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Universal quantum limits on single-channel information, entropy, and heat flow
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We show that the recently discovered universal upper bound on the thermal conductance of a single channel
comprising particles obeying arbitrary fractional statistics is in fact a consequence of a more general universal
upper bound, involving the averaged entropy and energy currents of a single channel connecting heat reservoirs
with arbitrary temperatures and chemical potentials. The latter upper bound in turn leads, via Holevo’s theo-
rem, to a universal~i.e., statistics-independent! upper bound on the optimum capacity for classical information
transmission down a single, wideband quantum channel.

PACS number~s!: 03.67.Hk, 65.50.1m, 89.70.1c, 05.30.2d
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I. INTRODUCTION

In a recent experiment@1#, Schwabet al. succeeded in
measuring for the first time the thermal conductance qu
tum for a suspended, dielectric wire of a submicron cr
section. In accordance with predictions@2#, the thermal con-
ductance was found to approach the limiting value
3pkB

2T/6\'4310212TW K21 as the wire thermal reser
voirs were cooled such that the dominant phonon wavelen
became comparable to the wire cross section. The factor
is just the number of independent vibrational mode branc
of the wire satisfyingv(k)→0 ask→0 ~see, e.g., Ref.@3#!.
Only such modes can have non-negligible phonon occu
tion numbers asT→0, giving four available channels fo
heat transport. The single-channel thermal conductance
never exceed the thermal conductance quantumpkB

2T/6\.
The conductance quantum can only be attained for balli
transport~i.e., no scattering! as was achieved in the exper
ment.

In common with the quantum limits for other single
channel, linear transport coefficients, such as the electr
conductance quantume2/h @4#, the thermal conductanc
quantum does not depend on the form of thev(k) dispersion
relations, a consequence of the cancellation of the group
locity and density of states factors in the formula for t
one-dimensional heat current. Wires made from different
sulating materials and with different cross-section geo
etries will therefore all have the same limiting single-chan
thermal conductance value for ballistic transport at low te
peratures. For this reason, the conductance quantum is
termed ‘‘universal.’’

The thermal conductance is in fact universal in a mu
wider sense. For a single channel connecting two heat re
voirs with ~quasi! particles obeying fractional statistics a
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cording to Haldane’s definition~which generalizes Bose an
Fermi statistics! @5#, it was recently found that the maximum
limiting thermal conductance quantum is independent of
particle statistics as well@6,7#. For example, in the case of a
ideal electron gas, the limiting single-channel thermal co
ductance coincides with the above thermal conducta
quantum for phonons. While dimensional analysis wou
lead us to expect the same factorkB

2T/\ to occur indepen-
dently of the statistics, there is noa priori reason to expec
the same numerical factorp/6 as well, given that the latte
results from integrating with respect to the energy the exp
sion to first order in small temperature differences of t
thermal reservoir distributions, which have qualitatively d
ferent forms for particles obeying different statistics. Th
remarkable property is unique to the thermal conductan
all other single-channel transport coefficients depend on
particle statistics.

In an earlier and unrelated investigation concerning
quantum limits on single-channel information and entro

flow @8#, Pendry showed that the boundṠ2/Ė<pkB
2/3\, in-

volving the averaged single-channel entropy and energy
rents, is obeyed for both bosons and fermions. The strik
resemblance between this bound and that for the sin
channel thermal conductance suggests the possible exis
of an universal and more general, attainable bound rela
the entropy and energy currents, from which the therm
conductance bound would follow as a special case. In p
ticular, there is the possibility of a bound that would be i
dependent of the channel materials’ properties and par
statistics and that would apply even far from equilibriu
where the temperatures~and perhaps also the chemical p
tentials! of the two heat reservoirs connecting the ends of
channel are significantly different.

Given that entropy and information are closely relate
the existence of such a universal upper bound on the ent
flow rate would in turn suggest the existence of an optim
capacity for single-channel classical information transm
sion, which is also universal in the wider sense~i.e., inde-
pendent of channel materials’ properties and particle sta
-
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tics!. This is in fact the main subject of Ref.@8#. However,
there the analysis is restricted to situations in which
channel is noiseless, with the information encoded and
coded in terms of the boson/fermion number eigenstate
proper determination of the optimum capacity would co
sider all possible input quantum states for encoding let
and all possible detection schemes at the output. The cru
result that allows one to generalize the analysis of Ref.@8# is
Holevo’s theorem@9#, which bounds the mutual informatio
between channel output and input with a quantity involvi
the quantum entropies of the input states. Caves and Dr
mond @10# have carried out the more general analysis
particles obeying Bose statistics only and confirm Pend
upper bound as the optimum channel capacity.

Thus, there is the possibility of an optimum, univers
limiting capacity that bounds all possible methods of enc
ing and detection, and which is independent of the phys
properties of the channel. We emphasize that the existenc
such a single-channel optimum capacity is suggested by
established existence of the universal thermal conducta
quantum.

The fact that the thermal conductance by its very defi
tion requires that the channel be connected at each end
heat reservoir that can act both as an emitter and absorb
quanta, suggests that in order to attain the above-conject
optimum capacity, a generalization of the mutual inform
tion will be required in which there is a sender/receiver p
at both ends of the channel. The pairs thus share the s
channel and information can now flow in opposite directio
In fact, as we shall see, with the exception of bosons,
attainability of Pendry’s upper bound for particles obeyi
arbitrary statistics necessarily requires that the chemical
tentials of the two reservoirs coincide and be nonzero, so
both reservoirs are sources of particles.

In the following sections, we provide evidence for th
validity of the two conjectures outlined above: namely,~1!
the existence of an universal bound relating the entropy
energy flow rates of a single quantum channel, with the u
versal thermal conductance bound following as a spe
case, and~2! the existence of an universal bound on t
optimum capacity for single-channel information transm
sion, subject to certain constraints on the channel and in
states.

In Sec. II, we first show that Pendry’s bound holds f
particles obeying arbitrary statistics under quite general c
ditions for the reservoir temperatures and chemical po
tials. We then introduce a less general but tighter bou
which requires that the chemical potentials of the two res
voirs coincide, and replaces the energy current with the h
current Ė2mṄ. We show that the thermal conductan
bound follows as a special case from this latter bound w
the temperature difference between the two reservoirs
proaches zero.

In Sec. III, we first repeat the analysis of Caves a
Drummond@10# in the conventional case for unidirection
information transmission, but generalizing to particles ob
ing fractional statistics, and obtain the limiting statistic
dependent optimum capacity. We then generalize the de
tion of mutual information and Holevo’s theorem in a simp
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way to allow for noninterfering, two-way information flow
Using this generalized definition we show, subject to cert
constraints on the channel and input states, that the limi
optimum capacity is now independent of the particle sta
tics and coincides with that of the bosonic case. In the fi
part of the section, we introduce a further generalization
the mutual information that allows for the possibility of in
terference between the ‘‘left-moving’’ and ‘‘right-moving’
information flows.

In Sec. IV, we conclude and also briefly outline vario
open problems that have a bearing on the two conjectur

II. ENTROPY BOUNDS

As our generic model structure, we consider some con
ing ‘‘wire’’ that supports particles obeying a given statisti
and that is connected adiabatically at each end to two par
reservoirs characterized by temperaturesTL and TR and
chemical potentialsmL andmR , where the subscriptsL and
R denote the left and right reservoirs, respectively. The
vice of Ref.@1# is one possible realization of the model stru
ture in the case of phonons. Typically, a wire will provid
several available parallel channels for given reservoir che
cal potential and temperature values. However, in the cas
ballistic transport, the channel currents do not interfere w
each other and thus can be treated independently. We
restrict ourselves to ballistic transport in the present inve
gation.

The distribution function for particles obeying fraction
statistics is@11#

f g~E!5FwS E2m

kBT D1gG21

, ~1!

where the functionw(x) satisfies

w~x!g@11w~x!#12g5ex. ~2!

The parameterg, assumed to be a rational number, det
mines the statistics. From these equations, we can see im
diately thatg50 describes bosons andg51; fermions. The
left ~right! components of the single-channel energy and
tropy currents are@6,7#

ĖL(R)5
~kBTL(R)!

2

2p\ E
xL(R)

0

`

dx~x1mL(R) /kBTL(R)! f g~x!

~3!

and

ṠL(R)52
kB

2TL(R)

2p\ E
xL(R)

0

`

dx$ f g ln f g1~12g fg!ln~12g fg!

2@11~12g! f g# ln@11~12g! f g#%, ~4!

wherexL(R)
0 52mL(R) /kBTL(R) , and where we define the en

ergy origin such that the minimum energy of a channel p
ticle is zero, i.e., the energy is given by the longitudin
4-2
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kinetic component. The total energy and entropy chan

currents are then justĖ5ĖL2ĖR and Ṡ5ṠL2ṠR , respec-
tively.

The first conjectured bound involving these sing
channel entropy and energy currents is@8#

Ṡ2<
pkB

2

3\
Ė, ~5!

providedTL.TR andmL>mR . We have numerically teste
this bound extensively inm andT parameter space, for sev
eral rational values of the statistical parameterg ranging be-
tween between zero and one. Figure 1 gives an initial ide
the bound by showing the dependence of the ra

3\Ṡ2/pkB
2Ė on a selected parameter range.

In the case of bosons with constantmL5mR50 ~e.g.,
photons or phonons!, evaluating Eqs.~3! and ~4! gives

ĖL(R)5p(kBTL(R))
2/12\ and ṠL(R)5pkB

2TL(R)/6\, respec-

tively. SettingTR50 and eliminatingTL by solving for Ṡ

(5ṠL) in terms ofĖ(5ĖL), we obtain equality in bound~5!.
For all other physically achievable parameter choices,
have strict inequality in Eq.~5!. The key point, however, is
that the bound can be approached arbitrarily closely, no m
ter the particle statistics. For example, in the case of bos
with nonconstant reservoir chemical potentials, the boun
approached asymptotically in the degenerate limit2xL

0

5mL /kBTL→02, with mR50 andTR50. For particles with
g.0, the bound is approached asymptotically in the deg
erate limit2xL

05mL /kBTL→1`, with mL5mR andTR50.
That these are the correct conditions for approaching the
per bound can be seen more clearly after transforming
integrals in Eqs.~3! and ~4! for the bosonic and fermionic
cases as in, e.g., Sec. 58 of Ref.@12#. For example, in the
case of fermions, the single-channel energy and entropy
rents can be rewritten as follows:

FIG. 1. Dependence of the ratio 3\Ṡ2/pkB
2Ė on 2xL

021

5kBTL /mL for g51 with mL5mR ~solid line!, mL51.01mR

~dashed line!, and mL51.1mR ~dotted line!, and also forg51/2
with mL5mR ~dotted-dashed line!. The parameterxR

0 is chosen to
be xR

05100xL
0 .
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Ė5
p~kBTL!2

12\ F12S TR

TL
D 2

1
3

~pkBTL!2
~mL

22mR
2 !

1
6

p2E2xL
0

`

dx~mL /kBTL2x! f ~x!

2
6

p2 S TR

TL
D 2E

2xR
0

`

dx~mR /kBTR2x! f ~x!G ~6!

and

Ṡ5
pkB

2TL

6\ H 12
TR

TL
1

3

p2E2xL
0

`

dx@ f ln f 1~12 f !ln~12 f !#

2
3

p2

TR

TL
E

2xR
0

`

dx@ f ln f 1~12 f !ln~12 f !#J . ~7!

Taking the limit 2xL
0→1`, with the conditionsmL5mR

and TR50, only the first term remains on the right-han
sides of Eqs.~6! and~7! and the energy and entropy curren
coincide with those for bosons withmL5mR50 andTR50.

It is not possible to recover the single-channel therm
conductance bound from Eq.~5!. The best we can do is to
derive an upper bound on the rate of heat emission from
isolated reservoir for bosons with zero chemical potential@8#
~see also Ref.@13#!. SettingmL5mR50, TR50, identifying
the heat emission rate with the total energy emission
Q̇L5ĖL , and usingQ̇L /TL<ṠL , bound~5! gives

Q̇L<
pkB

2TL
2

3\
. ~8!

Note that for particles with nonzero chemical potential, t
heat emission rate isQ̇L5ĖL2mLṄL , whereṄ denotes the
number current, and in this case Eq.~8! does not follow from
Eq. ~5!. If we had equality in Eq.~8!, then the thermal con-
ductance could be obtained by taking the differenceQ̇L

2Q̇R5pkB
2(TL

22TR
2)/3\52pkB

2 T̄dT/3\, where T̄5(TL

1TR)/2. But this gives the incorrect coefficient (2/3 inste
of 1/6). What is wrong with this argument is the assumpti
that Q̇L(R) /TL(R)5ṠL(R) . In fact, Q̇L(R) /TL(R)5ṠL(R)/2, sig-
naling the irreversible nature of the heat emission.

A conjectured, tighter bound suggested by the form
expressions~6! and ~7! that does yield the thermal conduc
tance bound as a special case, is the following:

Ṡ2<
pkB

2

3\ S TL2TR

TL1TR
D ~Ė2mṄ!, ~9!

providedTL.TR andmL5mR5m. Again, we have numeri-
cally tested this bound extensively inm and T parameter
space, for several rational values of the statistical param
g ranging between between zero and one~see Figs. 2 and 3!.
In the case of bosons with constantm50, we obtain equality
for all TL.TR . For bosons with nonconstantm<0, the
bound is approached asymptotically in the degenerate l
4-3
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MILES P. BLENCOWE AND VINCENZO VITELLI PHYSICAL REVIEW A 62 052104
m/kBTL(R)→02. For particles withg.0, the bound is ap-
proached asymptotically in the degenerate limitm/kBTL(R)

→1`. Note that the heat currentQ̇5Ė2mṄ appears in-
stead of the energy currentĖ on the right-hand-side of boun
~9!. This replacement is essential: if the energy curren
used, then the bound can be violated for bosons withm,0.
It is remarkable that the need to recover the thermal cond
tance and also to satisfy the bound both lead to the repl
ment of the energy current with the heat current.

III. INFORMATION BOUNDS

Consider a communication channel, characterized by
input alphabet A with letters labeled by an indexa
51, . . . ,A and a set of probabilitiespA(a) for transmitting
letter a, an output alphabetB labeled byb51, . . . ,B, and a
set of conditional probabilitiespBuA(bua) for receiving letter
b, given transmission of lettera. The mutual information
gives the measure of the information successfully transmi
from input to output of the communication channel:

H~B;A!5(
a,b

pBuA~bua!pA~a!log2S pBuA~bua!

pB~b! D , ~10!

wherepB(b)5(apBuA(bua)pA(a).
Suppose the quantum channel medium supports part

for some given rational, statistical parameter valueg, 0<g
<1. Let the input lettera be encoded in some quantum sta
r̂a , and the output detection scheme be described, in
most general case, by a set of non-negative, bounded
mitian operatorsF̂b satisfying (bF̂b51̂, with pBuA(bua)
5tr ( r̂aF̂b). The operatorsr̂a and F̂b act on the channe
Fock space for statistical parameter valueg. More precisely,
since information is transmitted in only one direction, the
operators act on the subspace describing right-moving st
say.

Holevo’s theorem@9# provides an upper bound on th
mutual information for all possible detection schemes:

FIG. 2. Dependence of the ratio 3\(TL1TR)Ṡ2/@pkB
2(TL

2TR)Q̇# on xL
052mLkBTL for g50 with TR50.9TL ~solid line!,

TR50.5TL ~dashed line!, andTR50.1TL ~dotted line!.
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max
$F̂b%

H~B;A!<S~ r̂ !2(
a

pA~a!S~ r̂a!, ~11!

where r̂5(apA(a) r̂a and S( r̂)52tr( r̂ log2r̂) is the quan-
tum entropy in bits. Note that, while this theorem is usua
applied to bosonic communication channels~see Ref.@10#!,
it is in fact applicable to channels for arbitrary fraction
statistics. All that is required is that the channel obeys
usual rules of quantum mechanics.

Maximizing the mutual information with respect to th
output detection scheme and the input states and proba
ties gives the optimum capacityC of the channel. From Eq
~11!, we have@10#

C5
1

T max
r̂

max
$F̂b%

H~B;A!<
1

T max
r̂

S~ r̂ !5
Smax

T , ~12!

whereT is the transmission time. As shown in Sec. IV B
Ref. @10#, the upper boundSmax can in fact be attained: Find
a complete, orthonormal set of diagonalizing basis statesua&
for the r̂ that maximizesS( r̂), i.e., r̂5(aq(a)ua&^au.
Chooser̂a5ua&^au5F̂a and pA(a)5q(a). Then H(B;A)
52(apA(a)log2pA(a)5S(r̂)5Smax.

Thus, the optimum capacity is just the maximum quant
entropy in bits divided by the transmission time, subject
the given constraints on the channel. One common constr
is to fix the total energy of the transmitted message;
optimum capacity then gives the maximum information th
can be transmitted in a timeT for a given, allowed signal
energy. For a single, wideband channel with longitudin
single-particle energiesh f j5h j /T, j 51,2, . . . , thetotal lon-
gitudinal energyEN of a given Fock state isEN5( jh f jnj

5Nh/T, whereN5( j 51
` jn j , andnj is the occupation num-

ber of, say, the right-propagating modej. The maximum en-
tropy is thenSmax5 log2NN , whereNN is just the number of
different ways the sumN can be partitioned. For bosons (g
50), NN is given by the number of unrestricted partition
while for the fermions (g51), NN is given by the number of
partitions into distinct parts. More generally, for particl

FIG. 3. Dependence of the ratio 3\(TL1TR)Ṡ2/@pkB
2(TL

2TR)Q̇# on 2xL
0215kBTL /m for g51 ~solid line!, g51/2 ~dashed

line!, andg51/4 ~dotted line!. The temperatureTR is chosen to be
TR5TL/2.
4-4
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UNIVERSAL QUANTUM LIMITS ON SINGLE-CHANNEL . . . PHYSICAL REVIEW A 62 052104
obeying fractional statistics withg51/n, n51,2, . . . , no
number can appear more thann times in a given partition.
Note, however, that for 0,g,1 there are additional con
straints on the allowed partitions, as discussed in Ref.@14#.

For long transmission timesT, or equivalently largeN,
one obtains the following asymptotic approximation to t
optimum capacity of a wideband, bosonic channel for fix
energy@10#:

Cboson5
p

ln 2
A2P

3h
2

1

T log2S 4A3PT 2

h D , ~13!

where P5EN /T is the time-averaged power. Caveset al.
@10# also derive the bosonic optimum capacity subject to
alternative constraints that the maximum energy or
message-ensemble-averaged energy of the channel be
All give the same leading-order term as on the right-ha
side of Eq.~13!, with P appropriately defined in each case

In order to write down the long transmission-time op
mum capacity of a wideband, fermionic channel for fix
energy, we require the asymptotic approximation to the nu
ber of distinct partitions ofN ~see, e.g., Sec. 24.2.2 of Re
@15#!:

N N;
1

4331/4N3/4
epA1/3AN. ~14!

This gives

Cfermion5
p

ln 2
A P

3h
2

1

T log2F4331/4S PT 2

h D 3/4G . ~15!

Note that, in the limitT→`, the fermionic optimum capacity
is smaller than the bosonic optimum capacity by a factorA2
for given powerP. Note also that these optimum capaciti
satisfy the information-theoretic counterpart to bound~5! @8#:

C,
p

ln 2
A2P

3h
~16!

for finite T.
Asymptotic approximations toC, analogous to Eqs.~13!

and~15!, can no doubt also be written down for certain oth
rationalg values. However, rather than attempting to der
C through the nontrivial route that involves first obtainin
the asymptotic approximation to the number of partitions,
can appeal to the fact that different ensemble derivation
the entropy give the same result in the thermodynamic li
when the ensemble energies coincide. In particular, we
instead use expressions~3! and~4! for m50 ~only the energy
is constrained and not the particle number! to derive the
leading-order term in the asymptotic approximation toC. For
example, in the case of ‘‘semions’’ (g51/2), carrying out
the integrals in Eqs.~3! and ~4! gives Csemion(T→`)
5(p/ ln 2)A2P/5h, which falls between the Fermi and Bos
capacities, again satisfying bound~16!. Solving numerically
Eqs. ~3! and ~4! for a range ofg values, we find thatCg(T
→`) decreases monotonically asg increases from 0 to 1
~Fig. 4!. Thus bound~16! holds for all 0<g<1.
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However, unlike the analogous upper bound~5! on the
single-channel physical entropy current, the informatio
theoretic bound~16! cannot be approached arbitrarily close
independently of the particle statistics: only for bosons is
upper bound approached in the limitT→`. But recall, from
the form of the conditions for approaching the upper bou
~5!, and also from the form of Eqs.~6! and~7! for fermions,
that it is crucial for both ends of the channel to be connec
to reservoirs providing two-way energy and entropy flows
the channel. This suggests that, with a suitable generaliza
of the communication channel allowing for two-way info
mation flow, the channel capacity will approach the upp
bound ~16! arbitrarily closely independently of the particl
statistics.

Consider, therefore, two sender-receiver ‘‘stations,’’ w
one station at each end of the single-channel, thus sharing
channel. StationL at the left end encodes information i
right-moving states and decodes information from le
moving states, while stationR at the right end encodes infor
mation in left-moving states and decodes information fro
right-moving states. A single ‘‘use’’ of the channel involve
L andR each sending and subsequently detecting a mess
the whole operation taking place during an intervalT. Station
L uses an input alphabetAL with letters labeled by an index
aL51, . . . ,AL and a set of probabilitiespAL

(aL) for trans-

mitting letter aL , and an output alphabetBL labeled bybL
51, . . . ,BL . StationR similarly uses an input alphabetAR
with transmission probabilitiespAR

(aR), and an output al-

phabetBR . The probability thatR receives letterbR , given
thatL sends letteraL is denoted aspBRuAL

(bRuaL), and analo-

gously for the conditional probabilitypBLuAR
(bLuaR). We as-

sume throughout that the joint probabilities forL and R to
send a message are uncorrelated, i.e.,pAL ,AR

(aL ,aR)

5pAL
(aL)pAR

(aR). We also assume to begin with that th
left- and right-moving information flows do not interfer
with each other.

Using the formula for the single-channel entropy curre
as a guide$see, e.g., Eqs.~11! and ~12! of Ref. @16#%, we
define thenet information transmitted from theL andR in-
puts to theR output during a single use of the channel to

FIG. 4. Dependence of the optimum capacity ratioCg /C0 on
the statistical parameterg. Note that only rational values ofg are
physical.
4-5
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MILES P. BLENCOWE AND VINCENZO VITELLI PHYSICAL REVIEW A 62 052104
H~BR ;AL ,AR!5H~BR ;AL!2H~AR!, ~17!

where H(BR ;AL) is defined as in Eq.~10! and H(AR)5
2(aR

pAR
(aR)log2pAR

(aR). Similarly, the net information

transmitted to theL output is H(BL ;AR ,AL)5H(BL ;AR)
2H(AL). Note the asymmetry of the two terms on the righ
hand side of definition~17!, reflecting an analogous asym
metry of the left- and right-moving components making
the net entropy current@16#. With the information defined
with respect to the receiver at the right end of the channe
makes more sense to use the informationH(AR) rather than
the mutual informationH(BL ;AR) that takes into accoun
the channel noise and receiver properties at the other en
the channel. As we shall soon see when we generalize
~17! to include interfering left- and right-moving informa
tion, one reason why it might be a good thing to subtra
rather than to add, the informationH(AR) is that it gives
reasonable answers in familiar examples such as that
returned or ‘‘bounced’’ message.

But perhaps the most appealing property
H(BR ;AL ,AR) as defined is that it satisfies a generaliz
Holevo theorem:

max
$F̂bR

%

H~BR ;AL ,AR!<S~ r̂L!2S~ r̂R!2(
aL

pAL
~aL!S~ r̂aL

!

1(
aR

pAR
~aR!S~ r̂aR

!, ~18!

where equality holds if and only if the left input state
r̂aL

commute and the right input statesr̂aR
are orthogonal

~see, e.g., Sec. IV B of Ref.@10#!. Inequality ~18! is a con-
sequence both of the Holevo theorem~11!, which bounds
H(BR ;AL), and also of the inequalityH(AR)>S( r̂R)
2(aR

pAR
(aR)S( r̂aR

). Note that the latter inequality goes i
the opposite direction to that of Eq.~11!, so that one mus
subtractH(AR) in order thatH(BR ;AL ,AR) be bounded.

Maximizing the informationH(BR ;AL ,AR) with respect
to theR output detection scheme and theL andR input states
and probabilities gives the optimum capacity of the chann
From Eq.~18!, we have

C5
1

T max
r̂L ,r̂R

max
$F̂bR

%

H~BR ;AL ,AR!<
1

T max
r̂L

S~ r̂L!5
Smax

T .

~19!

The upper boundSmax can in fact be attained: find a com
plete, orthonormal set of diagonalizing basis statesuaL& for
the r̂L that maximizesS( r̂L), i.e., r̂L5(aL

q(aL)uaL&^aLu.

Choose r̂aL
5uaL&^aLu5F̂aL

and pAL
(aL)5q(aL). Choose

any set $r̂aR
% and probabilities pAR

(aR)5daR ,a
R8

for

some fixed aR8 . Then H(BR ;AL ,AR)5H(BR ;AL)5

2(aL
pAL

(aL)log2pAL
(aL)5S(r̂L)5Smax. The choice forr̂aR

andpAR
(aR) reflects the obvious fact that, for the definitio

~17!, maximizing H(BR ;AL ,AR) requires thatH(AR) be
05210
-

it

of
q.

t,

a

f
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minimized, so that any left-moving message component
be sent, provided it is with probability one so that its info
mation content is zero.

Thus, the optimum capacity is just the maximum quant
entropy in bits for right-moving states divided by the tran
mission time, subject to the given constraints on the chan
Of particular interest are the constraints for which the op
mum capacity in the limitT→` is independent of the statis
tical parameterg. Recalling the conditions for approachin
asymptotically the entropy bound~5! for g.0, namely,
mL /kBTL→1` with mL5mR and TL.TR50, a little
thought establishes that two constraints are: fixed power~i.e.,
fixed energy current! P.0 and fixed number currentṄ50.
Again, as for the unidirectional optimum capacity, the cho
of ensemble for the definition ofP and Ṅ—microcanonical,
grand canonical etc.—is immaterial in the limitT→`. Given
that the unidirectional optimum capacity for 0,g<1 is
strictly less than the bosonic optimum capac
(p/ ln 2)A2P/3h in the limit T→`, it may seem paradoxica
that additional constraints have to be imposed~namely, Ṅ
50) in order to attain the latter, larger capacity. The reso
tion lies in the fact that the dimension of the channel Hilb
space accessible for information and energy transmission
been doubled through the accommodation of left-mov
states.

The two above constraints, while necessary, are not
ficient. The problem lies in the fact that optimization st
~19! places no conditions on the left-moving statesr̂aR

, with
the result that it is rather easy to find examples where
powerP can be made arbitrarily small for givenSmax, while
at the same time satisfying the constraintṄ50. One possible
way to overcome this problem is to introduce the furth
constraint on the left-moving statesr̂aR

that they be com-
pletely degenerate. Then it is possible to show thatSmax
5(p/ ln 2)A2P/3h in the limit T→`, i.e., Smax coincides
with the limiting, unidirectional bosonic optimum capaci
independently of 0,g<1. Furthermore, in the case o
bosons adding a left-moving degenerate state does
change the energy current, so that the above constraints
also be applied to bosons with the unidirectional boso
optimum capacity again being obtained in the limit.

What we have essentially done both here and in the p
vious section is cancel part of the right-moving energy c
rent component with a left-moving, degenerate compon
leaving the information and entropy currents unchang
thus increasing the optimum capacity and entropy curr
bound for a given energy current@Eqs.~6! and~7! show this
more explicitly#. What is remarkable is that the optimum
capacity~16! and entropy current bound~5! are attained as-
ymptotically for a common set of constraints independent
the statistics 0<g<1.

In the final part of this section, we generalize our two-w
information definition~17! so as to allow for the possibility
of interference between the left- and right-moving inform
tion flows. Our definition is motivated by the formula for th
single-channel entropy current in the presence of elastic s
tering in the channel@16#. We define thenet information
transmitted from theL andR inputs to theR output during a
single use of the channel to be
4-6
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H~BR ;AL ,AR!5 (
aL ,aR ,bR

pBRuAL ,AR
~bRuaL ,aR!pAL

~aL!

3pAR
~aR!log2~pBRuAL ,AR

~bRuaL ,aR!/pBR
~bR!!

1(
aR

pAR
~aR!log2 pAR

~aR!, ~20!
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with an analogous definition forH(BL ;AR ,AL) and where
we again assume that the joint probabilities forL and R to
send a message are uncorrelated. The channel interferen
conveniently implemented by a unitary ‘‘scattering’’ oper
tor Ŝ, acting on the states asŜ( r̂L ^ r̂R)Ŝ†→ r̂L8 ^ r̂R8 , where
we restrict ourselves to noncorrelating interfering proces
The conditional probabilities are constructed as follows:

pBRuAL ,AR
~bRuaL ,aR!5tr@~ F̂bR

^ 1̂!Ŝ~ r̂aL
^ r̂aR

!Ŝ†#

~21a!

and

pBLuAL ,AR
~bLuaL ,aR!5tr@~ 1̂^ F̂bL

!Ŝ~ r̂aL
^ r̂aR

!Ŝ†#,
~21b!

where the the right and left detector operators are written
F̂bR

^ 1̂ and 1̂̂ F̂bL
, respectively, reflecting the fact that, i

the absence of interference, i.e., whenŜ is the identity op-
erator, the right~left! detector can only receive left~right!
input states. Note that definition~20! reduces to the two-way
information definition~17! when there is no interference.

The more general, two-way information definition~20!
can be applied to certain situations that are beyond the s
of the unidirectional mutual information~10!. As a simple
example, consider the situation of a ‘‘bounced’’ message
all too common occurrence with electronic mail. This e
ample can be modeled as follows: Let the right letters
encoded in the orthonormal statesuaR& and sent with prob-
abilitiespAR

(aR). Let the statesuaL& encoding the left letters

and sent with probabilitiespAL
(aL), be in one-to-one corre

spondence with the right statesuaR&, with the mapping
achieved simply by reversing the propagation direction.
the right detector be characterized by projection opera
F̂aR

5uaL&^aLu. Finally, suppose the scattering operator

verses the direction of the propagating states, i.e.,ŜuaR(L)&
5uaL(R)&. Then evaluating the two-way information~20!, we
find that the first term on the right-hand-side reduces to
informationH(AR), thus canceling the second term and g
ing the valueH(BR ;AL ,AR)50. This coincides with our
common sense measure: if a message gets bounced
then no information was sent.

From the Holevo theorem~11! for unidirectional infor-
mation flow and also the inequalityH(AR)>S( r̂R)
2(aR

pAR
(aR)S( r̂aR

), it is straightforward to show that th

informationH(BR ;AL ,AR) as defined in Eq.~20! also satis-
fies a generalized Holevo theorem:
05210
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max
$F̂bR

%,Ŝ
H~BR ;AL ,AR!<S~ r̂L!2(

aL

pAL
~aL!S~ r̂aL

!.

~22!

Such a bound enables us to determine the optimum capa
allowing also for interfering left- and right-moving informa
tion flows. We shall leave this to a future investigation.

IV. CONCLUSION

We have provided evidence for the validity of two relat
conjectures that state that the entropy current and optim
capacity for information transmission of a single-channel
universally bounded for given energy current or power,
dependently of the channel materials’ properties and part
statistics according to Haldane’s definition. What is most n
table is that these bounds can be approached arbitr
closely no matter what the particle statistics. A less gene
tighter bound on the entropy current was also conjectur
from which the recently discovered statistics-independ
thermal conductance bound follows as a special case.
statistics-independent, limiting bound on the optimum cap
ity required a generalization of the definition for the tran
mitted information, allowing for two-way information flow
The bound then followed from a generalized Holevo the
rem, with certain constraints placed on the channel and in
states.

The results presented here can be extended in sev
ways. It would be more satisfying to have an analytic pro
of the conjectured bounds, rather than an exhaustive num
cal check. The entropy current bound should be tested un
more general conditions, for example in the presence
channel scattering. Similarly, the optimum capacity bou
should be tested also allowing for interference between t
way information flows.

Finally, we point out the recent demonstration that Ho
vo’s theorem follows from Landauer’s principle of informa
tion erasure@17#. In the light of this, it would be interesting
to try to rederive the universal upper bound on the optim
capacity starting from Landauer’s erasure principle.
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