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Entangled coherent-state qubits in an ion trap

W. J. Munro,1,* G. J. Milburn,1 and B. C. Sanders2

1Department of Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
2Department of Physics, Macquarie University, Sydney, New South Wales 2109, Australia

~Received 13 October 1999; published 16 October 2000!

We show how entangled qubits can be encoded as entangled coherent states of two-dimensional center-of-
mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical
Bell state, and we introduce a proposal for entanglement transfer from the two vibrational modes to the
electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving
methods.

PACS number~s!: 03.65.Bz
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The qubit, or quantum bit, is the fundamental compon
of information in quantum computation. In the case of
spin-1/2 system, for some axis of orientation, one can id
tify the up state with anon state, generally written asu1&L
[u1&, for 1 indicatingon and theL subscript indicating tha
this is a logical state. Theu0&L[u0&, or off state, then corre-
sponds todown for this orientation. Qubits can thus be rea
ized, in principle, in any spin-1/2 system, such as the e
tronic state of a two-level atom, the polarization of a sing
photon, or the vibrational state of an ion that is restricted
either zero- or one-phonon excitations. The concept of qu
is useful for quantum information considerations, but t
qubit is also a useful construct for Bell inequality tests@1,2#
and for considering the maximally entangled canonical B
states.

It is not necessary to restrict a qubit encoding to syste
with a two-dimensional Hilbert space. For example, a m
exotic form of qubit can be constructed from superpositio
of coherent states@3# and, as we show here, by employin
entangled coherent states@4#. Despite both the nonorthogo
nality of coherent states and the unbounded Hilbert sp
Bell inequality violations are possible in both limitsa→0
@4# anda→` @5#, for a the dimensionless amplitude of th
coherent state. Thea→` limit is achieved by representin
the entangled coherent states in a subspace correspond
two-coupled spin-1/2 systems, and ideal canonical Bell st
are realized in thea→` limit. Entangled coherent states ca
include the entanglement of even and odd coherent states@6#,
which can also be treated as coupled spin-1/2 systems.
advantage of entangled even and odd coherent states, a
show, is that the states are distinguishable by parity, so
heating that changes the vibrational quanta correspond
bit-flip errors, which can be detected and corrected via
appropriate circuit@7#.

Here we show how the desired entangled coherent st
can be created for the two-dimensional center-of-mass vi
tional mode state of two trapped ions. This proposal invol
the generalization of experimental techniques for genera
even coherent states for the motional state of one ion in
dimension@8,9#. The advantage of distinguishing the logic
states by phonon number parity has been shown for the

*Electronic address: billm@physics.uq.edu.au
1050-2947/2000/62~5!/052108~4!/$15.00 62 0521
t

-

c-

o
ts
e

ll

s
e
s

e,

g to
es

he
we
at
to
e

tes
a-
s
g
e

se

of one-dimensional motion@3,10#. We demonstrate that thes
entangled coherent states can be represented as enta
qubit states, and, moreover, such a state is equivalent
canonical Bell state up to unitary transformation with resp
to one of the two vibrational modes, which is up to a loc
unitary transformation. In order to make measurements
the entangled coherent states we give a procedure for sw
ping entanglement from the vibrational to the internal ele
tronic states of the ions, which can then be read by resona
shelving methods.

The two-mode coherent state

ua,b&[ua&a^ ub&b ~1!

can be prepared in an entangled coherent state via the m
phase-shift interactionHI5\xa†ab†b; this interaction has
been studied in detail in the context of quantum nondem
tion measurements@11# and for implementing phase gate
for photon qubits@12#. In the ion trap, the two-mode cohe
ent state corresponds to a two-dimensional Gaussian w
packet for the center-of-mass motion of the two trapped io
The mutual phase-shift interaction between these two vib
tional modes of freedom for the ion can be achieved by
appropriate Raman laser excitation@13#.

After an interaction timet5p/x, the output state is@14#

uc&5
1

A2
~ ua&a^ u1&b1u2a&a^ u2&b)

5
1

A2
~ u1&a^ ub&b1u2&a^ u2b&b), ~2!

where the even and odd coherent states are defined by

u6&a[N6~a!~ ua&a6u2a&a),
~3!

u6&b[N6~b!~ ub&b6u2b&b),

with N6 being the appropriate normalization coefficien
given by

N6~j!51/A262e22uju2. ~4!
©2000 The American Physical Society08-1



n

r-

d

at

ll

n
ar
at
e

he

ie
t
s

w

ad

lit

lly
or

the
c-
y.

the
of

The
ith

c-
the

s-

of
-
ird
now

ol,
the
ra-
ns-

lses

a
er-

W. J. MUNRO, G. J. MILBURN, AND B. C. SANDERS PHYSICAL REVIEW A62 052108
We will generally ignore these normalization coefficients u
less otherwise stated.

The state in Eq.~2! is equivalent, up to a local~single-
oscillator! unitary transformation, to a Bell state for a pa
ticular encoding. Following Ref@3#, the logical states are
encoded in terms of even and odd coherent states, viz.,

u0&↔u1&, u1&↔u2&, ~5!

and the Discrete Fourier transform states are represente

u0&↔u0&1u1&, u1&↔u0&2u1&. ~6!

We can ignore normalization coefficients and write the st
~2! as

uc&5u0&a^ u0&b1u1&a^ u1&b5u0&a^ u0&b1u1&a^ u1&b .
~7!

A single-qubit rotation on either oscillatora or b of the form

u0&→u0&, u1&→u1& ~8!

leads touc& in Eq. ~7! being in the maximally entangled Be
state

uf1&[u0& ^ u0&1u1& ^ u1&. ~9!

The Bell state~9! is entangled with respect to phono
number parity. That is, the two-dimensional oscillations
either both in even coherent states or in odd coherent st
A bit-flip error would destroy this parity entanglement. W
now show how the prepared stateuc& in Eq. ~2! can be
transformed into the Bell state~9!.

We must be able to implement the qubit rotation in t
logical basis of the mode, namely,

S uc0~u!&

uc1~u!&
D 5S cosu i sinu

i sinu cosu D S u0&

u1&
D . ~10!

We present one simple, but approximate, scheme to ach
this rotation. ForD(b)[ exp(ba†2b*a) as the displacemen
operator, we can express the displaced coherent state a

D~b!ua&5ei Im(ab* )ua1b&, ~11!

which acquires a phase shift Im(ab* ). Displacements can
be effected in ion traps via the Raman laser scheme@8,9#.
We assume that bosonic coding employs coherent states
real amplitudes, and we assume thate[2 ib is real to obtain

D~ i e!ua&'eiaeua1 i e&. ~12!

If we let u5ae be fixed, withe→0 anda→`, then we
obtain the rotation~10! for

uc0~u!&;D~ i e!u0&, uc1~u!&;D~ i e!u1&. ~13!

The displacement-effected rotation is approximate but
equate for sufficiently smalle. In order to quantify the effec-
tiveness of this approach to rotation, we consider the fide
of the operation
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F5 z^c0~u!uD~ i e!u0& z25 z^c1~u!uD~ i e!u1& z25 exp~2e2!.
~14!

Here we have explicitly taken the normalization in Eq.~3!
into account. The fidelity approaches unity exponentia
with respect toe2 and hence is a good approximation f
small e.

The Bell state can thus be created for the state of
two-dimensional vibrational mode. However, direct dete
tion of the Bell state is not possible with current technolog
An entanglement transfer from the vibrational mode to
internal electronic states of the ions would allow detection
the entanglement due to the existence of the Bell state.
electronic state of an ion can be ‘‘rotated’’ and read w
current technology.

In order to transfer entanglement from vibrational to ele
tronic degrees of freedom, we need to be able to effect
transfer

~c0u0&1c1u1&)u0&e→u0&~c0u0&e1c1u1&e), ~15!

for $u0&e,u1&e% the two electronic states of the ion. The tran
fer ~15! is achieved via the swap operation

u0& ^ u0&e→u0& ^ u0&e, ~16a!

u0& ^ u1&e→u1& ^ u0&e, ~16b!

u1& ^ u0&e→u0& ^ u1&e, ~16c!

u1& ^ u1&e→u1& ^ u1&e. ~16d!

The swap operation can be realized via a sequence
three controlled-NOT gates. The vibrational qubit is the con
trol and the electronic qubit is the target for the first and th
gates, and the reverse holds for the second qubit. We
discuss how to realize these two types of controlled-NOT

gates.
In the first case, where the vibrational qubit is the contr

it is necessary for the electronic qubit to be prepared in
ground state and to become excited if and only if the vib
tional qubit contains an odd number of phonons. This tra
formation is achieved via the unitary operator

Uve5 exp@2 ipa†asy#exp@ ipa†au1&e^1u#, ~17!

which can be achieved by employing several Raman pu
at the carrier frequency. Schneideret al. @16# explicitly con-
sidered a unitary operator of the form exp@2ipa†asz#. Not-
ing thatsy5UszU

†, whereU is a single-qubit rotation, the
exp@2ipa†asy# operator can be achieved by first applying
single-qubit rotation to the electronic state and then by p
forming the exp@2ipa†asz# operation via Raman pulses.

The exp@2ipa†asy# part of the unitary operator~17!
transforms the input states as follows:

exp@2 ipa†asy#u0& ^ u0&e5u0& ^ u0&e , ~18a!

exp@2 ipa†asy#u0& ^ u1&e5u0& ^ u1&e , ~18b!

exp@2 ipa†asy#u1& ^ u0&e52u1& ^ u1&e , ~18c!
8-2
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exp@2 ipa†asy#u1& ^ u1&e5u1& ^ u0&e , ~18d!

whereas the operator exp@ipa†au1&ê 1u# flips the sign of the
u1& ^ u1&e term

exp@ ipa†au1&e^1u#u1& ^ u1&e52u1& ^ u1&e , ~19!

while leaving the other statesu0& ^ u0&e , u0& ^ u1&e and u1&
^ u0&e unchanged. Hence the unitary transformation~17! is a
CNOT with the vibrational modes being the control bit an
the electronic mode the target.

The second controlled-NOT gate reverses the roles of th
vibrational and electronic qubits. Therefore, phonon num
parity must be changed if the ion is in the excited state. T
required unitary transformation is the conditional displa
ment of the vibrational mode if and only if the ion is in th
excited state, and such conditional displacements have
achieved experimentally@8,9#. The corresponding unitary
operator is

Uev5 exp@ i e~a1a†!u1&e^1u#exp@2 ipu1&e^1u/2#,
~20!

with u5ae5p/2. The exp@ie(a1a†)u1&ê 1u# part in Eq.~20!
gives

exp@ i e~a1a†!u1&e^1u#u0& ^ u0&e5u0& ^ u0&e , ~21a!

exp@ i e~a1a†!u1&e^1u#u0& ^ u1&e52u1& ^ u1&e , ~21b!

exp@ i e~a1a†!u1&e^1u#u1& ^ u0&e5u1& ^ u0&e , ~21c!

exp@ i e~a1a†!u1&e^1u#u1& ^ u1&e52u0& ^ u1&e , ~21d!

while the second term exp@2ipu1&ê 1u/2# flips the sign of the
u0& ^ u1&e and u1& ^ u1&e states. Hence the unitary operat
~20! performs the required controlled-NOT operation with the
electronic mode as the control and the vibrational mode
the target.

It is straightforward to then show that the sequence

Uswap5UveUevUve ~22!

produces the desired entanglement swap. This sequ
should be achievable with current experimentally techn
ogy.

In current ion trap experiments heating of the vibration
mode, though small, cannot be neglected. A simple mode
heating for a vibrational mode with annihilation operatora is
described by the master equation@15#

dr

dt
5

g

2
@2a†ra12ara† ~23!

2~a†a1aa†!r2r~a†a1a†a!].
~24!

This master equation describes two conditional point p
cesses; one corresponds to an upward transition in pho
number at rateg^aa†&, and the other, to a downward trans
tion at the rateg^a†a&. For the states discussed in this pap
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these two rates are approximately the same, at least initi
The mean value of the amplitude does not decay, but
average energy increases at the constant rateg. We can thus
model the heating by two independent jump processes.
will assume that over each run of the experiment, taking ti
t, the heating rate is low enough that we only need to c
sider at most a single jump, either up or down, with pro
ability d5guau2T. If only a single jump occurs, no matte
which way upward or downward, it flips the parity of th
state. In other words, heating leads to bit-flip errors.

Up to a fidelity of exp(2e2), the pure Bell stater
5 1

2 uf1&^f1u is obtained. In order to test a Bell inequalit
with the entangled coherent states, a large number of run
the experiment would need to be performed, and the s
may vary from one run to the next if bit-flip errors occu
Thus the test of the Bell inequality is actually performed
a mixed state. Provided that a time intervalt is chosen such
that the probability of more than one bit-flip error due
heating is negligible, the density matrix for the state can
expressed as

r5
1

2
~12d!uf1&K f1U1 1

2
dUc1L ^c1u, ~25!

with

uc1&[u0& ^ u1&1u1& ^ u0& ~26!

being another of the four maximally entangled Bell stat
The Bell stateuc1& is orthogonal to the desired stateuf1&.

The state given by Eq.~25! for d sufficiently small must
violate the spin Bell inequality@1,2#

B5uE~u1 ,u2!1E~u1 ,u28!1E~u18 ,u2!2E~u18 ,u28!u<2,
~27!

where the correlation functionE(u1 ,u2) is given by the ex-
pectation value

E~u1 ,u2!5^su1

(1)su2

(2)&. ~28!

Here the operatorsu i

( i ) may be defined as

su i

( i )5 cosu isx
( i )1 sinu isy

( i ) , ~29!

where the operatorssa
( i ) ~with a5x, y or z) are thea Pauli

spin operators for the two–level system of atomi. The tun-
able parametersu i ( i 51,2) control the proportion ofsx

( i ) to
sy

( i ) in su i

( i ) and function like variable polarizers in th

single–photon experiments.
In an ion trap this correlation function~28! is achieved by

first applying single-qubit rotations to both ions and then
performing a simultaneous measurement ofŝz on both ions.
The ŝz measurement is achieved with high precision via
shelving fluorescence technique@18#. The experiment is re-
peated over many runs and the average gives the de
correlation functionE(u1 ,u2). Mathematically, this correla-
tion function can be expressed in the form
8-3



ie

-
the

er,

bits
two-
ns
the
ent
the
uo-

on
we
up-
ac-
rch

W. J. MUNRO, G. J. MILBURN, AND B. C. SANDERS PHYSICAL REVIEW A62 052108
E~u1 ,u2!5Tr@rV̂1
1/2~u1!sz

(1)
„V̂1

1/2~u1!…†V̂2
1/2~u2!sz

(2)

3„V̂2
1/2~u2!…†# ~30!

where the Cirac and Zoller single-qubit rotations@17# V̂i
k(f)

on thei th ion are given by

V̂i
k~f!5 expF2 ik

p

2
~ u1& i^0ue2 iu i1u0& i^1ueiu i !G . ~31!

This single-qubit rotation is achieved by applying a carr
pulse of lengthkp with a phaseu i .

Returning to the density matrix given by Eq.~25!, it is
easily shown that the correlation function~28! has the sim-
plified form

E~u1 ,u2!5~12d!cos~u11u2!1d cos~u12u2!; ~32!

hence, the spin Bell inequality~27! for optimal-angles
choices@19# reduces to
. A

d,

.
ol

rn

05210
r

B52A2~12d!. ~33!

A violation of this inequality is possible forB.2, whend
,121/A2. Whereas the Bell inequality is technically vio
lated, this does not present a loophole-free test due to
limited temporal separation of the ions. It does, howev
completely close the detection loophole.

To summarize, we have described how entangled qu
can be encoded as entangled coherent states of
dimensional center-of-mass vibrational motion for two io
in an ion trap. The entangled qubit state is equivalent to
canonical Bell state, and by transferring the entanglem
from the two vibrational modes to the electronic states of
two ions, the Bell state can be detected by resonance fl
rescence shelving methods.
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