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Canonical formalism for Lagrangians with nonlocality of finite extent
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| consider Lagrangians which depend nonlocally in time but in such a way that there is no mixing between
times differing by more than some finite valdé. By considering these systems as the limits of ever higher
derivative theories, | obtain a canonical formalism in which the coordinates are the dynamical variable from
to t+At. A simple formula for the conjugate momenta is derived in the same way. This formalism makes
apparent the virulent instability of this entire class of nonlocal Lagrangians. As an example, the formalism is
applied to a nonlocal analog of the harmonic oscillator.

PACS numbes): 03.65.Bz, 11.10.Lm

[. INTRODUCTION certainly not valid for the inverse differential operators
which result from integrating out a local field variable. It also
The traditional goal of fundamental physics is to infer thefails for “maximal nonlocality” in which the action is a
rules by which the “present state” of a system’s dynamicalnonlinear function of local action}]. The purpose of this
variables determines their future state. Since Newton’s timepaper is to demonstrate by construction that the higher de-
most attention has been given to models for which thdivative representation is valid for “nonlocality of finite ex-
“present state” of a system’s dynamical variables meandent” in which the Lagrangian connects no times differing by
their values at some instant in time and possibly also th@ore than some constait.
values of their first time derivatives. This restriction corre- Although the results of this paper apply as well to field
sponds to equations of motion that are local in time andheories, I will work in the context of a one-dimensional,
contain no more than second time derivatives. It has nopoint particle whose position as a function of timegig). A
proved useful so far in describing the physical universe ormonlocal Lagrangian of finite extentt is one which defi-
the most fundamental level, to invoke equations of motionnitely depends uportand mixe$ q(t) and q(t+At), and
that are either nonlocal in time or that even possess morgotentially depends as well upa@ft’) for t<t’<t+At. An
than two time derivatives. example would be the following nonlocal generalization of
The deep reason behind this surprising simplification ofthe harmonic oscillator:
fundamental theory seems to be the result obtained by the _
19th century physicist Ostrogradski]. He showed that L[g](t)= imcd?(t+At/2)— imw?q(t)q(t+At). (1)
Lagrangians which possess a finite number of higher time
derivatives and are not degenerate in the highest one mu$he deterministic way of viewing such theories is that the
give rise to Hamiltonians which ataear in essentially half  equations of motion give the dynamical variable at the latest
of the canonical variables. This is a nonperturbative resulttime —q(t+ At)— as a function of earlier times in the range
Further, it cannot be altered by quantization since the instat— At<t’<t-+ At. In our example, the equation of motion is
bility occurs over a large volume of the canonical phase
space. | will review Ostrogradski’'s construction in Sec. Il of At - SL[q](t—r)
this paper. For now it suffices to note that the instability must fo rW
apply as well to nonlocal theories which can be represented

as the limits of ever higher derivative ones. =-—m{q(t)+ 3 w?q(t+At)+ Fw?q(t—At)}=0,
Much of the interest in nonlocal quantum field theories
has been motivated by the close connection between ultra- )

violet divergences and local interactioh]. Of course it

does no good to avoid divergences by introducing an infinit

number of instabilities against which there is not even any

barrier to decay. It is therefore of interest to know when a At At)_ i -

. . o q(t+At)=—q(t—At) a(t). ()

nonlocal Lagrangian possesses a higher derivative represen- w?

tation and, consequently, the Ostrogradskian instability. The

higher derivative representation does seem to be valid for This paper is organized as follows. Section Il is devoted

cases such as string field theory, where the nonlocality entete a review of Ostrogradski’'s result for local Lagrangians

through entire functions of the derivative operator and thedepending upoi time derivatives. My canonical formalism

Lagrangian cannot be made local by a field redefinifidh  is presented in Sec. Ill and shown to correctly realize the

On the other hand, the higher derivative representation igdynamics of nonlocal Lagrangians of finite extent. This for-
malism is applied in Sec. IV to the Lagrangiél) discussed
above. The connection with Ostrogradski's formalism is

*Email address: woodard@phys.ufl.edu demonstrated in Sec. V. My conclusions comprise Sec. VI.

eand its deterministic interpretation is
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I. OSTROGRADSKI'S CONSTRUCTION

Consider a Lagrangiah(q,q, . .. ,g™) which depends
upon the firstN derivatives of the dynamical variabtgt). |
shall assume only that the Lagrangiam@degenerate.e.,
that the equation

aL
aq(N)

(4)

PN:

can be inverted to solve faN) as a function oPy, g, and
the firstN—1 derivatives ofg. This just means that the ac-
tion’s dependence upagi™) cannot be eliminated by partial
integration, so the equation of mation,

d\' oL
TR

containsq®V).

Since the equation of motion determing$™) as a func-
tion of g and its first N—1 derivatives, one can obviously
specify the initial values of theseN2variables. The canoni-
cal phase space must accordingly confdinoordinates and
N conjugate momenta. In Ostrogradski's construcfibjthe
Ith coordinate is just thel - 1)th derivative ofq,

Q=q(~Y. (6)
The momentum canonically conjugate @ is
N _
d\7" oL
OIS 7
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tion (7) for P,, andP; gives the equation of motiof5). So
there is no doubt that Ostrogradski’'s Hamiltonian generates
time evolution. When the Lagrangian is free of explicit time
dependencel is also the conserved current associated with
time translation invariance.

The instability consequent uporH’s linearity in
P.,P,, ... ,Py_1 explains why higher derivative theories
have not been of use in describing physics on the fundamen-
tal level. Note the generality of the problem. It does not
depend upon any approximation scheme, nor upon any fea-
ture of the Lagrangian except nondegeneracy. Further, it
must continue to afflict the theory after quantization because
the instability is not confined to a small region of the classi-
cal phase space. If a fully nonlocal Lagrangian can be repre-
sented as the limit of such higher derivative Lagrangians, it
must inherit their instability.

The limit of infinite N is facilitated by regarding Ostro-
gradski’s formalism as the result of constraining a larger sys-
tem with an extra pair of canonical variables,

Qn+1=aq™, Py,,~0. (12
The Hamiltonian is
N

=2, PiQi1~L(Q.Qu+), (13

and requiring thaPy, ; remains zero imposes the canonical
definition of Py as another constraint,

JH JL

Pyt ——~0.
IQN+1 On+1

Pni1=— (149

A consequence of nondegeneracy is that the derivativeSince the Poisson bracket wifPy,; gives the second de-

qN*) can be determined froRy_;,Pn_|+1, - . . ,Py @and
the Qy’s. In particular,g™) involves onlyPy and theQ;’s,

q™=9(Q,Py). )
Ostrogradski’s Hamiltonian is
N
=2 PQ-L, )

N—-1

=|§1 PiQi;+1+PnQ(Q,PN)—L(Q,2(Q,Py)), (10)

and his canonical equations are the ones suggested by the

notation

. gH . H
Q'_&_P,’ P'__ﬂ_Ql' (11)

It is straightforward to check that the various canonical evo-
lution equations reproduce the equation of motion and the

structure of the canonical formalisr@, gives the canonical
definition(6) for Q, 41, QN glves the canonical definition for
Py in its inverse form(8), P, gives the canonical defini-

rivative of the Lagrangian with respect @y 1, hondegen-
eracy implies that the two constraints are second class. The
resulting Dirac brackets are

-1

= (= Sina 1Ot i d )&2—L
1Q1,Qutp=(—din+16inT SiNOan+1 i
(15
- AL A
1Q1.Pstp=013— N+ 0Q2 .| 7QQnrs’ (16)
{P1.P;3}p=0. (17)

Note that there is not even any difference between Dirac
brackets and Poisson brackets provided one avoids the high-
estQ, that is,Qn. 1.

IIl. MY CONSTRUCTION FOR FINITE NONLOCALITY

| define a nonlocal Lagrangidr q](t) of finite extentAt

as one which potentially depends upon the dynamical vari-
able from timet to time t+ At, with guaranteed mixing be-
tweeng(t) andq(t+ At). The requirement of mixing is the
generalization of nondegeneracy and it implies
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S°LLal(t)

sq(Doq(tLan ~ O

(18)
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At

OLLQIM) —d(r—s)P(r,t)

d
=3PV o

(29

| shall also require that the Lagrangian contain no derivatives

of eitherq(t) or q(t+At).
| label the canonical variables by a continuum paramete
0=s=<At. They are defined as follows:

For 0<s< At this simply reproduces E@21), and hence the
ganonical definition oP(s,t).
Since the two surface terms cannot be canceled by any-

thing else, they must be imposed as constraints,

Q(s,t)=q(s+1), (19
(At dL[gl(stt—r)
P(s,t)=L drw (20

Note that Eq.(20) implies the constrainP(At,t)~0. Note
also that whereas theandt derivatives ofQ(s,t) are iden-
tical, those ofP(s,t) are not,

oL[q](t)

8q(s+t)’ 21)

d P = d P
d_S (S,t)—a (s,t)—

SinceL[q](t) involves the dynamical variable frog(t) up
to q(t+At), we see thaP(s,t) involvesq(s+t—At) up to

H
g(t+ At). So decreasing allows one to reach back further —(t)—

before timet, all the way to timet— At at s=0.
Note that the equation of motion i®(0t)=0. This

emerges as an additional constraint from surface variations

of the canonical Hamiltonian

At
H(t)—f dr P(r, t) Q(r,t)—L[Q](t). (22

We can find the canonical equations of time evolution from
the fact that the only nonzero Poisson bracket is

{Q(r,1),P(s,t)}=8(r —5s). (23
The result forQ(s,t) is straightforward,
Q(s,0)={Q(s,1),H (1)}, (24)
At
=f dr5(r—s)—Q(r t), (25
. d
=5sQsh). (26

A partial integration is necessary fBx(s,t) and one must be
careful about the resulting surface terms,

d
GiP(sD={P(SD.H®), @7)

SL[QI(1)
8Q(s,t) ’

At
—f dr P(r, t) ( —S)+
(28)

P(s,t)~ s=0,At. (30

Requiring that they be preserved under time evolution im-
plies two additional constraints,

SLLQJ(Y)
oQ(s,t)

Nondegeneracy — and the absencé[ig](t) of derivatives
of q(t) and/or g(t+At)—guarantees that the four con-
straints are second class.

Note that theH(t) is conserved wheh[q](t) is free of
explicit time dependence,

d
d—SP(s,t)+ ~0, s=0At. (32

dp 2
f ds{ T (st)dQ(st)+P(st) ds?(st)]
d
— gLl (32
At d d
=J dsd—S (s,t)d—SQ(s,t)
At - SL[Q](t) d
L 955500 3RSt~ dtL[Q](t) (33
At
—P(st) Q(st) , (34
~0. (39

Note also that the Hamiltonian has inherited the Ostrograd-
skian instability. After eliminating the constraints, it must be
linear in all the P(s,t) except possibly d/ds)P(s,t) ats

=0 and ats=At.

IV. A SIMPLE EXAMPLE

It is useful to see how the general construction given in
the preceding section applies to the LagrangBrpresented
in Sec. |. Of course the canonical coordinates are always
Q(s,t)=q(s+t) for O=s<At. To find the canonical mo-
menta, note that the functional derivative of the Lagrangian

is
5’(5—

oL[ql(t)
Sq(s+t)
- ;mwz[q(HAt)é(s)+q(t)5(s—At)].

+At
2

At

g

2

(36)
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Substituting in Eq(20) gives Since the Lagrangiafl) has no explicit dependence upon
A A A time, the Hamiltonian should be conserved. To see that it is,
o t t . t first substituteQ(s,t) =q(s,t) and relation37) for P(s,t) to
P(s,t)=mq t+7 o s—;)—mq(sﬂ)a 5 ) obtain
1, At dQ
— =moq(s+t+At)0(—5) ds P(s,t) =—(s,t)
2 0 dqg
+q(s+t—At)H(At—s)]. (37) ) At A2 .
=m¢?| t+— —mJ’ ds q(s+t)q(s+t)
Note thatP(At,t)=0 and that 2 0
P(0)=—m[d(t) + $w2q(t+At) +3w?q(t—At)] _ L f A s st A (st
(39) 5> Mo . ds q(s+t—At)g(s+t),
: . . : . (46)
indeed vanishes with the equation of motion.
The canonical Hamiltonian is 1 T. At) .
=—m[q2(t+— +q2(t)}
. fmd dQ 1 [dQ[At |]? 2 2
(= . s P(S,t)E(S,t)— >M4s 7,t 1 At _
—EmeJ dsqs+t—At)g(s+t). (47
1 0
+5Mw?Q(0)Q(AL). (39) . . _—
2 Then subtract expressid) to determine the configuration
. . . space Hamiltonian,
The canonical evolution equations are
1 . 1
_Q(S,t):_Q(S,t), (40) H(t)=5ma(t) + s me’q(t)q(t+At)
dt ds
1 (A .
dP _dp dQ(At |\ At —pme” | dsqs+t—At)q(s+t). (48
iSO =gss-—ma| 5 s——

1 Now use the fact that the integrand depends upamly
— 2 Mo Q(AL,1)8(s)+Q(01) 8(s— At)]. through the suns+t to express the derivative of the integral
2 as a surface term,

@D gn

S 1 . .
- — _ 2
It is simple to check that substitutin@(s,t)=q(s+t) and dt (O=mgta(t)+ me [a®a(t+Ay+a(ha(t+AD]

relation (37) for P(s,t) indeed verifies these equations.

=At
The constraints ar@®(0t)~0, P(At,t)~0, and the ap- _ Emwzq(s+t—At)q(s+t) ) , (49)
parently singular pair 2 s=0
dpP 1 . 1 1
s (00— 2Mw Q(AL,1) 6(0)~0, (42 =moq(t) q(t)+szq(t—At)+§w2q(t+At) . (50

P L The most straightforward way of demonstrating that the
E(At,t)— 7Mw-Q(0,t) 5(0)~0. (43 transformation to the constrained phase space is invertible is
by exhibiting the inverse. Of course we always have
However, the vanishing oP(s,t) at the end points means
that the end-point derivatives contadfunctions, so the ac- q(s+1=Q(s,1),
tual constraints are the perfectly regular coefficients(@),

VO<s<At. (52

For —At<s<0 one recovers|(s+t) from relation(37),

P(0",t)— mw?Q(At,t)~0, (44) 5
g(stt)=———P(s+At1)
—P(At™,t)— 3mw?Q(0t)~0. (45)
2 d|[dQ At
Note that these constraints are implied by E87) and, L 24gs| gs (STALDE — 5 —s||. (52

where necessary, the vanishing of E2f). Note also that the
constraints determine both the actual end-point values ofhe end-point case af=— At is given by the constraint
P(s,t) and its limit as the end points are approached. P(0t)=~0,
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t—At)= At,t) 2 &9 (o}3) (53 i —fmds[aQ(s’t) 0
A7 AD=7QUBLD ™52 g2 (OO, aQu() ~Jo 1 aQi(1) | 8Q(s,1)
where | am of course defining differentiation in the right- at gt 5
handed sense, =1/, dsm 0G0’ (63)
g(x)z im fx+ 6)_f(x)_ (54  Where the functional derivative is defined by
0" 5Q(r t
: : : - ol )=6(r—8) (64)
It is amusing to close the section by exhibiting the run- 6Q(s,1)

away solutions which are one possible consequence of the

Ostrogradskian instability. Since the configuration spacénd the ordinary rules of calculus. From E&9) one obtains
equation of motion, a useful formula for the higher derivative representation,

|
GO+ LeZ[qt+AD+q(t—AD]=0, (55 M:J“ ;S otlalm 65
aqM(t) 0 Il 5g(s+t)
is linear and invariant under time translation, the general
solution must be a superposition of terms having the form The conjugate momentu(s,t) should depend linearly
e'k'. The allowed frequencies are complex numbershich ~ on the Ostrogradskian momenta,
obey

k?= w? cog kALt). (56) P(S,t)zzo PI(S)P+4(1). (66)

The equation is transcendental but graphing both sides showe combination coefficientp,(s) can be determined by

a single pair of+ real solutions. To find the remaining so- enforcing the canonical Poisson brackes),
lutions, make the substitution

—_

-
k=a+ip, (57) 8r=s)=2 ;7 2 PiSHQi+2(D,Pya(D}, (67

M ¢
=

1=0

and take the real and imaginary parts of the equation, |

-

TPi(S). (68)

Il
M ¢
=

a@?— B?= w? cog aAt)cosh BAL), (58

1=0

2aB=— w?sin(aAt)sinh( BAL). (59 By acting @/ar)? and then taking — 0, one finds

Graphical analysis indicates a conjugate pair of solutions for d\J
aAt in each 27 interval of the real line. For large integhi; pi(s)= ( - d_s) é(s). (69
these solutions have the form

To obtain my formula(20) for the conjugate momenta,

aAt~27N— 2 In?\IN) , (60) note first that, for infiniteN, the Ostrogradskian momenta are
a
o [ dVyThaLgl
N AL B PD=3 (‘a) S 70
+ BAt=In ) N | (61)

So this system has the infinite number of solutions predicted

S d\T par Y sLql(t
2 (a) [ [?]ft;-
by the Ostrogradskian analysis, and all but two of them grow J= 0 Hod(

or fall exponentially. (72)
Now substitute this and Eq69) into Eq. (66),
V. OSTROGRADSKIAN DERIVATION
*° |
My representation is related to the infinfelimit of Os- P(s,t)= > [( - i) 5(s)
trogradski’'s through the Maclaurin series, = ds
*° J-1-1 J
- g o d st 12 sLlal()
Q(s,t)=|20ﬁQ.+1(t)- (62 XJ;H ( dt) fo er! sq(r+t)”

. - : : (72)
Note that differentiation with respect to the Ostrogradskian
coordinates is realized by the functional chain rule Simplification is achieved by exploiting the identity
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rd oo (r=r)(rry)7 1t (20) are given by a simple integral of a functional derivative
—=J dr’ (73)  of the Lagrangian. With the canonical coordinates, the mo-
3o MJ—1-1)! . .
menta allow one to reconstruct the dynamical variables at
H’mest—s.
There is no physical motivation for this exercise because
all such models are virulently unstable. Indeed, the only

to recognize the two sums as Taylor expansions of the shi
operator,

At . = (r—r")! d\! point of the formalism is to remove any doubt about a pos-
p(s,t):f drf dr’ >, _(__) 8(s) sible phenomenological role for these Lagrangians. They
0 o i=o I ds have inherited the full Ostrogradskian instability: essentially

half of the directions in the classical phase space access ar-
Zo(r)d 7t d\? "1 sL[q](t) bitrarily negative energies. There is not even any barrier to
X > 1111 ( - —) e decay. This is a nonperturbative result and, because it arises
=1 (3—1-=1)! dt 8q(r+t) . ) ! :
from a large region of phase space, it must survive quantiza-
tion.
At ] SLq)(t—1") Negativ_e re_su_lts of such power and gene_rality seem to
:j er dr's(s—r+r') ————, pose an irresistible challenge, to mathematically inclined
0 0 sq(r+t—r’) physicists. Nothing | can honestly add is likely to much dis-
(75 courage further attempts to carve out a physical niche for
nonlocal Lagrangians, but | do recommend that these efforts
a f“ ; oL[q](s+t—r) (76 be preceded by sober reflection upon the following fact: in
s 6q(s+t) the long struggle of our species to understand the universe, it
hasnever onceroven useful to invoke a theory that is non-
The Hamiltonian follows similarly, local on the most fundamental level. Yet the subset of local
. Lagrangians containing no more than first derivatives is a
_ minuscule fragment of the set of all functionals of the dy-
H(t)_zl PI(DQ11 () ~LIQI(), ("D hamical variable. The Ostrogradskian instability offers a
simple and compelling explanation for the complete domi-
nance of this tiny subset over its much larger whole. The
only alternative would seem to be coincidence on a scale that
r=0 makes even the worst fine-tuning problem seem inconse-
quential.
—LIQIM), (78) Note addedShortly after submitting this paper, | learned
At d of important work by Llosa and Vivels] on the problem of
:f ds P(s,t) —Q(s,t)— L[Q](). (790  canonically formulating a general nonlocal Lagrangian. My
0 ds work can be viewed as a specialization of their technique to
, S . ) the case of nonlocality of finite extent where the Euler-
Its instability is manifest from the fact that it has been de-| 5 ange equations are deterministic, where an explicit Pois-
rived from Ostrogradski’s result in the limit that the number g, bracket structure can be determined and where the for-
of derivatives becomes infinite. malism can be derived from the infinitd limit of
Ostrogradski's constructiorfNone of these features can be
VI. DISCUSSION present in the general casblote should also be taken of the
recent work of Gomis, Kamimura, and Llosa on canonically
formulating space-time noncommutative theofiék

(74

oAt g1l d\!
:21 fo dSmP(S,t)(a) Q(r,t)

| have shown that Lagrangians with nonlocality of finite
extentAt can be treated as the limits of higher derivative
Lagrangians. | have also given a canonical formalism that is
somewhat more natural in which the canonical variables are
labeled by a continuum parametgrfor O<s<At. The ca- | thank T. Jacobson for asking the question that stimulated
nonical coordinates are just the dynamical variables at timeme to carry out this exercise. This work was partially sup-
t+s. A quantum-mechanical state in such a system would bgorted by DOE Contract No. DE-FG02-97ER41029 and by
a functional of these coordinates. The conjugate momentthe Institute for Fundamental Theory.
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