
PHYSICAL REVIEW A, VOLUME 62, 052309
Multivalued logic gates for quantum computation
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We develop a multivalued logic for quantum computing for use in multi-level quantum systems, and discuss
the practical advantages of this approach for scaling up a quantum computer. Generalizing the methods of
binary quantum logic, we establish that arbitrary unitary operations on any number ofd-level systems (d
.2) can be decomposed into logic gates that operate on only two systems at a time. We show that such
multivalued logic gates are experimentally feasible in the context of the linear ion trap scheme for quantum
computing. By usingd levels in each ion in this scheme, we reduce the number of ions needed for a compu-
tation by a factor of log2 d.

PACS number~s!: 03.67.Lx, 03.65.Bz, 89.80.1h
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I. INTRODUCTION

Binary logic gates and Boolean algebra play an import
role in classical and quantum theories of computation. T
unit of memory for binary quantum computation is the qub
a quantum system existing in a linear superposition of t
basis states, labeledu0& and u1&. Any computation, howeve
large, can be performed using universal logic gates that
erate on a small, fixed number of bits or qubits. In the qu
tum case, a unitary transformation of any number of
tangled qubits can be constructed from logic gates
operate on only two qubits at a time@1–4#, a result that has
no analog in classical reversible logic where three-bit ga
are needed to simulate all reversible Boolean functions@5#.
We consider the extension of universal quantum logic to
multivalued domain, where the unit of memory is thequdit
@12#, a d-dimensional quantum system with the basis sta
u0&,u1&, . . . ,ud21&. This offers greater flexibility in the
storage and processing of quantum information, and m
importantly, provides an alternate route to the scaling up
quantum computation.

As in the binary case, a tensor product of many su
qudits is essential for the efficient storage of informatio
since the number of dimensions in the Hilbert-space sc
exponentially with the number of qudits in the system. A
lowing d to be arbitrary enables a tradeoff between the nu
ber of qudits making up the quantum computer and the n
ber of levels in each qudit. For example, the linear ion t
quantum computer@6# uses only two levels in each ion fo
computing, although additional levels can be accessed,
are typically needed, for processing and reading out the s
of the ion @7#. By usingd computational levels in each ion
we reduce the number of ions needed for a computatio
this scheme by a factor of log2 d, since the Hilbert space ofn
qudits has the same dimensionality asn(log2 d) qubits,
namely, dn52n log2 d. Given the difficulty of trapping and
coherently manipulating a large number of ions in their
brational ground state in this scheme, a reduction in the n
ber of ions offered by a multivalued memory is an adva
tage.

*Electronic address: amuthuk@optics.rochester.edu
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A tensor product of qudits is also essential for the efficie
processing of quantum information. As in the binary ca
we build unitary transforms on the whole system from log
gates that operate within and between qudits, creating
tangled superpositions, rather than by transforming sub
of a nonentangled, unary Hilbert space. These elemen
multivalued gates are necessarily more complex than t
binary counterparts, involving a controlled transformation
all the levels of each qudit. However, a logical network
these gates becomes simpler at this expense, invokin
tradeoff between the complexity of each gate and the num
of gates needed for a computation@8#. We implement a mul-
tilevel gate in the linear ion trap scheme by using multip
lasers to address the different transitions in each ion sim
taneously. In this approach, each multilevel gate takes
time to implement than the equivalent binary gate seque
on two-level systems, enabling larger computations wit
the decoherence time.

Quantum computing in multilevel systems is ideally d
scribed using a multivalued basis for logic. The informati
stored in ad-level quantum system is fundamentally no
binary in character, since a measurement collapses the
tem to one of thesed levels, specifying a single value for th
qudit, rather than the log2 d values characteristic of a binar
representation of the same Hilbert space. Moreover, as td
levels in a single qudit need not contain any entanglem
two-bit conditional logic among these levels is not well d
fined, and cannot simulate multilevel unitary transforms
practice. By contrast, the entanglement between two dif
ent d-level systems enables conditional two-qudit log
gates, which we show to be the elementary operations
multivalued quantum computing.

Quantum error-correction codes have recently been
tended to the multivalued domain, for correcting errors in
single qudit@9#, and multiple qudits@10,11#. Fault-tolerant
procedures for implementing two-qudit and three-qudit a
logs of universal binary gates have also been develo
@12,13#. A proposal for using a correlated photon pair
represent the ternary analog of a qubit has been investig
@14#, but no general scheme for implementing multivalu
quantum logic has been proposed. In the following two s
tions, we derive a set of one- and two-qudit gates that
sufficient for universal multivalued computing, and sho
©2000 The American Physical Society09-1
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that these can be implemented using multilevel ions in
linear ion trap model.

II. MULTIVALUED LOGIC GATES

We review the gates that are universal for binary quant
logic in a way that facilitates their multivalued generaliz
tion. The universal binary gates belong to a family of unita
transforms described by three parameters@3#. This derives
from the fact that up to an overall phase factor, any tw
dimensional unitary matrix can be written as@4#

Y2~l,n,f!5F cosl 2einsinl

ei (f2n)sinl eifcosl
G , ~1!

expressed in the basis states of a qubit,u0& and u1&. The
parametersl, n, and f are usually taken to be irrationa
multiples ofp and of each other@3#, since this allows even a
single gate in Eq.~1! to generate all single-qubit transform
asymptotically by repeated application. However, we find
more useful to consider these three parameters as arbi
variables in a simulation, withY2 representing a family of
gates that can be implemented by an appropriate choic
three physical controls. One of the properties ofY2 is that it
can transform any known state of a qubit tou1&. Such a
transformation, labeledZ2, depends on the coefficients of th
state being transformed:

Z2~c0 ,c1!5Y2~cos21uc1u,arg@c0c1* #,arg@c1* # !:
~2!

c0u0&1c1u1& ° u1&,

where uc0u21uc1u251. Y2 also contains the phase gateX2
that advances the phase ofu1& without affectingu0&,

X2~f!5Y2~0,0,f!: H u1& ° eifu1&
u0& ° u0&.

~3!

Using these two transformation properties ofY2, we can
show that the two-qubit gates that are universal for quan
logic take the form

G2@Y2#5F12 0

0 Y2
G , ~4!

acting in the four-dimensional basis of the two qubits. T
two-dimensional identity 12 acts in the basis ofu0,0& and
u0,1&, and Y2 acts in the basis ofu1,0& and u1,1&. Taken
together, this transforms the second qubit byY2 conditional
on the first qubit being inu1&. The family of gates,G2@Y2#, is
universal for binary quantum logic in the sense that a unit
transform on any number of qubits can be simulated by
peated application of these gates on no more than two qu
at a time.

We generalize Eqs.~2!–~4! to the multivalued case. We
defineZd as a family ofd-dimensional transforms that map
a known single-qudit state toud21&,
05230
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Zd~c0 ,c1 , . . . ,cd21!:
~5!

c0u0&1c1u1&1•••1cd21ud21& ° ud21&,

where thed complex coefficientsc0 , . . . ,cd21, are normal-
ized to unity, yielding 2d21 real quantities that parametriz
Zd . As in the binary case, Eq.~5! does not determineZd
uniquely, since it gives the transformation of only one of t
d states in the basis, namely, the superposition state with
coefficients,c0 , . . . ,cd21. Since it reduces this superpos
tion to a single specified stateud21&, we may regardZd as
an instance of the quantum search algorithm@15#, and relate
it asymptotically to the Walsh-Hadamard and phase tra
forms used in this algorithm. Generalizing Eq.~3!, we define
the d-dimensional phase gateXd as a function of a single
parameter,

Xd~f!: H ud21& ° eifud21&
up& ° up& for pÞd21, ~6!

which advances the phase ofud21& by f without affecting
any other state in the qudit. It turns out that the gatesZd and
Xd are sufficient to simulate all single-qudit unitary tran
forms. We can implement these gates by controlling onlyd
real parameters, rather than thed221 that correspond to
generalizing Eq.~1!, thus greatly simplifying the physica
realization of single-qudit gates. IfYd represents eitherZd or
Xd , then the multivalued analog ofG2@Y2# becomes

G2@Yd#5F1d22d 0

0 Yd
G , ~7!

acting in thed2-dimensional basis of two qudits. The identi
1d22d acts on the statesu0,0&, . . . ,ud22,d21&, andYd acts
on the remainingd statesud21,0&, . . . ,ud21,d21&. This
transforms the second qudit byYd conditional on the first
qudit being in ud21&. We now show that such gates a
sufficient for constructing arbitrary unitary transforms on a
number of qudits.

Consider anN-dimensional unitary transformU acting on
n5 logd N qudits. Each state in the computational Hilbe
space can be written as a tensor product of thesen qudits,

uk&5uk1&uk2&•••ukn&,
~8!

k50,1, . . . ,N21, ki50,1, . . . ,d21 for all i ,

wherek1k2•••kn is the base-d representation ofk, with uki&
denoting the state of thei th qudit. We will use the abbrevia
tion uk1 ,k2 , . . . ,kn&, for uk1&uk2&•••ukn&. Let the eigenstates
of U be uCm&, for m51,2, . . . ,N, with corresponding eigen
valueseiCm. Each such eigenstate can be expanded in
computational basis,

uCm&5c0u0&1•••1cN21uN21&

~9!
5c0u0, . . . ,0&1•••1cN21ud21, . . . ,d21&,
9-2
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where the coefficients are determined byU. Following an
argument given by Deutsch@16#, we writeU as a product of
N unitary transforms, eachN dimensional, that has the sam
eigenstates and eigenvalues as that ofU,

U5 (
m51

N

eiCmuCm&^Cmu5W1W2•••WN , ~10!

Wm: H uCm& ° eiCmuCm&
uCm8& ° uCm8& for m8Þm. ~11!

The problem then reduces to simulatingWm for an arbitrary
m. We decomposeWm into two transforms that are easier
simulate using elementary gates,

Wm5Zm
† XmZm5Zm

21XmZm, ~12!

whereZm andXm are theN-dimensional analogs ofZd and
Xd . We require only thatZm transform themth eigenstate to
uN21&,

Zm~c0 ,c1 , . . . ,cN21!: uCm& ° uN21&, ~13!

which does not determine the transform uniquely, as in
case ofZd . We defineXm as the transform that advances t
phase ofuN21& by the mth eigenphase, leaving all othe
computational states unchanged,

Xm~Cm!: H uN21& ° eiCmuN21&
um8& ° um8& for m8ÞN21. ~14!

We need to show thatWm5Zm
21XmZm satisfies Eq.~11!.

First note that

Zm
21XmZmuCm&5Zm

21eiCmuN21&5eiCmuCm&. ~15!

For m8Þm, the stateZmuCm8& has no projection along
uN21&,

^N21uZmuCm8&5^CmuZm
† ZmuCm8&5^CmuCm8&50,

which implies thatXm has no effect onZmuCm8&. Hence,

Zm
† XmZmuCm8&5Zm

† ZmuCm8&5uCm8&. ~16!

Combining Eqs.~10!–~12!, we see thatZm andXm are suf-
ficient to simulateU. For N5d, this implies thatZd andXd
contain all single-qudit unitary transforms. In the multiqud
case, we show thatZm andXm can be built from the elemen
tary two-qudit gatesG2@Zd# andG2@Xd#, and their one-qudit
counterparts,Zd andXd . We first show this for then-qudit
analog ofG2,

Gn@Yd#[apply Yd to the nth qudit if and only

if the first n21qudits are inud21&, ~17!

whereYd5Zd or Xd . Equation~17! has a matrix represen
tation analogous to Eq.~7!, with 1d22d replaced by 1dn2d . It
is easy to see thatXm5Gn@Xd(Cm)#, sinceXm affects only
the last computational stateuN21&5ud21, . . . ,d21&. It is
05230
e

less apparent thatZm is also contained in Eq.~17!. Zm andZd
are similar in their transformation properties in that both ta
a superposition to a single state. However,Zd acts within the
state space of a single qudit, whileZm transforms the Hilbert
space of alln qudits. This suggests thatZm can be achieved
by using Gn@Zd# to target the last qudit repeatedly, whi
successively permuting these states with the rest of
states in the computational basis. First, applyi
Gn@Zd(cN2d , . . . ,cN21)# to uCm& reduces the superpositio
of the lastd states in Eq.~9! to uN21&, shown symbolically
as

$ud21, . . . ,d21,0&, . . . ,ud21, . . . ,d21,d21&%

5$uN2d&, . . . ,uN21&% ⇒ uN21&. ~18!

The superposition of the nextd21 states inuCm& is reduced
to uN21& by permuting these with the lastd states but
uN21&,

$uN22d11&, . . . ,uN2d21&%

⇔ $uN2d&, . . . ,uN22&%, ~19!

and using Eq.~18! again. Continuing in this manner, succe
sive blocks ofd21 states inuCm& are permuted with the las
d states butuN21&, and reduced touN21& using Gn@Zd#,
until the entireN-dimensional stateuCm& has been so re
duced, completing the simulation ofZm. The permutation of
states in Eq.~19! can also be done usingGn@Zd# andGn@Xd#.
To see this, note that a single-qudit permutation is alre
contained inZd andXd . In particular, ifPd(p,q) denotes the
permutation ofup& and uq& for p,q50,1, . . . ,d21, then

Pd~p,q!5Zd
†~c0 , . . . ,cd21! Xd~p! Zd~c0 , . . . ,cd21!,

cp52cq5
1

A2
; crÞp,q50. ~20!

Permuting two states in then-qudit computational basis,

u j 1 , j 2 , . . . ,j n& ⇔ uk1 ,k2 , . . . ,kn&, ~21!

j i ,ki50,1, . . . ,d21 for all i ,

can be done one qudit at a time, starting with the first qu
The lastn21 qudits inu j 1 , j 2 , . . . ,j n& are first converted to
ud21& by applying a single-qudit permutationPd( j i ,d21),
to each quditi. Then, conditional on all but the first qud
being in ud21&, an analog ofGn@Pd( j 1 ,k1)# is applied to
permute the first qudit fromu j 1& to uk1&. The remaining
qudits are then restored to their original states by the sa
single-qudit permutationsPd( j i ,d21), used earlier. This
procedure,

)
i 52

n

Pd~ j i ,d21!:u j 1 , j 2 , . . . ,j n& ° u j 1 ,d21, . . . ,d21&,
9-3
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Gn@Pd~ j 1 ,k1!#:

u j 1 ,d21, . . . ,d21& ° uk1 ,d21, . . . ,d21&,

)
i 52

n

Pd~ j i ,d21!:

uk1 ,d21, . . . ,d21& ° uk1 , j 2 , . . . ,j n&,

is repeated for each of then qudits, permutingu j 1 , j 2 ,
. . . ,j n& and uk1 ,k2 , . . . ,kn& without affecting any other
computational state.

Thus, anyn-qudit unitary operatorU can be written in
terms of the logic gatesGn@Yd# for Yd5Zd or Xd . We now
show that Gn@Yd# can be built from the two-qudit gate
G2@Yd#, of Eq. ~7!. One way of doing this is illustrated in
Fig. 1 for d.2. The horizontal lines denote the qudits, wi
solid lines denoting then computational qudits and dashe
lines denoting additional auxiliary qudits that have been
tialized to u0&. This simulation usesr 5 d(n22)/(d22)e
auxiliary qudits (dxe means the smallest integer greater th
x), where (n22)/(d22) has been assumed for simplicity
be an integer in the figure. The vertical lines represent
two-qudit conditional gates, originating from the contr
qudit ~which is required to be inud21& for the gate to apply!
and terminating in a box on the target qudit. The boxes w
two rows p and q representG2@Pd(p,q)#, the conditional
permutation ofup& and uq&. The box containingYd repre-
sentsG2@Yd#, for Yd5Zd or Xd . We want the combination
of all these gates to implementGn@Yd#, applyingYd to qudit
n if and only if the firstn21 qudits are inud21&.

Reading from left to right in the figure, the first permut
tion G2@Pd(0,1)# increments auxiliary qudit n11 from u0&
to u1& if and only if qudit 1 is inud21&. The second permu
tation,G2@Pd(1,2)#, increments quditn11 from u1& to u2& if
and only if qudit 2 is inud21&, and so on. Continuing this
way, we see that qudit n11 reachesud21& if and only if all
of the first d21 computational qudits are inud21&. This
information is then transferred to the second auxiliary qu

FIG. 1. Construction ofGn@Yd# from G2@Yd#, for d.2.
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n12 by the gateG2@Pd(0,1)#, which increments qudit
n12 from u0& to u1& provided qudit n11 is in ud21&. This
procedure is carried out sequentially through all of the co
putational states, until finally we have the auxiliary qud
n1r reaching the stateud21& @in the case where
(n22)/(d22) is an integer# if and only if all of the first
n21 computational qudits are inud21&. Controlled by this
last qudit,G2@Yd# then acts on qudit n, completing the sim
lation of Gn@Yd#. Although not shown in the figure, the two
qudit permutation gatesG2@Pd(p,q)# are reapplied to the
auxiliary qudits at the end to disentangle them from the co
putational basis and restore them tou0& for reuse.

This completes the proof that two-qudit gates of the fo
G2@Zd# andG2@Xd#, together with the one-qudit gatesZd and
Xd , are universal for quantum computing.

III. ION TRAP IMPLEMENTATION

In this section, we discuss one method of implement
the gatesG2@Zd# and G2@Xd# in which each qudit is repre
sented by ad-level atom. We use the linear ion trap schem
for quantum computing, proposed by Cirac and Zoller@6#, to
model the two-qudit interaction.

The transformXd does not affect the populations of thed
states in the qudit, but only changes the phase ofud21&,
relative to the other states. Since only one state is affecte
the process,Xd is effectively the same as its binary counte
part X2, from a physical standpoint. We can implement th
transform in the atom by couplingud21& to an auxiliary
state in the atom using a 2p pulse, which does not leave an
population in this state at the end of the pulse. In the int
action picture, the phase ofud21& after the pulse will be
different if the detuning is made time dependent. One way
realize a time-dependent detuning is by using a Stark fiel
shift the energies of the two levels over time. The oth
computational states in the atom are not affected in the p
cess if they are far off-resonance and the fields are su
ciently weak.

Unlike Xd , the transformZd mixes all of the states in the
qudit, acting on ad-state superposition with the coefficien
c0 ,c1 , . . . ,cd21, as shown in Eq.~5!. The implementation
of such a transform can be posed as a problem in quan
optimal control @17#. If there are 2d21 physical controls
available for manipulating the qudit, an optimization o
these controls can be done with the fidelity governed by
~5!.

A time-domain approach to this problem in a multilev
atom was studied by Noel and Stroud@18#, where the control
parameters were the amplitudes and time delays of a
quence ofd laser pulses, and the goal was to excite ad-state
wave packet in the atom, starting from the ground sta
However, when the ground-state population becomes sig
cantly depleted, noniterative methods may not be suffici
for creating arbitrary wave packets in the atom@19#. We
consider an alternate frequency-domain approach to im
mentingZd , where the control parameters are the amplitud
and phases of different laser fields that are tuned near r
nance tod21 atomic transitions, and that are adiabatica
turned on and off over a controlled time period. To reali
9-4
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the two-qudit gatesG2, we consider a multivalued extensio
of the linear ion trap scheme.

Considerq identicald-level ions confined in a linear har
monic trap with frequencynx , each of which can interac
with d21 lasers at a given time~see Fig. 2!. If each laser is
detuned from the associated atomic resonance bynx , only
the center-of-mass~CM! normal mode of the trap is excite
in the absence of power broadening. By laser cooling,
ions are initially assumed to be in the vibrational grou
state of this mode, where each ion vibrates about its equ
rium position with an amplitude that is small compared to
optical wavelength. The trap is then characterized by
Lamb-Dicke parameterh5kx(\/2mnx)

1/2 that is small com-
pared to unity, wherem is the mass of each ion andkx is the
laser wave vector along the trap axis. Ifâ† and â are the
creation and annihilation operators for the CM mode, a
ŝ j j 5u j &^ j u are the internal projection operators for a giv
d-level ion in the trap, the Hamiltonian for this ion in th
absence of interaction fields is

Ĥ05\nxS â†â1
1

2D1 (
j 50

d21

\v j ŝ j j . ~22!

The computational level scheme considered is shown in
3, where the transition frequenciesv j , j 115uv j 112v j u are
distinct compared to the linewidths of the levels. For t
purpose of implementingZd , it is sufficient to have only the
neighboring levels coupled. This can be reinforced by us
appropriate selection rules to suppress the other transiti
Thed21 neighboring transitions are driven by near-reson
laser fields that have a standing-wave configuration along
trap axis,

E~ x̂,t !5 (
j 50

d22

ej , j 11@Ej , j 11e2 ia j , j 11t1c.c.#cos~kj , j 11x̂1w!

~23!

FIG. 2. Linear ion trap, withq ions. Trap axis is alongx.

FIG. 3. Level scheme for ad-level ion, with d21 neighboring
transitions.
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j 50

d22

ej , j 11@Ej , j 11e2 ia j , j 11t1c.c.#

3Fcos~w!2
h j , j 11

Aq
~ â†1â!sin~w!1O~h j , j 11

2 !G ,

~24!

whereEj , j 11 anda j , j 11 are the~complex! field amplitudes
and field frequencies corresponding to the atomic transitio
and ej , j 11 and kj , j 11 are the associated polarizations a
wave vector components. The field dependence onŷ and ẑ
has been suppressed due to the strong trap confinement
these directions. Whenw5p/2 or 0, the standing wave
make a node or antinode at the ion’s equilibrium positio

^ x̂&50. We have used

x̂5~\/2qmnx!
1/2~ â†1â! ~25!

for the displacement of the ion from equilibrium, whereqm
is the effective mass of the CM mode. Each cosine in
~23! has been expanded in powers of the correspond
Lamb-Dicke parameterh j , j 115kj , j 11(\/2mnx)

1/2, and only
terms up to first order inh j , j 11 are kept in the limith j , j 11
!1, for eachj. For the level scheme under consideration,
internal dipole moment of the ion is effectively

d̂5 (
j 50

d22

@dj , j 11ŝ j , j 11
† 1dj , j 11* ŝ j , j 11#, ~26!

whereŝ j , j 11 anddj , j 11* are the transition operator and m
trix element corresponding to the downward transition b
tween levelsu j & and u j 11&. The ion-field interaction is de-
scribed in the dipole approximation, using the Hamiltonia

Ĥdip52d̂•E~ x̂,t !, ~27!

where the field depends on the center-of-mass positionx̂ of
the ion. This interaction couples the electronic (ŝ,ŝ†) and
vibrational (â,â†) degrees of freedom of the ion.

We study the time evolution in the interaction pictur
where the operatorsâ(t) and ŝ j , j 11(t) evolve according to
H0, as âe2 inxt and ŝ j , j 11e2 iv j , j 11t. When w50, the field
expansion in Eq.~24! does not containâ† and â to first
approximation, andHdip only affects the internal states of th
ion. Tuning each laser to resonance in this case,a j , j 11
5v j , j 11, we find thatHdip becomes time-independent in th
interaction picture under the rotating-wave approximation

Ĥdip,V52\ (
j 50

d22

@V j , j 11ŝ j , j 11
† 1V j , j 11* ŝ j , j 11#, ~28!

where V j , j 115(dj , j 11•ej , j 11Ej , j 11)/\ is the Rabi fre-
quency for the transition between levelsu j & and u j 11&. Al-
ternately, whenw5p/2, the field is linear inâ† andâ to first
approximation, andHdip affects both the internal and exte
9-5
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nal states of the ion. In this case, detuning each laser ab
or below resonance by the trap frequency,a j , j 115v j , j 11
6nx , we find

Ĥdip,U1
5\ (

j 50

d22
h j , j 11

Aq
@V j , j 11ŝ j , j 11

† â†1V j , j 11* ŝ j , j 11â#,

~29!

Ĥdip,U2
5\ (

j 50

d22
h j , j 11

Aq
@V j , j 11ŝ j , j 11

† â1V j , j 11* ŝ j , j 11â†#.

~30!

The unitary time evolution operator corresponding to E
~28!,

V̂5exp@2 i ~ t/\!Ĥdip,V#, ~31!

mixes thed internal states of the ion without affecting th
trap state, and turns out to be sufficient for generating
single-qudit gatesZd , up to an overall phase factor. The tim
evolution operators corresponding to Eqs.~29! and ~30!,

Û65exp@2 i ~ t/\!Ĥdip,U6
#, ~32!

conditionally couple the internal and external coordinates
the ion. Whenever the internal energy of the ion is rais
(ŝ†), Û1 raises the trap energy (â†), while Û2 lowers the
trap energy (â), in tandem. This conditionality arises from
the rotating-wave approximation, which retains only t
energy-conserving terms in the Hamiltonian. UsingÛ6 and
V̂ in stages, we will see that the two-qudit gates,G2@Yd#, can
be implemented between two ions in the trap.

First we show how to constructZd from V̂. In the binary
case,d52, we set all the Rabi frequencies exceptV0,1 equal
to zero. The levelsu0& and u1& then undergo two-level Rab
oscillations,

V̂ → V21F VC iV0,1* S

iV0,1S VC
G , ~33!

where C5cosVt,S5sinVt, and V5uV0,1u. Given a state
c0u0&1c1u1&, we can chooseV0,1 and t such that

V0,1

V
5

c0* c1

i uc0c1u
, cosVt5uc1u, ~34!

which makesV̂ implement the transform of Eq.~2!, up to an
overall phase,i argc1, simulating the binary gateZ2. In the
ternary case, we set all the Rabi frequencies exceptV0,1 and
V1,2 equal to zero, leaving a three-levelL system~see Fig.
3!. In this case, the levelsu0&, u1& and u2& evolve according
to
05230
ve

.

e

f
d

V̂ → V22

3F uV1,2u21uV0,1u2C iV0,1* VS V0,1* V1,2~C21!

iV0,1VS V2C iV1,2VS

V0,1V1,2* ~C21! iV1,2* VS uV0,1u21uV1,2u2C
G

~35!

where C5cosVt, S5sinVt, and V25uV0,1u21uV1,2u2.
Given a statec0u0&1c1u1&1c2u2&, we can chooseV0,1,
V1,2 and t such that

V0,1

V
5

c0* c1

i uc1u2
S

12C
,

V1,2

V
5

ic1c2*

Suc2u
, ~36!

cosVt5
uc1u2

12uc2u
21,

which makesV̂ implement the transform of Eq.~5! for d
53, up to an overall phase,i argc2, simulating the ternary
gateZ3. In thed-valued case, we requireV̂ to implementZd
in Eq. ~5! for an arbitraryd,

V̂~V0,1,V1,2, . . . ,Vd22,d21 ;t !:
~37!

c0u0&1c1u1&1•••1cd21ud21& ° eifud21&,

wheref has been introduced to allow for an overall pha
offset. The controls inV̂ are thed21 complex Rabi frequen-
cies, and the interaction time. The adjoint of the transform
Eq. ~37! can be written as

V̂†ud21&5e2 if@c0u0&1c1u1&1•••1cd21ud21&].
~38!

Projecting this equation ontôpu and taking the complex
conjugate of both sides, we get

^d21uV̂up&5cp* eif, p50,1, . . . ,d21, ~39!

which relatesd of the matrix elements ofV̂ to the coeffi-
cientsc0 , . . . ,cd21. Thesed equations have to be inverte
to find the controls,V0,1, . . . ,Vd22,d21, and t. Analytical
solutions are given for the binary and ternary cases in E
~34! and ~36!. This allowsV̂ to implementZd up to a phase
gateXd(f).

Two-qudit gates of the formG2@Yd# can be implemented
using bothU6 andV interactions, and an auxiliary manifol
of d additional levels in each ion. To see this, write t
original state of the two-ion system in the form

uC&CuF&Tu0&, ~40!

where uC&C is the original control ion state,uF&T is the
original target ion state, andu0& is the trap ground state
Applying ap pulse of theU6 interaction to the control ion,
we first transform all of the computational states in this i
exceptud21&C to their auxiliary counterparts, conditional o
exciting the trap tou1&. We leaveud21&Cu0& unaffected by
9-6
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turning off the corresponding laser inU6 . We then restore
the internal state of the control ion to its original configur
tion by using ap pulse of theV interaction, which does no
affect the trap. The entangled state of the system is t
given by

uCd21&CuF&Tu0&1uCother&CuF&Tu1&, ~41!

where uC&C5uCd21&C1uCother&C. We see that all of the
control states exceptud21&C are entangled with the tra
stateu1&. Applying a p pulse of theU6 interaction to the
target ion now, we transform all of its computational states
their auxiliary counterparts, conditional on de-exciting t
trap,

uCd21&CuF&Tu0&1uCother&CuFaux&Tu0&, ~42!

where uFaux&T is the original target ion state written in th
auxiliary basis. The first term in expression~41! is not af-
fected by this operation since the trap ground state canno
de-excited. Next, applyingV̂ in the computational basis o
the target ion, we simulateYd5Zd or Xd , transforminguF&T
but not affectinguFaux&T ,

uCd21&C$ŶduF&T%u0&1uCother&CuFaux&Tu0&. ~43!

The target ion stateuFaux&T is then restored to the computa
tional basis by reversing the operations that took us fr
expression~40! to expression~42!, giving

uCd21&C$ŶduF&T%u0&1uCother&CuF&Tu0&. ~44!

This completes the implementation ofG2@Yd# on expression
~40!, with the target ion transformed byYd conditional on
the control ion being inud21&C. This two-qudit logic is
made possible by theÛ6 interaction, which allows the infor-
mation about whether the control ion is inuCd21&C or
uCother&C to be carried to the target ion via entanglement w
the trap stateu0& or u1&. This shows that universal multival
ued computing is feasible in the linear ion trap scheme.

IV. SUMMARY

We conclude with a comparison of the binary and mu
valued approaches to quantum computing. The main ad
tage of the latter is a logarithmic reduction in the number
th
n

05230
-

n

o

be

-
n-
f

separate quantum systems needed to span the qua
memory. For a Hilbert space ofN dimensions, correspondin
to n25 log2N qubits, the number of qudits needed to sto
this information is

n5
log2 N

log2 d
5

n2

log2 d
. ~45!

Note that this retains the same scaling inN and d with the
inclusion of the auxiliary qudits used in the gate construct
of Fig. 1. Using a binary equivalent of this construction, w
find that the overall time complexity of a binary simulation
O(n2

2N2). That is, this many two-qubit gates are required
simulate anN-dimensional unitary operatorU. By analogy,
the number of two-qudit gates used in the construction
Sec. II scales asO(n2N2), or

O~n2N2!5OS ~ log2 N!2N2

~ log2 d!2 D 5OS n2
2N2

~ log2 d!2D , ~46!

where we have used Eq.~45!. Equation~46! represents an
upper bound on the time complexity of a multivalued sim
lation, and shows that this has a (log2 d)2 advantage over the
binary case. This comes at the cost of larger elementary g
G2@Yd#, which required states in each ion to be controlled
not just two. This suggests that we ought to multiply t
multivalued time complexity in Eq.~46! by d for a physically
relevant comparison with the binary case. However,
frequency-domain approach taken to constructing theV and
U6 interactions in Eqs.~28!–~30! assumes that thed21
lasers operate simultaneously on each ion, which allow
two-qudit gate to be implemented without slowing down t
computation in real time. The cost of the multivalue
speedup in this case is the need for multiple lasers to add
the corresponding transitions in thed-level ion.

Finally, we must make note of the nonlogarithmic scali
in N in Eq. ~46!, which shows the inefficiency of this con
struction for simulating arbitraryN-dimensional unitary
transforms. This is analogous to the binary case, where o
certain unitary transforms admit an efficient simulation
terms of elementary gates, making them useful for effici
quantum algorithms.
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