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Arbitrary phases in quantum amplitude amplification

Peter Ho”yer*
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We consider the use of arbitrary phases in quantum amplitude amplification, which is a generalization of
quantum searching. We prove that the phase condition in amplitude amplification is given by tan(w/2)
5tan(f/2)(122a), wheref andw are the phases used and wherea is the success probability of the given
algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing
this condition, we give methods for constructing quantum algorithms that succeed with certainty and for
implementing arbitrary rotations. We also conclude that phase errors of order up to 1/Aa can be tolerated in
amplitude amplification.

PACS number~s!: 03.67.Hk
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I. INTRODUCTION

Most quantum algorithms developed so far are based
two techniques: Quantum Fourier transforms and amplit
amplification. The latter technique is a generalization
Grover’s quantum algorithm for searching an unordered
tabase@1#, and it allows a quadratic speedup over any cl
sical algorithm for many computational problems. Since a
plitude amplification is fundamental for quantum algorithm
it has received a great deal of attention. This includes a st
of its robustness to errors and modifications. In particu
the effects of using arbitrary phases in amplitude amplifi
tion have been studied in a sequence of papers by Longet al.
@2–5#.

In this paper, we also consider the question of when a
trary phases can be utilized in amplitude amplification. O
results complement the results of Longet al. who are prima-
rily interested in the question of how large phase errors
can tolerate and still obtain a quantum algorithm for sear
ing that succeeds withhigh probability. We are primarily
interested in the question of what restrictions we need to
on the two angles used in amplitude amplification and s
obtain quantum algorithms that succeed withcertainty.

To illustrate our results, consider a database of sizeN
with a unique marked element. In each iteration of Grove
algorithm, we rotate the phase of some states by anglef
andw, respectively. The main result in Refs.@2–5# is that if
the two angles differ by at mostc/AN for some appropriate
constantc, that is, if uw2fu<c/AN, then we can still find
the marked element with high probability using onlyQ(AN)
iterations. Our main result is that if the two angles satisfy
equation tan(w/2)5tan(f/2)(122/N) then we can find the
marked element with certainty using onlyQ(AN) iterations.
Together with the result of Longet al., this provides a de-
scription of the use of arbitrary phases for bounded-error
exact quantum algorithms. It is possible to rederive the m
result of Longet al. from our results by considering the ca
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f5w an approximation to the perfect case tan(w/2)
5tan(f/2)(122/N). ~See Secs. III–V below for rigorous
statements.!

We thus prove that there is phase condition in amplitu
amplification, and that this condition is not that the phas
are equal, but that they satisfy the trigonometric equat
mentioned above. We believe that our approach is intuit
and that it yields short and straightforward proofs.

II. AMPLITUDE AMPLIFICATION

Amplitude amplification is a generalization of Grover
quantum searching algorithm that allows a speed up of m
classical algorithms. The heart of amplitude amplification
an operatorQ defined similarly to the operator used in Gro
er’s algorithm@1#. We refer the reader to Ref.@6# and the
references therein for a through introduction to amplitu
amplification. Here we give only a concise description of t
objects we require.

Let H be Hilbert space of dimensionN and let
$u0&,...,uN21&% be an orthonormal basis forH. Let A be a
unitary operator onH. We may think ofA as a quantum
algorithm that uses no measurements. Letx:$0, . . . ,N
21%→$0,1% be a Boolean function. We say that a basis st
ux& is good if x(x)51, and otherwise we say thatux& is bad.
Given two angles 0<f,w,2p, define

Q5Q~A,x,f,w!52AS0~f!A21Sx~w!. ~1!

Here, the operatorSx(w) conditionally changes the phase
the amplitudes of the good states,

ux&°H eiwux& if x~x!51

ux& if x~x!50.
~2!

Similarly, the operatorS0(f) multiplies the amplitude by a
factor of eif, if and only if, the state is the zero stateu0&.
Here and elsewhere we usei to denote the principal squar
root of 21.

Let uC&5Au0& denote the superposition obtained by a
plying algorithm A on the initial state u0&. Let uC1&
5PgooduC&, wherePgood5(x:x(x)51ux&^xu denotes the pro-
jection onto the subspace spanned by the good basis st

a-
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and similarly let uC0&5PbaduC& where Pbad
5(x:x(x)50ux&^xu. Let a5^C1uC1& denote the probability
that a measurement ofuC&5Au0& yields a good state, and le
b5^C0uC0& denote the probability that a measurement
uC& yields a bad state. We then have thatuC&5uC1&
1uC0& and 15a1b. Finally, let angleu be so that 0<u
<p/2 anda5sin2 (u).

As an example, forN52n, we obtain Grover’s searchin
algorithm@1# by settingA to be the Walsh-Hadamard tran
form on n qubits, lettingx(x) be 1, if and only if, the data-
base holds a 1 atpositionx, and picking phasesf5w5p. If
the database contains a 1 at t different positions thena
5t/N.

The operatorQ implements a unitary operation on th
subspace spanned byuC1& and uC0&. This subspace has d
mension 2 if 0,a,1. With respect to the ordered orthono
mal basis (1/AauC1&,1/AbuC0&), we can representQ
5Q(A,x,f,w) by the 232 unitary matrix

M5F2$~12eif!a1eif% ~12eif!AaA12aeiw

~12eif!AaA12a $~12eif!a21%eiw G .

~3!

If f5w5p, then this simplifies to@7#

M5Fcos~2u! 2sin~2u!

sin~2u! cos~2u!
G . ~4!

That is, if we pickf5w5p, then each application ofQ
implements a rotation by angle 2u. A natural question then
is, what happens if at least one of the two anglesf andw is
not equal top?

III. ARBITRARY ROTATIONS

Consider the matrixM defined by Eq.~3!. Our primary
objective is to ensure that the diagonal elements ofM are
equal.

Theorem 1~Optimal angles!—SupposefÞp. Then the
two diagonal elements of M are equal, if and only if,

tan~w/2!5tan~f/2!~122a!, ~5!

where matrix M is defined by Eq. (3).
Equation ~5! expresses the phase condition we want

impose onf andw. It can be proven straightforwardly usin
standard identities of the trigonometric functions as follow
The two diagonal elements ofM are equal, if and only if,

2$~12eif!a1eif%5$~12eif!a21%eiw,

if and only if,

~eif21!a~eiw11!5eif2eiw.

Dividing by 2iei(f1w)/2 on both sides, this is equivalent t
requiring that

2a sinS f

2 D cosS w

2 D5sinS f2w

2 D . ~6!
05230
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By applying the identity sin(x2y)5sin(x) cos(y)
2sin(y) cos(x), Eq. ~6! can be rewritten as

sinS w

2 D cosS f

2 D5sinS f

2 D cosS w

2 D ~122a!,

which holds, if and only if,

tanS w

2 D5tanS f

2 D ~122a!.

Theorem 1 follows.
We now show how to implement arbitrary rotations~up to

certain phase factors! by appropriate choices off andw. Let
0<q,2p be any angle for whichusin(q)u<sin(2u). First we
pick anglef so that the absolute value of the lower left ent
of M equalsusin(q)u. Then we pick anglew so that Eq.~5!
holds. This ensures that the two diagonal elements ofM are
equal. With these choices off andw, matrix M can thus be
written in the form

H5eivF1

eiuGFcos~q! 2sin~q!

sin~q! cos~q!
GF1

e2iuG ~7!

for some angles 0<u,v,2p. We denote this matrix byH.
Here and elsewhere, missing matrix entries are assu
equal to 0.

To summarize, we have just shown that for alla (0,a
,1) and for all anglesq (0<q,2p) so that usin(q)u
<sin(2u), there exist angles 0<f,w,2p so thatM5H for
some angles 0<u,v,2p, whereM is given by Eq.~3! and
H by Eq. ~7!. Matrix H represents a rotation by angleq,
which is conjugated by a conditional phase change by an
u, up to a global phase factor ofeiv.

For many applications, applyingH will be equally good to
applying a rotation by angleq. For instance, we can useH to
implement arbitrary rotations as follows. Supposea is
known. Letw be any angle (0<w,2p). We implement a
rotation by anglew as follows. First, we check ifw is a
multiple of 2u. If so, we simply just applyQ(A,x,p,p) a
total number ofw/(2u) times and stop@7#. Otherwise, we
compute the smallest integerm larger thanw/(2u) and we
set q5w/m. Then we find anglesf and w so thatM5H,
and we compute the anglesu and v. With these choices of
angles, we can factorize the rotation by anglew as

Fcos~w! 2sin~w!

sin~w! cos~w!
G5e2imvF1

e2iuGMmF1

eiuG .
~8!

Thus, to implement a rotation by anglew, we first apply a
conditional phase change of the bad states by angleu. Then
we applyQ(A,x,f,w) a total number ofm times, apply a
conditional phase change of the bad states by angle2u, and
finally apply a global phase change by angle2mv.

IV. OBTAINING SUCCESS PROBABILITY 1

We now show that if we pick nontrivial anglesf andw so
that Eq. ~5! holds, then we can find a good solution wi
4-2
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certainty. That is, we can use any set of angles (f,w)
Þ(0,0) for which Eq.~5! holds.

Let angle 0<q<p/2 be defined so that sin(q)
5u sin(f/2)sin(2u)u. Sincef and w satisfy Eq.~5!, we can
write Q(A,x,f,w) in the form

eivF1

eiuGFcos~q! 2sin~q!

sin~u! cos~q!
GF1

e2iuG ~9!

for some angles 0<u,v,2p. That is, operator
Q(A,x,f,w) implements a rotation by angleq, up to phase
factors.

Our idea for finding a good solution with certainty is
follows: Let m5(p/22u)/q and u init5p/22mq. Then
2u,u init<u. We first set up a superposition representi
the initial angleu init . This is possible sinceuu initu<u. Then
we apply operatorQ(A,x,f,w) a total number ofm times
and finally we measure. This produces a good solution w
certainty. Let uC init& denote the state sin(uinit)/AauC1&
1cos(uinit)/A12auC0&. A realization of this idea is as fol
lows:

~1! Apply A on the first register of the initial stat
u0&u0&u0&, producing the stateuC&u0&u0&.

~2! Apply function x on the first and second register
That is, apply the mappingux&uz&→ux&uz% x(x)& for z
P$0,1%, producing the stateuC1&u1&u0&1uC0&u0&u0&. ~Re-
call that uC&5uC1&1uC0&.)

~3! Let g5@cos(u) /sin(u)#@sin(uinit)/cos(uinit)#. Note that
ugu<1 sinceuu initu<u<p/2. Rotate the third register cond
tionally to the second register holding a 1, producing
state uC1&u1&(gu0&1A12g2u1&)1uC0&u0&u0&, which we
can rewrite as (guC1&u1&1uC0&u0&)u0&1buC1&u1&u1&,
whereb5A12g2.

~4! Apply function x on the first and second register
producing the state (guC1&1uC0&)u0&u0&1buC1&u0&u1&,
which is equal toauC init&u0&u0&1buC1&u0&u1&, where a
5cos(u)/cos(uinit).

~5! Now swap the contents of the first and second reg
ters conditionally to that the third register contains a 1, p
ducing the stateauC init&u0&u0&1bu0&uC1&u1&.

~6! We are now ready to rotate the first register by an
mq. First apply the operatorSx(u) on the first register, pro-
ducing the state a$eiu sin(uinit)/AauC1&1cos(uinit)/
A12auC0&%u0&u0&1bu0&uC1&u1&.

~7! Apply operatorQ(A,x,f,w) a total number ofm
times on the first register, producing the sta
a$ei(u1vm)/AauC1&%u0&u0&1buE8&uC1&u1&, for some state
uE8&.

~8! Finally, swap the contents of the first two registe
conditionally to that the third register contains a 1, produc
the final tensor product stateuC1&uE8&2,3, for some state
uE8&2,3 that represents the joint state of registers 2 and 3

We may summarize this section by saying that for fix
known rotational angleq, we can modify the angle of the
initial state so that we succeed with certainty.
05230
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V. THE PHASE CONDITION

Our condition that tan(w/2)5tan(f/2)(122a) implies
unfortunately thatf and w depend nontrivially ona. Put
formally, for all angles 0,f,2p so thatfÞp, the follow-
ing holds: For all angles 0<w,2p with wÞp, there exists
a uniqueaPR so that Eq.~5! holds, and for all 0<a<1,
there exists a unique angle 0<w,2p so that Eq.~5! holds.
If the success probabilitya is known in advance, then for an
angle f we may want to pick, we can easily compute t
anglew to use. However, ifa is not known, then this is no
possible unlessfP$0,p%. Thus for anglesf¹$0,p%, we
need to knowa to computew so that Eq.~5! holds.

If we do not knowa in advance, then a subsidiary strate
could be to utilize a set of angles~f,w! so that Eq.~5! almost
holds. If a is small then we could, for example, approxima
w by f. In the papers@2–5#, Long et al. consider the ques
tion of when arbitrary phases can be utilized successfully
quantum searching. Their conclusion is that the angles h
to equal (f5w) ‘‘to construct an efficient quantum searc
algorithm’’ @8#. Our condition that tan(w/2)5tan(f/2)(1
22a) is obviously different from their condition~that f
5w) whenever 0,a,1 andf¹$0,p%. The explanation for
these different results is that Longet al. consider when the
quantum search algorithm succeeds with high probabil
whereas we, in the previous section, consider when the q
tum search algorithm succeeds with certainty. In particu
all our calculations are exact. A main proof technical id
used by Longet al. for example in Ref.@3# is approximations
of the typeK1'eK2 for 232 matricesK1 andK2 .

Longet al. @3,4# prove their result via anSO(3) rotational
interpretation of operatorQ(A,x,f,w). We now reprove the
theorem of Longet al. that if we use phasesf5w, then we
can find a good solution with high probability. The main id
in our alternative proof is to consider the casef5w, an
approximation to the perfect case in which Eq.~5! holds, and
then lower bound how well this approximation works. We
that by upper bounding the norm of the difference of tw
operators. This idea provides a short and straightforw
proof.

Lemma 1 ~equal angles!—Let 0,f,p. Let angle 0
,q<p/2 be so that sin(q)5sin(f/2)sin(2u). Let m
5 dp/(2q)2 1

2 e and letQ85Q(A,x,f,f). Then

u^C18uQ8mAu0&u>12a~214p2m!, ~10!

whereuC18&51/AauC1&.
Let angle 2p,w,p be so that tan(w/2)5tan(f/2)(1

22a). Thenuf2wu<2pa. Let Q5Q(A,x,f,w) and letH
denote the Hilbert space thatQ and Q8 act upon. Leti•i
denote the operator norm onH defined by iOi
5sup$uOuG&u:uuG&u51% for any operatorO on H. Then

iQ82Qi5 I F1

eifG2F1

eiwG I5u12ei~f2w!u<4p2a,

~11!

and thusiQ8m2Qmi<4p2am.
4-3
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PETER HO”YER PHYSICAL REVIEW A 62 052304
By definition of m we have thatumq2p/2u<q/2<u, so
sin(mq)>A12a and henceu^C18uQ

muC&u>122a. Thus,

u^C18uQ8muC&u>u^C18uQ
muC&u24p2am

>12a~214p2m!. ~12!

Lemma 1 follows.
If we measure the stateQ8mAu0&, then the outcome is

good with probability at least 124a(112p2m), which is at
least 124a(p3/q111). The probability of measuring a ba
state is thus upper bounded by 4p3a/q144a, which is
O(Aa/f) for 0,a<1 and 0,f,p. Theorem 2 follows.

Theorem 2~equal angles!—Let A be any quantum algo
rithm that uses no measurements. Let a denote the suc
probability of A and let angle 0,u<p/2 be so that
sin2(u)5a. Let f be any angle so thatu<f,p. Let m
5 dp/(2)q2 1

2 e, where angle0,q<p/2 is so thatsin(q)
5sin(f/2)sin(2u). Let Q85Q(A,x,f,f). Then a measure
ment ofQ8mAu0& will provide a good solution with probabil-
ity 12O(Aa/f).

Theorem 2 relies on two properties: First, that opera
Q(A,x,f,f) approximates operatorQ5Q(A,x,f,w) suf-
ficiently well. Secondly, that each application ofQ imple-
ments a rotation by a sufficiently large angleq. Any set of
angles~f,w! so that these two properties are fulfilled w
provide a quantum amplitude amplification scheme. In g
eral, the closer we pick the rotational angleq to the maximal
angle 2u, the worse the approximation forQ we can allow
ourselves to use, and vice versa. In the next theorem, w
is proven almost identically to Theorem 2, we express o
way of capturing this duality.

Theorem 3~any angles!—Let A be any quantum algo
rithm that uses no measurements. Let a denote the suc
probability of A and let angle 0,u<p/2 be so that
sin2(u)5a. Let 0,f,p and 2p,w8,p be given angles.

Let m5 dp/(2q)2 1
2 e, where angle0,q<p/2 is so that

sin(q)5sin(f/2)sin(2u). Let 2p,w,p be defined so tha
tan(w/2)5tan(f/2)(122a) and let d5uw82wu. Let Q8
5Q(A,x,f,w8) denote our approximation toQ(A,x,f,w).
Then a measurement ofQ8mAu0& will provide a good solu-
tion with error probability at most4a1e, provided d
<efAa)/@2p2()1p)#.

The above theorem put bounds on the errord5uw82wu
that we can tolerate to still obtaining a quantum algorith
that succeeds with high probability. Supposef is a constant,
say f5p/10, then wheneverd is at mostcAa, for some
appropriate constantc, the above algorithm finds a good s
lution with bounded error probability. Furthermore, ifd is at
.
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most O(a), as it is if we pickw85f, then the error prob-
ability drops to being inO(Aa). Thus, the smaller the erro
in the choice of angles from the perfect case as expresse
Eq. ~5!, the smaller is the error probability of the algorithm

Theorem 3 is similar to the main result in Ref.@5# where
it is proven that for quantum searching, the distan
uf2wu must be at most of order 1/AN for finding the marked
element with constant success probability. Our result gen
alizes their result as it measures the error probability of
overall algorithm in terms of the distance from the perfe
case in which Eq.~5! holds. The casef5w is already an
approximation, which by itself introduces an error ind in the
order of Q(a). In addition, Theorem 3 includes the cas
that the anglesf and w are not constants but depend ona.
However, the main benefit of Theorem 3 is that it is easy
prove once one is given Theorem 1. Essentially, the proo
Theorem 3 reduces to bounding the distance between the
operatorsQ(A,x,f,w) andQ(A,x,f,w8).

VI. CONCLUSION

Amplitude amplification is besides quantum Fourier tran
forms the most successfully used tool in quantum algorith
It is a generalization of Grover’s quantum searching alg
rithm and it allows a quadratic speed up of many algorithm

We prove that the phase condition in amplitude ampl
cation can be expressed by the equation tan(w/2)
5tan(f/2)(122a), wherea denotes the success probabili
of the original algorithm. We show how to implement arb
trary rotations and how to boost quantum algorithms to s
ceed with certainty by utilizing angles~f,w! that satisfy the
above equation. In both cases, the number of iterations
quired increases linearly in the inverse of anglef. For in-
stance, if we choosef5p/c for some constantc.1, then
we requireQ(c/Aa) iterations to find a solution with cer
tainty.

Whenever the success probabilitya is not knowna priori,
we can approximate the above trigonometric equation by
linear equationf5w. This case has been studied by Lon
et al. @2–5# and in particular, they have shown that equ
angles can be utilized in quantum searching. By conside
the case f5w an approximation to the perfect cas
tan(w/2)5tan(f/2)(122a), we can reprove the main resul
by Long et al.
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