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Canonical formalism for Lagrangians with nonlocality of finite extent

R. P. Woodard*
Department of Physics, University of Florida, Gainesville, Florida 32611

~Received 28 June 2000; published 12 October 2000!

I consider Lagrangians which depend nonlocally in time but in such a way that there is no mixing between
times differing by more than some finite valueDt. By considering these systems as the limits of ever higher
derivative theories, I obtain a canonical formalism in which the coordinates are the dynamical variable fromt
to t1Dt. A simple formula for the conjugate momenta is derived in the same way. This formalism makes
apparent the virulent instability of this entire class of nonlocal Lagrangians. As an example, the formalism is
applied to a nonlocal analog of the harmonic oscillator.

PACS number~s!: 03.65.Bz, 11.10.Lm
he
a

m
th
n
th
e
n
n
o

io
o

o
t

im
u

u
st
s
of
us
te

es
ltr

it
n

s
h
f
te
th

n

rs
o

de-
-
by

ld
l,

of

he
est
e

is

ed
ns

the
r-

is
I.
I. INTRODUCTION

The traditional goal of fundamental physics is to infer t
rules by which the ‘‘present state’’ of a system’s dynamic
variables determines their future state. Since Newton’s ti
most attention has been given to models for which
‘‘present state’’ of a system’s dynamical variables mea
their values at some instant in time and possibly also
values of their first time derivatives. This restriction corr
sponds to equations of motion that are local in time a
contain no more than second time derivatives. It has
proved useful so far in describing the physical universe
the most fundamental level, to invoke equations of mot
that are either nonlocal in time or that even possess m
than two time derivatives.

The deep reason behind this surprising simplification
fundamental theory seems to be the result obtained by
19th century physicist Ostrogradski@1#. He showed that
Lagrangians which possess a finite number of higher t
derivatives and are not degenerate in the highest one m
give rise to Hamiltonians which arelinear in essentially half
of the canonical variables. This is a nonperturbative res
Further, it cannot be altered by quantization since the in
bility occurs over a large volume of the canonical pha
space. I will review Ostrogradski’s construction in Sec. II
this paper. For now it suffices to note that the instability m
apply as well to nonlocal theories which can be represen
as the limits of ever higher derivative ones.

Much of the interest in nonlocal quantum field theori
has been motivated by the close connection between u
violet divergences and local interactions@2#. Of course it
does no good to avoid divergences by introducing an infin
number of instabilities against which there is not even a
barrier to decay. It is therefore of interest to know when
nonlocal Lagrangian possesses a higher derivative repre
tation and, consequently, the Ostrogradskian instability. T
higher derivative representation does seem to be valid
cases such as string field theory, where the nonlocality en
through entire functions of the derivative operator and
Lagrangian cannot be made local by a field redefinition@3#.
On the other hand, the higher derivative representatio
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certainly not valid for the inverse differential operato
which result from integrating out a local field variable. It als
fails for ‘‘maximal nonlocality’’ in which the action is a
nonlinear function of local actions@4#. The purpose of this
paper is to demonstrate by construction that the higher
rivative representation is valid for ‘‘nonlocality of finite ex
tent’’ in which the Lagrangian connects no times differing
more than some constantDt.

Although the results of this paper apply as well to fie
theories, I will work in the context of a one-dimensiona
point particle whose position as a function of time isq(t). A
nonlocal Lagrangian of finite extentDt is one which defi-
nitely depends upon~and mixes! q(t) and q(t1Dt), and
potentially depends as well uponq(t8) for t,t8,t1Dt. An
example would be the following nonlocal generalization
the harmonic oscillator:

L@q#~ t !5 1
2 mq̇2~ t1Dt/2!2 1

2 mv2q~ t !q~ t1Dt !. ~1!

The deterministic way of viewing such theories is that t
equations of motion give the dynamical variable at the lat
time —q(t1Dt)— as a function of earlier times in the rang
t2Dt<t8,t1Dt. In our example, the equation of motion

E
0

Dt

dr
dL@q#~ t2r !

dq~ t !

52m$q̈~ t !1 1
2 v2q~ t1Dt !1 1

2 v2q~ t2Dt !%50,

~2!

and its deterministic interpretation is

q~ t1Dt !52q~ t2Dt !2
2

v2
q̈~ t !. ~3!

This paper is organized as follows. Section II is devot
to a review of Ostrogradski’s result for local Lagrangia
depending uponN time derivatives. My canonical formalism
is presented in Sec. III and shown to correctly realize
dynamics of nonlocal Lagrangians of finite extent. This fo
malism is applied in Sec. IV to the Lagrangian~1! discussed
above. The connection with Ostrogradski’s formalism
demonstrated in Sec. V. My conclusions comprise Sec. V
©2000 The American Physical Society05-1
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II. OSTROGRADSKI’S CONSTRUCTION

Consider a LagrangianL(q,q̇, . . . ,q(N)) which depends
upon the firstN derivatives of the dynamical variableq(t). I
shall assume only that the Lagrangian isnondegenerate, i.e.,
that the equation

PN5
]L

]q(N)
~4!

can be inverted to solve forq(N) as a function ofPN , q, and
the firstN21 derivatives ofq. This just means that the ac
tion’s dependence uponq(N) cannot be eliminated by partia
integration, so the equation of motion,

(
I 50

N S 2
d

dtD
I ]L

]q(I )
50, ~5!

containsq(2N).
Since the equation of motion determinesq(2N) as a func-

tion of q and its first 2N21 derivatives, one can obviousl
specify the initial values of these 2N variables. The canoni
cal phase space must accordingly containN coordinates and
N conjugate momenta. In Ostrogradski’s construction@1# the
I th coordinate is just the (I 21)th derivative ofq,

QI[q(I 21). ~6!

The momentum canonically conjugate toQI is

PI5(
J5I

N S 2
d

dtD
J2I ]L

]q(J)
. ~7!

A consequence of nondegeneracy is that the derivat
q(N1I ) can be determined fromPN2I ,PN2I 11 , . . . ,PN and
the QJ’s. In particular,q(N) involves onlyPN and theQJ’s,

q(N)5Q~QW ,PN!. ~8!

Ostrogradski’s Hamiltonian is

H5(
I 51

N

PIQ̇I2L, ~9!

5 (
I 51

N21

PIQI 111PNQ~QW ,PN!2L„QW ,Q~QW ,PN!…, ~10!

and his canonical equations are the ones suggested b
notation

Q̇I5
]H

]PI
, ṖI52

]H

]QI
. ~11!

It is straightforward to check that the various canonical e
lution equations reproduce the equation of motion and
structure of the canonical formalism:Q̇I gives the canonica
definition~6! for QI 11 , Q̇N gives the canonical definition fo
PN in its inverse form~8!, ṖI 11 gives the canonical defini
05210
es

the

-
e

tion ~7! for PI , andṖ1 gives the equation of motion~5!. So
there is no doubt that Ostrogradski’s Hamiltonian genera
time evolution. When the Lagrangian is free of explicit tim
dependence,H is also the conserved current associated w
time translation invariance.

The instability consequent uponH ’s linearity in
P1 ,P2 , . . . ,PN21 explains why higher derivative theorie
have not been of use in describing physics on the fundam
tal level. Note the generality of the problem. It does n
depend upon any approximation scheme, nor upon any
ture of the Lagrangian except nondegeneracy. Furthe
must continue to afflict the theory after quantization beca
the instability is not confined to a small region of the clas
cal phase space. If a fully nonlocal Lagrangian can be rep
sented as the limit of such higher derivative Lagrangians
must inherit their instability.

The limit of infinite N is facilitated by regarding Ostro
gradski’s formalism as the result of constraining a larger s
tem with an extra pair of canonical variables,

QN11[q(N), PN11'0. ~12!

The Hamiltonian is

H5(
I 51

N

PIQI 112L~QW ,QN11!, ~13!

and requiring thatPN11 remains zero imposes the canonic
definition of PN as another constraint,

ṖN1152
]H

]QN11
52PN1

]L

QN11
'0. ~14!

Since the Poisson bracket withPN11 gives the second de
rivative of the Lagrangian with respect toQN11, nondegen-
eracy implies that the two constraints are second class.
resulting Dirac brackets are

$QI ,QJ%D5~2d IN11dJN1d INdJN11!F ]2L

]QN11
2 G21

,

~15!

$QI ,PJ%D5d IJ2d IN11F ]2L

]QN11
2 G21

]2L

]QJ ]QN11
, ~16!

$PI ,PJ%D50. ~17!

Note that there is not even any difference between Di
brackets and Poisson brackets provided one avoids the h
estQ, that is,QN11.

III. MY CONSTRUCTION FOR FINITE NONLOCALITY

I define a nonlocal LagrangianL@q#(t) of finite extentDt
as one which potentially depends upon the dynamical v
able from timet to time t1Dt, with guaranteed mixing be
tweenq(t) andq(t1Dt). The requirement of mixing is the
generalization of nondegeneracy and it implies
5-2
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d2L@q#~ t !

dq~ t !dq~ t1Dt !
Þ0. ~18!

I shall also require that the Lagrangian contain no derivati
of eitherq(t) or q(t1Dt).

I label the canonical variables by a continuum parame
0<s<Dt. They are defined as follows:

Q~s,t ![q~s1t !, ~19!

P~s,t ![E
s

Dt

dr
dL@q#~s1t2r !

dq~s1t !
. ~20!

Note that Eq.~20! implies the constraintP(Dt,t)'0. Note
also that whereas thes and t derivatives ofQ(s,t) are iden-
tical, those ofP(s,t) are not,

d

ds
P~s,t !5

d

dt
P~s,t !2

dL@q#~ t !

dq~s1t !
. ~21!

SinceL@q#(t) involves the dynamical variable fromq(t) up
to q(t1Dt), we see thatP(s,t) involvesq(s1t2Dt) up to
q(t1Dt). So decreasings allows one to reach back furthe
before timet, all the way to timet2Dt at s50.

Note that the equation of motion isP(0,t)50. This
emerges as an additional constraint from surface variat
of the canonical Hamiltonian

H~ t ![E
0

Dt

dr P~r ,t !
d

dr
Q~r ,t !2L@Q#~ t !. ~22!

We can find the canonical equations of time evolution fro
the fact that the only nonzero Poisson bracket is

$Q~r ,t !,P~s,t !%5d~r 2s!. ~23!

The result forQ(s,t) is straightforward,

d

dt
Q~s,t !5$Q~s,t !,H~ t !%, ~24!

5E
0

Dt

drd~r 2s!
d

dr
Q~r ,t !, ~25!

5
d

ds
Q~s,t !. ~26!

A partial integration is necessary forP(s,t) and one must be
careful about the resulting surface terms,

d

dt
P~s,t !5$P~s,t !,H~ t !%, ~27!

52E
0

Dt

dr P~r ,t !
d

dr
d~r 2s!1

dL@Q#~ t !

dQ~s,t !
,

~28!
05210
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ds
P~s,t !1

dL@Q#~ t !

dQ~s,t !
2d~r 2s!P~r ,t !U

0

Dt

.

~29!

For 0,s,Dt this simply reproduces Eq.~21!, and hence the
canonical definition ofP(s,t).

Since the two surface terms cannot be canceled by a
thing else, they must be imposed as constraints,

P~s,t !'0, s50,Dt. ~30!

Requiring that they be preserved under time evolution
plies two additional constraints,

d

ds
P~s,t !1

dL@Q#~ t !

dQ~s,t !
'0, s50,Dt. ~31!

Nondegeneracy — and the absence inL@q#(t) of derivatives
of q(t) and/or q(t1Dt)—guarantees that the four con
straints are second class.

Note that theH(t) is conserved whenL@q#(t) is free of
explicit time dependence,

dH

dt
~ t !5E

0

Dt

dsH dP

dt
~s,t !

dQ

ds
~s,t !1P~s,t !

d2Q

ds2 ~s,t !J
2

d

dt
L@Q#~ t !, ~32!

5E
0

Dt

ds
d

dsFP~s,t !
d

ds
Q~s,t !G

1E
0

Dt

ds
dL@Q#~ t !

dQ~s,t !

d

ds
Q~s,t !2

d

dt
L@Q#~ t !, ~33!

5P~s,t !
d

ds
Q~s,t !U

0

Dt

, ~34!

'0. ~35!

Note also that the Hamiltonian has inherited the Ostrogr
skian instability. After eliminating the constraints, it must b
linear in all theP(s,t) except possibly (d/ds)P(s,t) at s
50 and ats5Dt.

IV. A SIMPLE EXAMPLE

It is useful to see how the general construction given
the preceding section applies to the Lagrangian~1! presented
in Sec. I. Of course the canonical coordinates are alw
Q(s,t)5q(s1t) for 0<s<Dt. To find the canonical mo-
menta, note that the functional derivative of the Lagrang
is

dL@q#~ t !

dq~s1t !
52mq̇S t1

Dt

2 D d8S s2
Dt

2 D
2

1

2
mv2@q~ t1Dt !d~s!1q~ t !d~s2Dt !#. ~36!
5-3
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Substituting in Eq.~20! gives

P~s,t !5mq̇S t1
Dt

2 D dS s2
Dt

2 D2mq̈~s1t !uS Dt

2
2sD

2
1

2
mv2@q~s1t1Dt !u~2s!

1q~s1t2Dt !u~Dt2s!#. ~37!

Note thatP(Dt,t)50 and that

P~0,t !52m@ q̈~ t !1 1
2 v2q~ t1Dt !1 1

2 v2q~ t2Dt !#
~38!

indeed vanishes with the equation of motion.
The canonical Hamiltonian is

H~ t !5E
0

Dt

ds P~s,t !
dQ

ds
~s,t !2

1

2
mFdQ

ds S Dt

2
,t D G2

1
1

2
mv2Q~0,t !Q~Dt,t !. ~39!

The canonical evolution equations are

dQ

dt
~s,t !5

dQ

ds
~s,t !, ~40!

dP

dt
~s,t !5

dP

ds
~s,t !2m

dQ

ds S Dt

2
,t D d8S s2

Dt

2 D
2

1

2
mv2@Q~Dt,t !d~s!1Q~0,t !d~s2Dt !#.

~41!

It is simple to check that substitutingQ(s,t)5q(s1t) and
relation ~37! for P(s,t) indeed verifies these equations.

The constraints areP(0,t)'0, P(Dt,t)'0, and the ap-
parently singular pair

dP

ds
~0,t !2 1

2 mv2Q~Dt,t !d~0!'0, ~42!

dP

ds
~Dt,t !2 1

2 mv2Q~0,t !d~0!'0. ~43!

However, the vanishing ofP(s,t) at the end points mean
that the end-point derivatives containd functions, so the ac-
tual constraints are the perfectly regular coefficients ofd(0),

P~01,t !2 1
2 mv2Q~Dt,t !'0, ~44!

2P~Dt2,t !2 1
2 mv2Q~0,t !'0. ~45!

Note that these constraints are implied by Eq.~37! and,
where necessary, the vanishing of Eq.~38!. Note also that the
constraints determine both the actual end-point values
P(s,t) and its limit as the end points are approached.
05210
of

Since the Lagrangian~1! has no explicit dependence upo
time, the Hamiltonian should be conserved. To see that i
first substituteQ(s,t)5q(s,t) and relation~37! for P(s,t) to
obtain

E
0

Dt

ds P~s,t !
dQ

dq
~s,t !

5mq̇2S t1
Dt

2 D2mE
0

Dt/2

ds q̇~s1t !q̈~s1t !

2
1

2
mv2E

0

Dt

ds q~s1t2Dt !q̇~s1t !,

~46!

5
1

2
mF q̇2S t1

Dt

2 D1q̇2~ t !G
2

1

2
mv2E

0

Dt

ds q~s1t2Dt !q̇~s1t !. ~47!

Then subtract expression~1! to determine the configuration
space Hamiltonian,

H~ t !5
1

2
mq̇2~ t !1

1

2
mv2q~ t !q~ t1Dt !

2
1

2
mv2E

0

Dt

ds q~s1t2Dt !q̇~s1t !. ~48!

Now use the fact that the integrand depends upont only
through the sums1t to express the derivative of the integr
as a surface term,

dH

dt
~ t !5mq̇~ t !q̈~ t !1

1

2
mv2@ q̇~ t !q~ t1Dt !1q~ t !q̇~ t1Dt !#

2
1

2
mv2q~s1t2Dt !q̇~s1t !U

s50

s5Dt

, ~49!

5mq̇~ t !F q̈~ t !1
1

2
v2q~ t2Dt !1

1

2
v2q~ t1Dt !G . ~50!

The most straightforward way of demonstrating that t
transformation to the constrained phase space is invertib
by exhibiting the inverse. Of course we always have

q~s1t !5Q~s,t !, ;0<s<Dt. ~51!

For 2Dt,s,0 one recoversq(s1t) from relation~37!,

q~s1t !52
2

mv2 P~s1Dt,t !

2
2

v2

d

dsFdQ

ds
~s1Dt,t !uS 2

Dt

2
2sD G . ~52!

The end-point case ofs52Dt is given by the constrain
P(0,t)'0,
5-4
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q~ t2Dt !52Q~Dt,t !2
2

v2

d2Q

ds2 ~0,t !, ~53!

where I am of course defining differentiation in the righ
handed sense,

d f

dx
~x![ lim

e→01

f ~x1e!2 f ~x!

e
. ~54!

It is amusing to close the section by exhibiting the ru
away solutions which are one possible consequence of
Ostrogradskian instability. Since the configuration spa
equation of motion,

q̈~ t !1 1
2 v2@q~ t1Dt !1q~ t2Dt !#50, ~55!

is linear and invariant under time translation, the gene
solution must be a superposition of terms having the fo
eikt. The allowed frequencies are complex numbersk which
obey

k25v2 cos~kDt !. ~56!

The equation is transcendental but graphing both sides sh
a single pair of6 real solutions. To find the remaining so
lutions, make the substitution

k5a1 ib, ~57!

and take the real and imaginary parts of the equation,

a22b25v2 cos~aDt !cosh~bDt !, ~58!

2ab52v2 sin~aDt !sinh~bDt !. ~59!

Graphical analysis indicates a conjugate pair of solutions
aDt in each 2p interval of the real line. For large integerN,
these solutions have the form

aDt'2pN2
2 ln~N!

pN
, ~60!

6bDt' lnS 8p2N2

v2Dt2 D 1S ln~N!

pN D 2

. ~61!

So this system has the infinite number of solutions predic
by the Ostrogradskian analysis, and all but two of them gr
or fall exponentially.

V. OSTROGRADSKIAN DERIVATION

My representation is related to the infiniteN limit of Os-
trogradski’s through the Maclaurin series,

Q~s,t !5(
I 50

`
sI

I !
QI 11~ t !. ~62!

Note that differentiation with respect to the Ostrogradsk
coordinates is realized by the functional chain rule
05210
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]

]QI~ t !
5E

0

Dt

dsF]Q~s,t !

]QI~ t ! G d

dQ~s,t !

5E
0

Dt

ds
sI 21

~ I 21!!

d

dQ~s,t !
, ~63!

where the functional derivative is defined by

dQ~r ,t !

dQ~s,t !
5d~r 2s! ~64!

and the ordinary rules of calculus. From Eq.~19! one obtains
a useful formula for the higher derivative representation,

]L@q#~ t !

]q(I )~ t !
5E

0

Dt

ds
sI

I !

dL@q#~ t !

dq~s1t !
. ~65!

The conjugate momentumP(s,t) should depend linearly
on the Ostrogradskian momenta,

P~s,t !5(
I 50

`

pI~s!PI 11~ t !. ~66!

The combination coefficientspI(s) can be determined by
enforcing the canonical Poisson bracket~23!,

d~r 2s!5(
I 50

`
r I

I ! (
J50

`

pJ~s!$QI 11~ t !,PJ11~ t !%, ~67!

5(
I 50

`
r I

I !
pI~s!. ~68!

By acting (]/]r )J and then takingr→0, one finds

pJ~s!5S 2
d

dsD
J

d~s!. ~69!

To obtain my formula~20! for the conjugate momenta
note first that, for infiniteN, the Ostrogradskian momenta a

PI~ t !5(
J5I

` S 2
d

dtD
J2I ]L@q#~ t !

]q(J)~ t !
, ~70!

5(
J5I

` S d

dtD
J2IE

0

Dt

dr
r J

J!

dL@q#~ t !

dq~r 1t !
.

~71!

Now substitute this and Eq.~69! into Eq. ~66!,

P~s,t !5(
I 50

` F S 2
d

dsD
I

d~s!G
3 (

J5I 11

` S 2
d

dtD
J2I 21E

0

Dt

dr
r J

J!

dL@q#~ t !

dq~r 1t !
.

~72!

Simplification is achieved by exploiting the identity
5-5
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R. P. WOODARD PHYSICAL REVIEW A 62 052105
r J

J!
5E

0

r

dr8
~r 2r 8! I~r 8!J2I 21

I ! ~J2I 21!!
~73!

to recognize the two sums as Taylor expansions of the s
operator,

P~s,t !5E
0

Dt

drE
0

r

dr8(
I 50

`
~r 2r 8! I

I ! S 2
d

dsD
I

d~s!

3 (
J5I 11

`
~r 8!J2I 21

~J2I 21!! S 2
d

dtD
J2I 21 dL@q#~ t !

dq~r 1t !
,

~74!

5E
0

Dt

drE
0

r

dr8d~s2r 1r 8!
dL@q#~ t2r 8!

dq~r 1t2r 8!
,

~75!

5E
s

Dt

dr
dL@q#~s1t2r !

dq~s1t !
. ~76!

The Hamiltonian follows similarly,

H~ t !5(
I 51

`

PI~ t !QI 11~ t !2L@Q#~ t !, ~77!

5(
I 51

` E
0

Dt

ds
sI 21

~ I 21!!
P~s,t !S d

dr D
I

Q~r ,t !U
r 50

2L@Q#~ t !, ~78!

5E
0

Dt

ds P~s,t !
d

ds
Q~s,t !2L@Q#~ t !. ~79!

Its instability is manifest from the fact that it has been d
rived from Ostrogradski’s result in the limit that the numb
of derivatives becomes infinite.

VI. DISCUSSION

I have shown that Lagrangians with nonlocality of fini
extent Dt can be treated as the limits of higher derivati
Lagrangians. I have also given a canonical formalism tha
somewhat more natural in which the canonical variables
labeled by a continuum parameters, for 0<s<Dt. The ca-
nonical coordinates are just the dynamical variables at tim
t1s. A quantum-mechanical state in such a system would
a functional of these coordinates. The conjugate mome
05210
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-

is
re

s
e
ta

~20! are given by a simple integral of a functional derivati
of the Lagrangian. With the canonical coordinates, the m
menta allow one to reconstruct the dynamical variables
times t2s.

There is no physical motivation for this exercise becau
all such models are virulently unstable. Indeed, the o
point of the formalism is to remove any doubt about a p
sible phenomenological role for these Lagrangians. Th
have inherited the full Ostrogradskian instability: essentia
half of the directions in the classical phase space acces
bitrarily negative energies. There is not even any barrie
decay. This is a nonperturbative result and, because it a
from a large region of phase space, it must survive quant
tion.

Negative results of such power and generality seem
pose an irresistible challenge, to mathematically inclin
physicists. Nothing I can honestly add is likely to much d
courage further attempts to carve out a physical niche
nonlocal Lagrangians, but I do recommend that these eff
be preceded by sober reflection upon the following fact:
the long struggle of our species to understand the univers
hasnever onceproven useful to invoke a theory that is no
local on the most fundamental level. Yet the subset of lo
Lagrangians containing no more than first derivatives i
minuscule fragment of the set of all functionals of the d
namical variable. The Ostrogradskian instability offers
simple and compelling explanation for the complete dom
nance of this tiny subset over its much larger whole. T
only alternative would seem to be coincidence on a scale
makes even the worst fine-tuning problem seem incon
quential.

Note added.Shortly after submitting this paper, I learne
of important work by Llosa and Vives@5# on the problem of
canonically formulating a general nonlocal Lagrangian. M
work can be viewed as a specialization of their technique
the case of nonlocality of finite extent where the Eule
Lagrange equations are deterministic, where an explicit P
son bracket structure can be determined and where the
malism can be derived from the infiniteN limit of
Ostrogradski’s construction.~None of these features can b
present in the general case.! Note should also be taken of th
recent work of Gomis, Kamimura, and Llosa on canonica
formulating space-time noncommutative theories@6#.
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