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Equally distant, partially entangled alphabet states for quantum channels
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Each Bell state has the property that by performing justlocal operations on one qubit, the complete Bell
basis can be generated. That is, states generated by local operations are totally distinguishable. This remarkable
property is due to maximal quantum entanglement between the two particles. We present a set of local unitary
transformations that generate out of partially entangled two-qubit state a set of four maximally distinguishable
states that are mutually equally distant. We discuss quantum dense coding based on these alphabet states.

PACS number~s!: 03.67.2a, 89.70.1c
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I. INTRODUCTION

Two parties~Alice & Bob! who share a pure two-qub
state uC1&AB can generate three other statesuC j&AB ( j
52,3,4) such that the four states form a basis in the Hilb
space of two qubits. In general, the two parties have to p
form operations onboth qubits to generate the orthogon
statesuC j&AB . Nevertheless, there is an exception—if t
original stateuC1&AB is one of the four Bell states@1# then by
performing unitary transformations on justone of the two
qubits~let us assume Alice is the operations! the other three
Bell states that form the Bell basis of the two-qubit syst
can be generated. Specifically, let us assume the syste
initially in the Bell state

uC1&AB5
1

A2
~ u0&Au0&B1u1&Au1&B), ~1.1!

whereu0&X and u1&X (X5A,B) are basis vectors in the Hil
bert spaceHX of the qubitX ~in what follows we will use the
shorthand notationu00&5u0&u0& and where clear we will
omit subscripts indicating the subsystem!. Now we introduce
four local ~single-qubit! operations

Ŝ15 1̂5~ u0&^0u1u1&^1u!;

Ŝ25ŝx5~ u0&^1u1u1&^0u!;
~1.2!

Ŝ35ŝy5 i ~ u0&^1u2u1&^0u!;

Ŝ45ŝz5~ u0&^0u2u1&^1u!,

where ŝm (m5x,y,z) are three Pauli operators. When th
operatorsSk act on the first~Alice’s! qubit of the Bell state
~1.1! we find
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uC1&5Ŝ1^ 1̂uC1&5
1

A2
u00&1u11&);

uC2&5Ŝ2^ 1̂uC1&5
1

A2
u10&1u01&);

~1.3!

uC3&5Ŝ3^ 1̂uC1&5
i

A2
u01&2u10&);

uC4&5Ŝ4^ 1̂uC1&5
1

A2
u00&2u11&).

We see that the four states given by Eq.~1.3! are indeed four
Bell states@1#. This means that by performing justlocal op-
erations, the two-qubit states are changed globally in suc
way that the four outcomes are perfectly distinguishable~i.e.,
the four Bell states are mutually orthogonal!. In fact, we can
say that the four outcomes are mutually equally~and maxi-
mally! distant, which can be expressed by their mutual ov
lap Okl ,

Okl5u^CkuC l&u25dkl . ~1.4!

This remarkable property of Bell states is due to the quan
entanglement between the two qubits@1#. As suggested by
Bennett and Wiesner@2#, this property can be utilized for the
quantum dense coding. The idea is as follows: Alice can
perform locally on her qubit four operations that result
four orthogonal two-qubit states. So after she performs
of the possible operations she sends her qubit to Bob. T
Bob can perform a measurement on the two qubits and
termine with the fidelity equal to unity which of the fou
operations has been performed by Alice. In this way, Al
has transferred two bits of information via sending just
single two-level particle. This theoretical scenario has be
implemented experimentally by the Innsbruck group@3# us-
ing polarization entangled states of photons. One can c
clude that the entanglement in the case of two qubits
double a capacity of the quantum channel.

Recently, Barenco and Ekert@4#, Hausladenet al. @5#, and
Boseet al. @6# have discussed how the channel capacity
pends on the degree of entanglement between the two qu

-
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Specifically, these authors have analyzed the situation w
initially Alice and Bob share a two-qubit system in a stat

uc1&5au00&1bu11&. ~1.5!

Then Alice is performing locally one of the four unitary op
erationsŜk given by Eq.~1.2!. As a result of these operation
four possible statesufk& can be generated:

uf1&5Ŝ1^ 1̂uc1&5~au00&1bu11&);

uf2&5Ŝ2^ 1̂uc1&5~au10&1bu01&);
~1.6!

uf3&5Ŝ3^ 1̂uc1&52 i ~au10&2bu01&);

uf4&5Ŝ4^ 1̂uc1&5~au00&2bu11&).

These states represent the ‘‘alphabet’’ that is used in
given communication channel between Alice and Bob. N
all of these alphabet states are mutually orthogonal. If
evaluate the overlapOkl we find

Okl5u^fkuf l&u25H 1 if k5 l ,

D2 if kl512,21,34,43,

0 else,

~1.7!

whereD5uau22ubu2. The fact that not all alphabet states a
mutually orthogonal leads to a decrease of the channel
pacity that in the present case is less than two. Neverthe
for at least partially entangled qubits, the channel capacit
still larger than unity.

As seen from Eq.~1.7!, the four statesufk& are not mu-
tually equally distant. Some of them are mutually orthog
nal, but some of them have a nonzero overlap. The main
of this paper is to find a set oflocal unitary operationsÛk
that generate out of the stateuc1& given by Eq.~1.5!, the
alphabetuck&5Ûkuc1& with the elements that are equal
distant, that is the mutual overlaps of these four states
equal, and simultaneously we require that they are as s
as possible. In other words, the states are mutually as di
guishable as possible. Formally, we are looking for trans
mationsÛk such that

Okl5u^c1uÛk
†Û l uc1&u25H 1 for k5 l

O for kÞ l
~1.8!

with O being as small as possible. In addition, the transf
mations under consideration have to fulfill theBell limit, that
is for D→0, whenuc1&→uC1&, they have to generate fou
maximally entangled mutually orthogonal two-qubit stat
We note that this set of states is not necesarily equa
standard Bell states given by Eq.~1.3!. In our case, the ex
plicit form of these states is given by Eq.~2.21! with a5b
51/A2.
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II. EQUALLY DISTANT STATES

It is well known that any pure bipartite state can be wr
ten in the Schmidt basis@7# as given by Eq.~1.5!. In order to
find the four transformationsÛk that fulfill the condition
~1.8!, we remind ourselves that the most general unit
transformation on a two-dimensional Hilbert space is an
ement from a four-parametric groupU(2)

Ûk5eiwk@cosck1̂1 i sinck~nW ksŴ !#, ~2.1!

wherenW k5(sinuk cosfk ,sinuk sinfk ,cosuk) is a normalized
vector around which the rotation is performed by an an
ck .

From the condition~1.8! it follows that we have to solve
the following set of equations

Okl5u^c1uŴkluc1&u25uuau2^0uŴklu0&1ubu2^1uŴklu1&u2

5O5minimum, ~2.2!

where we have introduced a notation

Ŵkl5Ûk
†Û l . ~2.3!

Taking into account the relation between Pauli operat
ŝmŝn5dmn1̂2 i«mnkŝk and the relation

~nW k•sŴ !~nW l•sŴ !5nW k•nW l 1̂2 i @nW k3nW l #•sŴ , ~2.4!

we can rewriteŴkl as

Ŵkl5 1̂~cosck cosc l1nW k•nW lsinck sinc l !

2 isŴ •@nW k3nW l #sinck sinc l2 isŴ ~sinck cosc lnW k

2sinc l coscknW l !. ~2.5!

Due to the fact that quantum states are determined up
global phase we can omit phase factorswk in Eq. ~2.5!.

From Eq.~2.2! we see that only diagonal elements of t
operatorsŴkl are relevant. Taking into account that onlyŝz
has nonvanishing diagonal elements, we obtain

^0uŴklu0&5akl2 ibkl ,

^1uŴklu1&5akl1 ibkl , ~2.6!

where we use the notation

akl5cosck cosc l1nW k•nW l sinck sinc l ,

bkl5sinck sinc l@nW k3nW l #z1sinck cosc l~nW k!z

2sinc l cosck~nW l !z ~2.7!

and
1-2
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EQUALLY DISTANT, PARTIALLY ENTANGLED . . . PHYSICAL REVIEW A 62 052301
nW k•nW l5cosuk cosu l1sinuksinu l cos~f l2fk!;
~2.8!

@nW k3nW l #z5sinuksinu lsin~f l2fk!.

It follows from Eq. ~2.2! that

u^ckuc l&u25Okl5akl
2 1bkl

2 D2. ~2.9!

This overlap has to be minimized and made sta
independent~i.e., Okl5O5minimal).

In order to solve the problem, we chooseÛ15 1̂ and ex-
plicitly rewrite the condition~2.9! for k51 andl 52,3,4:

u^c1uc l&u25cos2 c l1D2sin2 c lcos2u l . ~2.10!

From Eqs.~2.9! and ~2.10! it follows that in order to fulfill
the Bell limit, whenO50, two following conditions have to
be valid:

cos2ck50
~2.11!

nW k•nW l5dkl .

Taking into account these constraints we rewrite Eqs.~2.9!
and ~2.10! as

O5@nW k3nW l #z
2D2,

~2.12!
O5cos2ukD

2,

respectively. Because the overlapO is supposed to be th
same for all pairs of states, we can introduce a notatioF
5cos2uk and we compare the right-hand sides of Eqs.~2.12!
which gives us the following equation:

~12F2!2sin2~fk2f l !2F250, ~2.13!

where we have used the relation~2.8!. From the condition
nk
W
•nl
W50 for kÞ l @see Eq.~2.11!# we write the constraint for

the parameterF:

~12F2!cos~f l2fk!6F250, ~2.14!

where75sgn(cosuk cosul). The two constraints~2.13! and
~2.14! are fulfilled whenF251/3.

Now we put our results together. We have found th
transformationsÛk are characterized by the following pa
rameters:

cos2ck50,

cos2uk5
1

3
, ~2.15!

cos~f l2fk!5
7F2

12F2
57

1

2
.

If we choose cosu25cosu351/A3 then in order to have thre
distinct transformations we have to take cosu4521/A3. Our
result ~2.15! also implies that
05230
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t

cos~f22f3!521/2,
~2.16!

cos~f22f4!5cos~f32f4!51/2,

which can be obtained whenf25f,f35 2
3 p1f,f45

p

3
1f. As we can see, there is still some freedom in a cho
of the phasef. Just for convenience we takef50. This
finishes our explicit construction of a set oflocal unitary
transformationsÛk for which we have obtained the expre
sions~here we have assumed that in Eq.~2.1! for the opera-
tors Ûk the phase factorswk are taken to be equal towk5
2p/2)

Û15 1̂;
~2.17!

Ûk5nW k•sŴ ; k52,3,4,

where the unit vectorsnW k are given by the expressions

nW 25S 2

A6
,0,

1

A3
D ;

nW 35S 2
1

A6
,

1

A2
,

1

A3
D ; ~2.18!

nW 45S 1

A6
,

1

A2
,2

1

A3
D .

These vectors not only fulfill the conditionnW k•nW l5dkl but
also

@nW k3nW l #52«klmnW m , ~2.19!

from which it follows that we can rewrite the operatorŴkl

5Ûk
†Û l for k,l 52,3,4 as

Ŵkl5dkl1̂1«klmÛm . ~2.20!

The operatorsÛk generate from the reference stateuc1& via
local transformations the alphabet with most distant sta
We stress that for a chosen Schmidt basis the local opera
Ûk do not depend on the states to be rotated. In this se
these operators areuniversal. The alphabet states in the bas
$u00&,u10&,u01&,u11&% read

uc1&5~a,0,0,b!; ~2.21!

uc2&5S 1

A3
a,A2

3
a,A2

3
b,2

1

A3
b D ;

uc3&5S 1

A3
a,

212 iA3

A6
a,

211 iA3

A6
b,2

1

A3
b D ;
1-3
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uc4&5S 2
1

A3
a,

12 iA3

A6
a,

11 iA3

A6
b,

1

A3
b D .

By construction, the mutual overlap between these state
minimal and equal to

O5
1

3
D2. ~2.22!

Comment 1. We note that the universal transformatio
we have derived generate a set of four statesuck& for the
stateuc1&. In fact, these transformations generate the sa
set of states if generated from any state from this set~that is,
we observe a specific permutation invariance in the set!. To
prove this property it is enough to observe that

ÛkÛ l5dkl1̂1«klmÛm , ~2.23!

which means that the stateufk&5Ûkuc l& is equal to one of
the statesucm&5Ûmuc1& given by Eqs.~2.21!.

Comment 2. We have derived our transformations und
the assumption that the reference state from which the o
three alphabet states are generated is a pure state. Whe
reference stater̂1 is a statistical mixture of two qubits, whic
in general is characterized by 15 parameters, our transfor
tions generate an alphabetr̂k5Ûkr̂1Ûk

† such that in genera

Tr( r̂kr̂ l)Þconst. Nevertheless, for a large class of statistic
mixtures of two qubits the transformationsÛk generate
equally distant alphabets. A simple example would be
consider the reference state to be a mixture of the formr̂1

5suc1&^c1u1(12s)/41̂. In this case the overlap betwee
alphabet states is constant and equal toO5Tr( r̂kr̂ l)
5s2D2/31(12s2)/4. Another example is when the refe
ence state is taken to ber̂15(mlmÛmuc1&^c1uÛm

† and the

three alphabet states are generated by the operatorsÛk . In
this case we find that the overlap between the states is
stant and equal toO5 1

3 D2(m,n51
4 lmln .

III. CHANNEL CAPACITY

Let us assume that Alice and Bob are using alpha
states described above for quantum communication. The
05230
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pacity of the quantum channel is given by the expression@8#

C5max
p

FSS ( pk%̂kD2( pkS~ %̂k!G , ~3.1!

where%̂k are the alphabet states at the output of the chan
~i.e., at Bob’s side of the communication channel! andpk are
the probabilities with which the alphabet states are used
Alice. In the right-hand side of Eq.~3.1!, the functionS is the
von Neumann entropyS(%̂)52Tr(%̂ log2 %̂).

Firstly, we analyze ideal channels and then we desc
quantum capacity of noisy channels.

A. Ideal channel

In the case of the ideal channel we evaluate the capa
for two sets of alphabet states—the one used by Boseet al.
given by Eq.~1.6! —and the other set we have derived ea
lier in the paper@see Eq.~2.21!#. We denote the referenc
pure state from which the elements of alphabets are ge
ated as%̂AB5uc1&^c1u, whereuc1& is given by Eq.~1.5!.

Interestingly enough, for both cases we find the capa
of the quantum channel to be the same:

C511S~ %̂A!, ~3.2!

where%̂A5TrB%̂AB . Obviously, in the Bell limit, when the
uc1& is equal to a Bell state and Alice’s qubit is in a max
mally mixed state withS(%̂A)51, the capacity of the quan
tum channel is equal to 2.

But the question is: Why for the two alphabets discuss
above is the quantum capacity mutuallyequal for an arbi-
trary reference stateuc1&? To illuminate this problem, we
remind ourselves that the two sets of the operators that g
erate two alphabets~1.6! and~2.21!, respectively, fullfill the
Bell’s limit, i.e., nW k•nW l5dkl @see Eq.~2.11!#. Therefore we
concentrate our attention on those transformations~2.17! that
have this property.

Because of the unitarity of these transformations the s
ond term in Eq.~3.1! is equal to zero. The input probabilit
that maximizes the expression for capacity is equal topk

51/4. In this case the density operator%̂̄5(k%̂k/4 in the
matrix form ~in the basis$u00&,u10&,u01&,u11&%! reads
%̂̄5
1

4 1
uau2S 11(

k
nk

z
•nk

zD uau2(
k

nk
z~nk

x2 ink
y! ab* (

k
nk

z~nk
x1 ink

y! ab* S 12(
k

nk
z
•nk

zD
uau2(

k
nk

z~nk
x1 ink

y! uau2(
k

~nk
y
•nk

y1nk
x
•nk

x! ab* (
k

~nk
x1 ink

y!~nk
x1 ink

y! ab* (
k

nk
z~nk

x2 ink
y!

a* b(
k

nk
z~nk

x2 ink
y! a* b(

k
~nk

x2 ink
y!~nk

x2 ink
y! ubu2(

k
~nk

y
•nk

y1nk
x
•nk

x! ubu2(
k

nk
z~nk

x1 ink
y!

a* bS 12(
k

nk
z
•nk

zD a* b(
k

nk
z~nk

x1nk
y! ubu2(

k
nk

z~nk
x2 ink

y! ubu2S 11(
k

nk
z
•nk

zD 2 ,

~3.3!
1-4
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wherenk
j denotes thejth component of the vectornW k . These

three-dimensional vectors create a complete system in th
dimensional real vector space, i.e.,

(
k52

4

nk
j nk

l 5d j l , ~3.4!

for j ,l 5x,y,z. Using this property, we evaluate the opera

%̂̄ for which we find

%̂̄5
uau2

2
~ u00&^00u1u10&^10u!1

ubu2

2
~ u01&^01u1u11&^11u!.

~3.5!

The corresponding quantum capacity of the ideal chan
with pure signal states then reads

C512uau2loguau22ubu2logubu2511S~ %̂A!. ~3.6!

and is equal forall alphabets which satisfy the conditio
~2.11!.

Comment 3. The capacity~3.6! is the biggest possible
capacity of the quantum channel for alphabets that are g
erated by local operations from the reference state~1.5!. To
see this, we can imagine for a while that there exist four lo
unitary transformations that generate the alphabet for wh
the capacity is bigger than Eq.~3.6!. In the case of a maxi-
mally entangled state they must fulfill the Bell limit, i.e., th
alphabet is an orthogonal basis. On the other hand, we h
shown that all transformations that satisfy the Bell limit ha
to fulfill the condition ~2.11!. Consequently, they have t
belong to the set of our equivalent transformations, with
channel capacity~3.6!. This contradicts the original assump
tion, which proves our statement.

1. Mixed reference state

Let us assume that the reference state%̂AB shared by Alice
and Bob is a statistical mixture that is parametrized as

%̂AB5(
j 51

4

l j ux j&^x j u. ~3.7!

In this spectral decomposition the orthogonal statesux j& can
be written in the same Schmidt basis for allj 51,2,3,4:

ux1&5au0&Au0&B1bu1&Au1&B ;

ux2&5b* u0&Au0&B2a* u1&Au1&B ;
~3.8!

ux3&5gu0&Au1&B1du1&Au0&B ;

ux4&5d* u0&Au1&B2g* u1&Au0&B .

~note thatux1&5uc1&).
With this reference state the alphabet is the set of st

%̂k5Ûk%̂ABÛk
† generated by the set of four local transform

tions $Û15 1̂,Ûk5nW k•sW %, as before.
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In this case the second term in the expression~3.1! for
channel capacity does not vanish. Our transformations
unitary. Therefore the entropy for state%̂k is the same and
equals

S~ %̂AB!52(
j

l j logl j . ~3.9!

To evaluate the final expression for the channel capa
we have to find the entropy of the state

%̂̄5
1

4 (
k51

4

Ûk%̂ABÛk
†5(

j 51

4

l j

1

4 (
k51

4

Ûkux j&^x j uÛk
† .

~3.10!

The term1
4 (k51

4 Ûkux j&^x j uÛk
† is for all j 51,2,3,4, diagonal

as in Eq. ~3.5!. It means that%̂̄ is diagonal in the given
Schmidt basis

%̂̄5
x

2
~ u00&^00u1u10&^10u!1

y

2
~ u01&^01u1u11&^11u!,

~3.11!

where

x5uau2l11ubu2l21ugu2l31udu2l4 ,
~3.12!

y5uau2l21ubu2l11ugu2l41udu2l3 .

Finally, taking into account that the reduced density opera
%̂A has the form

%̂A5TrB~ %̂AB!5S x 0

0 yD , ~3.13!

we can express the capacity of the ideal channel as

C5(
j

l j logl j112x logx2y logy

511S~ %̂A!2S~ %̂AB!. ~3.14!

B. Pauli channel

From above, it follows alphabets that fulfill the conditio
~2.11! lead to the same capacity of theideal quantum chan-
nel. Let us assume that the channel is noisy. We will mo
an imperfect channel as a Pauli channel@1# characterized by
the parameterspx ,py ,pz and p5px1py1pz . In this case,
the alphabet states that are used for coding at the output
be expressed as

r̂k85~12p!uck&^cku1 (
m5x,y,z

pmŝmuck&^ckuŝm ,

~3.15!

~here we implicitly assume that Bob’s qubit is left intac!.
Taking into account the explicit expression for the operat
Ûk , we find
1-5
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ŝmÛk5 (
n5x,y,z

nk
(n)@dmn1̂2 i«mnkŝk#. ~3.16!

With the help of the last expression, we rewrite the dens
operator~3.15! as

%̂k85~12p! (
m,n51

3

ŝm%̂0ŝnnk
mnk

n

1 (
m51

3

pm$~nk
m!2%̂01 ink

m@~nW m3nW k!•sŴ ,%̂0#

1@~nW m3nW k!•sŴ #%̂0@~nW m3nW k!•sŴ #% ~3.17!

where%̂0 denotes the reference state from which the alp

bet is generated, andnW m is the vector defined bynW m•sŴ
5ŝm for m5x,y,z. So this specifies the alphabet used. N
we want to evaluate the capacity of the channel~3.1!. We
assume the input probabilitypk51/4 and in this case

%̂̄5
1

4 S %̂01(
m

ŝm%̂0ŝmD , ~3.18!

which is the same as Eq.~3.5!! So only the second term in
Eq. ~3.1! can be different for a different choice of Alic
transformations.

Let us assume that Alice and Bob are using for comm
nication two alphabets~2.21! and ~1.6!, respectively. We
want to find which alphabet gives us a higher capacity of
imperefect Pauli channel.

1. Depolarizing channel

First, let us assume a depolarizing channel, for whichpx

5py5pz[q with 0<q<1/3. In this case the operatorsr̂k8
given by Eq.~3.15! have the same eigenvalues for both
phabets that read

FIG. 1. We plot the capacity of the depolarizing channel a
function of the parametersq anduau2 that characterize the alphab
used.
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h152quau2; h252qubu2;

h35
1

2
„122q1A~122q!2216quau2ubu2~123q!…;

~3.19!

h45
1

2
„122q2A~122q!2216quau2ubu2~123q!…,

so that the capacity can be expressed asC5S( r̂̄)2S( r̂k8).
We plot this capacity in Fig. 1. We clearly see that the larg
the degree of entanglement, the greater is the capacity o
quantum channel, irrespectively, on the value of the para
eterq.

From above it follows that for the depolarizing chann
both alphabets provide us with the same capacity.

2. x-Pauli channel

Now our task is to present an example that illustrates t
with the equally distant alphabet~2.11!, Alice can perform
better~i.e., the channel capacity is higher! than with the stan-
dard alphabet~1.6!. Let us assume the channel such thatpy
5pz50 with 0>px>1. In this case we find two nonzer
eigenvalues of the output state%̂k8 ~3.17!

h65
1

2
„164p~12px!dk

2
…, ~3.20!

wheredk
2512u^ckuŝxuck&u2, uck&5Ûk^ 1̂uc0& with

^ckuŝxuck&52nk
znk

x~a22b2!. ~3.21!

For the standard alphabet~1.6! we finddk51 for all k, while
for the equally distant alphabet~2.11! d151,d2

251
28n2/9,d3

25d4
25122n2/9.

Using these results, we directly evaluate the two capa
ties of our interest. We note that for both alphabets the

a
FIG. 2. We plot the difference between the capacity using

standard alphabet~1.6! and the equally distant alphabet. This di
ference is plotted as a function ofuau2 andpx that characterizes the
x-Pauli channel.
1-6
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erator%̂̄ is the same@see Eq.~3.18!#. Consequently, the en

tropy S( %̂̄) in the expression for the channel capacity is t
same. Therefore, the only difference can arise from the te
S(%̂k8). This entropy is determined by the eigenvaluesh6 .
Obviously, the closer the eigenvalues are to 1/2, the large
the entropyS(%̂k8) and the smaller is the capacity. We s
that in the case of the standard alphabet the eigenvalue
closer to 1/2 than in the case of the equally distant alpha
Therefore we conclude that the second alphabet leads
higher channel capacity for the given x-Pauli channel. W
plot the difference between the standard and the equally
tant alphabet capacities in Fig. 2.

IV. CONCLUSIONS

In this paper, we have presented a set of four local unit
operators that generate from a partially entangled pure t
qubit state a set of equally distant states with a minim
overlap. We have evaluated capacity of an ideal and P
n

s.

05230
s
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channels using this alphabet. We have shown that in so
cases our alphabet leads to a higher channel capacity tha
standard alphabet used by Boseet al. @6#.

We conclude that in order to validate the capacity of o
quantum channel Alice has to use a block coding scheme
sending a message. Bob on his end has to perform a co
tive measurement on the whole message rather than
vidual letters~alphabet states!. The explicit expression for
this collective decision rule is given in Ref.@8#. As shown by
Holevo @8# and Hausladenet al. @5#, in this case the infor-
mation transmitted per letter can be made arbitrarily close
the channel capacity~3.1!.
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