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Multivalued logic gates for quantum computation
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We develop a multivalued logic for quantum computing for use in multi-level quantum systems, and discuss
the practical advantages of this approach for scaling up a quantum computer. Generalizing the methods of
binary quantum logic, we establish that arbitrary unitary operations on any numlikleeél systems
>2) can be decomposed into logic gates that operate on only two systems at a time. We show that such
multivalued logic gates are experimentally feasible in the context of the linear ion trap scheme for quantum
computing. By usingl levels in each ion in this scheme, we reduce the number of ions needed for a compu-
tation by a factor of logd.

PACS numbgs): 03.67.Lx, 03.65.Bz, 89.88-h

I. INTRODUCTION A tensor product of qudits is also essential for the efficient
processing of quantum information. As in the binary case,
Binary logic gates and Boolean algebra play an importantve build unitary transforms on the whole system from logic
role in classical and quantum theories of computation. Theyates that operate within and between qudits, creating en-
unit of memory for binary quantum computation is the qubit,tangled superpositions, rather than by transforming subsets
a quantum system existing in a linear superposition of twaf a nonentangled, unary Hilbert space. These elementary
basis states, labeld@) and|1). Any computation, however multivalued gates are necessarily more complex than their
large, can be performed using universal logic gates that opsinary counterparts, involving a controlled transformation of
erate on a small, fixed number of bits or qubits. In the quanall the levels of each qudit. However, a logical network of
tum case, a unitary transformation of any number of enthese gates becomes simpler at this expense, invoking a
tangled qubits can be constructed from logic gates thatradeoff between the complexity of each gate and the number
operate on only two qubits at a tinig—4], a result that has of gates needed for a computati@j. We implement a mul-
no analog in classical reversible logic where three-bit gatesilevel gate in the linear ion trap scheme by using multiple
are needed to simulate all reversible Boolean functi@ls lasers to address the different transitions in each ion simul-
We consider the extension of universal quantum logic to theaneously. In this approach, each multilevel gate takes less
multivalued domain, where the unit of memory is tipedit  time to implement than the equivalent binary gate sequence
[12], a d-dimensional quantum system with the basis statesn two-level systems, enabling larger computations within
|0),]1), ...,|d—1). This offers greater flexibility in the the decoherence time.
storage and processing of quantum information, and more Quantum computing in multilevel systems is ideally de-
importantly, provides an alternate route to the scaling up oécribed using a multivalued basis for logic. The information
guantum computation. stored in ad-level quantum system is fundamentally non-
As in the binary case, a tensor product of many suctbinary in character, since a measurement collapses the sys-
qudits is essential for the efficient storage of information,tem to one of thesd levels, specifying a single value for the
since the number of dimensions in the Hilbert-space scalegudit, rather than the lggl values characteristic of a binary
exponentially with the number of qudits in the system. Al- representation of the same Hilbert space. Moreover, ad the
lowing d to be arbitrary enables a tradeoff between the numievels in a single qudit need not contain any entanglement,
ber of qudits making up the quantum computer and the numiwo-bit conditional logic among these levels is not well de-
ber of levels in each qudit. For example, the linear ion trapfined, and cannot simulate multilevel unitary transforms in
quantum computef6] uses only two levels in each ion for practice. By contrast, the entanglement between two differ-
computing, although additional levels can be accessed, arsht d-level systems enables conditional two-qudit logic
are typically needed, for processing and reading out the staigates, which we show to be the elementary operations of
of the ion[7]. By usingd computational levels in each ion, multivalued quantum computing.
we reduce the number of ions needed for a computation in Quantum error-correction codes have recently been ex-
this scheme by a factor of lgg, since the Hilbert space of  tended to the multivalued domain, for correcting errors in a
qudits has the same dimensionality aglog,d) qubits, single qudit[9], and multiple quditd10,11]. Fault-tolerant
namely, d"=2""%9 Given the difficulty of trapping and procedures for implementing two-qudit and three-qudit ana-
coherently manipulating a large number of ions in their vi-logs of universal binary gates have also been developed
brational ground state in this scheme, a reduction in the nuni12,13. A proposal for using a correlated photon pair to
ber of ions offered by a multivalued memory is an advan-represent the ternary analog of a qubit has been investigated
tage. [14], but no general scheme for implementing multivalued
quantum logic has been proposed. In the following two sec-
tions, we derive a set of one- and two-qudit gates that are
*Electronic address: amuthuk@optics.rochester.edu sufficient for universal multivalued computing, and show
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that these can be implemented using multilevel ions in the Z4(Co,Cpy ... ,Cy_1):
linear ion trap model. (5)

ColOY+Cq|L)+ -+ - +Cyq_4/d—1) — [d—1),
Il. MULTIVALUED LOGIC GATES

W : h h . | for bi where thed complex coefficientg,, ... ,cq_1, are normal-
oai e review t iga‘;es_lt_ at arehur_uverslq olr (ljnary qualr_ltun?zed to unity, yielding 21— 1 real quantities that parametrize
ogic in a way that facilitates their multivalued generaliza- Z4. As in the binary case, EJ5) does not determin&
tion. The universal binary gates belong to a family of unitary

. . . uniguely, since it gives the transformation of only one of the
transforms described by three parame{dk This derives d states in the basis, namely, the superposition state with the
from the fact that up to an overall phase factor, any two

dimensional unitary matrix can be written k& coefficients,cg, ... ,cq_1. Since it reduces this superposi-
y tion to a single specified stafd— 1), we may regar®y as

an instance of the quantum search algoriflifs], and relate

1) it asymptotically to the Walsh-Hadamard and phase trans-
forms used in this algorithm. Generalizing E8), we define
the d-dimensional phase ga®; as a function of a single

expressed in the basis states of a qull}, and |1). The  parameter,

parameters\, v, and ¢ are usually taken to be irrational .

multiples of = and of each othdi3], since this allows even a [ld=1)—€'?ld-1)

single gate in Eq(1) to generate all single-qubit transforms Xa(): |p)— |p) for p#d—1, ©)

asymptotically by repeated application. However, we find it

more useful to consider these three parameters as arbitrawhich advances the phase |of—1) by ¢ without affecting

variables in a simulation, witlY, representing a family of any other state in the qudit. It turns out that the ga@igand

gates that can be implemented by an appropriate choice of; are sufficient to simulate all single-qudit unitary trans-

three physical controls. One of the propertiesygfis that it~ forms. We can implement these gates by controlling omly 2

can transform any known state of a qubit[th). Such a real parameters, rather than tdé—1 that correspond to

transformation, labeled,, depends on the coefficients of the generalizing Eq.(1), thus greatly simplifying the physical

state being transformed: realization of single-qudit gates. Yfy represents eithety or

X4, then the multivalued analog &f,[ Y,] becomes

COSA —el’sin\

Yo(N,v,d)=| /,_ . : ,
27, 9) e (¢~ sin\  e'¢cosh

Z,(Co,C1)=Y(cos *|cy|,ard coc J,ard ¢t ]):

)

Lol Yql= (7)

1d2*d 0 :|

Col0)+¢4q|1) = [1), 0 |VYyq

=

where|co|?+]|cq|?=1. Y, also contains the phase gate  acting in thed?-dimensional basis of two qudits. The identity

that advances the phase|df without affecting|0), 142_4 acts on the statd9,0), ...,|d—2,d—1), andY, acts
on the remainingd states|d—1,0), ...,|d—1,d—1). This
|1) — e'?|1) transforms the second qudit By, conditional on the first

Xz(¢’):Y2(0=Ov¢")3[|0>H 10). () qudit being in|d—1). We now show that such gates are

sufficient for constructing arbitrary unitary transforms on any
number of qudits.

Using these two transformation properties 9§, we can ) _ _ . .
Consider arN-dimensional unitary transfortd acting on

show that the two-qubit gates that are universal for quantum

logic take the form n=logyN qudits.. Each state in the computational_ Hilbert
space can be written as a tensor product of thegedits,
1,0
o Yol=| |, (4 k)= k) k) [Kn),
01Y, ®)

o _ _ _ _ k=0,1,...N—-1, k=0,1,...d-1 for all i,
acting in the four-dimensional basis of the two qubits. The
two-dimensional id_entity 1 act_s in the basis 0f0,0) and wherek; k- - -k, is the baset representation ok, with |k;)
0,1), and Y, acts in the basis of1,0) and [1,1). Taken  genoting the state of thieh qudit. We will use the abbrevia-
togethe_r, this transforrr_ls the seconq qublt\chondltlon_al tion |Ky Ky, . . . k), for [ky) ko) - - [ky). Let the eigenstates
on the first qubit being ifl). The family of gatesI';[Yo],is  of be| V), form=1,2, ... N, with corresponding eigen-
universal for binary quantum logic in the sense that a unitary, 5| ese¥m. Each such eigenstate can be expanded in the
transform on any number of qubits can be simulated by r€computational basis

peated application of these gates on no more than two qubits

at a time.
W) =Co|0)+ - +ey_g|N—1
We generalize Eq92)—(4) to the multivalued case. We [¥m)=Col0) On-1l )
defineZ, as a family ofd-dimensional transforms that maps 9
a known single-qudit state tal—1), =Col0,...,0+ - +cy_qld—1,... d—1),
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where the coefficients are determined By Following an  |ess apparent that,, is also contained in Eq17). Z,, andZ
argument given by Deutsdii6], we writeU as a product of  are similar in their transformation properties in that both take
N unitary transforms, eacN dimensional, that has the same a superposition to a single state. Howe&y acts within the
eigenstates and eigenvalues as that of state space of a single qudit, whifg, transforms the Hilbert
space of allh qudits. This suggests that, can be achieved

by usingI'\[Z4] to target the last qudit repeatedly, while
successively permuting these states with the rest of the
states in the computational basis. First, applying

N
U=mE:1 eV W MWW =W W, - Wy, (10)

(W) eVl W ) I'[Z4(cn_g> ---.Cn_1)] to|¥) reduces the superposition
W, W,y [¥,) for m'#m. (1) of the lastd states in Eq(9) to [N— 1), shown symbolically
as

The problem then reduces to simulatig,, for an arbitrary
m. We decomposV , into two transforms that are easier to {|ld=1,...d-10),...,/d=1,...d-1d-1)}

simulate using elementary gates,
d v —{N=d), ... [N—1)} = [N—1). (19)

W=Z! XZm=Zm X mZm, (12
The superposition of the negt— 1 states if¥,,) is reduced
whereZ,, and X, are theN-dimensional analogs df4 and to |[N—1) by permuting these with the last states but
Xq4. We require only thaZ ., transform themth eigenstate to  |[N—1),
IN-1),
{IN=2d+1), ... |[N—-d—1)}

s {IN=d), ... |N=2)}, (19

Zn(Co\C1y -+ - Cn-1): [Py = [N—1), (13

which does not determine the transform uniquely, as in the

case ofZy. We defineX, as the transform that advances the and using Eq(18) again. Continuing in this manner, succes-
phase of|[N—1) by the mth eigenphase, leaving all other sjve blocks ofd— 1 states if¥,,) are permuted with the last
computational states unchanged, d states bufN—1), and reduced toN—1) using [ Z4],

- until the entireN-dimensional staté¢¥ ) has been so re-
. IN—1) —e™mN—1) (14) duced, completing the simulation @f,,. The permutation of
[Im") = [m’) for m"#N-1. states in Eq(19) can also be done usidg[Z4] andl [ Xg4].

1 - To see this, note that a single-qudit permutation is already

We need to show thaln=2Zy, XmZm satisfies Eq.(11). contained inZy andXy . In particular, ifP4(p,q) denotes the
First note that permutation of p) and|q) for p,q=0,1, ... d—1, then

Xm(¥m)

Z  XZl ¥y =2, e YmN—1)=€Vm| ¥ ). (15
o ; Pa(P.@)=Z¥(Co, - - - Ca-1) Xa(m) Zg(Co, - - - Ca-1),
For m'#m, the stateZ.,|V.) has no projection along

IN—-1), 1 -
(N~ 120 ¥y} = 0 o Zh 2l W)= O i) =0, BT e 0
which implies thatX,, has no effect oZ |V ,,/). Hence, Permuting two states in thequdit computational basis,
ZIXZ Oy =Z0Zn W)= W), (16) litsis i) & [KeoKay « oo Ko, (21)

Combining Eqs(10)—(12), we see thaZ,, and X, are suf-
ficient to simulatel. For N=d, this implies thatZy and X4
contain all single-qudit unitary transforms. In the multiqudit ] ] ] ) ] ]
case, we show tha,, andX ., can be built from the elemen- €an be done one_qu_dlt_at a time, _startlng_wr[h the first qudit.
tary two-qudit gated’,[ Z4] andT',[ X4], and their one-qudit The lastn—1 qudits in|jy,j2, .. . jn) are first converted to
counterpartsZy and X4. We first show this for the-qudit 19— 1) by applying a single-qudit permutatid?y(j; ,d—1),

ji.ki=0,1,...d—1 foralli,

analog ofl',, to .eac_h quditi. Then, conditional on all but.the fir_st qudit
being in|d—1), an analog ofl’,[P4(j1,k1)] is applied to
I'.[Yq=apply Y4 to the nth qudit if and only permute the first qudit fronjj,) to |k;). The remaining

) i . ) qudits are then restored to their original states by the same
if the first n—Z1qudits are in|[d—1), (17  single-qudit permutation®4(j;,d—1), used earlier. This

. ) procedure,
whereYy =24 or Xy. Equation(17) has a matrix represen-
tation analogous to Eq7), with 142_4 replaced by dn_4. It n
is easy to see that,,=I',[ X4(¥ )], sinceX,, affects only Po(i- d=1D:livis . ideslisd—1 .. . d—1
the last computational stafpl—1)=|d—1, ... d—1). Itis Ez dind=D:liz, o dod =l d =L Ao,
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1 n+2 by the gateI's[P4(0,1)], which increments qudit

2 n+2 from |0) to |1) provided qudit r-1 is in|d—1). This

: procedure is carried out sequentially through all of the com-
d-1 putational states, until finally we have the auxiliary qudit

d n+r reaching the statel[d—1) [in the case where

(n—2)/(d—2) is an integelrif and only if all of the first
n—1 computational qudits are il — 1). Controlled by this

: last qudit,I',[ Y4] then acts on qudit n, completing the simu-
n-1 lation of I',[ Y4]. Although not shown in the figure, the two-

n Y qudit permutation gate$’,[ Py4(p,q)] are reapplied to the
a1 EH:J'[ . 82 auxiliary qudits at the end to disentangle them from the com-
12 ) £ m putational basis and restore them|® for reuse.
0+2 e This completes the proof that two-qudit gates of the form
: I',[Z4] andI'5[ X4], together with the one-qudit gatgg and
-1 X4, are universal for quantum computing.
0 d-2
e 'I'_j" """ lll. ION TRAP IMPLEMENTATION
FIG. 1. Construction of",[Y4] from T';[ Y], for d>2. In this section, we discuss one method of implementing
the gated™,[ Z4] andI'5[ X4] in which each qudit is repre-
Fn[Pg(z.ky)]: sented by al-level atom. We use the linear ion trap scheme
for quantum computing, proposed by Cirac and Zdl&r to
j1,d=1,...d=1)—|ky,d—1,... d-1), model the two-qudit interaction.
. The transformX, does not affect the populations of tde
H P de1): states in the qudit, but only changes the phasédefl),
=5 d(i- ): relative to the other states. Since only one state is affected in
the processXy is effectively the same as its binary counter-
ke, d=1,...d=1) > |Ky,jo, -« \in)s part X,, from a physical standpoint. We can implement this

_ _ o transform in the atom by couplinfd—1) to an auxiliary
is repeated for each of the qudits, permutinglj1.j>.  state in the atom using ar2pulse, which does not leave any
-\in) and [ky,ka, ... k) without affecting any other population in this state at the end of the pulse. In the inter-
computational state. ~_ action picture, the phase ¢fi—1) after the pulse will be
Thus, anyn-qudit unitary operato’J can be written in  gjtferent if the detuning is made time dependent. One way to
terms of the logic gateB[Y4] for Yq=Z4 or X4. We now  realize a time-dependent detuning is by using a Stark field to
show thatI';[Y4] can be built from the two-qudit gates shift the energies of the two levels over time. The other
I'5[Yq4], of Eq. (7). One way of doing this is illustrated in computational states in the atom are not affected in the pro-
Fig. 1 ford>2. The horizontal lines denote the qudits, with cess if they are far off-resonance and the fields are suffi-
solid lines denoting theén computational qudits and dashed ciently weak.
lines denoting additional auxiliary qudits that have been ini-  Unlike X4, the transfornizy mixes all of the states in the
tialized to [0). This simulation uses =[(n—2)/(d—2)]  qudit, acting on al-state superposition with the coefficients
auxiliary qudits [x] means the smallest integer greater thanc,,c,, ... c4_;, as shown in Eq(5). The implementation
x), where fi—2)/(d—2) has been assumed for simplicity to of such a transform can be posed as a problem in quantum
be an integer in the figure. The vertical lines represent theptimal control[17]. If there are 2—1 physical controls
two-qudit conditional gates, originating from the control available for manipulating the qudit, an optimization on
qudit (which is required to be ifd— 1) for the gate to apply  these controls can be done with the fidelity governed by Eq.
and terminating in a box on the target qudit. The boxes with5).
two rows p and g representl’;[ P4(p,q)], the conditional A time-domain approach to this problem in a multilevel
permutation of|p) and |qg). The box containindYy repre-  atom was studied by Noel and Strojk8], where the control
sentsI’,[ Y4], for Yq=Z4 or X4. We want the combination parameters were the amplitudes and time delays of a se-
of all these gates to implemeht[ Y], applyingYq to qudit  quence ofd laser pulses, and the goal was to excitdstate
n if and only if the firstn—1 qudits are ind—1). wave packet in the atom, starting from the ground state.
Reading from left to right in the figure, the first permuta- However, when the ground-state population becomes signifi-
tion T',[ P4(0,1)] increments auxiliary qudit #1 from |0) cantly depleted, noniterative methods may not be sufficient
to |1) if and only if qudit 1 is in|d—1). The second permu- for creating arbitrary wave packets in the at¢a®]. We
tation,I',[ P4(1,2)], increments qudit+ 1 from|1) to |2) if consider an alternate frequency-domain approach to imple-
and only if qudit 2 is in|d— 1), and so on. Continuing this mentingZ,, where the control parameters are the amplitudes
way, we see that qudit-hl reachesd—1) if and only if all ~ and phases of different laser fields that are tuned near reso-
of the firstd—1 computational qudits are ifd—1). This  nance tod—1 atomic transitions, and that are adiabatically
information is then transferred to the second auxiliary quditturned on and off over a controlled time period. To realize
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— — -— d-2 ) .
1* 2® \ q® X :20 € ,+1[Ejj1€8 Mt +c.c]
\

d-1 lasers N i Ny AL
X cos@)—%(ana)smuo)+0(nij+1> ,

FIG. 2. Linear ion trap, withg ions. Trap axis is along.
(24)

the two-qudit gated’,, we consider a multivalued extension ) )
of the linear ion trap scheme. whereE, ;.; anda; ;. are the(complex field amplitudes

Considerq identicald-level ions confined in a linear har- and field frequencies corresponding to the atomic transitions,
monic trap with frequency,, each of which can interact @nd €j+1 andkj;., are the associated polarizations and
with d—1 lasers at a given timgee Fig. 2. If each laser is wave vector components. The field dependence @md z
detuned from the associated atomic resonancerhyonly  has been suppressed due to the strong trap confinement along
the center-of-masgCM) normal mode of the trap is excited these directions. Whep=/2 or 0, the standing waves
in the absence of power broadening. By laser cooling, thenake a node or antinode at the ion’s equilibrium position,
ions are initially assumed to be in the vibrational ground(i):o_ We have used
state of this mode, where each ion vibrates about its equilib-
rium position with an amplitude that is small compared to an X=(hl2qmv,) 3@’ +a) (25)
optical wavelength. The trap is then characterized by a
Lamb-Dicke parameten=k,(%/2mv,)'? that is small com-  for the displacement of the ion from equilibrium, wherm
pared to unity, wherenis the mass of each ion arkg is the s the effective mass of the CM mode. Each cosine in Eq.
laser wave vector along the trap axis.af anda are the (23 has been expanded in powers of the corresponding
creation and annihilation operators for the CM mode, and-amb-Dicke parameten; ; . 1=K; j+1(%/2mv,)*2 and only
aij=1i)(j| are the internal projection operators for a given!€rms up to first order iy, ;., are kept in the limit; ;..
d-level ion in the trap, the Hamiltonian for this ion in the <1.for eachi. For the level scheme under consideration, the
absence of interaction fields is internal dipole moment of the ion is effectively

d-2
01 0= 2, [0)j220] 511+ 010} 0], (26

éTé+§
Where(}j“l and dj*,i+1 are the transition operator and ma-
trix element corresponding to the downward transition be-

The computational level scheme considered is shown in Figween levelgj) and|j+1). The ion-field interaction is de-

3, where the transition frequencie§'j+l=|wj+l—wj| are scribed in the dipole approximation, using the Hamiltonian

distinct compared to the linewidths of the levels. For the R o

purpose of implementingy, it is sufficient to have only the Hgip=—d-E(X,1), (27)

neighboring levels coupled. This can be reinforced by using

appropriate selection rules to suppress the other transitiongmere the field depends on the center-of-mass p05§¢ioﬁ

Thed—1 neighboring transitions are driven by near-resonanfhe ion. This interaction couples the electron&‘,{rT) and

It?assr;)l(c—i:lds that have a standing-wave configuration along th\(/aibrational @,a") degrees of freedom of the ion.

We study the time evolution in the interaction picture,

where the operatora(t) and &jﬁl(t) evolve according to

. S A Ho, asae " and g ;,,e '“ii+1'. When =0, the field

— —laj ~ ~

E(X't)_go € j+1lEjj+18 Uirr+c.c]eodk)jaX+ @) expansion in Eq(24) does not contaira’ and a to first

(23) approximation, and 4, only affects the internal states of the
ion. Tuning each laser to resonance in this casg;;
=] j+1, We find thatH 4, becomes time-independent in the
interaction picture under the rotating-wave approximation,

)
®y241 d-2
@ mx /(om codm\ Hdip,V:_hjzo [Qj,j+10'jT,j+1+ij+10'j,j+1], (28)
N/ |d-2)
—t 12)

I1
L
0y where Q]’] +1= (dJ,J +1° € +1Ej,j +1)/ﬁ is the . Rabi fre-
quency for the transition between levejs and|j+1). Al-
FIG. 3. Level scheme for é-level ion, withd— 1 neighboring  ternately, whenp= /2, the field is linear ira" anda to first
transitions. approximation, andH gy, affects both the internal and exter-

d-2

|d-1)
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nal states of the ion. In this case, detuning each laser abovg _, -2
or below resonance by the trap frequenay,; 1= ;1

+ vy, we find [0, 4%+]Q0°C 105,05 Q5.0,4C—1)
d—2 X iQO’:LQS QZC |Ql’2(28
A~ Njj+1 ~ - ~ - * _ TO* 2 2
Hdip,U+:ﬁjzo j\/ja (94107 418"+ Q1107 112l Qos21AC-1) 1008 [0%+|02,4°C
(29 39
where C=cosQt, S=sinQt, and 02=|Qq|%+|Q; 42
) d-2 _— R i i A Given a statecy|0)+c4|1)+c,|2), we can choosdl,
Hdipyuizﬁ;o \/a [Qjj+10] .18+ QF 1018 Q,, andt such that
(30) Qo1 C5C1 S Oy, iciC3

= —, == (36
. . . : Q gy 21-C° Q  Slcy|
The unitary time evolution operator corresponding to Eq.

cosQt=———
1-|cy

1,

V=exd —i(t/h)Hgpv], (31)

which makesV implement the transform of Ed5) for d
mixes thed internal states of the ion without affecting the =3, up to an overall phaséargc,, simulating the ternary
trap state, and turns out to be sufficient for generating thgatez,. In thed-valued case, we requir@to implementZ,
single-qudit gateZ, up to an overall phase factor. The time in Eq. (5) for an arbitraryd,
evolution operators corresponding to E¢29) and (30), A
V(Q01,Q12, -+ Qg-24-131):

. = —j iy . 3
U =exd =i (t/A)Hap,u. ] (32) Col0Y+Cq|1)+ - +Cy_q|d—1)—>€?|d—1), 37

conditionally couple the internal and external coordinates ofvhere ¢ has been introduced to allow for an overall phase

the ion. Whenever the internal energy of the ion is raisecffset. The controls itV are thed—1 complex Rabi frequen-
("), 0. raises the trap energy{), while U_ lowers the  cies, and the interaction time. The adjoint of the transform in

trap energy ii), in tandem. This conditionality arises from Eq. (37) can be written as

the rotating-wave approximation, which retains only the \7T|d—1>=e*‘¢’[co|0>+cl|1)+~--+cd_1|d—1)].

energy-conserving terms in the Hamiltonian. Uslig and (39)
V in stages, we will see that the two-qudit gatEg], Y], can o ) ) )
be implemented between two ions in the trap. Projecting this equation ont¢p| and taking the complex

First we show how to constru@, from V. In the binary conjugate of both sides, we get

cased=2, we set all the Rabi frequencies excéhf, equal

—1|VIpy=c*el ¢ = —
to zero. The level$0) and|1) then undergo two-level Rabi (d-1lVIp)=cpe®, p=0.1,...d-1, (39)

oscillations, which relatesd of the matrix elements of/ to the coeffi-
_ cientscg, . .. ,C4_1. Thesed equations have to be inverted
S 1 ac 95,8 to find the controls(g 4, ... ,Q4_24-1, andt. Analytical
V=0 i0,,S Qc | (33 solutions are given for the binary and ternary cases in Egs.

(34) and (36). This allowsV to implementZ, up to a phase

where C=cosOt,S=sinQt, and =0, . Given a state 9aEXa(¥). _
Co|0)+¢4]1), we can choos€), ; andt such that Two-qudit gates of the fornb’,[ Y4] can be implemented
’ using bothU .. andV interactions, and an auxiliary manifold

of d additional levels in each ion. To see this, write the
original state of the two-ion system in the form

|W) | P)+]0), (40)

*
Qo1 CoCy

Q —m, COSQ'[=|C1|, (34

which makesV implement the transform of E42), up to an  where |¥). is the original control ion stated); is the
overall phaseij argc,, simulating the binary gat&,. In the  original target ion state, an{D) is the trap ground state.
ternary case, we set all the Rabi frequencies exfptand  Applying a = pulse of theU .. interaction to the control ion,
Q, , equal to zero, leaving a three-lev&l system(see Fig.  we first transform all of the computational states in this ion
3). In this case, the level®), |1) and|2) evolve according exceptd— 1) to their auxiliary counterparts, conditional on
to exciting the trap td1). We leave|d—1)¢|0) unaffected by
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turning off the corresponding laser ... We then restore separate quantum systems needed to span the quantum
the internal state of the control ion to its original configura-memory. For a Hilbert space &f dimensions, corresponding
tion by using ar pulse of theV interaction, which does not to n,=log,N qubits, the number of qudits needed to store
affect the trap. The entangled state of the system is thethis information is
given by log, N n,
n=-——=—.
[V 4-1)c| P)1]0) + W othed o Pl 1), (41) logd  log,d

where [ W) e=|Vy_ )+ | Ponedc. We see that all of the Note that this retains the same scalingNrand d with the
control stacies e%ledckj— 1§$ea?é entangled with the trap inclusion of the auxiliary qudits used in the gate construction
state|1). Applying a = pulse of theU .. interaction to the of Fig. 1. Using a binary equivalent of this construction, we

target ion now, we transform all of its computational states tdind ghazt the ovgrall time complexity o_f a binary S|mula'F|on 'S
their auxiliary counterparts, conditional on de-exciting the©C(N2N"). That is, this many two-qubit gates are required to

(45)

trap, simulate anN-dimensional unitary operatdy. By analogy,
the number of two-qudit gates used in the construction of
(W d-1)c| P)710) +| W othep o] Paue 710), (42)  Sec. Il scales a®(n’N?), or
where|® )7 is the original target ion state written in the O(N2N?) =0 (log, N)?N? o nsN? 46)
auxiliary basis. The first term in expressiofl) is not af- B (log, d)? a (log,d)?]’

fected by this operation since the trap ground state cannot be

de-excited. Next, applyindy in the computational basis of Where we have used E@5). Equation(46) represents an

the target ion, we simulatéy=Z4 or X4, transforming®);  UPper bound on the time complexity of a multivalued simu-
but not affecting® )+, lation, and shows that this has a (Ja? advantage over the

binary case. This comes at the cost of larger elementary gates
. I',[ Y41, which required states in each ion to be controlled,
P41l Yl P)1HO0) +|Pomedc Pauy/0). (43 not just two. This suggests that we ought to multiply the
multivalued time complexity in Eq46) by d for a physically

The target ion statgb )1 is then restored to the computa- relevant comparison with the binary case. I-_|owever, the
tional basis by reversing the operations that took us fronfréquency-domain approach taken to constructing\trend

expressior(40) to expressior(42), giving U. interactions in Eqs(28)—(30) assumes that the—1
lasers operate simultaneously on each ion, which allows a
|\Pd71>c{?d|q)>T}|o>+ W o) | @)1/ 0). (44 two-qudit gate to be implemented without slowing down the

computation in real time. The cost of the multivalued
This completes the implementation B§[ Y4] on expression SPeedup in this case is the need for multiple lasers to address
(40), with the target ion transformed by, conditional on  the corresponding transitions in tddevel ion. _
the control ion being iNd—1)c. This two-qudit logic is _ Finally, we must make note of the nonlogarithmic scaling
made possible by the .. interaction, which allows the infor- in N n qu' (46)’. Wh||ch show; the m(e;ﬁmengy 0‘; th's. con-
mation about whether the control ion is Wy 1) or struc?on OrThS'”.‘“ at|n|g ar |trar);]N- b|.menS|0na uEltary |
|V oinep ¢ tO be carried to the target ion via entanglement Withtrans orms. This IS analogous to the binary case, where only

) . . certain unitary transforms admit an efficient simulation in
Lheedt::?)?nStl?:ii@ igrngs‘iglg'?nS&OeW”Sngh;tig?}“{rearsﬂcmgm\éal' terms of elementary gates, making them useful for efficient
puting P " guantum algorithms.
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