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Entangled coherent-state qubits in an ion trap
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We show how entangled qubits can be encoded as entangled coherent states of two-dimensional center-of-
mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical
Bell state, and we introduce a proposal for entanglement transfer from the two vibrational modes to the
electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving
methods.

PACS numbe(s): 03.65.Bz

The qubit, or quantum bit, is the fundamental componenbf one-dimensional motiof8,10]. We demonstrate that these
of information in quantum computation. In the case of aentangled coherent states can be represented as entangled
spin-1/2 system, for some axis of orientation, one can idenqubit states, and, moreover, such a state is equivalent to a
tify the up state with anon state, generally written a4, canonical Bell state up to unitary transformation with respect
=|1), for 1 indicatingon and theL subscript indicating that to one of the two vibrational modes, which is up to a local
this is a logical state. Th®), =|0), or off state, then corre- unitary transformation. In order to make measurements on
sponds tadownfor this orientation. Qubits can thus be real- the entangled coherent states we give a procedure for swap-
ized, in principle, in any spin-1/2 system, such as the elecping entanglement from the vibrational to the internal elec-
tronic state of a two-level atom, the polarization of a singletronic states of the ions, which can then be read by resonance
photon, or the vibrational state of an ion that is restricted tsshelving methods.
either zero- or one-phonon excitations. The concept of qubits The two-mode coherent state
is useful for quantum information considerations, but the

qubit is also a useful construct for Bell inequality telsts?] |a,B)=|a).®|B)y Q)
and for considering the maximally entangled canonical Bell
states. can be prepared in an entangled coherent state via the mutual

It is not necessary to restrict a qubit encoding to systemphase-shift interactiod, =% ya'ab'b; this interaction has
with a two-dimensional Hilbert space. For example, a morepeen studied in detail in the context of quantum nondemoli-
exotic form of qubit can be constructed from superpositiongion measurementgl1] and for implementing phase gates
of coherent stateg3] and, as we show here, by employing for photon qubit{12]. In the ion trap, the two-mode coher-
entangled coherent statp$]. Despite both the nonorthogo- ent state corresponds to a two-dimensional Gaussian wave
nality of coherent states and the unbounded Hilbert spacgacket for the center-of-mass motion of the two trapped ions.
Bell inequality violations are possible in both limits—0  The mutual phase-shift interaction between these two vibra-
[4] and a— [5], for « the dimensionless amplitude of the tional modes of freedom for the ion can be achieved by an
coherent state. The— limit is achieved by representing appropriate Raman laser excitatigt8].
the entangled coherent states in a subspace corresponding toAfter an interaction time = =/, the output state if14]
two-coupled spin-1/2 systems, and ideal canonical Bell states

are realized in thev— o limit. Entangled coherent states can 1
include the entanglement of even and odd coherent dies )= —=(|a)a® |+ )p+|—a)a®|—)p)
which can also be treated as coupled spin-1/2 systems. The V2

advantage of entangled even and odd coherent states, as we
show, is that the states are distinguishable by parity, so that
heating that changes the vibrational quanta corresponds to
bit-flip errors, which can be detected and corrected via the

1
:E(|+>a®|ﬁ>b+|_>a®|_ﬁ>b)v 2

appropriate circuif7]. where the even and odd coherent states are defined by
Here we show how the desired entangled coherent states

can be created for the two-dimensional center-of-mass vibra- | ) a=Ne (@) (|a)at|—ada),

tional mode state of two trapped ions. This proposal involves - ®)

the generalization of experimental techniques for generating 1Y = A (B) (8o~ B)r)

even coherent states for the motional state of one ion in one —/b— N b= b7

dimension[8,9]. The advantage of distinguishing the logical . , ) L -
18,9 g g g g th M. being the appropriate normalization coefficients

states by phonon number parity has been shown for the ca¥¥
given by

*Electronic address: billm@physics.uqg.edu.au NL(&§)=1N2= 2e’2|§|2. (4)
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We will gengrally ignore these normalization coefficients un- F=|(y(6)|D(i€)|0)[>=|(1(6)|D(i€)| 1)[*= exp — €?).

less otherwise stated. (14)
The state in Eq(2) is equivalent, up to a locakingle- o o

oscillatoy unitary transformation, to a Bell state for a par- Here we have explicitly taken the normalization in E8)

ticular encoding. Following Ref3], the logical states are into account. The fidelity approaches unity exponentially

encoded in terms of even and odd coherent states, viz., With respect toe* and hence is a good approximation for
small e.

[0y =] +), [1ye]|—), (5) The Bell state can thus be created for the state of the
] ] two-dimensional vibrational mode. However, direct detec-
and the Discrete Fourier transform states are represented By of the Bell state is not possible with current technology.
— = An entanglement transfer from the vibrational mode to the
0)=10)+]1), [1)=]0)—[1). 6) internal electronic states of the ions would allow detection of
We can ignore normalization coefficients and write the statdhe enta_nglement due to the emstepce of t,k,'e Bell state. .The
(2) as electronic state of an ion can be “rotated” and read with
current technology.
0.0 +]D).® |1 =0).. |0Vt 1) .® 1), . In order to transfer entanglement from vibrational to elec-
[1)=100281000+11)a®[16=[0022 00 +[1)a® 1) (7)  tronic degrees of freedom, we need to be able to effect the
transfer
A single-qubit rotation on either oscillataror b of the form
s s (Col0)+¢4]1))[0)e—[0)(Co|0)etC1|1)e), (15
10)—[0), [1)—[1) (8) . .
for {|0)e,|1)¢} the two electronic states of the ion. The trans-
leads td| ) in Eq.(7) being in the maximally entangled Bell fer (15) is achieved via the swap operation
state

|0)®[0)e—[0)@[0)e, (163
=0 |0)+|1)®|1). 9
|¢7)=10)2[0)+|1)@[1) ©) 1061y 5]0).. (165
The Bell state(9) is entangled with respect to phonon
number parity. That is, the two-dimensional oscillations are [1)®|0)e—|0)®|1)e, (160
either both in even coherent states or in odd coherent states.
A bit-flip error would destroy this parity entanglement. We |1)®[1)e—|1)®]1)e. (160
now show how the prepared staftey) in Eq. (2) can be ) ) )
transformed into the Bell stai®). The swap operation can be realized via a sequence of
We must be able to implement the qubit rotation in thethree controlledNoT gates. The vibrational qubit is the con-
logical basis of the mode, namely, trol and the electronic qubit is the target for the first and third
gates, and the reverse holds for the second qubit. We now
(|'J/o( 0))) cosf isin#)\(|0) discuss how to realize these two types of controled-
=(. , ) (100 gates.
| 1(6)) ising cosé)\|1)

In the first case, where the vibrational qubit is the control,

We present one simple, but approximate, scheme to achieJkiS nécessary for the electronic qubit to be prepared in the
this rotation. FoiD(8)= exp(Ba'—8*a) as the displacement ground state and to become excited if and only if the vibra-
operator, we can express the displaced coherent state as tional qubit contains an odd number of phonons. This trans-
formation is achieved via the unitary operator
— @i Im(ap*)

D(B)[a)=e |+ B), 1D U.e= exd —ima'ao,Jexfima’all)s(1]],  (17)
which acquires a phase shift lm(3*). Displacements can
be effected in ion traps via the Raman laser sch&8yg].
We assume that bosonic coding employs coherent states wi
real amplitudes, and we assume that—i 3 is real to obtain

which can be achieved by employing several Raman pulses

%{ the carrier frequency. Schneidetral. [16] explicitly con-

sidered a unitary operator of the form ¢xpma'ac,]. Not-

ing thato,=Uo,U", whereU is a single-qubit rotation, the

D(ie)|a)~e*|a+ie). (12) exp{—iwa¥aay] operator can be achieved by first applying a

single-qubit rotation to the electronic state and then by per-

If we let 6= ae be fixed, withe—0 anda— o, then we  forming the exp—ima'ac,] operation via Raman pulses.

obtain the rotatior{10) for The expﬁ—iwa*aoy] part of the unitary operato(17)

_ _ transforms the input states as follows:
[0(0))~D(i€)[0), [11(0))~D(ie)|1). (13

ex —ima'ac,]|0)®[0).=|0)®[0)., (183
The displacement-effected rotation is approximate but ad-

equate for sufficiently smak. In order to quantify the effec- exd —ima'as,]|0)®|1).=|0)®|1),, (18b)
tiveness of this approach to rotation, we consider the fidelity
of the operation exd —ima'as,]|1)®|0)e=—|1)®[1)e, (189
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exd —i 7TaTagy]|1>®|1>e:|1>® |0)e, (180 these two rates are approximately the same, at least initially.
The mean value of the amplitude does not decay, but the

whereas the operator gxpa’all),(1]] flips the sign of the average energy increases at the constantyate can thus
[1)®|1), term model the heating by two independent jump processes. We
N will assume that over each run of the experiment, taking time
exfima'all)((1]][D)@|1)e=—[D)@[1)e, (19 7 the heating rate is low enough that we only need to con-

. . i t t ingle | , eith , with -
while leaving the other statd®)®|0)., |0)®|1), and |1) sider at most a single jump, either up or down, with prob

X _ ability 5=vy|a|?T. If only a single jump occurs, no matter
[0)e u.nchange_d. Hgnce the umtary_transformaﬁb?‘b IS&  \which way upward or downward, it flips the parity of the
cNOT with the vibrational modes being the control bit and !

. state. In other words, heating leads to bit-flip errors.
the electronic mode the target.

Up to a fidelity of expté?), the pure Bell statep
The second controlledoT gate reverses the roles of the —1|¢*)(¢"| is obtained. In order to test a Bell inequality

vibrational and electronic qubits. Therefore, phonon numbe(;vith the entangled coherent states, a large number of runs of

parity must _be changed if th? ior_1 Is in the e>_<(_:ited state. Th‘?he experiment would need to be performed, and the state
required unitary transformation is the conditional displace- ’

t of the vibrational mode if and onlv if the ion is in th may vary from one run to the next if bit-flip errors occur.
ment ot the vibrational mode 1t and only It th€ 10N 1S IN e 1 ¢ 4ha tast of the Bell inequality is actually performed on
excited state, and such conditional displacements have been

hi d . tallg8.9]. Th di i @ mixed state. Provided that a time intervas chosen such
2;8'2:; isexperlmen ally8,9). € corresponding unitary  nat the probability of more than one bit-flip error due to

heating is negligible, the density matrix for the state can be
Ue— exdie(a+al)|1)(1]]exg —im|1)e(1]/2], expressed as
(20)

+16
2

1 + + +
with 6= ae=m/2. The expie(a+a’)|1)«(1|] part in Eq.(20) p= 5(1—5)|¢ >< ¢ 'ﬂ+><¢ B (25)

gives
with
exfie(a+a’)1)¢(1]1/0)®|0).=[0)®|0)e, (213
_ [4")=[0)®[1)+[|1)®|0) (26)
exie(a+a’)|1)(1]]|0)@[1)e=—|1)®[1)e, (21D
being another of the four maximally entangled Bell states.
exdie(a+a’)|1)e(1]]]1)®|0)e=|1)®[0)e, (210  The Bell statd ") is orthogonal to the desired stdig™).
The state given by Eq25) for § sufficiently small must
exfie(a+ah)|1)(1]]|1)®[1)e=—|0)®|1)e, (21d)  violate the spin Bell inequality1,2]

while the second term ekpin]1)«(1//2] flips the sign of the B=|E(6,,0,)+E(6,,05)+E(0;,6,)—E(0;,05)|<2,
|0)®|1). and |1)®|1), states. Hence the unitary operator (27)
(20) performs the required controllet>T operation with the
electronic mode as the control and the vibrational mode awhere the correlation functioB (6., 6,) is given by the ex-
the target. pectation value
It is straightforward to then show that the sequence
E(01,02)=(o5 o). (28)
Uswap=UveUeWve (22)
i '
produces the desired entanglement swap. This :sequen'(f'eere the operatoars,i) may be defined as
should be achievable with current experimentally technol- 0 )1 o 0
ogy. O-Hi = COSH|O'X + sin (9i0'y y (29)
In current ion trap experiments heating of the vibrational _
mode, though small, cannot be neglected. A simple model oivhere the operators{’ (with a=x, y or z) are thea Pauli
heating for a vibrational mode with annihilation operaéds  spin operators for the two—level system of atanThe tun-

described by the master equatidrb] able parameters; (i=1,2) control the proportion o’ to
q o-§,') in cr(g'i) and function like variable polarizers in the
d_’z = %[ZananL 2apa’ (23 single—photon experiments.

In an ion trap this correlation functiaf28) is achieved by
first applying single-qubit rotations to both ions and then by

(24) performing a simultaneous measuremenfrgfon both ions.

The o, measurement is achieved with high precision via the
This master equation describes two conditional point proshelving fluorescence techniq{ie3]. The experiment is re-
cesses; one corresponds to an upward transition in phongreated over many runs and the average gives the desired
number at ratey(aa’), and the other, to a downward transi- correlation functiorE (6, 6,). Mathematically, this correla-
tion at the ratey(a'a). For the states discussed in this papertion function can be expressed in the form

—(a'a+aa)p—p(a'a+ata)].
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E(61,0,) =Tr pViA61) o (V1%(61) V5 %(6,) 0 B=22(1-5). (33

/112 + A violation of this inequality is possible foB>2, when
X (V27(62))'] 30 <1-1/\/2. Whereas the Bell inequality is technically vio-

) ) ) ) ~ K lated, this does not present a loophole-free test due to the
where the Cirac and Zoller single-qubit rotatidds] Vi(#)  imited temporal separation of the ions. It does, however,
on theith ion are given by completely close the detection loophole.

To summarize, we have described how entangled qubits
NN T Zis 0 can be encoded as entangled coherent states of two-
Vi($)=exp —ik 5 (|1)i(0[e""1+|0)i(1[e")|. (3D  gimensional center-of-mass vibrational motion for two ions
in an ion trap. The entangled qubit state is equivalent to the
canonical Bell state, and by transferring the entanglement
from the two vibrational modes to the electronic states of the
two ions, the Bell state can be detected by resonance fluo-
rescence shelving methods.

This single-qubit rotation is achieved by applying a carrier
pulse of lengthk7r with a phasey, .

Returning to the density matrix given by E@®5), it is
easily shown that the correlation functié®8) has the sim-
plified form Part of this work was carried out at the Isaac Newton

Institute for Mathematical Sciences in Cambridge and we

E(60,,0,)=(1—6)cog 6,+ 0,)+5cog6,—6,); (32  acknowledge their support and hospitality as well as the sup-

port from the European Science Foundation. We also ac-

hence, the spin Bell inequality27) for optimal-angles knowledge the financial support of the Australian Research
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