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Off-diagonal hyperfine interaction and parity nonconservation in cesium
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We have performed relativistic many-body calculations of the hyperfine interaction irsthadb 7% states
of Cs, including the off-diagonal matrix element. The calculations were used to determine the accuracy of the
semiempirical formula for the electromagnetic transition amplit¢égM1|7s) induced by the hyperfine
interaction. We have found that even though the contribution of the many-body effects into the matrix elements
is very large, the square-root formulés|Hd 7s) = \(6S|Hp 6S)(7s|H}f 7S) remains valid to the accu-
racy of a fraction of 103. The result for the M1- amplitude is used in the interpretation of the parity-violation
measurement in thes6- 7s transition in Cs, which claims a possible deviation from the standard model.

PACS numbgs): 11.30.Er, 32.80.Ys, 31.15.Ar, 32.10.Fn
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Recent progress in highly accurate measurements of par-
ity nonconservationPNC) in atoms has got to the point Here A, and A, are the hfs constants of thes@nd 7
where new physics beyond the standard model of elementaifates of Cs, gg=2.0025g,= —0.0004, the coefficient
particles can be studied. The latest analydisof the most 1 0024 was introduced to account for the many-body effects.

precise measurements of the PNC in cesjdirsuggests that  Thjs givesM 1= | s /c|0.8094(20)< 1075 [6,7].
the value of the weak charge of th&Cs nucleus may differ values B=27.024(43) (6745 and Kenc

from the prediction of the standard model. In that experiment_ 0.9065(36)ea, and measurements of E€L) [2] lead to
[2], the ratio of the PNGE1 amplitude to the tensor polariz- ha  value of the weak charge of3Cs Q=

ability g for the 7S,,—6S,, transition was measured with _ 75 06(28)(34) which differs from the prediction of the
0.35% accuracy. The measured value can be written in the,qard modeD,,= — 73.20(13)[8] by 2.5

form From the point of view of accurate atomic calculations,

K Q there are two major questions in the analysis above that
—PNC ~wW. (1)  should be considered. The first is whether the actual accuracy
B N of the PNC calculations is really 0.4%. The second is

whether the semiempirical formul@) is accurate. In the
resent paper we address the second question, leaving the
irst one for later work.

where kpyc is the electron matrix element of the electric

dipole transition induced by the weak interaction betwee

7S, and 65, states of 3Cs, Q,, is the weak nuclear

charge andN is the number of neutrons. To interpret the

measurements in terms of the weak nuclear charge one needs

to know kpyc and B. The value ofkpyc can be obtained M1, amplitude appears due to mixing of the &nd 7

from atomic calculations only. Bennett and Wienjahused  states by the hfs interaction,

the valuekpyc=0.9065(36)e ay, which is the average of our | | >

resultkpye=0.908(9)ea, [3] obtained in 1989 and the re- (6s,F|Hp¢g 7s,F

sult of the Notre Dame grouppyc=0.905(9)ea, [4] ob- M1hts= Egc—Exe (7s,F[M1|7s,F")

tained in 1990. Note that Bennett and Wieman assumed

0.4% accuracy of the calculations contrary to the 1% accu-

racy claimed in both calculations. This assumption was

based on the comparison of the calculated atomic quantities

relevant to the PNC amplitudélectromagnetic transition Two major assumptions have been made to arrive a(Hq.

amplitudes between lowerandp states and hyperfine struc- from Eq. (3). First, the nonrelativistic expression for the op-

ture intervals of these stajewith the latest very accurate erator of theM1 transition was used:

measurements, which resolved major discrepancies between

theory and experiment in favor of theory. M1=—|ug|g(L +2S). 4
The most precise value (13,/3:27.024(43)(67.;\3, was

obtained in Ref[1] from the measurements of the ratio

M1,s/8 where M1, is the M1 transition amplitude be- (6S|Hntd 75)=\(6S|Hnid6S)(7S|Hpd 7s).  (5)

tween the states$and 7S induced by the hyperfine struc-

ture (hfs) interaction. The semiempirical formula for the The accuracy of both of these assumptions needs to be ex-

M1,s amplitude derived in Refd.5-7] was used in the amined. The situation is clear with the relativistic corrections

analysis: to theM 1 operator(4). According to the estimations of Bou-

Il. PRELIMINARY ANALYSIS

<6S,F,|ths|7S,F,>

+(6s,FIM1]6s,F')——F —F—

()

Second, the square-root formula is assumed to be valid
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chiat and Piketty{6] the relativistic effects modify the am- where the difference in energies is small compared to the

plitudes (6s|M1|6s) and (7s|M1|7s) at only the 10*  potential, differ by normalization only. One can say that Eq.

level. This is in line with the many-body calculations of the (8) is valid if

relativistic effects ing factors andM 1-transition amplitudes

for C's and other alkali atoms in our early worf®,10]. AE/|V|<1, 9
The situation with the square-root formul&) is less

clear. In their pioneering work Bouchiat and Pikef§] es- Wwhere AE=0.08445 a.u. is the energy difference between

timated the first-order core polarization corrections to it andhe 6s and % states of Cs an¥ is the atomic potential. The

introduced the correction factor 1.0017. In a later paper byHamiltonian of the hfs interactioi¢s is proportional to

Bouchiat and Guea[7] this factor was assumed to be 1.0024 1/r2 and the main contribution to its matrix elements comes

[see also formulg2)]. The accuracy of the estimation of the from the distances <ay/Z. Substitution of V=2Z€?/r,r

many-body correction was assumed to be approximately=a,/Z, andZ=55 into Eq.(9) gives

equal to the correction itself~0.002)[6,7]. In these works

there were no accurate calculations of other many-body con- AE e

tributions to the hfs beyond the first-order core polarization 7~3>< 107> (10

corrections. However, it is known that these contributions

can be up to 20% of the hyperfine struct¢see below. The  Note that fors waves the correction can be even smaller.

applicability of Eq.(2) in this situation is not obvious. Indeed, in the nonrelativistic approximatioswave hfs is
The accurate relativistic many-body calculations of theproportional to 8(r). Thus, the typical distances

off-diagonal hfs matrix elemeri) were recently performed ~7/(m.c)=aa,, wherea=1/137.
by the Notre Dame groufd1]. The accuracy of the calcula- et us now consider the many-body effects. It is conve-
tions was about 1% and agreement with form@awithin  njent to do this using the many-body perturbation theory in
this accuracy was achieved. Note that the theoretical accuhe residual Coulomb interactidth,U=H —H . HereH is
racy for the diagonal hfs matrix elements is also about 1%he exact Hamiltonian of the atom amtl,- is the Hartree-
(see Refs[12] and[13] and this paper This accuracy is not Fock Hamiltonian. We generate the complete zero-
sufficient to find an accurate value gfto add anything new  approximation set of the eigenvalues, wave functions, and
to the result of the cesium PNC experiment published in RefGreen’s functions using the Hartree-Fock Hamiltonian. The
[2]. small parameter of this many-body perturbation theory is the
However, we believe that the validity of the square-rootratio of the nondiagonal matrix element of the residual inter-
formula (5) can be demonstrated to much higher accuracyaction U to the large energy denominator for excitation of

than the absolute theoretical accuracy of the hfs calculationghe electron from the closed electron sh@lectron corg
(here we agree with Ref$5-7]). We suggest that the fol- ¢ g. 5 electron:U/Eg,~ 102,

lowing combination of matrix elements be calculated The perturbative(correlation corrections to the hfs ma-
trix element can be divided into two classes: the self-energy
-~ (6s|Hptel 75) corrections and the vertex corrections. The former can be

B V(BS[Hnd6S)(7S[Hnrd 75) o ©® included into Eq.(6) through the redefinition of the single

electron wave functions while the latter are included through

where all hfs matrix elements are calculated in the samd'€ redefinition of thep operator. .
Self-energy corrections dominate in the hfs of alkali at-

approximation. The value dR can be calculated with very oms (see, e.g., Ref14]). The major contribution is due to

high accuracy because uncertainties in different matrix ele; e correlations between an external electron and core elec
ments cancel each other almost exactly. We will demonstrat

that inclusion of different many-body and relativistic effects trons. We include them by using sp-called Bruepkner orbitals
leave the formula instead of the Hartree-Fock orbitals as the single-electron

wave functions in Eq(6). The Brueckner orbitals are ob-

_ tained by introducing an additional operatdr into the
(6S|Hn 1o 78) = V(65|Hp1g 63)(7S[Hp14] 75) " Hartree-Fock equations for the external electron and solving

valid to very high accuracy, so that the valueRf(6) re-  the Dyson-type equatiopHye+2(E) —EJy=0. TheX is
mains very small. an energy-dependent nonlocal operator, which is also called
Let us start from the analytical estimates of different con-the “correlation potential'{12,15. For the calculation ok,
tributions toR in Eq. (6). First note that in the single-electron See the next section. The Brueckner type correlation correc-
approximation, formuld?) is exact if the wave functions of tion constitutes 20% of the hfs ofséand % states of Cs.

the 6s and % states are proportional: However, if we neglect the dependence3pbn energy, the
estimation(10) is still valid. It follows from the calculations
os=Bifrs (8)  that 93/9E~1% for E~Egs,E+s (it is suppressed by the

parameterAE/Es,). This leaves conditior{10) practically
(ag is Bohr radiug at short distances from the nucleus, unchanged.
<a,/Z. Dirac equations for the states @nd 7 differ by Dominating vertex corrections to the hfs matrix element
the energy only. Therefore, their solutions at short distancesre due to the effect of core polarization by the nuclear di-
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pole magnetic field. Since the core states change in the mag- (65,F|Hnid o, F)
netic field, the Hartree-Fock potentidlcreated by the core Mlhfs=2

Tmﬂmﬁé;»
electrons, as well as the correlation potentialalso change. “ bs Ta

The effect of this change on the hfs can be accounted for by ~ (BF'[Hnid 7S,F')
redefining the operator of the hfs interactid®]: +§ﬁ: (6s,F[M1|B,F") E_E
B 7s
H{(=Hpist OV+ 83, (12) (13)

rTahnedgr%r-rSr?ggg t:ptphrixri]rf:a?ii?sgi)?;p:as [iféaancgzrir“eec?i;?\e Here |6s),|7s),|@),|8) are the eigenstates that include all
_ ) ’ L ' possible configuration mixinda) and|8) may contain an
while another correction associated witik is the non- arbitrary number of pairs of excited electrons and holes in
Brueckner correlation correction or structural radiati@f]. the electron core. All nondiagonal matrix elements of the
These corrections are more likely to cause deviation from th@; 1 gperator vanish in the nonrelativistic limit. Moreover, it
square-root formula since_: they are localized on Igrger disyyas demonstrated in our paf@] that the dominant contri-
tances up '_[o the core ra_dlus. Note, however, that in the cas§;tion appears only in the second order in the spin-orbit
of the hfs interactionsV is completely due to the Hartree- jhteraction and in the first order in configuration mixing, i.e.,
Fock exchange potential. There is no change to the Hartre%‘ondiagonal M1 matrix elements are of the ordevil
Fock direct potential since the magnetic field does not_ Za)*Q,, IE~10"%—10"5 ug|, whereQ,, is the nondi-
change electron density in the first order of perturbationagona| matrix element of the Coulomb interaction corre-
theory. This means thaiV vanishes exponentially outside sponding to an excitation of a core electron a@&ds the
the core. Inside the core, at-a,, AE/V~0.01 and the 8  energy of this excitation. Indeed, the operator of the mag-
and 7 orbitals are still proportional. Note that the potential hetic moment isvi 1= pg(L +29 = ug(2J—L) (relativistic
V at these distances may be estimatedVas—Z.€/r,  correction to this expression 10~5). Electron wave func-
whereZ.i~5. Since the contribution 08V is about 10%, tons are the eigenfunctions of the total electron angular mo-
we come to the estimate 18 for the error of the square-root mentumJ. Therefore,J does not give any nondiagonal ma-
formula. trix elements. On the other hand, the matrix elem@nt)
There is one more reason why the square-root formula is- 1/9|_|,3=1/2) requires spin-orbit interaction both in the
accurate. The expression f&[Eq. (6)] is symmetric with 54 J=1/2 and ket| 8,d=1/2) vectors, since in the non-
respect to the energiés andEy. Thezrefore, ItS expansion re|ativistic limit they correspond to the total orbital angular
in AE (AE=Egs— E7s) starts fromAE=: momentumL =0, i.e.,L|a)=L|B)=0. Thus, we need the
_ 2 4 second order in spin-orbit interaction. Note that the nondi-
R=a(AB)"+b(AR)™---. (12) agonal in angular momentuin matrix elements of the hy-

Since all linear inAE terms are canceled out, one can sayperfine interaction ”k6<§1/2|_H hiol g/ do not help since in
that the error should be smaller than in the estimates abov#)is case both the hfs matrix element aid matrix element

The dimensionless parameter for Efj2) is (s1/M1[dg,) are very small.
5 , Nondiagonal matrix elements &fl1 were calculated in
(AE/Es5p)°~1077, Refs.[9] and [10]; the value(6s|M1|7s)~0.4x 10" *| ug|

was measured in Ref§l7], [5] and[18]. Thus, each term

where E5p~0'824 e_l.u. is the core exczltano_n energ){. SlnceWith the nondiagonaM 1 matrix element in Eq(13) is sup-
the terma(AE)“ arises due t&V and 62, which contribute pressed by a factor of I6—10°5. Therefore, we may

about 10% and 1%, respectively, into the hfs, the total degtely assume that the correction to the diagdnal contri-
viation from the square?root formula caused by the RE? angytion (3) does not exceed I6.
non-Brueckner corrections should be smaller thzgn 10 We should note that it may not be easy to come to this
X107?=10"°%. We may add that the contribution @& to  conclusion using perturbation theory in the Dirac basis of
the hfs is much smaller than the contributionXfincesS  electron orbitals jj schemg (Dirac basis was used in Ref.
has an additional suppression by the paramefdt/Es,,) [6]). In this basis the small result must appear due to strong
[15]. cancellations between different terms in the sum over inter-
There are also contributions to the self-energy and vertexnediate states.
due to the radiative corrections. We have not considered
these contributions in our calculations. However, they come
from the very short distances<#/m.c=aa, and should
not cause any significant deviation from the square-root for- To test the validity of the square-root formuia we per-
mula. formed accurate many-body relativistic calculations of the
Finally, let us estimate contributions t&l1,s, which  off-diagonal and diagonal hfs matrix elements. Detailed dis-
cannot be presented in the form of E). Let us use the cussion of the accurate hfs calculations can be found else-
basis of the exact atomic eigenstates and tiégt, as a  where[12]. Here we repeat the main points emphasizing the
perturbation in this basis. The result can be presented in thele of different many-body effects.
form We start calculations from the relativistic Hartree-Fock

Ill. MANY-BODY CALCULATIONS
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O FIG. 3. Core polarizatiofRPA) diagrams for the hfs in the first

) and second order in Coulomb interaction.
FIG. 1. Second-order diagrams for the self-energy of the va-

lence electron¥, operatoy. Dashed line is the Coulomb interaction action. We take it into account by amending the direct
between core and valence electrons. Loop is the polarization of thelartree-Fock potential in which the polarization operator is
atomic core, which corresponds to the virtual creation of the excitedcalculated.
electron and a hole in the core shells. (3) Iterations of the self-energy operatd X—This chain

of diagrams describes the nonlinear effects of the correlation
method in thevN~! approximation(calculations for the ex- potential and is enhanced by the small denominator, which is
ternal electron are carried out in the frozen self-consistenthe excitation energy of an external electr@m comparison
field of the corg. The core polarization is calculated using with the excitation energy of a core electjoihe iterations
the Hartree-Fock equations in an external figldl. It is  of 3 are included by solving Eq14).
equivalent to the well-known random-phase approximation gypstituting the Brueckner orbitals into E@) accounts
with exchange methottee, e.g., Ref.16]). The many-body for the dominating correlation corrections to the hfs. Corre-
effects such as the Brueckner-type correlations, and thgnonding diagrams are presented in Fig. 2. These corrections
structural radiation are included by means of the correlatiognstitute 23% of the hfs of theséstate of Cs and 12% of
potential method15]. As it was pointed out in the previous ihe hfs of the % state of Cs.
section, the Brueckner-type correlation corrections are in- 14 take into account the core polarization effect we self-
cluded by solving the Dyson-type equation for the states Ofgnsistently solve the Hartree-Fock equation for the core

the external electron states in the nuclear magnetic field. The details are presented
in Ref.[14]. When all corrections$,, to core states caused
(Hye+ P E)y=0. (14) by the magnetic field are found, they are used to calculate the

correctionéV to the Hartree-Fock potential. Then core po-

~ larization is included into the single-electron matrix element
Correlation potentiak, accounts for the correlation between (a|H:s/b) between valence stat¢s) and|b) by redefining
an external electron and core electrons. We use many-bodyte operator of the hfs interactiod|;;=Hs+ V. This
perturbation theory and the Feynman diagram technique tgorresponds to the summation of the infinite series of the
calculateS, [12,19. The perturbation expansion &f in the ~ RPA-type of diagrams presented in Fig. 3. The RPA-type
residual Coulomb interaction starts from the second ordercore polarization contribution to the hfs of thes @nd %
The corresponding diagrams are presented in Fig. 1. We irstates of Cs is about 15%.
clude both the second-order diagrams and three dominating Core polarization also leads to the changeSof Corre-
classes of higher-order correlations: sponding contributions to the hfs matrix eleméat 3. |b)

(1) Screening of the Coulomb interaction between an exyre often called structural radiation. Second-order diagrams
ternal electron and core electrons by other core electrons—, iy cture radiation are presented in Fig. 4. We use direct
This is a collective phenomenon and the corresponding chaigymmation over the complete set of single-electron states to
of diagrams is enhanced by a factor approximately equal t@g|clate these diagrams.

'fshe nlun:ber of elce)(;t(/(\)/ns itn thetﬁx'iernal closed rs1utbslfm t There is also a contribution to the hfs due to the change of
p electrons on e stress that our approach takes into o . - .

account screening diagrams with double, triple, and higheﬁ?gmﬂzigﬁnbzf\}vr;ﬁtg]a\i/rf;ufg(r::r']on caused By This con-
core electron excitations in contrast to the popular couple

cluster method where only double and selected triple excita- Anorm= %(a|thS|b>(<a|ai/aE|a>+<b|ai/&E|b)).

tions are consideredsee, e.g., Ref[13]). The effect of (15)
screening is taken into account in all orders by summation of
the corresponding chain of diagrams, which in the Feynman //‘"\\
digram technique form a matrix geometrical progression. T 7 X
(2) Hole-particle interaction in the core polarization \O/’ N
operator—This effect is enhanced by the large zero-
multipolarity diagonal matrix elements of the Coulomb inter- TN
4 \
‘\ @ / \\ I /
)Y Y [
I// \\\
FIG. 2. Bruckner-type correlation diagrams for the hfs. Cross ‘\\ S \\\ v
denotes the hfs interaction. T operator includes second-order Q ha

diagrams(Fig. 1) and higher-order diagrams as described in the
text. FIG. 4. Structural radiation.
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TABLE |. Hyperfine structure matrix elements for th& @nd 7S states of'*Cs (MHz).

. (6979
Approximation A A VA 65/h|7S -1
pp 6S 7s 65A7S (6Slh|7S) \/AG—SA7S
U= ye (ylh| ) 1424.8 3915 746.9 746.9 0
{g|h+ 5V|¢) 1712.5 469.7 896.9 897.1 %204
(ylh+6V+ 53| ) 1687.8 466.9 887.7 887.6 X104
=g, (y|h| ) 1952.4 459.5 947.2 947.2 0
(lh+ V| ) 2302.0 541.4 1116.3 1116.7 X304
(ylh+6V+ 5§| o) 2267.6 537.7 1104.3 1104.5 x40 4
U= @ (lh+ V| ) 2308.3 542.5 1119.0 1119.5 X404
(ylh+6V+ 5§| ) 2273.8 538.8 1106.9 1107.3 xao0 4
SDpTP 2278.5 540.6 1109.8
Experiment 2298.2 545.9 1120.1

3Brueckner orbitals witt®, operator rescaled to fit the energy.
bSingle, double, and partly triple excitation approximation; calculations by the Notre Dame groufl Ref.
‘Referencd20].

The combined contribution of the structural radiation andthere is no formal disagreement between the results, since
renormalization into the hfs of thes@and 7 states of Cs are Bouchiat and Guea estimated the uncertainty of their result
1.5% and 0.6%, respectively. to be equal to the correction itself. We believe that for the
When all dominating higher-order correlations are in-analysis of the PNC experiment it is safer to assume no cor-
cluded into the calculation of the Brueckner orbitals for therection to the square-root formula. This slightly changes the
6s and 7 states of cesium, the accuracy for the calculatechumbers. TheM 1,,;s amplitude, tensor polarizabilitg, and
energies of these states is very high and constitutes abouteak charge of thé**Cs nucleus become
0.1%. However, we introduced fitting parameters to rescale
3 to fit the energies exactly. This procedure allows us to M1, = M8
effectively include some omitted higher-order correlations hfs™ ¢
and to test the sensitivity of the hfs matrix elements to the

0.80748)x 10 5,

value of 3. B=126.95743)(27)a3, (16)
The results for the hfs are presented in Table I. In this
tableh=H, s, the matrix elements ofV are RPA-type cor- Qw=—71.8828)(29).

rections, the matrix elements @& are structural radiation ) )
[including renormalization(15)] matrix elements withig, To stress the importance of the result here we used an esti-
and include Brueckner-type correlation corrections. One cafate of the theoretical accuracy 0.4%)] in the value of
see that the correction to the square-root formula due to thipnc. Our result forM 1 is in very good agreement with
considered many-body effects does not exceeck4gr4,  the result of Derevianket al. [11]
When all dominating many-body effects are taken into ac-
count, the accuracy of the calculated hfs constants compared M1,,.—
to experiment is about 1%. However the square-root formula nfs
is still valid to the accuracy of about 16. The most likely
cause of the remaining discrepancy with experiment idut has better accuracy. The weak nuclear ch@gen Eq.
higher-order correlation corrections not included in our cal-(16) represents even larger deviation from the standard
culations. These corrections are localized on the radius of theodel valueQ,y= —73.20(13)[8] than the result presented
core and due to the fact that these corrections are very smaly Bennett and Wiemalfil]. The deviation is 2.8 if 0.4%
(~1% of the experimental hfst is extremely unlikely that accuracy of calculations of thieoyc is assumed. Note that
they can break the square-root formula. The same may beven if 1% accuracy is assumed for the calculated value of
said about the very small radiative and Breit correctionskpnc, as it was claimed in both theoretical woilg4], then
Note that our final results for the diagonal hfs matrix ele-there is still 1.% deviation from the standard model. How-
ments for the 6 and 7 states are in very good agreement ever, we would like to stress once more that before making
with the calculations of the Notre Dame groL&8]. any conclusions about agreement or disagreement with the
It follows from the above, that the correction to the standard model the question about the accuracy of the atomic
square-root formula is about an order of magnitude smallecalculations of the PNC electronic matrix elemé&pf,c [see
than the estimations of Bouchiat and ‘®ad7]. However, Eq. (1)] should be carefully reanalyzed.

0.807Qq73)x 10 5, (17

te
c
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