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Quantum computation using decoherence-free states of the physical operator algebra

Sergio De Filippo*
Dipartimento di Scienze Fisiche, Universita` di Salerno, Via Allende, I-84081 Baronissi (SA), Italy
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The states of the physical algebra, namely the algebra generated by the operators involved in encoding and
processing qubits, are considered instead of those of the whole-system algebra. If the physical algebra com-
mutes with the interaction Hamiltonian, and the system Hamiltonian is the sum of arbitrary terms either
commuting with or belonging to the physical algebra, then its states are decoherence free. One of the examples
considered shows that, for a uniform collective coupling to the environment, the smallest number of physical
qubits encoding a decoherence-free logical qubit is reduced from four to three.

PACS number~s!: 03.67.Lx, 03.65.Bz
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I. INTRODUCTION

Environment-induced decoherence@1–3# is the main ob-
struction to the physical viability of quantum computing@4#.
To overcome this obstacle, quantum error correcting co
have been devised@5,4#. Besides theseactive methods,
where decoherence is controlled by repeated applicatio
error correction procedures, a more recentpassiveapproach
has emerged, where logical qubits are encoded
decoherence-free~DF! subspaces@6–11#. In them coherence
is protected by the peculiar structure of the coupling Ham
tonian.

So far the notion of a DF state has been considered wi
the total Hilbert space of the considered system, namely w
reference to the whole operator algebra of the syst
whereas a more physical approach consists of confining
consideration to the space of the states on the physical a
bra, that is the operator algebra involved in encoding a
manipulating qubits. The characterization of such st
spaces corresponds to the construction of the irreducible
resentations of the aforementioned algebra. Quantum c
puting without active error correcting codes requires the
of physical algebras admitting DF irreducible represen
tions, which therefore will be called DF algebras. The co
struction of such representations is performed here by sh
ing that suitable factorizations of the total Hilbert spa
exist, where entanglement with the environment~or equiva-
lently decoherence, once this is traced out! is confined to
only one factor, the other factor carrying an irreducible re
resentation of the DF algebra.

This more physical approach leads to a fruitful gener
zation of the notion of a DF state. It is shown, for instan
that for a generic uniform coupling of an array of physic
qubits to an arbitrary environment, while the convention
notion of DF space requires at least four physical qubits
encode a logical one@12#, three are enough in this new se
ting.

As to the plan of the paper, since it is addressed to a w
range of theoreticians and experimentalists, the general
tion of a quantum state as a functional on a givenC* alge-
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bra, instead of a density matrix on a preassigned Hilb
space, is briefly introduced in Sec. II. This is done with e
plicit reference to the ensuing relativity of the notion of sta
purity, which is illustrated by the simplest possible examp

In Sec. III the concept of a decoherence-free algebra
presented with reference to a generic system, its Ham
tonian, and its coupling to the environment. In particular, t
mentioned example and arrays of qubits uniformly coup
to the environment are considered.

Then in Sec. IV specific examples of three and four qu
arrays are analyzed, giving explicit realizations of the D
algebras in terms of the original physical qubit operators.
particular, it is shown how the present generalized pure st
allow for the aforementioned DF logical qubit with onl
three physical ones, while four physical qubits are shown
encode, in addition to the known DF logical qubit@12#, a DF
logical qutrit.

Finally some concluding remarks follow in Sec. V.

II. C* ALGEBRAS AND THEIR PURE STATES

A quantum physical system is characterized by aC* al-
gebra, namely a normed complex associative algebraA with
conjugation * and unity1, whose Hermitian elements are i
observables, corresponding in the usual operator settin
Hermitian bounded operators@13#. Conjugation is an antilin-
ear involution

* :APA°A* PA,~A* !* 5A,

~cA1B!* 5 c̄A* 1B* ;cPC, ~1!

such that

~AB!* 5B* A* , ~2!

and the norm, endowingA with the structure of a Banach
space, is such that

iABi<iAiiBi , iA* i5iAi , iAA* i5iAi2, i1i51.
~3!

Boundedness is not a severe restriction, since every m
surement apparatus can detect only a finite range of value
©2000 The American Physical Society07-1
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an unbounded observable, by which these observables
only a formal role as generators of groups of unitary ope
tors and can be eliminated altogether as primary phys
objects.

The states of the system correspondingly are positive
normalized linear functionals,

f :A→C, f ~cA1B!5c f~A!1 f ~B!;cPC,

f ~AA* !>0, f ~1!51. ~4!

States that can be written as linear convex combinati
of different states

f 5ag1~12a!h, f ÞgÞh, 0,a,1 ~5!

are mixed states; otherwise they are pure.
Given a pure statef one can uniquely construct, by th

GNS procedure@13#, a Hilbert space whose one-dimension
projectors are pure states~including the initial one!, giving
an irreducible representation ofA in terms of bounded op
erators. This procedure is theC* algebra counterpart of th
Lie algebraic construction by raising and lowering operato
The mentioned Hilbert space is identified with~the comple-
tion of! the space of equivalence classesÃ of elementsA of
A, with respect to the equivalence relation

Ã5B̃⇔ f ~@A* 2B* #@A2B# !50, ~6!

where Ã denotes the equivalence class ofA,AB̃[AB̃, the
inner product is given by

^ÃuB̃&[ f ~A* B!, ~7!

and transition amplitudes by@16#

^ÃuCuB̃&5 f ~A* CB!. ~8!

In general such a Hilbert space may not span the wh
set of states, namely inequivalent representations may en
starting from different states. When this happens superse
tion rules are present, i.e., no observable connects state
longing to inequivalent representations.

While superselection rules usually arise only in conn
tion with infinitely many degrees of freedom whenA is de-
fined in the usual way, as corresponding, for instance, to
possible measurements on a given set of particles, this is
so if somehow it is restricted. In such a case the restric
algebra, which is called here the physical algebra, may h
several different~in general! reducible, representations insid
the Hilbert space corresponding to the unrestricted algeb

The main idea in the present paper is to exploit the fr
dom in choosing the physical algebra with reference to
notion of state pureness. A mixed state of the whole alge
may be a pure state when restricted, as a functional, to
physical algebra. In fact the pure states of the physical a
bra can be identified with equivalence classes of~in general
not pure! density matrices in the mentioned reducible rep
sentations. This may lead to the physical equivalence
tween a nonunitary evolution of the system state in the us
05230
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sense~once the environment has been traced out! and a uni-
tary evolution with respect to the physical algebra if this o
is properly chosen.

To give the simplest possible illustration of the foregoi
idea, consider a two qubit system in the usual sense, nam
a system consisting of two atomic two-state systems. T
corresponding operator algebra is generated by

s j ^ sk , j ,k50,1,2,3, ~9!

wheres1 ,s2 ,s3 denote Pauli operators of a single atom
system ands0 is the corresponding identity operator. Th
usual product basis of the state space is given by

u j ,k&[u j & ^ uk&, j ,k561 ~10!

where

s3u j &5 j u j &. ~11!

On the other hand, the operators

p1[1^ s1 , p2[s3^ s2 , p3[s3^ s3 ,

t1[s2^ s1 , t2[s3^ 1, t3[s1^ s1 ~12!

obey the same commutation relations

@p j ,pk#252i« jklp l , @t j ,tk#252i« jklt l ,

@t j ,pk#250, ~13!

as the single physical qubit operators

1^ s1, 1^ s2 , 1^ s3 ,

s1^ 1, s2^ 1, s3^ 1. ~14!

Furthermore, since@t j ,tk#15@p j ,pk#152d jk , the Ca-

simir operatorsp1
21p2

21p3
2 and t1

21t2
21t3

2 assume the

same value 3 as the Casimir operators1
21s2

21s3
2 of the

operator algebra corresponding to a single traditional qu
One can then identify the operator algebra of the two qu
array with the direct product of the two alternativegl(2,C)
algebras generated, respectively, by thep and thet opera-
tors.

Similarly the state space of the two qubit array can
realized as the tensor product of two irreducible represe
tions of the two alternativegl(2,C) algebras, which can im-
mediately be built by the GNS construction.

Consider, for instance, the statef of the p algebra
uniquely defined by

f ~p3!521, f ~p1!5 f ~p2!50. ~15!

Then the equivalence classes of1 and p15(p11 ip2)/2
give the usual basis

1̃5u21), p̃15u1), p3uk)5kuk), ~16!

as
7-2
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QUANTUM COMPUTATION USING DECOHERENCE-FREE . . . PHYSICAL REVIEW A 62 052307
~1up3u1!5 f ~p2p3p1!5 f S 12p3

2 D51,

~1up1,2u1!5 f ~p2p1,2p1!50, ~17!

and of course

Ã5B̃⇔A2B5c1p21c2~11p3!;

c1 ,c2PC,p2[p1* . ~18!

If the analogous notation is used for thet algebra, one
easily gets the identification

u1,1)5
1

A2
~ u1,1&1u21,21&),

u1,21)5
1

A2
~ u1,1&2u21,21&),

u21,1)5
1

A2
~ u1,21&1u21,1&),

u21,21)5
1

A2
~ u1,21&2u21,1&), ~19!

where

u j ,k)[u j ) ^ uk), p3u j ,k)5 j u j ,k), t3u j ,k)5ku j ,k).
~20!

Assume now that the physical algebra is restricted to
one generated by thep operators. Then, for instance, th
state

r5
u1,1)~1,1u1u1,21!~1,21u

2

5u1)(1u ^ S u1)(1u1u21)(21u
2 D ~21!

is trivially a pure state when restricted to the physical al
bra, while its expression in the original basis

r5
u1,1&^1,1u1u21,21&^21,21u

2
~22!

is entangled and then neither pure with respect to the
physical qubit operator algebra nor to the second one.

III. DECOHERENCE-FREE ALGEBRAS

Consider now the dynamics of a systemS coupled to a
bathB, theuniverseevolving unitarily under the Hamiltonian
H5HS^ 1B11S^ HB1HI , where HS and HB denote, re-
spectively, the system and the bath Hamiltonian,HI the in-
teraction Hamiltonian,1S and1B the identity operators on th
Hilbert spaceHS of the system andHB of the bath, respec
05230
e

-

st

tively. Let AS[gl(HS) denote the operator algebra ofHS
~which for simplicity is assumed to be finite dimensiona!
andADF the invariant subalgebra ofAS consisting of opera-
tors commuting withHI ,

@ADF ,HI #50. ~23!

As a subalgebra ofAS ,ADF has a naturalC* algebra struc-
ture, by which, if measurements on the system are confi
to those represented by operators inADF , state spaces can b
identified with its irreducible representations.

~While the GNS construction gives a general procedure
construct the representation ofADF containing a given state
of ADF and, as described below, it is closely connected w
what the experimentalist is expected to do in the pres
context, representations ofADF in the final examples will be
defined explicitly in terms of physical qubit operators.!

A pure state ofADF , namely a state prepared by a com
plete set of measurements ofADF , such remains under time
evolution, if the system Hamiltonian is the sum of an ope
tor belonging toADF , giving rise to unitary evolution, and
an operator that commutes withADF , which for such a state
gives rise to no evolution at all.

As the simplest nontrivial example consider the abo
two qubit system, assuming that

HS5(
j 51

3

a jp j1(
j 51

3

b jt j , a j ,b jPC,

HI5(
j 51

3

Bjt j , ~24!

where p and t operators are defined in Eq.~12! and Bj
denote bath operators; in this caseADF is thegl(2,C) alge-
bra generated byp operators. Then, for a product state

r5uc)~cu ^ rt , ~25!

the interaction with the environment has no effect on
evolution of the first factor, which then has a unitary evo
tion even though time evolution ofr, and specifically ofrt ,
is not unitary. It should be stressed that while this appear
be rather trivial in terms ofp and t operators, it is quite
hidden if the state and the Hamiltonians are expressed
terms of the original physical qubit operatorss.

In order to pass from anad hocexample to a physically
more relevant and general setting, consider an array oN
qubits. Lets0 ,s1 ,s2 ,s3 be defined as above. If these m
trices are intended to be, as usual, representations of p
dospin Hermitian operators in the single qubit state spa
the operator algebra for the whole array is generated by

M ~ i 1 ,i 2 , . . . ,i N!8 ^
j 51

N

s i j
, i j50,1,2,3. ~26!

Let

Si5
1

2 (
j 51

N

M ~ id1 j ,id2 j , . . . ,idN j! ~27!
7-3
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SERGIO DE FILIPPO PHYSICAL REVIEW A 62 052307
denote the total pseudospin, whered jk is the Kronecker sym-
bol, and assume, as frequently done in the literature@8#, a
uniform collective coupling to the environment

HI5(
i 51

3

SiBi , ~28!

where the bath operatorsBi commute withAS and then with
ADF . As to the system Hamiltonian, under the usual hypo
esis of equivalent uncoupled qubits@8#

Hs5«S3 , ~29!

it commutes withADF , which, as said above, avoids dec
herence of states ofADF , even with the possible addition o
terms belonging toADF , like the scalar couplings

(
i 51

3

M ~ i 150,i 250, . . . ,i j5 i , . . . ,i k5 i , . . . ,i N50!

~30!

due to the exchange interaction present in NMR compu
@14#. Let AE denote the algebra generated by theerrors Si .
Of courseADFùAE is generated by the identity and by th
Casimir operator

S25(
i 51

3

Si
2 , ~31!

by which, in order to factor the operator algebra as a prod
of such subalgebras, the state space must be reduced toS2

eigenspace. To this end the system Hilbert spaceHS , as the
tensor product ofN fundamental representations ofsl(2,C),
can be decomposed as the Clebsch-Gordan sum of irre
ible representations of the algebrasl(2,C) generated by the
operatorsSi ,

HS5 %
j

%
k51

nj

Dj , ~32!

where the indexj fixes the eigenvalue of the Casimir oper
tor: S2Dj5 j ( j 11)Dj .

The operator algebra of the generic eigenspace ofS2 can
be identified with the product of the representations of
DF and the error algebras on% k51

nj Dj ,

jAS[glS %
k51

nj

Dj D ; jADF ^ jAE . ~33!

In fact theS2 eigenspace in its turn can be identified with t
direct product of annj -dimensional complex space and ju
one copy of the irreducible representation

%
k51

nj

D j;Cnj ^ Dj ~34!

through the one-to-one correspondenceuk,m&↔uk& ^ um&,
where uk,m& denotes the eigenvector ofS3 with eigenvalue
05230
-

g
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e

m in the kth copy of Dj , while um& denotes the only such
eigenvector inDj anduk& is thekth element of a basis ofCnj .
To be more precise, once the mutually orthogonal vect
uk, j & are fixed, one definesuk,m&[(S2) j 2muk, j & by means
of the lowering operatorS25S12 iS2.

Since the generic operatorO on Cnj gives through this
identification an operatorO^ 1Dj

on % k51
nj Dj commuting

with AE , which is generated by operators of the form1Cnj

^ Q, and since all operators can be realized in terms of
operatorsM ( i 1 ,i 2 , . . . ,i N), it follows that operators onCnj

can be identified with~equivalence classes of! elements of
ADF . This proves that the genericS2 eigenspace can b
identified with the product of two spaces, carrying irredu
ible representations ofADF andAE , respectively. It should
be stressed that coherent superpositions ofS2 eigenstates
with different eigenvalues do not exist as states ofADF , as
they live in different representations.

As to the operational method to construct theS25 j ( j
11) representation ofADF , it is just the physical translation
of the, only seemingly formal, GNS procedure. To be sp
cific, first an arbitrary~mixed or pure! state of the chosenS2

eigenspace has to be prepared. Then a complete set of
surements corresponding to Hermitian elements ofADF is
performed in order to select a pure state ofADF . Finally the
whole representation is spanned by arbitrary unitary evo
tion generated by Hamiltonian operators belonging toADF .
Of course here unitarity is referred toADF only, since the
coupling with the environment is simultaneously producin
in general, a nonunitary evolution of the whole-system al
bra AS and, to be more specific, of theS25 j ( j 11) repre-
sentation ofAE . Finally, it is worth remarking that possibl
terms in the system Hamiltonian belonging toAE give rise to
a further unitary evolution inAS , which in the present con
text is physically irrelevant since it does not affectADF .

IV. EXAMPLES

As a first example of a qubit array, collectively and un
formly coupled to the environment, consider a system
three physical qubits. The corresponding DF algebra is g
erated by

b2384SW 2
•SW 35(

j 51

3

1^ s j ^ s j ,

b3184SW 3
•SW 15(

j 51

3

s j ^ 1^ s j ,

b1284SW 1
•SW 25(

j 51

3

s j ^ s j ^ 1, ~35!

whereSW j denotes the pseudospin vector of thej th qubit, and
the Clebsch-Gordan decomposition in Eq.~32! reads

HS5D3/2% D1/2% D1/25H3/2% H1/2. ~36!
7-4
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Since the factorization ofjAS in Eq. ~33! is trivial for
S2515/4(j 53/2), as the error algebra generates the wh
operator algebra, the analysis is confined to the eigens
H1/2 with S253/4.

One can now apply the general GNS procedure. A
starting point take the pure state ofADF corresponding to an
arbitrary normalized vector ofH1/2. The ensuing Hilbert
space of equivalence classes of elements ofADF , according
to Sec. II, gives the looked for representation ofADF . ~Of
course even a density matrix onH1/2 that, as a state ofADF ,
is a pure state, can be taken as an equivalent starting po!
While this procedure can be applied in principle to mu
more general cases than the present qubit array, the
result given below can easily be checked directly@17#.

Using the symbol1/2O for the representation of the ge
neric operatorO in H1/2, for instance it can be checked tha
if one defines the invariant operator

E1238 (
i , j ,k51

3

« i jks i ^ s j ^ sk , ~37!

with « i jk denoting the usual completely antisymmetric sy
bol, theH1/2 representations of invariant operators

1/2t15~1/2b122 1/2b23!/A12,

1/2t251/2E123/A12,

1/2t35~1/2b2322 1/2b311 1/2b12!/6, ~38!

are the generators of ansu(2) algebra,

@1/2t i ,1/2t j #52i (
k51

3

« i jk 1/2tk , ~39!

with the Casimir given by

1/2t
2[(

j 51

3

1/2t j
2531̂. ~40!

The corresponding universal enveloping algebraA(1/2t),
which coincides with1/2ADF , is then the operator algebra o
a two-state system and the total operator algebra1/2A is
given by the product of this algebra and the universal en
oping algebraA(1/2S) of the total pseudospin algebra,

1/2A5A~1/2t! ^ A~1/2S!51/2ADF ^ A~1/2S!, ~41!

as a particular instance of Eq.~33!. As a consequence th
state spaceH1/2 can be identified with the tensor product
two two-dimensional representation spacesH1/2(t) and
H1/2(S), respectively, ofA(1/2t) andA(1/2S),

H1/25H1/2~t! ^ H1/2~S!, ~42!

which coincides with Eq.~34! for j 51/2 andnj52. Accord-
ing to what has been illustrated above, this factorization
far reaching physical consequences: if all measurement
cesses are limited to~Hermitian! elements ofADF , then a
stater5uc&^cu ^ rS, which is the product of a pure state
05230
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H1/2(t) and an arbitrary density matrix inH1/2(S), is a pure
state of the physical algebraADF . If in particular the initial
state has this structure@possibly withrS being itself a pure
state ofA(1/2S), this corresponding to an arbitrary pure sta
in H1/2], then, in spite of the decoherence ofrS ~or equiva-
lently the entanglement with the environment if this is n
traced out! produced by the coupling of the environment
the pseudospin operators, the state maintains phase c
ence as to the physical algebra, which is then DF. T
means that the considered three qubit array encodes a
logical qubit, compared to the four qubits needed within t
conventional approach@12#.

As a further example, consider now a four qubit arra
whose Clebsch-Gordan decomposition is

HS5D2% D1% D1% D1% D0% D05H2% H1% H0 .
~43!

In this case, while the factorization is trivial and useless
the S256( j 52) representation, it is still trivial but fruitful
for the carrier spaceH0 of the two degenerateS250 repre-
sentations, where it gives rise to the DF states already c
sidered in the literature. To be specific it can be checked
the H0 representations of invariant operators

0t18~0b1410b2320b1220b34!/~4A3!,

0t28~0E23410E12420E13420E123!/~8A3!,

0t382~0b1410b1210b13!/3 ~44!

obey the same relations as their analogs in Eqs.~39! and
~40!, whose enveloping algebra once again is the oper
algebra of a DF logical qubit. As represented inH0 the DF
subalgebra coincides with the total operator algebra, the
resentation of the total pseudospin algebra being the tri
~scalar! one.

For the four qubit array, apart from the reproduction o
DF qubit of vanishing pseudospin, the present approach
gives rise to a DF qutrit. Consider in fact the nin
dimensionalS252( j 51) eigenspaceH1 containing three
degenerate three-dimensional representations. It can
checked, for instance, that theH1 representation of invarian
operators

1t181E134/~22A3!,

1t28~1E13423 1E124!/~4A6!,

1t38~1E2341 1E123!/~4A2! ~45!

obey the usual commutation rules ofsu(2) generators as in
Eq. ~39!, while 1t2[( j 51

3 t j
2581̂. In this case the nine-

dimensional state space1H can be identified with the prod
uct of the three-dimensional irreducible representations
the DF algebra and the total pseudospin algebra. In per
analogy to what was said for the three qubit array one
arrange in the consideredS252 eigenspace a DF qutrit
namely a tridimensional state space of the DF algebra.
course in this case the whole representation algebra1ADF
7-5
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SERGIO DE FILIPPO PHYSICAL REVIEW A 62 052307
cannot be produced by linear combination of thesl(2,C)
generators~and the identity! only, but products of two of
them must be included too.

V. CONCLUSION

In conclusion what has been shown can be of use b
with reference to the considered examples and more ge
ally as a method to identify for given systems several al
native DF spaces, which can give rise to more chances
finding physically viable realizations of quantum computin
In particular the possibility to test DF qubit encoding in a
rays of just three physical qubits may represent a substa
bonus in the near future.

More generally a different viewpoint about decoheren
is advocated and shown to be effective. It is shown that
very notion of decoherence should be defined in more ph
cal terms starting from the notion of physical algebra. Bef
asking if a state of a given system is pure or not we sho
preliminarily fix the operator algebra with respect to whi
we are defining the state. The main result of the paper is
if pureness is not defined in an abstract setting, starting f
tt.

v

m

c
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the operator algebra of the whole universe, but on the c
trary from the operator algebra generated by the actual m
surements that the experimentalist is going to perform
thoroughly new and promising perspective appears. This
sult is relevant not only with reference to quantum comp
ing but even to the foundations of quantum mechanics
the analysis of open quantum systems in general. In part
lar the approach in terms of representations of DF algeb
may shed some light on the physical relevance of quan
coherence which, in principle, due to the structure of
Hamiltonian, could be present in unexpected situations
system algebras can be factored as the product of uncou
collective algebras, one of them decoupled from the envir
ment too.
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representativesAPÃ,BPB̃. In fact f (@E* 1l̄F* #@E1lF#)
>0;lPC;E,FPA⇒u f (F* E)u2< f (E* E) f (F* F), by which
that independence follows ifE and F are meant to be differ-
ences between elements ofB̃ and Ã, respectively.

@17# One can easily check that for the three qubit array, in
product basis

uc&[
1

A2
~ u21,21,1&2u1,21,21&)⇒S2uc&53uc&,

t3uc&52uc&,
t12 i t2

2
uc&50,

wheret operators are defined as in Eqs.~38! without restric-
tion to the j 5 1

2 subspace. In this case one can explicitly co
struct the representation by the raising operator, namely
terms of the basis

uc&,
t12it2

2
uc&5

1

A6
~2u21,1,21&2u21,21,1&

2u1,21,21&),

the matrix representation of the operatorst1 ,t2 ,t3 is given by
the Pauli matrices.
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