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Quantum computation using decoherence-free states of the physical operator algebra
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The states of the physical algebra, namely the algebra generated by the operators involved in encoding and
processing qubits, are considered instead of those of the whole-system algebra. If the physical algebra com-
mutes with the interaction Hamiltonian, and the system Hamiltonian is the sum of arbitrary terms either
commuting with or belonging to the physical algebra, then its states are decoherence free. One of the examples
considered shows that, for a uniform collective coupling to the environment, the smallest number of physical
qubits encoding a decoherence-free logical qubit is reduced from four to three.

PACS numbd(s): 03.67.Lx, 03.65.Bz

[. INTRODUCTION bra, instead of a density matrix on a preassigned Hilbert
space, is briefly introduced in Sec. Il. This is done with ex-
Environment-induced decoherenjcde-3] is the main ob-  plicit reference to the ensuing relativity of the notion of state
struction to the physical viability of quantum computipg.  purity, which is illustrated by the simplest possible example.
To overcome this obstacle, quantum error correcting codes In Sec. lll the concept of a decoherence-free algebra is
have been devised5,4]. Besides thesective methods, presented with reference to a generic system, its Hamil-
where decoherence is controlled by repeated application d¢fnian, and its coupling to the environment. In particular, the
error correction procedures, a more recpassiveapproach ~mentioned example and arrays of qubits uniformly coupled
has emerged, where logical qubits are encoded ifio the environment are considered.
decoherence-fre@F) subspacef6—11]. In them coherence Then in Sec. IV specific examples of three and four qubit
is protected by the peculiar structure of the coupling Hamil-arrays are analyzed, giving explicit realizations of the DF
tonian. algebras in terms of the original physical qubit operators. In
So far the notion of a DF state has been considered withiparticular, it is shown how the present generalized pure states
the total Hilbert space of the considered system, namely witiallow for the aforementioned DF logical qubit with only
reference to the whole operator algebra of the systenthree physical ones, while four physical qubits are shown to
whereas a more physical approach consists of confining thencode, in addition to the known DF logical qui], a DF
consideration to the space of the states on the physical algégical qutrit.
bra, that is the operator algebra involved in encoding and Finally some concluding remarks follow in Sec. V.
manipulating qubits. The characterization of such state
spaces corresponds to the construction of the irreducible rep- Il. C* ALGEBRAS AND THEIR PURE STATES
resentations of the aforementioned algebra. Quantum com- ) ) ,
puting without active error correcting codes requires the use A duantum physical system is characterized bg’aal-
of physical algebras admitting DF irreducible representad€Pra, namely a normed complex associative algebvath
tions, which therefore will be called DF algebras. The con-conjugation * and unityl, whose Hermitian elements are its

struction of such representations is performed here by shovbservables, corresponding in the usual operator setting to
ing that suitable factorizations of the total Hilbert spaceHermitian bounded operatof$3]. Conjugation is an antilin-

exist, where entanglement with the environméitequiva- ~ €ar involution

lently decoherence, once this is traced)aist confined to

only one factor, the other factor carrying an irreducible rep-

resentation of the DF algebra. —
This more physical approach leads to a fruitful generali- (CA+B)*=cA*+B*VceC, @

zation of the notion of a DF state. It is shown, for instance,

that for a generic uniform coupling of an array of physical such that

qubits to an arbitrary environment, while the conventional (AB)* = B* A* @)

notion of DF space requires at least four physical qubits to '

encode a logical ongl2], three are enough in this new set-

*:Ae A—A* e A, (A*)* =A,

and the norm, endowingl with the structure of a Banach

ting. ;
. - . .space, is such that
As to the plan of the paper, since it is addressed to a W|dep
range of theoreticians and experimentalists, the general nojag||<||A||[B|, [A*|=|Al, [|AA*|=|Al% |1]=1.

tion of a quantum state as a functional on a gi¥&n alge-

Boundedness is not a severe restriction, since every mea-
*FAX: +39 89 965275; Electronic address: defilippo@sa.infn.it surement apparatus can detect only a finite range of values of
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an unbounded observable, by which these observables plagnsgonce the environment has been traced and a uni-
only a formal role as generators of groups of unitary operatary evolution with respect to the physical algebra if this one
tors and can be eliminated altogether as primary physicak properly chosen.

objects. To give the simplest possible illustration of the foregoing
The states of the system correspondingly are positive anidlea, consider a two qubit system in the usual sense, namely
normalized linear functionals, a system consisting of two atomic two-state systems. The

corresponding operator algebra is generated by
f:A—C, f(cA+B)=cf(A)+f(B)VceC,
O'j®0'k, j,k:O,1,2,3, (9)
f(AA*)=0, f(1)=1. 4
where o¢,05,,03 denote Pauli operators of a single atomic
States that can be written as linear convex combinationsystem ando, is the corresponding identity operator. The

of different states usual product basis of the state space is given by
f=ag+(1—a)h, f#g#h, 0<a<l (5) li,k)=]j)®k), j,k==*1 (10
are mixed states; otherwise they are pure. where
Given a pure staté one can uniquely construct, by the
GNS procedur¢l3], a Hilbert space whose one-dimensional asliy=jlj)- (11

projectors are pure statémcluding the initial ong, giving
an irreducible representation of in terms of bounded op- ©On the other hand, the operators
erators. This procedure is t&* algebra counterpart of the
Lie algebraic construction by raising and lowering operators.
The mentioned Hilbert space is identified withhe comple-

’77'151®0'1, 77250'3(80'2, ’77350'3®0'3,

) i ~ = = 1 = 12
tion of) the space of equivalence clasgesf elementsA of n=02®01,  =0591 n=oeer (12
A, with respect to the equivalence relation obey the same commutation relations

ﬁA:E@f([A*—B*][A—B])ZO, (6) [7Tj,’7Tk]7=2i8jk|7T|, [’T]',Tk],=2i8jk|7'|,
where A denotes the equivalence class AfAB=AB, the [7j,m]-=0, (13

inner product is given by
as the single physical qubit operators

A|B)=f(A*B), 7
(ABY=f ) @) 1®o,, 1®0,, 1®o03,
and transition amplitudes HyL6]
o1®1, 0,81, 03®1. (14
(A|C|B)=f(A*CB). (8) ,
Furthermore, sincér;, 7], =[mj,m] =29, the Ca-

In general such a Hilbert space may not span the wholgimir operators#3+ 75+ 75 and 72+ 75+ 75 assume the
set of states, namely inequivalent representations may ensug;me value 3 as the Casimir operatef+ o2+ o2 of the
starting from different states. When this happens superselegyerator algebra corresponding to a single traditional qubit.
tion rules are present, i.e., no observable connects states R§pe can then identify the operator algebra of the two qubit
longing to inequivalent representations. array with the direct product of the two alternatigé(2,C)

While superselection rules usually arise only in CoNNeCygebras generated, respectively, by thand ther opera-
tion with infinitely many degrees of freedom whehis de- tlors
I

fined in the usual way, as corresponding, for instance, to a éimilarly the state space of the two qubit array can be

possible measurements on a given set of particles, this is NpL,ji;eq as the tensor product of two irreducible representa-

so if somehow it is restricted. In such a case the restricteqOns of the two alternativgl(2,C) algebras, which can im-
algebra, which is called here the physical algebra, may havﬁ]ediately be built by the GNé constructio’n.

several differentin general reducible, representations inside Consider, for instance, the stafeof the = algebra
the Hilbert space corresponding to the unrestricted algebrauniquely de%ined by '

The main idea in the present paper is to exploit the free-
dom in choosing the physical algebra with reference to the f(mg)=—1, f(my)="Ff(my)=0. (15)
notion of state pureness. A mixed state of the whole algebra
may be a pure state when restricted, as a functional, to thEhen the equivalence classes bfand 7, = (m+i75)/2
physical algebra. In fact the pure states of the physical algegive the usual basis
bra can be identified with equivalence classesimfgeneral
not purg density matrices in the mentioned reducible repre- 1= |—1), ?T+:|1), 3| K) =k|K), (16)
sentations. This may lead to the physical equivalence be-
tween a nonunitary evolution of the system state in the usuas
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1-m, tively. Let Ag=gl(Hs) denote the operator algebra #fg
(U ma|)=f(m_mam,)=1f 2 =1, (which for simplicity is assumed to be finite dimensional
and Apr the invariant subalgebra ofg consisting of opera-
(17 J1)=F (7 7y 7. )=0, (17)  tors commuting wittH,,
and of course [Apr,H]=0. (23

As a subalgebra oflg, Apr has a naturaC* algebra struc-
ture, by which, if measurements on the system are confined

(18) to thc_us_e repres_en';ed by (_)perators4i51F , State spaces can be
identified with its irreducible representations.

A=BoA-B=cym_+Cy(1+m3);

Cl,CZECﬂT_E’iT:.

If the analogous notation is used for thealgebra, one (While the GNS constryction gives a.ggneral procedure to
easily gets the identification construct the represe_ntatlon abe _cpntammg a given state_
of Apg and, as described below, it is closely connected with
1 what the experimentalist is expected to do in the present
[1,1)= E(MJH |[-1,-1)), context, representations gfyg in the final examples will be

defined explicitly in terms of physical qubit operators.
A pure state ofdpe, namely a state prepared by a com-

1-1)= i 1D—|-1-1 plete set of measurements.df-, such remains under time
1,-1)= \/E(l DH=1-1-1)), evolution, if the system Hamiltonian is the sum of an opera-
tor belonging toApg, giving rise to unitary evolution, and
1 an operator that commutes Wity , which for such a state
[-1,1)= —(]1,-1)+|-1,1), gives rise to no evolution at all.
V2 As the simplest nontrivial example consider the above
two qubit system, assuming that
1
-1-1)=—=(1-1)-[-1D), (19 ° °
\/E Hszjgl ajwj+glﬂj7j' aj,ﬁjeC,
where
3
1R=l)elk),  mljk)=jli.k), Talj,k)=k|j,k)(-20 HFJZl B, (24)

Assume now that the physical algebra is restricted to th&/here 7 and = operators are defined in E¢12) and B,
one generated by the operators. Then, for instance, the denote bath operators; in this cadge is thegl(2,C) alge-

state bra generated byr operators. Then, for a product state
L)LY+ (1-1)(1,-1] p=lv)(Yl®p,, (25)

P 2 the interaction with the environment has no effect on the

11)(1]+]-1) (-1 evolution of the first factor, which then has a unitary evolu-
=[1)(Y® 3 (21)  tion even though time evolution @f, and specifically op .,

is not unitary. It should be stressed that while this appears to
is trivially a pure state when restricted to the physical alge—bf3 rathgr trivial in terms ofr and_r operators, It is quite .
bra, while its expression in the original basis hidden if the state and the Hamiltonians are expressed in
' terms of the original physical qubit operatars
11,(1,2+| -1~ 1)(—1,— 1] In order to pass from aad hocexample to a physically
= (22 more relevant and general setting, consider an arrai{ of
2 qubits. Letog,01,0,,03 be defined as above. If these ma-

is entangled and then neither pure with respect to the firsggcsesinaﬁemi?gne% tng'?O,rssinufrlljsl:si:’leri;esirk;ﬁ?tls(igtseosf gizu'
physical qubit operator algebra nor to the second one. P P gie q pace,
the operator algebra for the whole array is generated by

Ill. DECOHERENCE-FREE ALGEBRAS o o é )
M(iq,ip, ... in)= o, i;=0,1,2,3. (26)

Consider now the dynamics of a syst&rtoupled to a j=1 !
bathB, the universeevolving unitarily under the Hamiltonian
H=Hg®1g+1s®Hg+H,, whereHg and Hg denote, re- L€t
spectively, the system and the bath Hamiltonidp,the in-
teraction Hamiltonianls and1g the identity operators on the S=
Hilbert spaceHg of the system and{g of the bath, respec-

N
2 M08y, - oy (27

N| -
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denote the total pseudospin, wheig is the Kronecker sym-  m in the kth copy of D;, while [m) denotes the only such
bol, and assume, as frequently done in the literafBlea  eigenvector irD; and|k) is thekth element of a basis @"i.
uniform collective coupling to the environment To be more precise, once the mutually orthogonal vectors
5 |k,j) are fixed, one definelk,m)=(S_)'"M|k,j) by means
B 2 of the lowering operato_=S,;—iS,.
H'_i:1 SiBi, (28) Since the generic operat@ on C"i gives through this
identification an operatoif)@lDj on @EJ:le commuting
where the bath operatoB; commute withAs and then with jith 4., which is generated by operators of the folgm,
Apg - As to the system Hamiltonian, under the usual hypoth-g Q, and since all operators can be realized in terms of the
esis of equivalent uncoupled qubj&] operatorsM(iy,iy, ... iy), it follows that operators oE";
Ho=eS, 29) can be io_Ientified Witf(equivalence_clas_ses)oélements of
S ' Ape. This proves that the generig® eigenspace can be
it commutes withApe, which, as said above, avoids deco- identified with the product of two spaces, carrying irreduc-

herence of states ol , even with the possible addition of [Pl€ representations oflpe and.Ag, respectively. It should
terms belonging todp, , like the scalar couplings be stressed that coherent superpositionsSofeigenstates

with different eigenvalues do not exist as statesdgf-, as
3 they live in different representations.
2 M(i;=0j,=0,... =i, ... k=i, ...,iN=0) As to the operational method to construct t8&=j(j
=1 +1) representation oflpg, it is just the physical translation
(30) of the, only seemingly formal, GNS procedure. To be spe-

due to the exchange interaction present in NMR computingific, first an arbitrarymixed or pure state of the chose8

[14]. Let Ag denote the algebra generated by éeors S . eigenspace has to be prepared. Th_e_n a complete set_of mea-
Of courseAprN.Ag is generated by the identity and by the surements_correspondlng to Hermitian eIementsAgL is
Casimir operator performed in order to select a pure state4ye . Finally the

whole representation is spanned by arbitrary unitary evolu-

s tion generated by Hamiltonian operators belongingdte: .
52:2 s, (31)  Of course here unitarity is referred tdpr only, since the

=1 coupling with the environment is simultaneously producing,
general, a nonunitary evolution of the whole-system alge-
aAg and, to be more specific, of th&=j(j+1) repre-
sentation ofAg . Finally, it is worth remarking that possible
terms in the system Hamiltonian belongingAe give rise to
@_further unitary evolution indg, which in the present con-
text is physically irrelevant since it does not affedt .

by which, in order to factor the operator algebra as a produclg
of such subalgebras, the state space must be reducedsto an r
eigenspace. To this end the system Hilbert sgdge as the
tensor product oN fundamental representations 9i{2,C),
can be decomposed as the Clebsch-Gordan sum of irredu
ible representations of the algels§2,C) generated by the
operatorsS, ,

IV. EXAMPLES

n

Hs= EB @ Dy, (32 As a first example of a qubit array, collectively and uni-
Iok=1 formly coupled to the environment, consider a system of

three physical qubits. The corresponding DF algebra is gen-

where the index fixes the eigenvalue of the Casimir opera- erated by

tor: S°D;=j(j +1)D;.
The operator algebra of the generic eigenspac& afan 3
be identified with the product of the representations of the b23t4§2-§3= E 180,890;,
=1

DF and the error algebras cmELle ,

n
ASEgl @D ~ 'ADF®'~’4E- (33) . o > 3

) k=1 ! : ! b31:4§'81:j21 0'j®1®0'j,
In fact theS? eigenspace in its turn can be identified with the
direct product of am;-dimensional complex space and just L 2
one copy of the irreducible representation b1,=4S"-S =121 o®o®1l, (35

3

.
@ p,~CheD, (34)

o1 whereS denotes the pseudospin vector of flie qubit, and

the Clebsch-Gordan decomposition in E82) reads

through the one-to-one corresponderj&em)«|k)®|m),
where |k,m) denotes the eigenvector &8 with eigenvalue Hs="Dz/5® D1/2® D1jo="Hz/2® H1>. (36
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Since the factorization of As in Eq. (33) is trivial for  7¢,,(7) and an arbitrary density matrix iH,XS), is a pure
$?=15/4(1=3/2), as the error algebra generates the wholgstate of the physical algebrdpr . If in particular the initial
operator algebra, the analysis is confined to the eigenspaegate has this structuf@ossibly withpg being itself a pure
Hyp With S*=3/4. state ofA(,/,9), this corresponding to an arbitrary pure state

One can now apply the general GNS procedure. As an ,,,], then, in spite of the decoherence mf (or equiva-
starting point take the pure state .df¢ corresponding to an |ently the entanglement with the environment if this is not
arbitrary normalized vector of{,;,. The ensuing Hilbert traced out produced by the coupling of the environment to
space of equivalence classes of elementglgf , according the pseudospin operators, the state maintains phase coher-
to Sec. Il, gives the looked for representation4fe. (Of  ence as to the physical algebra, which is then DF. This
course even a density matrix 6ty,, that, as a state ofipg, means that the considered three qubit array encodes a DF
is a pure state, can be taken as an equivalent starting pointogical qubit, compared to the four qubits needed within the
While this procedure can be applied in principle to muchconventional approacH.2].
more general cases than the present qubit array, the final As a further example, consider now a four qubit array,
result given below can easily be checked dire€ily]. whose Clebsch-Gordan decomposition is

Using the symbol,;,O for the representation of the ge-
neric operato in H,,,, for instance it can be checked that, Hs=D,0D18D1®D1©Dy®Do=H®&H1S Ho.
if one defines the invariant operator (43

3 In this case, while the factorization is trivial and useless for
Erpr 2 EijkTI® T @ Ty, 37 the S?=6(j _:2) representation, it is still trivial but fruitful
ij.k=1 for the carrier spacét, of the two degenerat8®=0 repre-
sentations, where it gives rise to the DF states already con-
sidered in the literature. To be specific it can be checked that
the H, representations of invariant operators

with &;;c denoting the usual completely antisymmetric sym-
bol, the’H,,, representations of invariant operators

o7y = (D12~ 102912 071= (0b1a+ obag— ob1o— 0b32)/(4+/3),
va2= 1123112, 072= (0E 234+ 0E 124~ 0E 134~ 0E 129/ (813),
1/273= (1/2023— 2 12031+ 1/01)/6, (39 o0T3=—(gb14+ gb1o+ ob13)/3 (44)

are the generators of &u(2) algebra, obey the same relations as their analogs in Eg8) and

3 (40), whose enveloping algebra once again is the operator
[1/07i 11271 = 2i > Eijk 12Tk (39  algebra of a DF logical qubit. As representedH the DF
k=1 subalgebra coincides with the total operator algebra, the rep-

. L resentation of the total pseudospin algebra being the trivial
with the Casimir given by

(scalay one.
3 For the four qubit array, apart from the reproduction of a
1/27_252 1/2712231 (40) D_F qub|_t of vanishing pseu_dospln, t_he present approach also
i=1 gives rise to a DF qutrit. Consider in fact the nine-

] ) . dimensionalS?=2(j=1) eigenspace, containing three
The corresponding universal enveloping algebt&,7),  degenerate three-dimensional representations. It can be

which coincides withy»Apf , is then the operator algebra of checked, for instance, that tfi¢, representation of invariant
a two-state system and the total operator algebsa is  gperators

given by the product of this algebra and the universal envel-
oping algebrad(4,,S) of the total pseudospin algebra, 171i1E134/(—2\/§),

12A= A(127) @ A(1125) = 10Apr @ A(125),  (41) 1722 (1E120— 31E10/(416),

as a particular instance of E¢33). As a consequence the N
state spacét,;,, can be identified with the tensor product of 173= (1E2ast 1E129/(412) (45)
two two-dimensional representation spacks§,(7) and

- obey the usual commutation rules ®fi(2) generators as in
HyS), respectively, ofA(1,7) and A(1S). y (2) g

Eq. (39), while ;?=37_,7°=81. In this case the nine-
Happ=Hy DO HyAS), (42) dimensional state spacg{ can be identified with the prod-
uct of the three-dimensional irreducible representations of
which coincides with Eq(34) for j=1/2 andn;=2. Accord-  the DF algebra and the total pseudospin algebra. In perfect
ing to what has been illustrated above, this factorization haanalogy to what was said for the three qubit array one can
far reaching physical consequences: if all measurement prarrange in the considere§?=2 eigenspace a DF qutrit,
cesses are limited t(Hermitian elements ofApr, then a namely a tridimensional state space of the DF algebra. Of
statep=|y){ | ® pg, which is the product of a pure state in course in this case the whole representation algebtge

052307-5



SERGIO DE FILIPPO PHYSICAL REVIEW A 62 052307
cannot be produced by linear combination of %i¢2,C)
generators(and the identity only, but products of two of
them must be included too.

the operator algebra of the whole universe, but on the con-
trary from the operator algebra generated by the actual mea-
surements that the experimentalist is going to perform, a
thoroughly new and promising perspective appears. This re-
sult is relevant not only with reference to quantum comput-
) ing but even to the foundations of quantum mechanics and
_In conclusion what has been shown can be of use botkhe analysis of open quantum systems in general. In particu-
with reference to the considered examples and more genefyy the approach in terms of representations of DF algebras
native DF spaces, which can give rise to more chances fagoherence which, in principle, due to the structure of the
finding physically viable realizations of quantum computing. Hamiltonian, could be present in unexpected situations if
In particular the possibility to test DF qubit encoding in ar- system algebras can be factored as the product of uncoupled

rays of just three physical qubits may represent a substanti@blective algebras, one of them decoupled from the environ-
bonus in the near future. ment too.

More generally a different viewpoint about decoherence
is advocated and shown to be effective. It is shown that the
very notion of decoherence should be defined in more physi-
cal terms starting from the notion of physical algebra. Before | thank L. Viola for bringing to my attention Refl15],
asking if a state of a given system is pure or not we shouldvhich is relevant to the subject treated in this paper and, due
preliminarily fix the operator algebra with respect to whichto my ignorance, was omitted from the original references.
we are defining the state. The main result of the paper is thathe present paper was supported by MURST, Italy and
if pureness is not defined in an abstract setting, starting frofNFM, Salerno.

V. CONCLUSION
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the Pauli matrices.



