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Arbitrary phases in quantum amplitude amplification

Peter H(yer*
BRICS' Department of Computer Science, University of Aarhus, Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark
(Received 30 May 2000; published 11 October 2000

We consider the use of arbitrary phases in quantum amplitude amplification, which is a generalization of
quantum searching. We prove that the phase condition in amplitude amplification is given by2an(
=tan(@/2) (1—2a), where¢ and ¢ are the phases used and whari the success probability of the given
algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing
this condition, we give methods for constructing quantum algorithms that succeed with certainty and for
implementing arbitrary rotations. We also conclude that phase errors of order ugaaarn be tolerated in
amplitude amplification.

PACS numbd(s): 03.67.Hk

. INTRODUCTION ¢=¢ an approximation to the perfect case tai2)

Most quantum algorithms developed so far are based off an(#/2)(1—2/N). (See Secs. IlI-V below for rigorous

two techniques: Quantum Fourier transforms and amplitud§tatements.

amplification. The latter technique is a generalization of V€ thus prove that there is phase condition in amplitude

Grover’s quantum algorithm for searching an unordered daz_amplification, and that this condition is not that the phases

tabasd 1], and it allows a quadratic speedup over any clas2re equal, but that they satisfy the trigonometric equation

. . . . mentioned above. We believe that our approach is intuitive

sical algorithm for many computational problems. Since am- o :
: P : and that it yields short and straightforward proofs.

plitude amplification is fundamental for quantum algorithms

it has received a great deal of attention. This includes a study

of its robustness to errors and modifications. In particular, II. AMPLITUDE AMPLIFICATION

the effects of using arbitrary phases in amplitude amplifica- Amplitude amplification is a generalization of Grover's
tion have been studied in a sequence of papers by eba§  quantum searching algorithm that allows a speed up of many
[2-5]. classical algorithms. The heart of amplitude amplification is
In this paper, we also consider the question of when arbian operatoQ defined similarly to the operator used in Grov-
trary phases can be utilized in amplitude amplification. Ourer’s algorithm[1]. We refer the reader to Reff6] and the
results complement the results of Loagal. who are prima- references therein for a through introduction to amplitude
rily interested in the question of how large phase errors w@&mplification. Here we give only a concise description of the
can tolerate and still obtain a quantum algorithm for searchobjects we require.
ing that succeeds withigh probability We are primarily Let H be Hilbert space of dimensioN and let
interested in the question of what restrictions we need to pu{t| 0_>1---:|N_ 1)} be an orthonormal basis fat. Let A be a
on the two angles used in amplitude amplification and stjllunitary operator or#{. We may think of.A as a quantum
obtain quantum algorithms that succeed vatttainty. algorithm that uses no measurements. Leto, .. N
To illustrate our results, consider a database of size — 1}—1{0.1} be a Boolean function. We say that a basis state
with a unique marked element. In each iteration of Grover'd®) is goodif x(x)=1, and otherwise we say thgg is bad
algorithm, we rotate the phase of some states by angles CIVeN Wo angles & ¢, o<2m, define
and ¢, respectively. The main result in Ref2-5] is that if _ _ -1
the two angles differ by at most\/N for some appropriate Q=R b 0) =~ AS(H)A S @). @
constantc, that is, if[¢— ¢|<c/\N, then we can still find Here, the operatd8,(¢) conditionally changes the phase of
the marked element with high probability using ol +/N) the amplitudes of the good states,
iterations. Our main result is that if the two angles satisfy the
equation tang/2)=tan(@/2)(1—2/N) then we can find the elx) if x(x)=1
marked element with certainty using or(/N) iterations. )= Ixy if x(x)=0.
Together with the result of Longt al, this provides a de-
scription of the use of arbitrary phases for bounded-error an&imilarly, the operatoSy(¢) multiplies the amplitude by a
exact quantum algorithms. It is possible to rederive the mairfiactor of €%, if and only if, the state is the zero sta.
result of Longet al. from our results by considering the case Here and elsewhere we usé¢o denote the principal square

)

root of —1.
Let |')=A|0) denote the superposition obtained by ap-
*Email address: hoyer@brics.dk plying algorithm A on the initial state|0). Let |¥,)
"Basic Research in Computer Science, Center of the Danish Na= Pgood V'), Where Pyoo= =y, (x-1/X)(X| denotes the pro-
tional Research Foundation. jection onto the subspace spanned by the good basis states,
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and similarly let |Pg)=Pyd¥) where Py
=3, -0l X)(x|. Let a=(W¥,|¥,) denote the probability
that a measurement p¥ ) = A4|0) yields a good state, and let

b=(W¥,¥,) denote the probability that a measurement of

|W) yields a bad state. We then have that)=|¥)
+|¥o) and 1=a+b. Finally, let angled be so that 86
<7/2 anda=sir? ().

As an example, foN=2", we obtain Grover’'s searching
algorithm[1] by setting.A to be the Walsh-Hadamard trans-
form onn qubits, lettingy(x) be 1, if and only if, the data-
base hold a 1 atpositionx, and picking phase¢=¢= . If
the database contana 1 att different positions thera
=t/N.

The operatorQ implements a unitary operation on the
subspace spanned b¥ ) and|¥ ). This subspace has di-
mension 2 if 6<a<<1. With respect to the ordered orthonor-
mal basis (1{a]¥,),1\/b|¥y)), we can represeniQ
=Q(A,x,d,¢) by the 2x2 unitary matrix

—{(1-e®)a+e?} (1-e')ayl—ae?
(1-eY)Jayl—a {(1-e*Y)a—1lew

)
If ¢=¢=m, then this simplifies t¢7]

—gmzm}
cog26) |’

cog26)
sin(26)

(4)

That is, if we pick ¢=¢ =, then each application d
implements a rotation by angleg2 A natural question then
is, what happens if at least one of the two anglesnd ¢ is
not equal tor?

Ill. ARBITRARY ROTATIONS

Consider the matrixM defined by Eq.(3). Our primary
objective is to ensure that the diagonal elementdvoare
equal.

Theorem 1(Optimal angles—Supposed# 7. Then the
two diagonal elements of M are equal, if and only if

tan( ¢/2) = tan ¢/2) (1—2a), (5)

where matrix M is defined by Eq. (3)
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By applying the identity sin(—y)=sin(x) cosf)
—sin(y) cos§), Eq. (6) can be rewritten as

RENTI -

which holds, if and only if,

¢ ¢
tar(E =tar<§

Theorem 1 follows.

We now show how to implement arbitrary rotatiofp to
certain phase factorby appropriate choices @f and¢. Let
0<d<2m be any angle for whicksin(9)|<sin(26). First we
pick angle¢ so that the absolute value of the lower left entry
of M equals|sin(8)|. Then we pick anglep so that Eq.(5)
holds. This ensures that the two diagonal elements! aire
equal. With these choices @f and ¢, matrix M can thus be
written in the form

(1-2a).

1 cog )
sin(9)

for some angles € u,v<2#7. We denote this matrix bi.

—sin(9) |1

— alv
H=e cog )

(7)

eLU e— AV

Here and elsewhere, missing matrix entries are assumed

equal to 0.

To summarize, we have just shown that for al(0<a
<1) and for all angles (0<9d<2w) so that|sin(d)|
<sin(20), there exist angles® ¢, <27 so thatM=H for
some angles €u,v <2, whereM is given by Eq.(3) and
H by Eq. (7). Matrix H represents a rotation by angl&

which is conjugated by a conditional phase change by angle

u, up to a global phase factor ef’.

For many applications, applyirtd will be equally good to
applying a rotation by anglé. For instance, we can us&to
implement arbitrary rotations as follows. Suppoaeis
known. Letw be any angle (&w<2). We implement a
rotation by anglew as follows. First, we check ifv is a
multiple of 26. If so, we simply just apphQ(A,x,m,7) a
total number ofw/(26) times and stog7]. Otherwise, we
compute the smallest integer larger thanw/(26) and we
set9=w/m. Then we find angleg) and ¢ so thatM=H,
and we compute the anglesandv. With these choices of

Equation (5) expresses the phase condition we want toangles, we can factorize the rotation by anglas

impose ong and¢. It can be proven straightforwardly using

standard identities of the trigonometric functions as follows.

The two diagonal elements & are equal, if and only if,
—{(1-eY)a+e’}={(1-e’)a—1}e*,
if and only if,
(e*’—1)a(e**+1)=e?—e*.

Dividing by 2:e(?* )2 on both sides, this is equivalent to

requiring that
f co ? =sin
2 2]

2asin

¢—¢>)_

. ©®)

cogw) 1

sin(w)

eLU "

—sin(w)} ]2
=e Mo

cogw)

e— LU:| M "
tS)
Thus, to implement a rotation by angle we first apply a
conditional phase change of the bad states by amgléen
we applyQ(A, x,¢,¢) a total number oim times, apply a

conditional phase change of the bad states by angieand
finally apply a global phase change by anglenv.

IV. OBTAINING SUCCESS PROBABILITY 1

We now show that if we pick nontrivial anglesande so
that Eg.(5) holds, then we can find a good solution with
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certainty. That is, we can use any set of angles «) V. THE PHASE CONDITION

7&(&?) g)r:gﬁhlcgs%qéilgdﬂz defined so that sify Our condition that tam(/Z):tan(¢/2)('1f 2a) implies
—|sin(#/2)sin(26)|. Since ¢ and ¢ satisfy Eq.(5), we can unfortunately that¢ and ¢ depend nontrivially oma. Put
write Q(A, y. ¢ ‘P). in the form T formally, for all angles 6< <2 so that¢ # , the follow-
R ing holds: For all angles € ¢<2 with ¢+ 7, there exists

a uniqueae R so that Eq.(5) holds, and for all Gca<1,

there exists a unique anglesQp<27 so that Eq(5) holds.
©) If the success probabilit is known in advance, then for any
angle ¢ we may want to pick, we can easily compute the
angle ¢ to use. However, i1 is not known, then this is not
possible unlesspe{0,7}. Thus for angles$ ¢ {0,7}, we
need to knowa to computep so that Eq.(5) holds.

If we do not knowa in advance, then a subsidiary strategy
could be to utilize a set of anglé&,¢) so that Eq(5) almost
holds. Ifais small then we could, for example, approximate
¢ by ¢. In the paperg$2-5], Long et al. consider the ques-

1 1

eLU

cogd9) —sin( ﬂ)}
sin(#) cog )

eLU e* 4]

for some angles €u,v<27. That is, operator
Q(A,x, ¢, o) implements a rotation by angk, up to phase
factors.

Our idea for finding a good solution with certainty is as
follows: Let m=(m/2—0)/¥ and 6;,;= w/2—myY. Then
—0<6;,= 6. We first set up a superposition representing

the initial angled;y;. This is possible sinced|<6. Then & 7 ¢\ o0 arbitrary phases can be utilized successfully in

we apply operatoQ(A,X,cjb,fp) a total number om t'mes .. quantum searching. Their conclusion is that the angles have
and finally we measure. This produces a good solution W|tl}0 equal =) “to construct an efficient quantum search

certainty. Let |Wiy) denote the state _S'%t)/‘_/alpﬁ algorithm” [8]. Our condition that tang/2)=tan(®/2)(1

+coS@ini)/V1—a|Wo). A realization of this idea is as fol- _24) is obviously different from their conditiorithat ¢

lows: = ¢) whenever 6<a<1 and¢ ¢ {0,7}. The explanation for
these different results is that Loreg al. consider when the

(1) Apply A on the first register of the initial state quantum search algorithm succeeds with high probability,
|0)|0)|0), producing the statgP)|0)|0). whereas we, in the previous section, consider when the quan-

(2) Apply function y on the first and second registers. tum search algorithm succeeds with certainty. In particular,
That is, apply the mappindx)|z)—|x)|z& x(x)) for z  all our calculations are exact. A main proof technical idea
€{0,1}, producing the staté¥)|1)|0)+|¥)|0)|0). (Re-  used by Longet al.for example in Ref[3] is approximations
call that|W)=|W,)+|¥,).) of the typeK ,;~eK2 for 2x 2 matricesK; andK,.

(3) Let y=[cos(@) /sin(6)][sin(&ni)/cos@inir) ]. Note that Long et al.[3,4] prove their result via aBO(3) rotational
|¥]|=<1 since|;,;|< 6=< /2. Rotate the third register condi- interpretation of operatd®(.A, x,®,¢). We now reprove the
tionally to the second register holding a 1, producing thetheorem of Longet al. that if we use phase$= ¢, then we
state |W)|1)(y|0)+ V1—9?|1)) +|¥)|0)|0), which we can find a good solution with high probability. The main idea
can rewrite as {|¥)|1)+|¥)|0))|0)+B|W,)[1)|1), in our alternative proof is to consider the cage= ¢, an
where=1—»2. approximation to the perfect case in which Es). holds, and

(4) Apply function x on the first and second registers, then lower bound how well this approximation works. We do
producing the state W)+ |¥))|0)|0)+ B|¥,)|0)|1),  that by upper bounding the norm of the difference of two
which is equal toa|¥;,;}|0)|0)+ B8|¥,)|0)|1), where a  operators. This idea provides a short and straightforward
=c0s()/cos@)- proof.

(5) Now swap the contents of the first and second regis- Lemma 1 (equal angles—Let 0<¢<m. Let angle O
ters conditionally to that the third register contains a 1, pro-<<9=<w/2 be so that sin(9)=sin(¢/2)sin(2). Let m

ducing the statey|W;,;)|0)|0)+ B8]0)| ¥ )| 1). =[7/(29)— 3] and letQ' =Q(A,x, ¢, #). Then
(6) We are now ready to rotate the first register by angle
md. First apply the operatdd, (u) on the first register, pro- (W]|Q'™A|0)|=1—-a(2+47°m), (10
ducing the state a{e“ sin(Bn)/\Val¥,)+cos@ny)/
V1—2a|¥)}[0)|0)+ B|0)|Wy)[1). Wherel\lri>:1/\/a|’\lll>_

(7) Apply operatorQ(.A,x,¢,¢) a total number ofm
times on the first register, producing the state
af{elu oM/ Ja| W )}|0)|0)+ B|E')|W;)|1), for some state
|[E").

(8) Finally, swap the contents of the first two registers
conditionally to that the third register contains a 1, producing
the final tensor product statel';)|E’),3, for some state
|E’), 3 that represents the joint state of registers 2 and 3. Q' —Q|= ‘Hl

e

Let angle —m<¢o<w be so that tanf/2)=tan(#/2)(1
—2a). Then|¢p—¢|<2ma. LetQ=Q(A,x, d,¢) and letH
denote the Hilbert space th@ and Q' act upon. Let]-|
denote the operator norm or{ defined by [|O]
=sud|O|T')|:||T')|=1} for any operatolO on H. Then

=|1-e'¢"9)|<an?a,

e’
We may summarize this section by saying that for fixed (11
known rotational angley, we can modify the angle of the
initial state so that we succeed with certainty. and thug|Q’™— Q™|<4m2am.
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By definition of m we have thafmd— 7/2|<9/2<6, so  mostO(a), as it is if we picke’= ¢, then the error prob-
sin(m¥)=+1—a and hence(¥|Q™|¥)|=1—2a. Thus, ability drops to being irD(y/a). Thus, the smaller the error
in the choice of angles from the perfect case as expressed by
(W1Q'™M W)= |(W}|QM )| —4m’am Eq. (5), the smaller is the error probability of the algorithm.
2 Theorem 3 is similar to the main result in RE5] where
>1-a(2+47"m). (12 it is proven that for quantum searching, the distance
Lemma 1 follows. | — ¢| must be at most of order {N for finding the marked
If we measure the stat®’™4|0), then the outcome is €lement with constant success probability. Our result gener-
good with probability at least+ 4a(1+272m), whichis at  alizes their result as it measures the error probability of the
least 1— 4a(7% 9+ 11). The probability of measuring a bad °verall algorithm in terms of the distance from the perfect
state is thus upper bounded byr¥/9+44a, which is ~ C€@se in which Eq(5) holds. The case)=¢ is already an
O(al¢) for 0<a<1 and 0< ¢< . Theorem 2 follows. approximation, which t_))_/ itself mtroduces_ an errordim the
Theorem 2(equal angles—Let A be any quantum algo- order of ®(a). In addition, Theorem 3 includes the cases

rithm that uses no measurements. Let a denote the succek@t the anglegh and ¢ are not constants but depend an
probability of A and let angle 0<#<m/2 be so that However, the main benefit of Theorem 3 is that it is easy to

sir(d)=a. Let ¢ be any angle so that<g<m. Let m  Prove onceone is given Theorem 1. Essentially, the proof of
=[wl(2)z§— 11, where angle0<9<m/2 is so thc:itsin(ﬁ) Theorem 3 reduces to bounding the distance between the two
—sin(¢/2)sin(2). Let Q' =Q(A, x. ¢, ¢). Then a measure- OPEratorsQ(A, x,¢,¢) andQ(Ax, ¢, ¢').

ment ofQ’™.4|0) will provide a good solution with probabil-
ity 1—O(Va/¢). VI. CONCLUSION

Theorem 2 relies on two properties: First, that operator - ampjitude amplification is besides quantum Fourier trans-
Q(A,x,¢,¢) approximates operatd@=Q(A,x,$,¢) Suf-  forms the most successfully used tool in quantum algorithms.

ficiently well. Secondly, that each application Qf imple- | is a generalization of Grover’'s quantum searching algo-
ments a rotation by a sufficiently large angle Any set of iihm and it allows a quadratic speed up of many algorithms.
angles(¢,¢) so that these two properties are fulfilled will —\yo prove that the phase condition in amplitude amplifi-
provide a quantum amplitude amplification scheme. In geNc4ti0n  can be expressed by the equation g)(
eral, the closer we pick the rotational anglteo the maximal =tan(#/2) (1— 2a), wherea denotes the success probability

angle @, the worse the approximation f@ we can allow ¢ the original algorithm. We show how to implement arbi-
ourselves to use, and vice versa. In the next theorem, whicfi,ry votations and how to boost quantum algorithms to suc-
is proven almlost |d.ent|cal_ly to Theorem 2, we express ongeq with certainty by utilizing angle(,¢) that satisfy the
way of capturing this duality. above equation. In both cases, the number of iterations re-
_Theorem 3(any angles—Let A be any quantum algo- ireq increases linearly in the inverse of angleFor in-
rithm that uses no measurements. Let a denote the succeg[%nce, if we chooseé= m/c for some constant>1, then

probability of 4 and let angle 0<fd<#/2 be so that . ; . . . : i
sir(6)=a. Let 0< ¢<17T and — m< o' < be given angles \t/;tiamr;qwre@(c/\/a) iterations to find a solution with cer
Let m.:f”’(%‘.) 2], where angled< 9= 77/,2 is so that Whenever the success probabilitys not knowna priori,

sin(®)=sin(¢/2)sin(2). Let — m<¢<m be defined so that ;e can approximate the above trigonometric equation by the
tan(¢/2)=tan(<’ﬁ/2)(1—2a) and Iet. 52."’” —¢|. Let Q linear equationd=¢. This case has been studied by Long
=Q(Ax,.¢") denote O,lfnr approxlmatlo_n QA X, . ¢). et al. [2-5] and in particular, they have shown that equal
Then a measurement Q A|0) will provide a goqd solu- angles can be utilized in quantum searching. By considering
tion with error probability at most4a+e, provided 6 (1o case b= an approximation to the perfect case

<epav3/[2m*(V3+m)]. tan(e/2)=tan(p/2)(1—2a), we can reprove the main results
The above theorem put bounds on the edsr|¢'—¢|  py | onget al.

that we can tolerate to still obtaining a quantum algorithm

that succeeds with high probability. Suppasés a constant,

say ¢= /10, then wheneveb is at mostcy/a, for some

appropriate constart, the above algorithm finds a good so- | am grateful to Gilles Brassard and Richard Cleve for

lution with bounded error probability. Furthermore difs at  comments.
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