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An entanglement witnes&€W) is an operator that allows the detection of entangled states. We give neces-
sary and sufficient conditions for such operators to be optimal, i.e., to detect entangled states in an optimal way.
We show how to optimize general EW, and then we particularize our results to the nondecomposable ones; the
latter are those that can detect positive partial transpose entangled BRTEsS'S. We also present a method
to systematically construct and optimize this last class of operators based on the existence of “edge” PPTES'’s,
i.e., states that violate the range separability critefhys. Lett. A232 333(1997] in an extreme manner.

This method also permits a systematic construction of nondecomposable positiveéRivips Our results

lead to a sufficient condition for entanglement in terms of nondecomposable EW’s and PM'’s. Finally, we
illustrate our results by constructing optimal EW acting lés- C2® C*. The corresponding PM’s constitute
examples of PM’s with minimal “qubit” domains, or—equivalently—minimal Hermitian conjugate
codomains.

PACS numbse(s): 03.67.Hk, 03.65.Bz, 03.65.Ca

[. INTRODUCTION special interest since they represent so-called bound en-
tangled states, and therefore provide evidence of irreversibil-
Quantum entanglemenftl,2], which is the essence of ity in quantum information processir§].
many fascinating quantum-mechanical effef3s-6], is a For low-dimensional systemsl0,11] there exist opera-
very fragile phenomenon. It is usually very hard to createtionally simple necessary and sufficient conditions for sepa-
maintain, and manipulate entangled states under laboratorgbility. In fact, in H=(?®(? and H=C(?® (3 the Peres-
conditions. In fact, any system is usually subjected to theéHorodecki criterior[10,11] establishes thai is separable iff
effects of external noise and interactions with the environits partial transpose is positive. Partial transpose means a
ment. These effects tupure-state entanglemeinto mixed-  transpose with respect to one of the subsyste¢h®}. For
state or noisy, entanglementThe separability problem, that higher-dimensional systems all operators with nonpositive
is, the characterization of mixed entangled states, is highlyartial transposition are entangled. However, there exist
nontrivial, and has not been accomplished so far. Even aRPTES's[13,14]. Thus the separability problem reduces to
apparently innocent questionis-a given state entangled and finding whether density operators with positive partial trans-
does it contain quantum correlations, or is it separable, andpose are separable or rdi5,16.
does not contain any quantum correlations®iill, in gen- In the recent years there has been a growing effort in
eral, be very hardif not impossible to answer. searching for necessary and sufficient separability criteria
Mathematically, mixed-state entanglement can be deand checks which would be operationally simpls,16.
scribed as follows. A density operatpi=0, acting on a Several necessafy,17] or sufficient[13,18—2] conditions
finite Hilbert spaceH =H,®Hpg describing the state of two for separability are known. A particularly interesting neces-
quantum systemé# and B, is called separabl€7] (or not  sary condition is given by the so-calleange criterion[13].
entangled if it can be written as a convex combination of According to this criterion, if a statgp acting on a finite-
product vectors; that is, in the form dimensional Hilbert space is separable then there must exist
a set of product vectorge,,f,)} that spans the rand®(p),
such that the set of partial complex conjugated product states
{|ex,f5)} spans the range of the partial transpose afith
respect to the second system, i@8. Among PPTES’s that
wherep, =0, and|ey,f ) =|e)a®|f\)g are product vectors. violate this criterion there are particular states with the prop-
Conversely,p is nonseparabléor entangleglif it cannot be  erty that if one subtracts a projector onto a product vector
written in this form. Physically, a state described by a sepafrom them, the resulting operator is no longer a PPTES
rable (nonseparab)edensity operatop can always(neve) [20,21). In this sense, these states lie in thdgebetween
be prepared locally. Most applications in quantum informa-PPTES'’s and entangled states with nonpositive partial trans-
tion are based on the nonlocal properties of quantum meposition, and therefore we will call them “edge” PPTES's.
chanics[3-6,8 and therefore on nonseparable states. Thus a An approach involving the analysis of the range of den-
criterion to determine whether a given density operator issity operators initiated in Ref.13] turned out to be very
nonseparable, i.e. useful for quantum information purposesdyuitful. In particular, it led to an algorithm for the optimal
or not is of crucial importance. On the other hand, positivedecomposition of mixed states into a separable and an in-
partial transposed entangled stafB®TES’S, are objects of separable paft22—24, and to a systematic method of con-

P=zk pulex. (e, fil, (1)
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structing examples of PPTES’s using unextendible productise of “edge” PPTES's. In Sec. VI we extend our results to
baseg14,25. For low rank operators it has allowed to show positive maps. In Sec. VIl we illustrate our methods and
that one can reduce the separability problem to the one ofsults starting from the examples of PPTES’s given in Ref.
determining the roots of certain complex polynomial equa{13]. The paper also contains two appendixes. In Appendix
tions [20,21]. A we describe in detail a method to check whether an EW is
From a different point of view, a very general approach tooptimal or not. In Appendix B we discuss separately some
analyze the separability problem is based on the so-callefnPortant properties of the edge PPTES's, and show that
entanglement witness¢€W’s) and positive mapsPM’s) the)_/ _prowde.a canonical decomposition of mixed states with
[11]. Entanglement witnessé&5] are operators that detect POSitive partial transpose.
the presence of entanglement. Starting from these operators
one can define PM’§26] that also detect entanglement. An
example of a PM is precisely partial transpositid0,27,28§.
The importance of EW’s stems from the fact that a given We say that an operatdv=W" acting onH=H,®Hp is
operator is separable iff there exists an EW that detects &n EW if[11,25. (1) (e,f|W|e,f)=0 for all product vectors
[11]. Thus, if one was able to construct all possible EV8s e, f), (Il) it has at least one negative eigenvalue. is not
PM's) one would have solved the problem of separability.positive); and (ll) tr(W)=1. Property(l) implies that(p)y
Unfortunately, it is not known how to construct EW'’s that =tr(Wp)=0 for all p separable. Thus, if we hag)y<O0
detect PPTES's in general. The only result in this directionfor somep=0, thenp is nonseparable. In that case we say
so far was given in Refl25], although some preliminary thatW detects. Property(Il) implies that every EW detects
results exist in the mathematical literati&9]. Starting from  something, since in particular it detects the projector on the
a PPTES fulfilling certain propertigselated to the existence subspace corresponding to the negative eigenvalued.of
of unextendible basis of product vectdi4]), it has been  Property(lll) is just normalization condition that we need in
shown how to construct an EWand a corresponding PM  order to compare the action of different EW?30].
that detects it. Perhaps, one of the most interesting goals |n this paper we will denote the kernel and range dfy
regarding the separability problem is to develop a construck (p) andR(p), respectively. The partial transposition of an
tive and operational approach using EW’s and PM'’s thaigperatorX will be denoted by [12,31]. On the other hand,
allows us to detect mixed entanglement. we will encounter several kinds of operat¢E8N's, positive
In this paper we realize this goal partially: we introduce agperators, decomposable operators,) etnd vectors. In or-
powerful technique to construct EW’s and PM’s that, amongder to help to identify the kind of operators and vectors we
other things, allows us to study the separability of certainyse, and not to overwhelm the reader by specifying at each
density operators . In particular, we show how to construchoint their properties, we will use the following notation
optimal EW'’s; that is, operators that detect the presence afjill denote an EW.P and Q will denote positive operators.
entanglement in an optimal way. We specifically concentratgjnjess specified they will have unit trader(P)=tr(Q)
on nondecomposable EW's, which are those that detect the 1]. D will denote a decomposable operator. ThatDs,
presence of PPTES'’s. Furthermore, we present a way of con= g p+ hQ", wherea,b=0. Unless stated, all decomposable
eralizes the one introduced by TerHa@5] to the case in |l denote a positive operatdinot necessarily of trace).1
which there are no unextendible basis of product vectorse f) will denote product vectors wite) e H, and |f)
When combined with our previous resul0,21] regarding < H_ . Unless especified, they will be normalized.
subtracting product vectors from PPTES's, the construction
of nondecomposable optimal EW’s starting from “edge”
PPTES's gives rise to a sufficient criterion for nonseparabil- Ill. GENERAL ENTANGLEMENT WITNESSES
ity of general density operators with positive partial transpo-
sition. We illustrate our method by constructing optimal
EW'’s that detect some known examples of PPTHSJ in
H=C(2®C* The corresponding PM’s constitute the first ex-
amples of PM’'s with minimal “qubit” domains, or—
equivalently—minimal Hermitian conjugate codomains.
This paper is organized as follows. In Sec. Il we review
the definition of EW'’s and fix some notation. In Sec. Il we A. Definitions
study general EW’s. We define optimal witnesses, and finda . )
criterion to decide whether an EW is optimal or not. In Sec. Given an EW,W, we define the following.Dy={p
IV we restrict the results of Sec. Il to nondecomposable=0: such thatp)<0}; that is, the set of operators detected
EW’s. In particular, we show how to optimize them by sub-by W. Finer: Given two EW's,W; and W,, we say
tracting decomposable operators. In Sec. VV we give an exhat W, is finer than Wy, if Dy, CDy,; that is, if all
plicit method to optimize both general and nondecomposabléhe operators detected by, are also detected by,. Opti-
EW’s. We also show how to construct nondecomposablenal entanglement withe$®EW): We say thaiVis an OEW
EW'’s, and that this leads to a sufficient criterion of nonsepaif there exists no other EW which is finePy={|e,f)
rability. The construction and optimization are based on the= H, such thate,f|W|e,f)=0}; that is, the set of product

II. DEFINITIONS AND NOTATION

In this section we first give some definitions directly re-
lated to EW’'s. Then we introduce the concept of optimal
EW'’s. We derive a criterion to determine when an EW is
optimal. This criterion will serve us to find an optimization
procedure for these operators.
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vectors on whichW vanishes. As we will show, these vectors Taking the infimum with respect tp; e Dw, on the right-

are closely related to the optimality property. hand side of this equation, we obtain the desired result.

Note the important role that the vectors Ry play re- (iv) From (i) it immediately follows that\=1. On the
garding entanglemerttor a method to determiny, in prac-  other hand, we just have to prove thathf=1 then W,
tice, see Appendix A If we have an EWW, which detects =y, (the only if part is trivia). If \=1, using(i) and iii)

a given operatop, then the operatop’ =p+p,,, where we have thatp,)w,=(p,)w, for all p,=e,f)(e,f| projector
on a product vector. Since W(;)=tr(W,) we must have
pw=2k pulex, (e, ful, (2 t[(W;—W,)p,]1=0 for all p,, since we can always find a

product basis in which we can take the trace. But now, for

any givenp=0 we can defingy(x)=p+x1 such that for
with p,=0, and|e.,f\) € Py is also detected bW. In fact, | v P X 5(x) | l:?lo(li)i Ip that h
this means that any operator of the form of E2). is in the arge enougfx, p(x) is separabl¢18]. In that case we have

border between separable states and nonseparable states{a6X))w, = (P(X))w, which implies that(p)w,=(p)w, i.€.
the sense that if we add an arbitrarily small amoung &b it ~ W;=W,.

we obtain a nonseparable state. Thus the structure of the setsCorollary 1: Dw,=Dw, iff Wi=Ws,.

Pw characterizes the border between separable and nonsepa-proof: We just have to prove the only if part. For that, we
rable states. In fact, from the results of this section it will definex as in Eq.(3). On the other hand, defining

become clear that we can restrict ourselves to the structure of

the set ofP,y corresponding to OEW's. (p2>W1

A= inf |——,
<P2>w2

poe DW2

(5

B. Optimal entanglement witnesses

According to Ref[11] p is nonseparable iff there exists we have thak=1 sinceW; is finer thanw, [lemma 1iv)].
an EW which detects it. Obviously, we can restrict ourselvegquivalently,

to the study of OEW. For that, we need criteria to determine

when an EW is optimal. In this subsection we will derive a (p1)w,

necessary and sufficient condition for this to hapgio- 1= sup =1, (6)

rem 1 below. In order to do this, we first have to introduce p1€Dw, <p1>W1

some results that tell us under which conditions an EW is

finer than another one. where for the last inequality we have used théf is finer
Lemma 1:Let W, be finer tharW;, and thanW,. Now, sincex =1 we have thaw,; =W, according

to lemma 1iv).

) <Pl>W2 Next we introduce one of the basic results of this paper. It
A= inf W . 3 basically tells us that one EW is finer than another one if
p1Dw, [P/ W they differ by a positive operator. That is, if we have an EW

and we want to find another one which is finer, we have to
Then we have the followingi) If (p)y, =0 then(p)y,<0.  subtract a positive operator. _
(i) If (p)w. <0, then(phw.<{(pdw.. (i) If (p)w.>0 then Lemma 2: W is finer thanW, iff there exists aP and 1
A phw.=( l} (iv) A=1 2In artiéular)\=1 iff iN =W > €=0 such thaty = (1= )W, +€P.
’I’le?g Wz'W ' f'/ .th pW ’.” " ; tti{ t Proof: (If) For all pe Dy, we have that 0-(p)y, = (1
roof: SinceW, is finer thanW, we will use the fact that c b
for all p=0 such thafp)y, <0 then(p)y,<O0. GD)<p>W(2)+|6<f;>vahlghf_'m?\lles<f)>"‘l’_:2<03 anij _ther:eforep
(i) Let us assume thafp)y,>0. Then we take any, e, Wy (Only if) We .e |n'e as in Eq.(3). _Smg emma
2 1(iv) we haven=1. First, if A= 1 then according to lemma
€ Dy, so that for allx=0, O<p(X)=p1+xp e Dy,. Butfor  1(jy) we havew,=W, (i.e., e=0). Fora>1, we defineP
sufficiently largex we have tha{p(x))w, is positive, which =(A—1)"'(AW;—W,) and e=1—-1/A>0. We have that
cannot be since thep(x) & Dy.. W;=(1-¢€)W,+ €P, so that it only remains to be shown
2 that P=0. But this follows from lemma 1i)—(iii), and the
definition of \, )\=ianlEDW1|(p1>W2/<p1>Wl|.
_ The previous lemma provides us with a way of determin-
(i) We take p;eDy, and define p=(p)w,p1  ing when an EW is finer than another one. With this result,

+|<P1>wl|P>0, so that (5>w1=0- Using (i) we have we are now at the position of fully characterizing OEW.

- . Theorem 1: Ws optimal iff for all P ande>0, W' =(1
[{pu)w,|{PIw,<(pDws|(P)w,- Dividing both sides by + €)W— €P is not an EW[does not fulfill (1)].

[{p1)w,|>0 and{p)w,>0, we obtain Proof: (If) According to lemma 2, there is no EW which
is finer thanw, therefore W is optimal.(Only if) If W’ is an

(i) We definep=p+[(p)w,|1=0. We have thatp)y,
=0. Using(i) we have that ®<p>W2+|<p)W1|.

Pw. [{pw EW, then according to lemma\® is not optimal.
< 2. (4) The previous theorem tells us thatis optimal iff when
<p>W1 <pl>W1 we subtract any positive operator from it, the resulting op-
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erator is not positive on product vectors. This result is not W=aP+(1-a)Q", 8
very practical for two reasongl) For a givenP it is typi-

cally very hard to check whether there exists saneé such  whereae[0,1]. As it is well known (see Sec. IV, these
thatW— €P is positive on all product vector$2) It may be  EW’s cannot detect PPTES’s. In any case, for the sake of

difficult to find a particulai® that can be subtracted frol¥  completeness, we will give some simple properties of opti-
among all possible positive operators. In Appendix A wemal DEW's.

show how to circumvent these two drawbacks in practice: we  Theorem 2:Given a DEW,W, if it is optimal then it can

give a simple criterion to determine when a givertan be  pa \written asw= QT, whereQ=0 contains no product vec-
subtracted fronW. This allows us to determine which are th\eNtor in its range.

positive operators which can be subtracted from a given E Proof: SinceW is decomposable, it can be written A&
In the rest of this subsection we will present some simple:ap+('1_a)QT W’ W—aP is also a witness. which ac-
results related to these two questions. First, it is clear that not ~ . SR, o
every positive operatd? can be subtracted from an EW, cor@ng to lemma 2 is finer thaw/, and thereforaV is not
In particular, the following lemma tells us that it must vanish ©Ptimal- On the other hand, {&.f) e R(Q)_ then for some
on Py,. A>0 we have thaWoc(Q—)\|e,f_><e,f|) is finer thanWw,
Lemma 3:If PPy#0 thenP cannot be subtracted from and therefor.e this last is not optllmal. .
W This previous result can be slightly generalized as follows
Theorem 2':Given a DEW'’s,W, if it is optimal then it
can be written a®W=Q", whereQ=0 and there is no op-
eratorP e R(Q) such thatP™=0.
Proof: Is the same as in previous theorem.
Corollary 3: Given a DEW,W, if it is optimal thenW" is
ot an EW[does not fulfill (1)].
Proof: Using theorem 2 we have thaV=QT with Q
Z0. ThenW™=Q=0, which does not satisfy property).

Proof: There exists somel|ey,fo)ePy such that
(€9,folP|eg,fo)>0. Substituting this product vector into
condition(l) for anyW— eP, we see that the inequality is not
fulfilled for any €>0, i.e. P cannot be subtracted.

Corollary 2: If Py spansH, thenW is optimal.

Note that, as announced at the beginning of this sectiorl!
the setPyy plays an important role in determining the prop-
erties of the separable states which lie on the border with th
entangled states. We see here that this set also plays an im-

portant role in determining whether an EW is optimal or not. IV. NONDECOMPOSABLE ENTANGLEMENT
On the other hand, in order to check whether a given WITNESSES
operatorP can be subtracted or not frowd, one has to check
whether there exists some>0 such thate,f|W—eP|e,f) In Sec. Ill we were concerned with EW's in general. As

>0 for all |e,f). The following lemma gives an alternative mentioned above, when studying separability we just have to
way to do this. In fact, it gives a necessary and sufficientconsider those EW's that can detect PPTES's. In order to
criterion for an EW to be optimal. For a givée) e H,, we  characterize these, one defines nondecomposable witnesses
will denote byW.=(e|W|e). (NDEW'’s) as EW’s which cannot be written in the form of
Lemma 4: Wis optimal iff for all | %) orthogonal toPyy: Eq. (8) [28]. This section is devoted to this kind of witness.
The importance of NDEW's in order to detect PPTES’s is
e= inf [(W]e)W, (e]¥)] '=0. (7)  reflected in the following
le)<Ha Theorem 3:An EW is nondecomposable iff it detects
Proof: (If) Let us assume thaW is not optimal; that is, there PPTES’S. _
existsW’ # W, finer thanW. Then, according to lemma 2 we _ Proof: (If) Let us assume that the EW is decomposable.
have that there exists,>0 and P=0 such thatw’ = (W Then it cannot detect a PPTES, sincepip'=0 we have
—€oP)/(1—¢€p). Imposing thatW’ is positive on product tr[(apf(1—a)QT)p]=atr(Pp)+(l—g)tr(QpT)_>0.
vectors (i.e., W,=0 for all |e)eH,) we obtain G<(e|W (Only if) The set of decomposable witnesses is convex and
— €oP|e)<W,— eghy(e| W) (¥ |e), where| W) is any eigen- closed, and\.N, as a set containing one point, is a cl_osed
state ofP with nonzero eigenvaluey,, . According to Ref. ~ convex set itself. Thus from Hahn—Banach theor@a] it
[20], this last operator is positive iff botfi) (e|¥) is in the follows thaTt there exists an operatprsuch thatp) tfp(aP
range of(e|W|e), which imposes that¥) is orthogonal to +(1-a)Q)]=0 for all P,Q=0, ac[01]; a.nd (ii)
Py and (i) )\q,eos[<‘lf|e)wgl<e|\lf)]’l, which imposes tr(pW) <0. From(l), takinga=1 we infer thTatp>0, on the
: . other hand, takinga=0 we obtain that frp' Q]=0 for all
thate=\y€,>0 for that given¥). (Only if) Let us assume ~0 d therefores™=0. Thus. W d hich i
that there exists somgl’) orthogonal toP,, such thate SP/TE’San therefore'=0. Thus, W detectsp which is a
>0. Then using the same arguments one can showthat ; o~ . .
= (W— e[ W)(W])/(1-€)#W is an EW. According to Corollary 4: Given an operatoD, it is decomposable iff

!
lemma 2,W’ is finer thanW, so thatw is not optimal. tr(Dp)=0 for all p,p"=0.

C. Decomposable entanglement witnesses A. Definitions

There exists a class of EW which is very simple to char- In this subsection we introduce some definitions which
acterize, namely, decomposable entanglement witnessese parallel to those given in Sec. lll. Given a NDEW, we
(DEW's) [28]. These are EW's that can be written in the define dy={p=0, such thap™=0 and(p),,<0}; that is,
form the set of PPT operators detected\ly Nondecomposable-
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finer (ND-finer): Given two NDEW'’s,W; andW,, we say
that W, is ND-finer than W4, if dwlg dWZ; that is, if all the
operators detected by/; are also detected by,. Nonde-
composable optimal entanglement witnéSEDOEW): We
say thatW is an NDOEW if there exist no other NDEW
which is ND-finer. py={|e,f) e H, such thate,f|W|e,f)
=0}; that is, the product vectors on whidi vanishes.

Note again the important role that the vectorgip play
regarding PPTES'’s. If we have a NDEWY, which detects a
given PPTES, then the operatop’ = p+ p,, Wwherep,, has
the form of Eq.(2) with p,=0, and|ey,f,) € pw also de-
scribes a PPTES. Thus any operator of the form of 2.
lies in the border between separable states and PPTES's.

B. Optimal nondecomposable entanglement witness

PHYSICAL REVIEW A2 052310

posable operatoD such thatW'=(1+¢e)W—e€D is a
NDEW. We can writtD =aP+(1—a)Q", with a[0,1]. If
a#0, then W;=(1+ae)W—aeP fulfills (e, f|W,|e,f)
=(e,f|W’'|e,f)=0, and therefore, according to lemmavi,
is not optimal. If a#1 then W,=[1+(1—a)e]W'—(1
—a)eQ fulfills (e, f|W,|e,fy=(e,f|(W')T|e,f)=0, ie. is
an EW, and therefor&/" is not optimal.(Only if) According
to theorem 1b), if W is ND optimal then for allD=aP
+(1—a)QT, with ac[0,1], and alle>0 we have thawV’
=(1-€)W— €D does not satisfyl). Takinga=1 we have
for all P and e>0, W;=(1—€)W—€eP does not fulfill (1),
and therefordtheorem 1 W is optimal; analogously, taking
a=0 we have thaW' is optimal also.

Corollary 5: Wis a NDOEW's iff W is a NDOEW.

V. OPTIMIZATION

The goal of this section is to find a necessary and suffi-

cient condition for a NDEW to be optimal. We start by prov-

In this section we give a procedure to optimize EW'’s,

ing a similar result to the one given in lemma 1, but for which is based on the results of the previous sections.

NDEW'’s:
Lemma 1(b):Let W, be ND-finer thanWy,
tr(W.
A= int [P ©
predy, r( 1Pl)

and now bottp,p"=0. Then we havéi)—(iv) as in lemma 1.
Proof: The proof is basically the same as in lemma 1, an
will be omitted here.
Corollary 1(b): Given two NDEW’s, W, ,, then dWl

= dW2 iff W1:W2.

A. Optimization of general entanglement witnesses

Our method is based in the following lemma. It tells us
how much we can subtract from an EW. Here we will denote
W.=(e|W|e) and P.=(e|Ple) where |e)eH,, by
[+ ]min, the minimum eigenvalue, and Hy - - ]nax the

aximum eigenvalue. On the other haixd,? will denote
he square root of the pseudoinversexaf33].

Lemma 5:If there exists som® such thatP P,,=0, and

No= inf [Py AP Y%,

Proof: The proof is basically the same as corollary 1, and le)Ha

will be omitted here.

Lemma 2(b):Given two NDEW’s,W, ,, W, is ND-finer
than W, iff there exists a decomposable operaibrand 1
>e=0, such thatW;=(1—€)W,+€D.

Proof: (If) Given anyp,p'=0, we have that ifp e dy,

then 0> (p)w, = (1—€)(p)w,+ €(p)p=(1—€){p)w,, Where
in the last inequality we have used tHat),=0 sinceD is
decomposablésee corollary # Thereforep  dyy,. (Only if)

We define\ as in Eq.(9), so that\=1 according to Lemma
1(b)(iv). If A=1 we haveW;=W,. If A>1 we defineD
=(A—1)"Y(AW;—W,) and e=1—1/\. We have thatV,
=(1-€)W,+ €D, so that it only remains to be shown ttat
is decomposable. But from Lemma&b](i)—(iii ) and the defi-
nition of \ it follows that{p)p=0 for all p,p"=0. Using
corollary 4 we then have th@ is decomposable.

Now we are able to fully characterize NDOEW'’s.

Theorem 1(b)Given an NDEW,W, it is ND optimal iff
for all decomposable operatoBsande>0, W' =(1+¢e)W
— €D is not an EW[does not fulfill (1)].

Proof: Same as for Theorem 1.

Theorems 1 and (b) allow us to relate OEW’'s and

=( sup [W, 2P W, % 100 >0, (10)
le)eHa
then
W/ (N)=(W—AP)/(1—\), (11

whereA>0 is an EW iffA=<\,,.

Proof: Let us find out for which values 0of=0 W' (\) is
an EW. We have to impose conditigh, which can be writ-
ten as(e|W’(\)|e)=0, i.e.,

W,—AP.=0. (12
Multiplying by P *? on the right and left of this equation,
we obtainP; *W P, ¥?=\, which immediately gives that
N<\g given in the first part of Eq(10). On the other hand,
multiplying by W, 2 on the right and left of Eq(12), we
obtain W, *?P W_ 2<1/\, which immediately gives that
A<M\, given in the second equality of E¢L0).

Lemma 5 provides us with a direct method to optimize
EW'’s by subtracting positive operators for which the ele-

NDOEW's. In this way we can directly translate the resultsments ofP,y are contained in their kernels. The method thus

for general OEW'’s to NDOEW'’s. We have

Theorem 4Given a NDEW,W, Wis a NDOEW iff both
W andW' are OEW's.

Proof: (If) Let us assume that is not a NDOEW. Then,
according to theorem(lh) there existse>0, and a decom-

consists of(1) determiningPyy,; (2) choosing an operatd?
so thatP Py,=0, and determining. using(10); and(3) sub-
tracting the operatoP according to lemma 5 ik #0. Con-
tinuing in the same vein we will reach an OEW. In Appendix
A, we show how to accomplish stefiy) and(2) in practice.
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Let 6 be an edge PPTES, and let us denote the projector

: T
For NDEW's we have the following generalization of gnt_oK(a) by P, and the projector ont&(4") by Q,. We

lemma 5:
Lemma 5(b):Given a NDEW, VW, if there exists some
decomposable operatdr such thatDp,,=0 and

)\OE inf [DgllzvveDeTllz min

le)eHp
=( sup [W, "D W, %00 1>0, (13
le)eHa
then
W' (N)=(W—\D)/(1—)\), (14)

whereN>0 is a NDEW iff A<\,

Proof: Same as for lemma 5.

With the help of lemma ), we can optimize NDEW'’s
by subtracting decomposable operators as follddjsdeter-
mining py and pyT; (2) choosingP andQ so thatP p,,=0
and Qp,r=0, buildingD=aP+(1—a)Q" with ae[0,1],
and determining\, using (13); and, (3) subtracting the op-
eratorD according to Lemma(®) if Aq#0.

C. Detectors of “edge” PPTES

In the previous subsections we have have given two opti
mization procedures. In both of them, starting from a gener

EW one can obtain one which is optim@ir ND optima). It

g

efine

W;=a(P1+Q]), (15)

wherea= 1/tr(P;+ Q). Let us also define

e,=inf(e,f|Wyle,f). (16)
e

le.f)

Then we have the following lemma.

Lemma 6:Given an edge PPTES&, thenW,;oxcW— €1 is
a NDEW, wheres; andW; are defined in Eqg16) and(15),
respectively.

Proof: We have that (e, f|Wye,f)=a((e,f|P4|e,f)
+(e,f*|Qqle,f*))=0. This quantity is zero iff
(e,f|Pq|e,fy=(e,f*|Q4|e,f*)=0. But this is not possible
since § is an edge PPTES. Thug,f|Wle,f)>0 for all
le,f). Defininge; as in Eq.(16), and taking into account that
(e,f|Wj|e,f) is a continuous function athe coefficients of
le,f), and that the set in which we are taken the infimum is
compact, we obtaii;>0. Then we obviously have tha¥,
fulfills properties (1) and (Ill). On the other hand(é)\,\,1
xa((8)p, +(8)q,) —€1<0, since P16=Q,6'=0. Thus
W, detects a PPTES, and therefore, according to theorem 3,
is nondecomposable.

Note that lemma 6 provides an important generalization
?f the method of Terhdl25], based on the use of unextend-
ble product basekl4]. Our method works in Hilbert spaces
of arbitrary dimensions, and in particular when dith()

may well happen that the EW fom_m_d in this way is nonde-:2 [in (2X N)-dimensional systenisfor which unextend-
composable, even though the original one was decomposg|e nroduct basis do not exist. By combining lemma 6 and
able. To check this one simply has to use corollary 3, that isyhe gptimization procedure introduced earlier, we obtain a

T iti

check Wh_etheNV is an EW or not. In case |t_ is, then the way of creating NDOEW’s. Once we haw, we find py

OEW, W, is nondecomposable. However, nothing guarantees d We denote th act ‘ h L Lt

that the final EW is nondecomposable if the original one isANd Pw]. We denote the projector (.)pera ors orthogonal to

not. In this subsection we describe a general method to corthese two sets b, andQ, , respectively,

struct NDEW's using the optimization procedures introduced

earlier. This method generalizes the one presented in Ref. —in (e f|Wyle,f)

25 2 Tef)

[25] . | et (ef[P2+Q]Je,)
We are going to use the results presented in R2521].

There we already used and discussed “edge” PPTES’sand W,xW, — e,(P,+QJ). According to lemma @) we

though without naming them. Let us now introduce the fol-have thatW, is ND-finer thanW,;. Now we can define

Iowing. dgfinition: _ Pw, Pw], P53, Qs, andWj; in the same way, and continue in
Definition (see Ref[20]): A PPTES4 is an edge PPTES this vein until for some, €,=0. If W, is not yet optimal, we

if, for all product vectorge, f) ande>0, 5—ele,f)(e.f| is still have to find other projectors such that we can optimize

not a PPTES. as explained in the previous subsections.

This definition implies that the edge states lie on the : . ; :
X . In Sec. VII we illustrate this method with a family of edge
boundary between PPTES’s and entangled states with NOBPTES's from Ref[13]. In fact, as we wil mentior?in tha%

positive partial transposes. In this subsection we will show, ection. we have checked that the optimization method tvpi-
how, out of an edge PPTES, we can construct a NDOE ' P yp

17

O.f special importance. In pgrticular, they aIIovx_/ one tq PrO-This means that in our construction method we do not need
vide a canonical form to write PPTES'’s in arbitrary Hilbert in practice to start from an edge PPTES

spaces. For these reasons, some properties of the edge
PPTES'’s are discussed in Appendix B.

In order to check whether a PPTES is an edge PPTES we D. Sufficient condition for PPTES's

can use a range criterigd 3] (also see Ref.20]). That is, s
is an edge PPTES iff for alk,f) e R(5), |e,f*) ¢ R(5'®).

In this subsection we use the results derived in Sec. IVC
to construct a sufficient criterion for nonseparability of
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PPTES’s. As shown in Ref$20,21], given an operatop One can relate linear maps with linear operators in the
=0, with p"=0, we can always decompose it in the form following way. We will assumed,=dim(H,)<dim(Hc),
but one can otherwise exchanbg by Hc in what follows.
p=psto, (18  Given Xe B(Ha®H¢c) and an orthonormal basiOp

] ) ) ={|k)}ckj’i1 in Hy, we define the linear magy:B(H,)
wherep, is separable and is an edge PPTES. More details _.B(Hy) according to

concerning this decomposition, and in particular its canoni-
cal optimal form are presented in Appendix B. In this section E(Y) =tra(XTAY) (19)
we use this decomposition together with the following.

Lemma 7: Given a nonseparable operatpr=ps+6,  forall Y e B(H,), where tg denotes the trace i 5, and the
where p=0 is separable, then for all EW'8Y, such that partial transpose is taken in the ba6ig. Similarly, given a
(P)w<0 we have tha{s)w<0. linear map we can always find an opera¥such that Eq.

Proof: Obvious from the definition of EW. (19) is fulfilled. For instance, if we choose= (| W)(W|)T4,
Lemma 7 tells us that ifp is nonseparable, then there \where

must exist some EW that detects b@tlandp. Actually, it is
clear that there must exist an OEW with that property. In da

particular, ifpT=0, it must be a NDOEW. In Sec. IVC we W)= > [K)a®|K)c, (20
showed how to build these out of edge PPTES'’s. Thus, given k=1

p we can always decompose it in the form of E48), con-
struct an OEW that detec# and check whether it detegis

In th we will have that is non rable. Th hi ) ) . .
that case, we ave that is nonseparable us this Given a linear magy, one can easily show the following

provides a sufficient criterion for nonseparability. S . o i )
We stress the fact that for PPTES’s only a special class Orfela'tl'ons.(a) Ex is completely p.o.s't'v.e |ffX>0, (b) & is
psitive but not completely positive ik is an EW[except

states, namely, the class of edge PPTES'’s, is responsible fg

the entanglement properties. In fact, one should stress th 1 the nlorm.alization conditiorlll)]; and (c) & is decom—_
many of the examples of PPTES's discussed so far in thgosable iffX is decomposable. Thus the problem of studying

literature belong to the class of edge PPTES's: the42 and classifying PM’s is very much related to the problem of

family from Ref.[13], then®n states obtained via unextend- =VV'S- Furthermore, PM's can b? also used to d-etgzt en-
ible product basis constructida4], the 3% 3 states obtained tanglement [11]. Let us consider the extensiorfy

via the chessboard meth¢@4](b), and projections of con- =&®1:B(Ha)®B(Hg)—B(Hc)®B(Hg), where we take
tinuous variable PPTES onto finite-dimensional subspace@s=dim(Hg)=dim(Hc). Then we have that, givepe
[34](c). B(HA®Hg),

then the corresponding mdf is precisely the transposition
in the basigO, .

VI. POSITIVE MAPS (P)x+=(V[Ex(p)| V), (21)
It is known that PM’s allow for necessary and sufficient Where
conditions for separabilityor, equivalently, entanglement q
of bipartite mixed stategl1]. Positive maps have been also _ S
applied in the context of distillation of entanglemgdb] and |\P>_k§="1 Kcelk)e-
information theoretic analyses of separabili§6]. In this
section we will use the isomorphism between operators an
linear maps to extend the properties derived for withesses
PM’s [26]. We will first review some of the definitions and
properties of linear maps.

Let us consider a linear mapB(H,)—B(H¢c). We say
that& is positive if for allY e B(H ) positive,£(Y)=0. One
can extend a linear map as follows. GivenB(Hp)
—B(H¢), we define its extensiod® 1g:B(Hp)®@B(Hg)
—B(Hc)®B(Hg) according tof® 1:(2;Y®Z;) =2,E(Y;)
®Z;, whereY;eB(H,) and Z;e B(Hg). A linear map is
completely positive if all extensions are positive. The classi
fication and characterization of positiyeut not completely
positive maps is an open questigsee, e.g., Ref§28,29).

An example of a positivébut not completely positive ) :
map is transpositiofiin a given basi®,); that is, the map PM given th.e folloyvlng fact. i .
&r such thatg(Y)=YT. The corresponding extension is the _ Lemma18.lf W, is finer (ND-finer) thanW, then&y, is
partial transpositiofil2]. A map& is called decomposable if finer (ND-finen than&y, .
it can be written ag=_¢&;+ &,- &, where&, , are completely Proof: Using lemma 2 we can writdV,;=(1—¢€)W,
positive. +€P. According to Eq.(19) we have thaty, =(1—¢€)éw,

(22

£i‘hus, if an EW,W, detectsp, then&y(p) is a nonpositive
t8perator. Consequentlp=0 is entangled iff there exists a
PM such that acting op gives a nonpositive operator. In
that case we say that the PM “detectg” Actually, PM’s
are “more efficient” in detecting entanglement than EW'’s.

The reason is that it may happen ti&{(p) is nonpositive,
but still {(p)x+=0.

It is convenient to define finer and optimal PM'’s as it is
for EW’s. That is, given two PM’s&; ,, we say thatt, is
finer than&, if it detects more. We say that a PN, is
optimal if there exists no PM that is finer. In the same way
we can define ND-finer and ND-optimal. The results pre-
sented in the previous sections can be directly translated to
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+e&p. Since&p(p)=0 for all p=0, we have thaty, is  wherep,=Vgp,VE andVg=12[ (1+i0y)0s® (1+i0%) 13-

finer than&y,, . Using lemma ), we can also prove thatitis We will use property(24) to simplify the problem of con-
ND-finer. structing the NDOEW. Thus we will concentrate from now

From this lemma it follows that optimizing EW'’s implies on the operatorg,, [37]. Obviously,py, is an edge PPTES for
optimizing PM’s. In fact, the constructions that we gave in1>b>0.
Sec. V C can be viewed as ways of constructing nondecom- The projector onto the kernel gf,, P, is invariant under
posable PM's. In fact, since the method works forthe transformatiom ,g=TA® Tg, Where
dim(Hp)=2, the resulting PM&EB(HA)—B(He) has a
minimal “qubit” domain, or—equivalently—minimal Her- 1 0
mitian conjugate codomain. To our knowledge, our method Ta= 0 el273)
is the first that permits one to construct nondecomposable
PM'’s with these characteristics.

1 0 0 0
0 cog2w/3) —sin(2w/3) O
VII. ILLUSTRATION Tg= , _ (25)
0 sin2#/3) coq42#w/3) O
In this section we explicitly give construct a NDOEW out 0 0 0 1
of edge PPTES. We use, as a starting point, the family of
PPTES's introduced in Ref13)). Note thatTg is a real matrix. Later on we will need its
eigenstates with real coefficients; they 46 +|3). Note
A. Family of “edge” PPTES's also thatTileL

We considerH ,=(? and Hg=C*, and denote{|k>}‘k’a=0 _
(a=A,B) an orthonormal basis in these spaces, respectively. B. Construction of NDEW's
Most of the time we will write the operators in those bases; We use now the methods developed in Sec. V to obtain a
tr?at is, as m?]tncez. For operators actindligoHg we will  NDOEW starting fromp,. That is, we defineW,=P,
always use the orde{0,0),[0.3), . .. |1,0),[1,1), ...}. On +P], whereP; is the projector ontdK (pp) = K(pb) Our
the other hand, all partial transposes will be taken with re-
procedure consists of first subtractlng the |dent|ty to obtain

spect toHg .
We consider the following family of positive operators W, =W, — €] Then we subtracP, +Q;, P3+Q3, etc. In
[13] the nth step, we have
b 0OO O bo 0 Wo=W,_1— &Py +Qp), (26)
0O b 0O 0 0 b 0 where P, (Q,) is the projector orthogonal to the space
0 0Ob O 0 0 0 b spanned b)Panl (PWI—l)' We will use the symmetries of
0 0 0D 0 0 0 0 Eb to better understand the structure\Ws, .
1 14b 112 (8 W,=W, . We can prove this by induction. First, it is
pp==——| 0 0 0 0 — 0 0 =~ — |  clear that W;=Wj. Let us now assume thaw, ;
7b+1 2 2 =W]_,. Then we show thaiV,=W,. For this, we just
b 0 0 0 b 0 have to show that the subspace spannedPhy  is the
b 0 O 0 0b 0 same as the one spannedRW , so thatQ,= P, But this
1-b 14b is clear sinceV, ;=W!_,
0 0 b O 3 0 0 - (b) TAgW,Thg=W,. We prove this by induction. First,

(29 for leT P+ PI—TelTH we have that TABW%T,}B
=TagP1Tagt TagP1Tag— €11=W;, since TagP Tag
wherebe[0,1]. Forb=0 and 1 those states are separable=(TagP1Tag)' (given the fact thaflg is rea) and P is
whereas for 8b<1, p, is an edge PPTES. This can be invariant under T,g. Then, let us assume that
shown by checking directly that they violate the range crite-TagW— 1TAB W,_4. In order to show thatTABWnT,KB
rion of Ref.[13], i.e., the definition given in Sec. IV C. =W, we just have to show tha&,, is invariant undefT zg,

If we take the partial transpose in the bagjk)}, the or, equivalently, that the subspace spannedPhy | is in-
density operatorg;, have the property thapi=UgppUL  variant underTgs. But this follows immediately from the
with Ug=(0,)03® (0y)12. Here, the subscripj denotes the fact thatTABanlTLB:anl-
subspaceHg;;C Hg spanned by]i),|j)}, ando, is one of Starting from property(a), it follows that the vectors
the Pauli operators. Note thlg is a real unitary operator |e,f) e Py, will have|f) real(unless we have degeneragies
acting only onHg.. This immediately implies that This can be seen by noting that those vectors minimize

o~ (e,f|W,|e,f); defining W,=(e|W,|e), we have thatw]
Pb=Pb (249 =w,=W! is symmetric, and therefore the eigenstate corre-
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FIG. 1. Values o’ for which if b<b’, py is detected by the -

witness and the positive map created starting frgm FIG. 2. MaximumA such thatp,+\1 is still d~etected by the
witness, and the positive map created starting fggm

sponding to its minimum eigenvalue can be chosen to be
real. On the other hand, startlngr from thTeZ propeiy, it Finally, let us note that using numerical calculations we
follows that if [e,f) e Py, then Tpgle,f), Tagle,f)ePw . have observed that if one starts with a random projetof
According to this, we will typically have two kinds of prod- rank 3, and optimizes the decomposable operatte P
uct vectors inPWn. +PTe in the same way as the one described here, then one

(1) |e,f) is an eigenstate OF s with |f) real: There are  will end up with a NDOEWW, wherepyg, is complete. This
only four possible product vectors which fulfill these condi- means that in order to create NDOEW one does not need to
tions:{|0),|1)}®{|0)+|3),|0)—|3)}. know in practice an edge PPTES. In another words, optimi-

(2) |e,f) is not an eigenstate fs5: Then we will also  zation itself is a way to reach nondecomposableness.
haveT}gle,f) and (Thg)?le,f) e Py .

We have carried out this procedure fpy and found
NDOEW's for eachb. We find that for optimal EW’s we
have two vectors of typél) and six of type(2). In total we In this subsection we will present an analytical way to
find eight product vectors iRy, which span the whole Hil- create NDEW's. Furthermore we will give an example of
bert space, and therefore the corresponding EW’s are optim&hch a witness, which detegig for all be (0,1). From Fig.
(see corollary 2 This means that any operator of ty(® 1 we see that the withess which detects the most is the one
with |ey,fy) € Py, the product vectors we have found, andwe created out op,,, whereb is very close to 1. We will
pi>0 will be a full range separable density operator that liesyork with the originalp, [Eq. (23)].
on the boundary between separable and PPTES’s. To our We consider two Hermitian operatoss and B, with A
knowledge, this constitutes the first example of these opergositive on product vectors, i.g¢,f|Ale, f)=0, whereaB
tors [38]. We have also created PM's corresponding todoes not have to. As before we denoteRy (Pg) the (not
NDOEW's, which we believe are the first examples of non-necessarily completeset of product vectors on which (B)
decomposable PM's with minimal “qubit” domains, or— vanishes. We require that for dle,f)eP,, (e,f|Ble,f)

C. Analytical procedure

equivalently—minimal Hermitian conjugate codomains. =0. Then we defin@V(x)=1/x(A+xB) for any realx. So
In Fig. 1 we show for whictb’ py is still detected by the we have the following lemma _
NDOEW created out op,. We find that for a giverb, the Lemma 9:If lim,_o(p)w(x) <0, thenp is entangled.

Proof: We prove that lim_,o(e,f|W(x)|e,f)=0. This im-
plies that if p is separable, then lign,o(p)w(=0. Let us
gerefore distinguish two case§) if |e,f)e PA, then we
ave that lim_ (e, f|W(x)|e,f)=(e,f|B|e,f), which is, per
assumption, positive. (i) |e,f)éP; then we have

optimal witness that we create detectspglfor b<b’. Thus,

in the figure we plotb’ as a function ofb. As explained
above, the corresponding positive map detects more than t
witness itself. In this figure one can also see how much i
detected by the positive map.

Obviously, the witnesses that we create do not only deted{mXHO(e’f|W(X)|e']c> =lim,_o(a/x) +D, Whgre_ a
. ~ . =(e,f|Ale,f)>0 andb={(e,f|B|e,f). Thus this limit tends
the density operatorgy, . For instance, one can check how to infinity, which proves the statement.
much one can add to the identity of a certajnbut still keep Note thatW(x) is not an EW, since it is not necessarily
the S’Ea.te entangled, that is, for whighthe witness still de- positive on product vectors. However, one can make it posi_
tectspp+Al. This is shown in Fig. 2. tive by adding the identity operator to convert it into an EW.
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Corollary 6: Given anyxy>0, then W(xg)=(1/Xq) (A
+XoB) + Ay 1, where \, = —ming (e f|1xo(A+x,B)|e,f)

is an EW.

PHYSICAL REVIEW A62 052310

which is a positive operator, and ée,f|B|e,f)=0. So those
two operatordA andB fulfill all the required properties. Fur-
thermore, one can show thgi,),=0 and{p,)g<<O0 for all

Let us now illustrate how we can use lemma 9 to detec@<b<1. Thus we have that lim,o(W(x)pp)<0 for all 0
all the statep,. We define

0 0
0 1
0 0
0 0
A=l o o
)
0 -2
0 0
1 0 0
0 1 0
0 0 1
1 0 0
B=l 0 0 o
—2 0 0
0 0 0
0 0 -2

One can easily show that=| ) (| + (| ){$|) B, where

0

O ©O O O O +» O

O O O O o o o o

©O O O O r O O

0 0 O
0 0 -2
0 0 O
0 0 O
0 0 O
01 O
0 0 1
0 0 O
0 -2 0
0 0 O
0 0 O
0 0 O
1 0 O
0 1 O
0 0 1
-1 0 O

o

O O o o o

0
1

(27)

. (28

<b<1, where we definetlV(x) = (1/x) (A+xB).

As mentioned above, we can use ndWx) in order to
create other PPTES'’s just by adding product vectors on
which W(x) vanishes. To find the product vectors we can
add, all we need to do is to determine the intersection
between P, and Pg. Since Pg={(|0)+¢€'?|1))
®[a(|0)y+e "?|1)+b(]2)+e '¢[3))]V ¢,a,b} we
have that S=PANPg=P, NPs={(|0)+e'’|1))®(|0)
+e Y1) +e '2¢|2)+ e 3?%|3))V ¢}. Note thatS spans a
five dimensional subspace, and that the orthogonal subspace
is spanned by the vector§—|02)+|13),—|01)+]|12),
—]00)+|11)}.

VIIl. CONCLUSIONS

Entanglement witnesses allow us to study the separability
properties of density operators. We have defined OEW'’s,
which are those that detect entanglement in an optimal way.
We have given necessary and sufficient conditions for an
EW to be optimal, and we have shown a way to construct
them. We have also concentrated on NDEW's, which are
those that detect PPTES’s. We have extended the definitions
of optimality and the optimization procedure to those EW's.
It turns out that one can optimize NDEW by subtracting
decomposable operators. We have also given an explicit
method to construct NDEW's starting from “edge”

|4)=|01)—|12) and|$)=|02)—|11). Thus this operator is PPTES’s. We have also mentioned that this method works

positive on product vectors, since it is decomposable. LePY starting out from random operators. We have extended

the set of product vectors on whiclA vanishes, i.e.,

Pa. Pa=PaUPs, where Py ={(|0)+al1))®(x|0)
+y[3))Va,xy} and P,,={(|0)+€*[1))®[x|0)+Y|3)

+2(]1)+e '?|2)]Vd,x,y,z}. OperatorB has to be positive

on those product vectors, i.&e,f)e Py, (e,f|B|e,f)=0.

In order to show that this is indeed like that let us distinguishsates of full range that lie on the boundary between sepa-
the two casefe, f) e P, and|e,f) e Py . Inthe first case we  raple states and PPTES's. These states can be used for ex-

have that
1+]|al?
—2a*
e/Ble)=
1-|al?

—2a 0
1+]|al? 0
0 1+ | a|?
0 —2a*

1-|al?

0

-2«
1-1—|a|2

(29

and so (e,f|Ble,f)=|x+y|®+|al?x—y|>=0. If |e,f)

€Pa, then
2
2e7ill)
B =
elBle)=|
0

—2e'® 0
2 0
0 2
0 —2e7i®

(30

systematically construct nondecomposable positive maps.
We have Iillustrated our methods with a family of edge
PPTES acting on?® C*. The corresponding PM’s constitute
the first examples of PM’s with minimal “qubit” domains,
or—equivalently—minimal Hermitian conjugate codo
mains. We have also constructed examples of separable

perimental realization of PPTES[88].

In this paper we have also introduced the edge PPTES's,
which violate the range criterion of separability. As shown in
Appendix B, edge PPTES'’s allow us to construct a canonical
form of PPTES’s in Hilbert spaces of arbitrary dimensions.
They also allow us to give a sufficient condition for nonsepa-
rability which applies to operators with positive partial trans-
poses. It is based on the fact that among all PIdISEW’S)
only the subsef{A.qqd Of those PM's that detect edge
PPTES’s are needed to study the separability of PPTES's.
This opens many interesting questions. Is it possible that in
the set{Aqqqd there is some map that is globally finer than
the transposition? In another words, is there a map detecting
the entanglement oéll the states with nonpositive partial
transposes? What is the minimal subse{f 44 providing
such condition? Is it finite?

Finally, let us consider the implications of the our results
for the very interesting problem of locality of PPTES. There
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is a conjecturg39] that those states can be local in the sense ~{e(N), F(N)|W]e(h),F(N))
that they admit a local hidden varialleHV) model for any im COSRS ISR =0. (A2)
set of possible local measurements. The problem is not A0 ' '
trivial given the fact that 't. may be important to take mto_ IP Appendix A1 we will introduce some definitions and no-
account the role of sequential measurements and the possi & : X .

. : . . ation. In Appendix A2 we give a method to determine the
existence of many copies. Quite recently it was shown tha

; . P . “set of product vectorB,y, on whichW vanishes. In Appen-
PPTES satisfy Bell-type inequalities introduced by Mermin’,. : . .
[40]. It is not difficult to convince oneself that the set of dix A3 we find a necessary and sufficient condition under

states admitting a LHV model fany fixed type of measure- which an operator cannot be subtracted from an EW. We will

ments is a convex set. Furthermore, extending the reasoni ge that there must exist a vecfe, fo) € Pw, some other

L ctors|e;) and|f;), and certain phases, 1 and 6 such that
from Ref.[7], it is easy to see that the set of separable Statesome quantity is zero. In Appendix A1 we will see that the

admits LHV models for any possible set of measurements; R
Hence, taking into account the results of this paper it follow f°b'e”.‘ can pe reduced to f|nd.|ng'only the vec@@) and
fo.. Finally, we will show that if dim{ ) =2 we just have

that in order to prove or disprove the locality of PPTES's it! 0.1 S )
is enough to study only edge PPTES's. to find |ey) and|fy), which is very simple.

Note that edge states typically have very small réihle o '
minimal rank is four in 33 systems, see Ref21]). There 1. Definitions and notation
have been no examples of LHV models for states of low |n order to prove the results of this appendix in a compact
rank, so far. Thus, perhaps, completely new techniques wilhnd readable form we have made an extensive numbers of
be needed to study this problem. In this case the most synitefinitions. We will always denote b, o) a product vec-
metric PPTES'’s provided recen{l$4](c) seem to be the best tor in P, and by|e;)eH, and|f;) e Hg two vectors or-
suitable for the first test. thogonal to|ey) and|f,), respectively. We will use the no-

tation
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APPENDIX A: OPTIMALITY OF EW'S Wif,jE<fi|W|fj>- (ASb)
In this appendix we study necessary and sufficient condi-

tions for an EW to be optimal. According to theorem 1 of  The following vectors will be used in the context of Eq.
Sec. Ill, an EW\W, is optimal iff no positive operator can be (A2):
subtracted from\W while retaining propertyl). This condi-
tion can be reexpressed in terms of the infimum of some B 1 i
scalar products in lemma 4. This infimum is, in general, dif- le(e))= 1+|cod f)€| [leo) + e cog )€ eley)],
ficult to calculate(at least analytically In this section we (ABa)
will give a different method to determine whether an EW is
optimal or not. This method will turn out to be very simple

1 :
for the case in which dinH{,)=2. The idea is to find the |f(€))=———=——==5[Ifo) + esin(0)e' ¥|f})],
conditions such that a given operat®®0 can or cannot be V1+[sin(0)e|
subtracted from an EW. This will automatically give us a (ABb)

criterion to determine wheWlV is optimal.

In all this appendix we will use that, given an EW, and
an operatoP=0, we say thaP cannot be subtracted froy
if for all A>0, W—\P does not fulfill(I). In other words,
there existe(\)) e Ha and|f(\)) e Hg such that

wheree is a real number, ang, ¢ [0,7) and #[0,7/2]
are certain constants. Given a product vepgfe),f(€)) and
an operatotV, we will expand(e(e),f(e)|W|e(e),f(€)) by
collecting terms with the same powers én that is, except
for a normalization constant,

(e(M),F(M)|[(W=AP)|e(X),F(\))<0. (A1) ‘o
(e(e).f(e)Wle(e),f(e)= 2, €A(W),  (AD)
Note that{e(\),f(\)|P|e(\),f(\)) must be strictly posi-
tive, so that Eq(A1) can be expressed as where
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Ag(W)=Wg5, (A8a) P(cy,cy)=0. (A13)

A1(W) =2 Re cog )€’ W g+ sin( 6)e' *"We'g], We also impose that, given the fact that the determinant is a
(A8b) minimum,

Ax(W) = cog( 9) W+ sir?(6)Wg 1+ 2 sin( §)cog 6)

J d
i _ ; o *y—_ *) —
X Rq:e i(pe ¢f)W(j)_:$+ el(¢e+ lf’f)Wé:é], (ASC) (9Ck P(Ck 'Ck ) acz P(Ck ,Ck ) 0, (A14)
A3(W) =2 sin( #)cod #) X R cog #)e'*'W1's _ _ , _
_ ’ which also give a set of polynomial equations. These equa-
+sin(0)e'*eWg 1], (A8d) tions can be solved using the method mentioned in R€J.

. 1,1
A4(W) = sir?( 6) cos( 6)Wr'1. (ABe) 3. Necessary and sufficient conditions for subtracting an

On the other hand, we will define operator

. _ In this subsection we give a necessary and sufficient con-
|W o )=sin(9)e *|ey,f;)+cog 0)e'%ele;,fy). (A9) dition for an operatoP to be subtractable from an EW. We

. _ ) ) i start out by giving some properties of the coefficieAfsV)
Finally, the following quantity will play an important role  Jefined aboveéAs).

in determining whether there exist vectors and parameters for | amma A2:Given W satisfying (1) and |eg, fo) € Pw,

which [Eq. (A2)] then for all |e;)eH, and |[f;)eHg we have (i) Ay(W)
=A =0. (i) Ay(W)=0. (iii) If Ay(W)=0, then
X =WEMEI—(Wed+ W33z, (a0 () AL =0- DT AW
Proof: (i) It is a direct consequence from lemma Al. In
2. Determining Py order to proveii) and(iii ) we use the fact thaw/ satisfiegl).

As stated in lemma 3, not every positive operdtaan be ~ We definele(e)) and|f(e)) as in Eq.(A6). We impose that
subtracted from an EWWV; it must vanish orPy,. Thus, in  (€(€),f(€)|W|e(e).f(e))=0. Using expansion(A7) and
order to choos® one has to know the s, In this sub- ~ taking (i) into account, we havel\(e)=A,(W) + eAs(W)
section we give a method to determine it. We start by char € A2(W)=0 for all e. This automatically implies(ii),

acterizing the vectors iRy, : since otherwise for sufficiently smak we would have
Lemma Al:Given an operatoW satisfying (1), then A(€)<0. It also implies(iii), since if A3(W)<0 (A3(W)
leg,fo) € Py iff >0) then for sufficiently smale>0 (e<0) we would have
A(e)<0.
(eo|W|ep)|fo) =0, (Alla Now, we are at the position of giving a necessary and
sufficient condition under which an operator cannot be sub-
(folWIfo)|eg)=0. (Allb)  tracted from an EW:

] ] Lemma A3Given P fulfiling PPy=0, it cannot be sub-
_Proof: (If) We just apply(fo| to Eq.(Alla. (Only if)  tracted fromW iff there exists|ey,fo) € Pw, |€1)L]es),
Since W fulfills (1) then W =(eo|W|e) must be positive. |,y |f,), e.r, andd such thatA,(W) =0 but Ay(P)#0.
Thus, (fo|We, |fo) =0 implies Eq.(Al1a). In the same way Proof: (If) We definele(\)) and|f(\)) as in Eq.(A6).
we obtain Eq(A11b). Using lemma AZ), we have Ag(W)=Ay(P)=A (W)
In practice, for a giverW the setPy, can be found as =A1(P)=0. Using lemma Agii ), we have thaf\;(W)=0.
follows. Due to the fact thatvis an EW we have that for any Thus we can write limi{A2) as
le)eHa, W,=(e|W|e) must be a positive operatdi.e., )
(f]|Wg/f)=0 for all |fyeHg). Thus, the determinant im NA4(W)
det(\/\/_e)zo. Accprdlng to lemma Al, this determinant is r—0A(P)+NAg(P)+\2A,(P)
zero iff there exists soméfy) e Hg such that(fo|Weo|fo)
=0, i.e., if|eg,fo) € Pyw. That is, the determinant as a func-
tion of |e) has a minimumwhich is zer9 at |e;). We can
use this fact to findey). Then, we can easily obtajiy) via
Eg. (A11a). We can expand an unnormalized st@gin an
orthonormal basig|k)} as

(A15)

which obviously tends to zero given thA,(P)#0. (Only
if) There exist two normalized vectofe(\)) and [f(\))
(continuous functions ok) fulfilling Eq. (A2). Taking the
limit N—O in this expression we have that
, (e(0),f(0)|W[e(0),f(0))=0, and therefore |eg,fo)
o d'”g“) K (A1) =[e(0),f(0)) e Pyy. This means that we can always choose
e)= ¢ k), ~ ~ . :
= le(\))=|e[e(N)]) and [f(\))=]f[e(\)]) given in Eqg.
(A6), where |e;) L |eg) and |f,)L|fo) are two normalized
and impose that the corresponding determinant is zero. Thigectors, lim_,qe(\)=0, and(e(e),f(e)|P|e(e),f(€))#0.
gives us a polynomial equation for the coefficieas i.e., We use Eq(A6) to expand the numerator and denominator
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of Eq. (A2) as in Eq.(A7). According to lemma Ad), we The next lemma shows that we just have to check whether
have that Ag(W)=Aq(P)=A;(W)=A,(P)=0. Thus we X(W)=0 if we want to see if there exist parametess; and
must have 0 such thatA,(W)=0. This first condition is therefore much

more useful than the last one.

Ay (W) + eAs(W) + €2A (W) Lemma A6: XW) =0 iff there existqﬁgyf and#°, such that

im =0. (A16)  Ax(W)=0.

0 Ax(P)+ €A3(P) + €2A4(P) Proof: (If) Given the phased=6° we have that O

=A,(W)=A,(W). ThusA,(W)=0. According to Eq(A18)

This implies A,(W)=0 and A,(P)#0. Note that if both we can have two case&) ,# 0,7/2. In this case it is ob-
A,(W)=A,(P)=0 then, according to lemma Ai) we Vious thatX(W)=0. (b) 6,=0,7/2. In the first(second case
have thatA;(W)=A;(P)=0, so that Eq(A15) would re- Wwe must haveWjg=0 (WJ1=0). But this implies that
quire A,(W)/A,(P)=0. But this cannot be, sincA4(W)  Wgg=Wg3=0, since otherwise we could always find some
=0 would imply that |e(e),f(e))e Py, and therefore other value of @ such thatA,(W)<0. Then, X(W)=0.
(e(e),f(e)|Ple(e),f(e))=0. (Only if) We chooseg, ; as in Eq.(A17). For this value,

Finally, we show in the next lemma that condition according to Eq(A18) we have
A,(P)=0 is equivalent to having a certain vector in the
kernel of P. We will use the vectofW, ) defined in Eq. A,(W)=[cog .9)‘/W%’0°—sin( g)x/iﬂfjo’ﬂz, (A19)
(A9). ’ ’

Lemma A4:Given a positive operatd? and a set of vec- which can always be zero for some particular value) of
tors |eg,fo) e K(P), |ei)L|eg) |f1)L|fo) and parameters Note that according to the proof of lemma A6, Wy
¢e s and 6, thenA,(P)=0 iff | ¥ 1) e K(P). =0 thenA,(W)=0 only for #/=0. But in that case one can

Proof: SinceP=0 and|ey, fo) € K(P), we haveP}{=0.  easily check that the vectoe()),f(\)) e Py, [see Eq(A6)]
Then we can writeA,(P)=(W,|P| ¥, ), with [¥) is de-  which cannot be. Similarly, we conclude thatg+0 if we
fined in Eq.(A9), from which it is obvious tha#\,(P) =0 iff want A,(W)=0. Thus from now on we will assume that
| W) eK(P). both Wy'g and Wy are not zero.

4. Necessary and sufficient conditions foA,(W)=0 5. Optimality test

The previous lemmas tell us that we cannot subtract a W& €an now state the steps to check whether an BW,
given operatorP provided we can find some vectors and Can be optimized or notl) For eachiey, o) « Py we must
parameters such that,(W)=0. The task of finding these Ccheck whether there exif;) 1 |eo) and|f;)L [fo) such that
vectors is difficult, in general. Here we will give a way to X(W)=0. Let us denote bje}) and|f{?) the set of vectors
check whether these vectors exist. As before, we will denotéulfilling that. (2) For each of these vectors, we have to find
by |eo,fo) @ vector inPy,, and two vectors orthogonal to the the corresponding values ¢f{} by using Eq.(A17) and of
first two by|e;) and|f,). The quantityX(W) defined in Eq. %) by imposing that,(W) =0 in Eq.(A19). (3) Construct
(A10) will play an important role in determining whether |W(®) according to Eq.(A9). (4) See whether the space
there exist vectors and parameters for whigf{W)=0. In  spanned byP,, and {| ¥ ")} is equal toH,®Hpg. If it is,
this subsection, we will always have to choose the phasetenW is optimal. If it is not, we can always find somg)
¢e ¢ that minimizeA,(W). That is, orthogonal to that subspace that can be subtracted ¥kom

—i(pe=bt— o) = — (Pt it 1) — _
€ ° 1, e 1. (A1D) 6. Necessary and sufficient conditions foX (W)=0

. ~ . ] The hard part of the procedure outlined before to see
We will denoteA,(W) the value ofA,(W) for this particular  \yhether an EW is optimal is stefl), namely, to find|e,)

choice of phases. We have and|f,) such thatX(W)=0. We start out by giving a nec-
essary and sufficient condition fo¢(W)=0.
Ao(W) = co( 6) W+ sir?(9) W3 Lemma A7:Given |eQ,f0>ePW, and |e;)1|ey) and
’ ’ [f1)L]|fo), thenX(W)=0 iff
— 2 sin(#)cod ) VW7 gWg 1— X(W), (A18) e
e A [0 i iy i ey /©
where we have used E¢A10). Wod Ty W};Se (e Wi gt e o)
Let us start showing thaX(W) is positive. We will use (A203)
this property later on to reexpress conditisa(W)=0 in
terms of one that is simpler to check. f Woi oo
Lemma A5: XW)=0. Woder)=— W_lbe 'e(e™ ! Ptwy ot €'Yy p)|eo),
Proof: This follows from the fact thafA,(W)=0 for all 10 (A20D)
values of¢g ;. In particular,A,(W) =0, which according to
Eq. (A18) implies X(W)=0. where ¢  are given in Eq(A17).
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Proof: (If) We multiply by(f,| [Eq. (A20d)], and take the In summary, for a giverey,fy) e Py, in order to find

square of the absolute value of the result. We obtain whether there exide;,f,) such thatX(W)=0 we just have
_ _ to check condition(A25). If it is fulfilled, we can easily find
WioW1= e~ (et #OWR 0+ el (de= g2 |f1) and the phaseg, ; using Eqs(A23) and (A22).
=(|Woid +IWig)?. (A21)

APPENDIX B: CANONICAL FORMS OF PPTES'’S

Using lemma A5 we conclude th&(W)=0. (Only if) Since The concept of edge PPTES'’s seems to play a very spe-
X(W)=0 and according to lemma AS5X(W)=0, then  cja] role in the characterization of PPTES's. In particular, in
X(W) must be a minimum with respect {@;) and [f;).  view of the criterion given in Sec. V D, which is based on the
Taking the derivatives oK(W) with respect to these two fact that any density operater can be decomposed into a
vectors and imposing that they vanish, one obtains Edseparable part and an edge PPTES. (18)]. Among all the
(A20). possible decompositions there might be one for which the
Equations(A20) are particularly useful if the dimension trace of the separable part is maximal. When it exists, such a
of one of the Hilbert spaces is 2. Without loss of generality,decomposition was termed positive partial transpose best
let us assume that dirhi(,) = 2. In that case we can choose separable approximatioPPT BSA to p [21]. It extended
le;) as the one that is orthogonal ey) (with an arbitrary  the idea of the BSA introduced in Ref&3,27 to the case of
choice of the global phageThe determination o, can be  PPTES’s, which were based on the method of diminishing

done as follows. Using EqA20), we write the range op by subtracting product vectors from its range,
while keeping the remainder and, at the same time, its partial
Wi ” 1o e e transpose, positivg23,22,20,2] In this appendix we for-
We )=~ W_e(e Wi ote'%ewg 1) fo), malize the results regarding the existence and properties of
01 0.0 (A22) the PPT BSA. In particular, the proofs presented in the

quoted papers were restricted to the case in which there ex-
where 1W¢ , denotes the pseudoinvef&8]. We can use this ists a finite or, at most, countable number of projectors on
expressiori to impose product vectors that can_be subtrac.t(_ad framWe will ex-

tend them below to continuous families of product vectors.

WO Te~i(¢e¢0) Whigi(det ¢ <, (A23)  This appendix is written in a self-contained way, and can be
’ ’ read independently of the body of the paper.
i.e. they are negative real numbers. We obtain that We denote byl", the set of projectors on product vectors

{le, fo)(e,.f [} such thatle,.f,)eR(p) and |e,.f*)

_ 1 eR(p"®). In Ref.[21] we showed that ifl", is finite then
e '2%e(folwio— Wi dfo)<O, (A24)  there exists an optimal decompositigthe PPT BSA p
Wo,0 =(1—p)psept P, where § is an edge PPTES, angl is

minimal. Note that the PPT BSA involves a statewhich
violates the range criterion in a rather special way, i.e., with
the additional requirement that, is a finite set. It can hap-
pen that there is an uncountable family of product vectors
depending on a continuous parameter that can be used for
subtracting projectors. In the following we will show that in
such case the above result is valid. In order to consider the
case of continuous families of product vectors we first prove
the following lemma
Lemma Bl:Let p will be a PPTES defined on a Hilbert
spacetH, dimH <. Then the set of product vectol3, is
: (A25)  compact.
Proof: Obviously I', is a bounded set in finite-
dimensional space, so it is enough to show that it is closed.
Consider any sequencdg,,h,)—|®), |9,,h.) € R(p),
|gn.h¥) e R(p®). The limit vector musti) respect the con-
|fl>:_i(e—i¢ewi oFeiPews )| fo), (A26)  dition of orthogonality toK(p) [i.e. they must belong to
WSYO ’ ’ R(p)], (i) belong to the spheré.e., set of all vectorse)
with || ¢||=1); and(iii) must be a product state, because if it
where ¢, is determined by conditiotA24). Using this ex-  was entangled then its distance from the compact set of prod-
pression to calculatX(W) one finds that indeed(W)=0.  uct pure state$13] defined as migy)||¢)—|ef)|| would be
(Only if) Using lemma A7 we can writff;) as in Eq.(A22)  nonzero, which is obviously impossible. We conclude thus
so that the phase#,.; ensure that Eq(A23) is fulfilled.  |¢)=]|g,h) e R(p) for some|g), and|h), which implies(up
Substituting|f,) into the equationrX(W) =0, one finds Eq. to irrelevant phase factorghat |g,)—|g) and |h,)—|h).
(A25). We have(again up to an irrelevant external phase factor

so that we determiné,.. With these results, we can prove
the following necessary and sufficient condition #6¢W)
=0 when dim{,)=2.

Lemma A8:If dim(Ha)=2, given |ey,fo) e Py, then
there existde,,f;) such thatX(W)=0 iff

=2

1
<fo|W8,1_eW8,1| fo)
Wo,0

Proof: (If) We define
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|gn,h¥)—|g,h*). The latter must belong tB(pe) as any
element of the corresponding sequence is orthogonal t
K(p'®).

Let us now prove the following general lemma, which is a
generalization of one theorem from RE22]:

Lemma B2:Let the PPTESp be defined on a finite-
dimensional Hilbert space. Consider the Egtconsisting of
the trivial zero operator plus all unnormalized stagésp
<1) such thaté=p— is positive and has positive partial
transpose. Then one can fipce S ,, such that with trf)
<1 is optimal in the sense théi) the trace ofé=p—p is
minimal with respect to all separabjiés, leading to positive
partial transpos@'s; and (i) the states= &/tr(3) is an edge
PPTES.

Proof: To prove the existence gfe 2,, we just have to
show that>, , is compact. This can be done by showing that
2, is a closed subset of another compact set, nan@ly,
=conI',U0}. The latter seC is compact as it is a convex
hull of the compact se{I', U0} in a finite-dimensional
space.

Note first that> ,C C. Indeed, by virtue 0b=0 any non-

PHYSICAL REVIEW A62 052310

continuous, all the sets participating in the cross section are
olosed. Now the cross section of closed sets is again a closed
one.

Now consider statemeriti). Sinces,5'8=0, we always
have 6= BPgs+A and 8'8=p' Pty +A’ with 8,5’
>0, some positive operato’s and A’ (here Py denotes a
projector onto the subspaee_ H). Then if, contrary td(ii),
there were anye,f) e R(8) such thate,f*) e R(58), then
the new operatop* =p+ y|e,f)(e,f|, y=min[B,8'] would
fulfill that 5* = p—p* is PPTES, and would contradict opti-
mality with respect tdi).

Let us remark that if we give up the condition regarding
the positivity of8'8, then we obtain a modified stateméiny

where states has no product vectors in its range. This is

nothing but the BSA of Ref(22], extended here rigorously
to the stateg having uncountable set of product vectors in
R(p).

From the lemma B2 we obtain the following characteriza-
tion of PPTES'’s, which can be regarded to be among the
main results of this appendix, since it provideganonical
form of PPTES’s

Proposition:If the statep is a PPTES, then it is a convex

zerop cannot have any vector in its range not belonging toembination

R(p). Analogously R(p"8) CR(p®). Hence, according to

the properties of the ranges of density operators in general

[13], p must be a convex combination of vectors fraip,

and as such it belongs ©. Let us show thak , is closed.
This follows immediately from the fact thal, is a cross
section(performed over any projectioris andQ) of the sets

3,p={p:fp,(p)=tr(Pp—Pp)=0} and X7 5 ={p:gq,.(p)
=tr(Q"8p—Q'8p)=0}. Since the functiondp ,,9q,, are

P:(l_p)Psep+p5 (B1)
of some normalized separalpg., and an normalized edge
PPTESS. In the above decomposition the weights mini-
mal [i.e., there does not exist a decomposition of typé)
with a smallerp].

The above proposition means, in particular, tleage
PPTES's are responsible for PPT-type entanglement
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