8 ~herePX denotes a
projector onto the subspaceX,H). Then if, contrary to~ii !,
there were anyue, f &PR(d) such thatue, f * &PR(dTB), then
the new operatorr̂* 5 r̂1gue, f &^e, f u, g5min@b,b8# would
fulfill that d̂* 5r2 r̂* is PPTES, and would contradict opt
mality with respect to~i!.

Let us remark that if we give up the condition regardi
the positivity ofd̃TB, then we obtain a modified statement~ii !
where stated has no product vectors in its range. This
nothing but the BSA of Ref.@22#, extended here rigorously
to the statesr having uncountable set of product vectors
R(r).

From the lemma B2 we obtain the following characteriz
tion of PPTES’s, which can be regarded to be among
main results of this appendix, since it providesa canonical
form of PPTES’s:

Proposition:If the stater is a PPTES, then it is a conve
combination

r5~12p!rsep1pd ~B1!

of some normalized separablersep and an normalized edg
PPTESd. In the above decomposition the weightp is mini-
mal @i.e., there does not exist a decomposition of type~B1!
with a smallerp#.

The above proposition means, in particular, thatedge
PPTES’s are responsible for PPT-type entanglement.
po-
nt,
le
d in
ial
ral.
are

o-

r-
.A.
@1# A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev.47, 777
~1935!.

@2# E. Schrödinger, Proc. Cambridge Philos. Soc.31, 555 ~1935!.
@3# A. Ekert, Phys. Rev. Lett.67, 661 ~1991!.
@4# C.H. Bennett and S.J. Wiesner, Phys. Rev. Lett.69, 2881

~1992!.
@5# C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres

W.K. Wootters, Phys. Rev. Lett.70, 1895~1993!.
@6# See A. Ekert and R. Jozsa, Rev. Mod. Phys.68, 733~1996!; A.

Steane, Rep. Prog. Phys.61, 117 ~1998!; A. Barenco, Con-
temp. Physics37, 375 ~1996!.

@7# R.F. Werner, Phys. Rev. A40, 4277~1989!.
@8# An excellent introduction to the problematics of quantum c

relation and entanglement is provided by A. Peres,Quantum
Theory: Concepts and Methods~Kluwer, Dordrecht, 1995!.

@9# See P. Horodecki, M. Horodecki, and R. Horodecki, Ph
Rev. Lett.82, 1056~1999!.

@10# A. Peres, Phys. Rev. Lett.77, 1413~1996!.
@11# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett.

223, 8 ~1996!.
@12# Given an operatorX and an orthonormal basis$uk&%k51

N

PHB , one defines the partial transpose ofX with respect toB
nd

-

.

in that basis as follows:

XTB5 (
k,k851

N

uk8&B^kuXuk8&B^ku. ~B2!

One can analogously define the partial transpose ofX with
respect toA in a given basis,XTA. Partial transposition fulfills
the following useful property:

tr~XTBY!5tr~XYTB!. ~B3!

We say that a positive operator has a positive partial trans
sition if rTB>0. Note that this property is basis independe
and thatrTB>0 iff rTA>0. The relation between separab
and positive partial transpose operators was establishe
Refs. @10,11#. All separable operators have a positive part
transposition. However, the converse is not true in gene
That is, there are positive partial transpose operators which
nonseparable.

@13# P. Horodecki, Phys. Lett. A232, 333 ~1997!.
@14# C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Sm

lin, and B.M. Terhal, Phys. Rev. Lett.82, 5385 ~1999!; D.P.
DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B.M. Te
hal, quant-ph/9908070; C.H. Bennett, D.P. DiVincenzo, Ch
0-15



K

.
R.
cs

n
d

.

A

in

a

in

int

99

n
.

t. A

ll

ce

t
s

on

ws.

r
ts
f

ns-
s-

,

5;

is.
con-

d
ri-
u-

LEWENSTEIN, KRAUS, CIRAC, AND HORODECKI PHYSICAL REVIEW A62 052310
Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, and W.
Wootters, Phys. Rev. A59, 1070 ~1999!; See also R. Horo-
decki, M. Horodecki, and P. Horodecki,ibid. 60, 4144~1999!.

@15# For a primer on separability, see M. Lewenstein, D. Bruß, J
Cirac, B. Kraus, M. Kus´, J. Samsonowicz, A. Sanpera, and
Tarrach, inProceedings of the Conference ‘‘Quantum Opti
Kuhtai 2000,’’edited by F. Ehlotzky and P. L. Knight@J. Mod.
Opt. ~to be published!#.

@16# For an extensive review, see M. Horodecki, P. Horodecki, a
R. Horodecki, inQuantum Information—Basic Concepts an
Experiments, edited by A. Zeilinger, H. Weinfurter, R
Werner, and Th. Beth~Springer, Berlin, 2000!.

@17# R. Horodecki, P. Horodecki, and M. Horodecki, Phys. Lett.
230, 377 ~1996!.

@18# K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenste
Phys. Rev. A58, 883 ~1998!.

@19# G. Vidal and R. Tarrach, Phys. Rev. A59, 141 ~1999!; S.L.
Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu,
R. Schack, Phys. Rev. Lett.83, 1054~1999!.

@20# B. Kraus, J.I. Cirac, S. Karnas, and M. Lewenstein, e-pr
quant-ph/9912010; Phys. Rev. A~to be published!.

@21# P. Horodecki, M. Lewenstein, G. Vidal, and J.I. Cirac, e-pr
quant-ph/0002089; Phys. Rev. A~to be published!.

@22# M. Lewenstein and A. Sanpera, Phys. Rev. Lett.80, 2261
~1998!.

@23# A. Sanpera, R. Tarrach, and G. Vidal, Phys. Rev. A58, 826
~1998!; G. Vidal, Ph.D. thesis, Universitat de Barcelona, 19
~unpublished!.

@24# For recent progress on optimal decompositions see B.G. E
lert and N. Metwally, quant-ph/9912989; quant-ph/0007053

@25# B.M. Terhal, e-print quant-ph/9810091; also see Phys. Let
271, 319 ~2000!.

@26# A. Jamiol”kowski, Rep. Math. Phys.3, 275 ~1972!.
@27# E. Störmer, Acta Math.110, 233 ~1963!.
@28# S.L. Woronowicz, Rev. Mod. Phys.10, 165 ~1976!.
@29# S.L. Woronowicz, Commun. Math. Phys.51, 243 ~1976!; P.
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