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Universal quantum limits on single-channel information, entropy, and heat flow
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We show that the recently discovered universal upper bound on the thermal conductance of a single channel
comprising particles obeying arbitrary fractional statistics is in fact a consequence of a more general universal
upper bound, involving the averaged entropy and energy currents of a single channel connecting heat reservoirs
with arbitrary temperatures and chemical potentials. The latter upper bound in turn leads, via Holevo's theo-
rem, to a universali.e., statistics-independgnipper bound on the optimum capacity for classical information
transmission down a single, wideband quantum channel.

PACS numbg(s): 03.67.Hk, 65.50tm, 89.70+c, 05.30—d

[. INTRODUCTION cording to Haldane’s definitiotwhich generalizes Bose and
Fermi statistics[5], it was recently found that the maximum,

In a recent experimentl], Schwabet al. succeeded in limiting thermal conductance quantum is independent of the
measuring for the first time the thermal conductance quanparticle statistics as wellB,7]. For example, in the case of an
tum for a suspended, dielectric wire of a submicron crossdeal electron gas, the limiting single-channel thermal con-
section. In accordance with predictiof, the thermal con- ductance coincides with the above thermal conductance
ductance was found to approach the limiting value 4quantum for phonons. While dimensional analysis would
X wk3T/6h~4Xx 10 TW K ! as the wire thermal reser- lead us to expect the same fack@T/4 to occur indepen-
voirs were cooled such that the dominant phonon wavelengttently of the statistics, there is reopriori reason to expect
became comparable to the wire cross section. The factor of the same numerical factar/6 as well, given that the latter
is just the number of independent vibrational mode brancheeesults from integrating with respect to the energy the expan-
of the wire satisfyingw(k)—0 ask—0 (see, e.g., Ref3]). sion to first order in small temperature differences of the
Only such modes can have non-negligible phonon occupahermal reservoir distributions, which have qualitatively dif-
tion numbers asT—0, giving four available channels for ferent forms for particles obeying different statistics. This
heat transport. The single-channel thermal conductance caemarkable property is unique to the thermal conductance:
never exceed the thermal conductance quanﬁkéT/Gﬁ, all other single-channel transport coefficients depend on the
The conductance quantum can only be attained for ballistiarticle statistics.
transport(i.e., no scatteringas was achieved in the experi-  In an earlier and unrelated investigation concerning the
ment. quantum limits on single-channel information and entropy

In common with the quantum limits for other single- flow [8], Pendry showed that the bouSd/E=< mk2/3%, in-
channel, linear transport coefficients, such as the electronigolving the averaged single-channel entropy and energy cur-
conductance quanture?/h [4], the thermal conductance rents, is obeyed for both bosons and fermions. The striking
guantum does not depend on the form of &{&) dispersion resemblance between this bound and that for the single-
relations, a consequence of the cancellation of the group veshannel thermal conductance suggests the possible existence
locity and density of states factors in the formula for theof an universal and more general, attainable bound relating
one-dimensional heat current. Wires made from different inthe entropy and energy currents, from which the thermal
sulating materials and with different cross-section geomconductance bound would follow as a special case. In par-
etries will therefore all have the same limiting single-channeticular, there is the possibility of a bound that would be in-
thermal conductance value for ballistic transport at low tem-dependent of the channel materials’ properties and particle
peratures. For this reason, the conductance quantum is oftamatistics and that would apply even far from equilibrium
termed “universal.” where the temperaturdand perhaps also the chemical po-

The thermal conductance is in fact universal in a muchtentialg of the two heat reservoirs connecting the ends of the
wider sense. For a single channel connecting two heat resechannel are significantly different.
voirs with (quas) particles obeying fractional statistics ac-  Given that entropy and information are closely related,

the existence of such a universal upper bound on the entropy
flow rate would in turn suggest the existence of an optimum
*Electronic address: miles.p.blencowe @dartmouth.edu capacity for single-channel classical information transmis-
"Present address: Dept. of Physics, Harvard University, Camsion, which is also universal in the wider serse., inde-
bridge MA 02138. Electronic address: vincenzo.vitelli@ic.ac.uk pendent of channel materials’ properties and particle statis-
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tics). This is in fact the main subject of R€8]. However, way to allow for noninterfering, two-way information flow.
there the analysis is restricted to situations in which theJsing this generalized definition we show, subject to certain
channel is noiseless, with the information encoded and desonstraints on the channel and input states, that the limiting
coded in terms of the boson/fermion number eigenstates. Aptimum capacity is now independent of the particle statis-
proper determination of the optimum capacity would con-tics and coincides with that of the bosonic case. In the final
sider all possible input quantum states for encoding lettergart of the section, we introduce a further generalization of
and all possible detection schemes at the output. The cruciie mutual information that allows for the possibility of in-
result that allows one to generalize the analysis of [8ifis  terference between the “left-moving” and “right-moving”
Holevo’s theorenj9], which bounds the mutual information information flows.

between channel output and input with a quantity involving In Sec. IV, we conclude and also briefly outline various
the quantum entropies of the input states. Caves and Drun®pen problems that have a bearing on the two conjectures.
mond [10] have carried out the more general analysis for

particles obeying Bose statistics only and confirm Pendry’s Il. ENTROPY BOUNDS

upper bound as the optimum channel capacity.

Thus, there is the possibility of an optimum, universal As our generic model structure, we consider some confin-
limiting capacity that bounds all possible methods of encoding “wire” that supports particles obeying a given statistics
ing and detection, and which is independent of the physicand that is connected adiabatically at each end to two particle
properties of the channel. We emphasize that the existence g#servoirs characterized by temperatufs and T and
such a single-channel optimum capacity is suggested by thehemical potentialg, and ug, where the subscripts and
established existence of the universal thermal conductandd denote the left and right reservoirs, respectively. The de-
quantum. vice of Ref.[1] is one possible realization of the model struc-

The fact that the thermal conductance by its very definiture in the case of phonons. Typically, a wire will provide
tion requires that the channel be connected at each end tosgveral available parallel channels for given reservoir chemi-
heat reservoir that can act both as an emitter and absorber e®l potential and temperature values. However, in the case of
guanta, suggests that in order to attain the above_conjecturéﬂinistic transport, the channel currents do not interfere with
optimum capacity, a generalization of the mutual informa-each other and thus can be treated independently. We will
tion will be required in which there is a sender/receiver pairrestrict ourselves to ballistic transport in the present investi-
at both ends of the channel. The pairs thus share the sang@tion.
channel and information can now flow in opposite directions. The distribution function for particles obeying fractional
In fact, as we shall see, with the exception of bosons, thétatistics is11]
attainability of Pendry’s upper bound for particles obeying
arbitrary statistics necessarily requires that the chemical po-
tentials of the two reservoirs coincide and be nonzero, so that fo(B)= [W
both reservoirs are sources of particles.

In the following sections, we provide evidence for the where the functiow(x) satisfies
validity of the two conjectures outlined above: namedl),
the existence of an universal bound relating the entropy and W(X)I[1+w(x)]t9=¢. 2
energy flow rates of a single quantum channel, with the uni-

versal thermal conductance bound following as a speciafpe parameteg, assumed to be a rational number, deter-
case, and?2) the existence of an universal bound on themines the statistics. From these equations, we can see imme-
optimum capacity for single-channel information transm's'diately thatg=0 describes bosons amg-=1: fermions. The
sion, subject to certain constraints on the channel and inpytg (right) components of the single-channel energy and en-

-1

, ()

KeT

+9

states. _ tropy currents ar¢6,7]
In Sec. Il, we first show that Pendry’s bound holds for
particles obeying arbitrary statistics under quite general con- (kBTL(R))2 -

ditions for the reservoir temperatures and chemical poten- EL(R):— o OXOXF py(ry TkeTi(r)) Fg(X)
tials. We then introduce a less general but tighter bound, 2mh XL(R)
which requires that the chemical potentials of the two reser- 3)

voirs coincide, and replaces the energy current with the heat

current E— uN. We show that the thermal conductance 2"
bound follows as a special case from this latter bound when

2

the temperature difference between the two reservoirs ap-; __ KsTL(R) f ” _ _

proaches zero. SLR) 27h XE(R)dX{fglnngl 9fg)in(1-gfy)
In Sec. lll, we first repeat the analysis of Caves and

Drummond[10] in the conventional case for unidirectional —[1+(1-g)fglIn[1+(1—g)f4l}, (4)

information transmission, but generalizing to particles obey-

ing fractional statistics, and obtain the limiting statistics-wherexE(R)= — MRy /KeT(r)» @and where we define the en-
dependent optimum capacity. We then generalize the definergy origin such that the minimum energy of a channel par-
tion of mutual information and Holevo’s theorem in a simpleticle is zero, i.e., the energy is given by the longitudinal
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be x3=100¢ . =T, _xgdx[flnf (1-f)In(1—-1)]. (7)

kinetic component. The total energy and entropy channel@King the limit _XE__>+°O’ with the conditionsu = ug

currents are then jusi=E, — Eq and S=§, — S, respec- and Tg=0, only the first term remains on the right-hand

fively LR R sides of Eqs(6) and(7) and the energy and entropy currents
o . . . . coincide with those for bosons witta, = ug=0 andTz=0.

The first conjectured bound involving these single- It is not possible to recover the single-channel thermal
channel entropy and energy current$g$ conductance bound from E¢B). The best we can do is to
derive an upper bound on the rate of heat emission from an
5 isolated reservoir for bosons with zero chemical poten@al
7Kg (see also Ref13]). Settingu, = ug=0, Tg=0, identifying

P<——E, (5) b / hs
3% the heat emission rate with the total energy emission rate
Q.=E_, and usingQ, /T, <S,, bound(5) gives
providedT >Tg and u = ug. We have numerically tested S TrkéTf
this bound extensively im and T parameter space, for sev- L= 34 - (8)

eral rational values of the statistical parameajeanging be-
tween between zero and one. Figure 1 gives an initial idea dflote that for particles with nonzero chemical potential, the
the bound by showing the dependence of the raticheat emission rate §,=E, —u N, , whereN denotes the
3ﬁ'32/77k§|'5 on a selected parameter range. number current, and in this case E8). does not follow from

In the case of bosons with constapt =ug=0 (e.g., EO- (5). If we had equality in Eq(8), then the thermal con-
photons or phonons evaluating Eqgs.(3) and (4) gives duptance could be obtained By taking the diffEremg@
EL(R) = w(kBTL(R))2/12ﬁ and SL(R) = WkéTL(R)/Gﬁ, respec- - QR: ﬂ-sz(TE_ Té)/sh = 2’7TkéT5T/3h, where T= (TL
+Tg)/2. But this gives the incorrect coefficient (2/3 instead

tively. SettingTr=0 and eliminatingT, by solving for S
y uTr g oy g of 1/6). What is wrong with this argument is the assumption

(=9S)) interms ofE(=E| ), we obtain equality in boun¢b). : . : : .
For all other physically achievable parameter choices, wdhat Q) /Tum =S - IN fact, Qur) /LR = SL(r)/2. SIg-
have strict inequality in Eq(5). The key point, however, is naling the irreversible nature of the heat emission.

that the bound can be approached arbitrarily closely, no mats,
ter the particle statistics. For example, in the case of boso
with nonconstant reservoir chemical potentials, the bound is
approached asymptotically in the degenerate Iimikf ) wké
=, IkgT,—0", with ug=0 andTgr=0. For particles with = T
g>0, the bound is approached asymptotically in the degen-

erate limit—x°= u, /kgT, — +, with £, = ug andTg=0. providedT >Tg and u| = ur=w. Again, we have numeri-
That these are the correct conditions for approaching the ugeally tested this bound extensively jm and T parameter

per bound can be seen more clearly after transforming thepace, for several rational values of the statistical parameter
integrals in Eqs(3) and (4) for the bosonic and fermionic g ranging between between zero and ¢see Figs. 2 and)3
cases as in, e.g., Sec. 58 of REf2]. For example, in the In the case of bosons with constant 0, we obtain equality
case of fermions, the single-channel energy and entropy cufer all T .>Tg. For bosons with nonconstanpt=<0, the
rents can be rewritten as follows: bound is approached asymptotically in the degenerate limit

A conjectured, tighter bound suggested by the form of
pressiong6) and (7) that does yield the thermal conduc-
nce bound as a special case, is the following:

T —Tr
T, +Tgr

(E—uN), 9)
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TR:TLIZ.
mlkgT (ry—0". For particles withg>0, the bound is ap- A A
proached asymptotically in the degenerate lipikg T, (g) maxH(B;A)sS(p)—Z pa(2)S(pa), (11
—+o. Note that the heat curre@=E— uN appears in- {Fo} é

stead of the energy currefiton the right-hand-side of bound here 5 — N Ay ~ 1005 is th
(9). This replacement is essential: if the energy current is" erep—EapA(a})pa and S(p)——_tr(p ngp) Is the quan-
used, then the bound can be violated for bosons yith0. tum entropy in bits. Note that, while this theorem is usually

It is remarkable that the need to recover the thermal conduc"’lpp”?d to boson_ic communication channéﬁe_e Ref.[lo]),
{ is in fact applicable to channels for arbitrary fractional

tance and also to satisfy the bound both lead to the replacé - . : .
ment of the energy current with the heat current. statistics. All that is required |s_that the channel obeys the
usual rules of quantum mechanics.
Maximizing the mutual information with respect to the
I1l. INFORMATION BOUNDS output detection scheme and the input states and probabili-

ties gives the optimum capacity of the channel. From Eqg.
Consider a communication channel, characterized by am1), we have[10]

input alphabet A with letters labeled by an indexa

=1,... .4 and a set of probabilitieps(a) for transmitting 1 1 - Smax
letter a, an output alphabeB labeled byb=1, ... 53, and a C=zmaxmaxH(B;A)< —maxS(p)=——, (12
set of conditional probabilitiepB|A(b|a) for receiving letter P {Fp} P

b, given transmission of lettea. The mutual information

gives the measure of the information successfully transmittewhere7 is the transmission time. As shown in Sec. IV B of

from input to output of the communication channel: Ref.[10], the upper boun&;,,, can in fact be attained: Find
a complete, orthonormal set of diagonalizing basis sfaps
for the p that maximizesS(p), i.e., p==,q(a)|a)(al.

>, (100  Choosep,=|a)(a|=F, and pa(a)=q(a). Then H(B;A)
= —2apa(@)10gpa(@)=(p) = Snax-

Thus, the optimum capacity is just the maximum quantum
entropy in bits divided by the transmission time, subject to
the given constraints on the channel. One common constraint
for some given rational, statistical parameter val =g 8 to fix the tot_al ehergy of the trans mitte_d message, the
<1. Let the input Iettea,be encoded in some quantum Stateoptlmum capacity then gives the maximum information that
R . ) " “can be transmitted in a tim& for a given, allowed signal
pa, and the output detection scheme be described, in thgnergy. For a single, wideband channel with longitudinal
most general case, by a set of nAon-nAegatlve, bounded Heéingle—particle energidsf,=hj/7, j=1,2, .. ., thetotal lon-
mitian operatorsF,, satisfying Zp,F,=1, with pg(b|a) gitudinal energyEy of a given Fock state iEy=2;hf;n;
=tr(paFp). The operator, and F, act on the channel =Nh/7, whereN=3/_,jn;, andn; is the occupation num-
Fock space for statistical parameter vatueMore precisely, ber of, say, the right-propagating mogerhe maximum en-
since information is transmitted in only one direction, thesetropy is thenS;,,,= logaNy , whereN} is just the number of
operators act on the subspace describing right-moving statedifferent ways the sunN can be partitioned. For bosong (

pgja(bla)

H(B;A)= g pgja(bla) pA(a)logz( 05(D)

WherePB(b)ZEapB|A(b|a) pa(a).
Suppose the quantum channel medium supports particl

say. =0), Ny is given by the number of unrestricted partitions,
Holevo’s theorem[9] provides an upper bound on the while for the fermions §=1), N is given by the number of
mutual information for all possible detection schemes: partitions into distinct parts. More generally, for particles

052104-4



UNIVERSAL QUANTUM LIMITS ON SINGLE-CHANNEL . .. PHYSICAL REVIEW A 62 052104

obeying fractional statistics witly=1/n, n=1,2,..., no 1.05 | T T T
number can appear more thartimes in a given partition.
Note, however, that for €g<1 there are additional con-
straints on the allowed partitions, as discussed in Ref]. 0.

For long transmission timeg, or equivalently largeN, o
one obtains the following asymptotic approximation to the Qm
optimum capacity of a wideband, bosonic channel for fixed® ©-
energy[10]:

_m 2P 1I 4./3PT2
Chosoi= 172 Vap ~ 7109 — | (13

where P=E\ /7 is the time-averaged power. Cavesal.
[10] also derive the bosonic optimum capacity subject to the
alternative constraints that the maximum energy or the FIG. 4. Dependence of the optimum capacity ra@ig/C, on
message-ensemble-averaged energy of the channel be fixdhe statistical parametey. Note that only rational values of are

All give the same leading-order term as on the right-hancPhysical.

side of Eq.(13), with P appropriately defined in each case.

In order to write down the long transmission-time opti-  However, unlike the analogous upper boul on the
mum capacity of a wideband, fermionic channel for fixedsingle-channel physical entropy current, the information-
energy, we require the asymptotic approximation to the numtheoretic bound16) cannot be approached arbitrarily closely
ber of distinct partitions oN (see, e.g., Sec. 24.2.2 of Ref. independently of the particle statistics: only for bosons is the

[15]): upper bound approached in the liffit- . But recall, from
the form of the conditions for approaching the upper bound

1 N 14 (5), and also from the form of Eq$6) and(7) for fermions,
N 4% 314N 34 : (14 thatitis crucial for both ends of the channel to be connected

4% 34

to reservoirs providing two-way energy and entropy flows in
This gives the channel. This suggests that, with a suitable generalization
of the communication channel allowing for two-way infor-
T P 1 p72\ 34 mation flow, the channel capacity will approach the upper
Cremion=1,2 V3n~ 71°% —) } (15  bound(16) arbitrarily closely independently of the particle
statistics.
Note that, in the limitZ— 0, the fermionic optimum capacity Consider, therefore, two sender-receiver “stations,” with
is smaller than the bosonic optimum capacity by a fagdr  °ne station at.each end of the single—channell, thus sharing the
for given powerP. Note also that these optimum capacitieschannel. StatiorL at the left end encodes information in
satisfy the information-theoretic counterpart to bog&{g]: ~ fight-moving states and decodes information from left-
moving states, while statioR at the right end encodes infor-
T 2P mation in left-moving states and decodes information from
<inaV3an (16)  right-moving states. A single “use” of the channel involves
L andR each sending and subsequently detecting a message,
for finite 7. the whole operation taking place during an interyaStation
Asymptotic approximations t€, analogous to Eqg13) L uses an input alphabéy, with letters labeled by an index
and(15), can no doubt also be written down for certain othera.=1, . .. /4. and a set of probabilitiep (a,) for trans-
rationalg values. However, rather than attempting to derivemitting lettera, , and an output alphab&, labeled byb,
C through the nontrivial route that involves first obtaining =1, ... 3, . StationR similarly uses an input alphabétz
the asymptotic approximation to the number of partitions, wewith transmission probabilitieps (ag), and an output al-
can appeal to the fact that different ensemble derivations ghnapetBy. The probability thaR receives lettebg, given
the entropy give the same result in the thermodynamic limignat) sends lettea, is denoted apg ', (brla,), and analo-
when the ensemble energies coincide. In particular, we can v for the conditional robabilitR - (b |ag). We as-
instead use expressiof8 and(4) for x=0 (only the energy  9°0u=Y Of pro Ve Azt OLIAR)-
is constrained and not the particle numbes derive the Sume throughout that the joint probablllt]es forand R to
leading-order term in the asymptotic approximatioictdcor ~ S€nd a message are uncorrelated, ia a(aL,ar)
example, in the case of “semions’g& 1/2), carrying out =pAL(aL) pAR(aR). We also assume to begin with that the
the integrals in Egs.(3) and (4) gives Ceemiod7—>)  left- and right-moving information flows do not interfere
=(/ln 2)y2P/5h, which falls between the Fermi and Bose with each other.
capacities, again satisfying bout). Solving numerically Using the formula for the single-channel entropy current
Egs.(3) and (4) for a range ofg values, we find thaCy4(7  as a guide{see, e.g., Eqs11) and (12) of Ref. [16]}, we
—) decreases monotonically @sincreases from 0 to 1 define thenetinformation transmitted from the andR in-
(Fig. 4). Thus bound16) holds for all 0<g=<1. puts to theR output during a single use of the channel to be
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H(Bg;A_,AR)=H(Bgr;A)—H(AR), (17  minimized, so that any left-moving message component can
be sent, provided it is with probability one so that its infor-
where H(Bg;A,) is defined as in Eq(10) and H(AR)= mation content is zero.
—2a.Pa(8r)10G2Pa (aR). Similarly, the net information Thus, the optimum capacity is just the maximum quantum

transmitted to thel output is H(B, ;:Ar,A ) =H(B_ :Ag) entropy in bits for right-moving states divided by the trans-
“H(A,). Note the asymmetry of tﬁe, tvF\{/;) t(Larms onLtrlleRright— mission time, subject to the given constraints on the channel.
- o ; Of particular interest are the constraints for which the opti-
hand S|?ehof|d§f|n|t|gr(17r)1, reflecting an analogous kasym- muﬁ1 capacity in the limi7— < is independent of the statisp—
metry of the left- and right-moving components making UPtical param Recalling th nditions for roachin
the net entropy currer[tl6]. With the information defined tical parameteg. Recalling the conditions for approaching

) . . asymptotically the entropy boun¢b) for g>0, namely,
with respect to the receiver at the right end of the channel, i IkgT — -+ With u =ug and T,>Tg=0, a little

makes more sense to use the informatifig) rather than  i,q,ght establishes that two constraints are: fixed pdiseer
the mutual informatiorH(B, ;Ag) that takes into account fi%<ed energy curretP>0 and fixed number curre=0.
the channel noise and receiver properties at the other end ﬂgain, as for the unidirectional optimum capacity, the choice

the channel. As we shall soon see when we generalize E%’f ensemble for the definition & and N—microcanonical
(17) to include interfering left- and right-moving informa- tgrand canonical etc.—is immaterial in the lirffit> 0. Given

tion, one reason why it might be a good thing to subtrac S : . i
. ; : o that the unidirectional optimum capacity for<@<1 is
rather than to add, the informatidd(Ag) is that it gives stictly less than the bosonic optimum  capacity

reasonable answers in familiar examples such as that of (aTr/In 2)J2P/3h in the limit 7, it may seem paradoxical

returned or “bounced” message. . . . :

But perhaps the most appealing property ofthat additional constraints have to be impogedmely,N
H(Bg:A_,Ag) as defined is that it satisfies a generalized— ) In order to attain the latter, larger capacity. The resolu-
HoIev’o th’eorem' tion lies in the fact that the dimension of the channel Hilbert

' space accessible for information and energy transmission has

R R R been doubled through the accommodation of left-moving

maxH (Bg:AL Ar)<S(p)~S(pr) = 2 Pa (a)S(ps)  states. _ _
{(Fo} a The two above constraints, while necessary, are not suf-
® ficient. The problem lies in the fact that optimization step
(19) places no conditions on the left-moving stafgs, with
the result that it is rather easy to find examples where the
) ) ) _ powerP can be made arbitrarily small for gives,,,, while
where equality holds 'f anq only if the left input states 4t the same time satisfying the constraint 0. One possible
pa,_commute and the right input stateg, are orthogonal way to overcome this problem is to introduce the further
(see, e.g., Sec. IV B of Ref10]). Inequality (18) is a con-  constraint on the left-moving statégR that they be com-
H(Bgr;A.), and also of the inequalityH(AgR)=S(pRr) =(7/In2)y2P/3h in the limit 7—», i.e., S, coincides
_EaRpAR(aR)S(ISaR)- Note that the latter inequality goes in With the limiting, unidirectional bosonic optimum capacity
the opposite direction to that of EL1), so that one must mdependentl_y of &g=1. Furthermore, in the case of
subtractH(Ag) in order thatH (Bg:A, ,Ag) be bounded. bosons adding a left-moving degenerate state does not

Maximizing the informationH (Bg;A_ ,Ag) with respect change the energy current, So that the a.b_°"e _constraints can
to theR output detection scheme and thendR input states also be applied to bosons with the unidirectional bosonic
oy . . . optimum capacity again being obtained in the limit.
and probabilities gives the optimum capacity of the channel. What we have essentially done both here and in the pre-

From Eq.(18), we have vious section is cancel part of the right-moving energy cur-

+ 2 Pag(ar)S(pay), (18)

1 1 R Siax rent component with a left-moving, degenerate component,
C= - max maxH(Bg;A AR < —TmaxS(pL)=T. leaving the information and entropy currents unchanged,
pLpR {Fp ) oL thus increasing the optimum capacity and entropy current

(19 bound for a given energy currefiqgs.(6) and(7) show this
more explicitly]. What is remarkable is that the optimum
The upper bounds;,,« can in fact be attained: find a com- capacity(16) and entropy current boun®) are attained as-
plete, orthonormal set of diagonalizing basis stdge$ for  ymptotically for a common set of constraints independent of
the p_ that maximizesS(py), i.e., p.=2, a(a)|a )(a.|.  the statistics &g=<1.
In the final part of this section, we generalize our two-way
. information definition(17) so as to allow for the possibility
any set {paR} and probabilities pAR(aR)= 5aR'a§ for  of interference between the left- and right-moving informa-
some fixed a,. Then H(Bg:A_,AR)=H(Bg:A)= tipn flows. Our definition is mot[vated by the formula for the
_s (a)lo (@)=S(p)=Syar. The choice forp single-channel entropy current in the presence of elastic scat-
a P (80)10G04 (& L ax Paz  tering in the channef16]. We define thenet information
and pAR(aR) reflects the obvious fact that, for the definition tansmitted from thé. andR inputs to theR output during a
(17), maximizing H(Bg;A_,Ar) requires thatH(Ar) be  single use of the channel to be

Choosep, =|a )(a |=F, and p, (a)=q(a.). Choose
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H(Br;AL,AR)= Eb pBRlAL,AR(bR|aLvaR)pAL(aL)
R

a_ .aR,

X Pa(8r)10G2(Peja, aq(bRIAL @R)/PB(bR))

+ 2 Pay(8R)100; Pa (), (20)

with an analogous definition fad (B, ;Ar,A.) and where

we again assume that the joint probabilities foand R to max H(Bgr;AL AR <S(p)— > DAL(aL)S(ﬁaL)-
send a message are uncorrelated. The channel interference is {Fp}.S A
conveniently implemented by a unitary “scattering” opera- (22

i Ve T NSt T T
tor S, acting on the states @p, ® pg)S'—p ®pr, Where o o b0 g enaples us to determine the optimum capacity
we restrict ourselves to noncorrelating interfering processes,

The conditional probabilities are constructed as follows: a_1||owmg also for interfering I_eft- and nght-_movm_g m_forma-
tion flows. We shall leave this to a future investigation.

Pea, Aq(DRIAL @R) =t (Fbp ®1)S(ps @ PaR)ST] IV. CONCLUSION
(219 '
We have provided evidence for the validity of two related
conjectures that state that the entropy current and optimum
(1B, Vo ~ ot capacity for information transmission of a single-channel are
Pey 1, ’AR(bL|aL 2r) tr[(1®FbL)S(paL®paR)S ],Zlb unﬁ/er;}e/llly bounded for given energy curren% or power, in-
(21h dependently of the channel materials’ properties and particle
where the the right and left detector operators are written astatistics according to Haldane’s definition. What is most no-
F, ®1 and 1®F, , respectively, reflecting the fact that, in t@ble is that these bounds can be approached arbitrarily
R ot . o . . closely no matter what the particle statistics. A less general,
the absence of interference, i.e., whens the identity op-  ighter bound on the entropy current was also conjectured,
erator, the right(left) detector can only receive leftight)  fom which the recently discovered statistics-independent
input states. Note that definitid20) reduces to the two-way thermal conductance bound follows as a special case. The
information definition(17) when there is no interference.  giagistics-independent, limiting bound on the optimum capac-
The more general, two-way information definitid80)  jiy required a generalization of the definition for the trans-
can be applied to certain situations that are beyond the scopgitted information, allowing for two-way information flow.
of the unidirectional mutual informatiofl0). As a simple  The pound then followed from a generalized Holevo theo-

example, consider the situation of a “bounced” message, apem with certain constraints placed on the channel and input
all too common occurrence with electronic mail. This ex-gtates.

ample can be modeled as follows: Let the righ't letters be  The results presented here can be extended in several
encoded in the orthonormal statigs;) and sent with prob-  \yays. It would be more satisfying to have an analytic proof

abilitiespa_(ag). Let the state$a, ) encoding the left letters, of the conjectured bounds, rather than an exhaustive numeri-
and sent with probabilitiepAL(aL), be in one-to-one corre- cal check. The entropy current bound should be tested under
spondence with the right statdag), with the mapping more general conditions, for example in the presence of
achieved simply by reversing the propagation direction. Le€hannel scattering. Similarly, the optimum capacity bound

the right detector be characterized by projection operatorshould be tested also allowing for interference between two-

F. =|a,)(a,|. Finally, suppose the scattering operator re-Way information flows. .
R 2 (adl Y, SUPP gop Finally, we point out the recent demonstration that Hole-

verses the direction of the propagating states, 8fgrw))  vo's theorem follows from Landauer’s principle of informa-
=|a(r)). Then evaluating the two-way informati¢20), we tion erasurd17]. In the light of this, it would be interesting
find that the first term on the rlght-hand—SIde reduces to thQO try to rederive the universal upper bound on the Optimum

informationH(Ag), thus canceling the second term and giv- capacity starting from Landauer’s erasure principle.
ing the valueH(Bg;A_,Ag)=0. This coincides with our

common sense measure: if a message gets bounced back, ACKNOWLEDGMENTS
then no information was sent.
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