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Off-diagonal hyperfine interaction and parity nonconservation in cesium

V. A. Dzuba and V. V. Flambaum
School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 15 May 2000; published 11 October 2000!

We have performed relativistic many-body calculations of the hyperfine interaction in the 6s and 7s states
of Cs, including the off-diagonal matrix element. The calculations were used to determine the accuracy of the
semiempirical formula for the electromagnetic transition amplitude^6suM1u7s& induced by the hyperfine
interaction. We have found that even though the contribution of the many-body effects into the matrix elements
is very large, the square-root formula^6suHh f su7s&5A^6suHh f su6s&^7suHh f su7s& remains valid to the accu-
racy of a fraction of 1023. The result for the M1- amplitude is used in the interpretation of the parity-violation
measurement in the 6s27s transition in Cs, which claims a possible deviation from the standard model.

PACS number~s!: 11.30.Er, 32.80.Ys, 31.15.Ar, 32.10.Fn
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I. INTRODUCTION

Recent progress in highly accurate measurements of
ity nonconservation~PNC! in atoms has got to the poin
where new physics beyond the standard model of elemen
particles can be studied. The latest analysis@1# of the most
precise measurements of the PNC in cesium@2# suggests tha
the value of the weak charge of the133Cs nucleus may differ
from the prediction of the standard model. In that experim
@2#, the ratio of the PNCE1 amplitude to the tensor polariz
ability b for the 7S1/226S1/2 transition was measured wit
0.35% accuracy. The measured value can be written in
form

kPNC

b

QW

N
, ~1!

where kPNC is the electron matrix element of the electr
dipole transition induced by the weak interaction betwe
7S1/2 and 6S1/2 states of 133Cs, QW is the weak nuclear
charge andN is the number of neutrons. To interpret th
measurements in terms of the weak nuclear charge one n
to know kPNC and b. The value ofkPNC can be obtained
from atomic calculations only. Bennett and Wieman@1# used
the valuekPNC50.9065(36)iea0, which is the average of ou
resultkPNC50.908(9)iea0 @3# obtained in 1989 and the re
sult of the Notre Dame groupkPNC50.905(9)iea0 @4# ob-
tained in 1990. Note that Bennett and Wieman assum
0.4% accuracy of the calculations contrary to the 1% ac
racy claimed in both calculations. This assumption w
based on the comparison of the calculated atomic quant
relevant to the PNC amplitude~electromagnetic transition
amplitudes between lowers andp states and hyperfine struc
ture intervals of these states! with the latest very accurat
measurements, which resolved major discrepancies betw
theory and experiment in favor of theory.

The most precise value ofb,b527.024(43)(67)a0
3, was

obtained in Ref.@1# from the measurements of the rat
M1h f s /b where M1h f s is the M1 transition amplitude be
tween the states 6S and 7S induced by the hyperfine struc
ture ~hfs! interaction. The semiempirical formula for th
M1h f s amplitude derived in Refs.@5–7# was used in the
analysis:
1050-2947/2000/62~5!/052101~6!/$15.00 62 0521
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M1h f s52UmB

c UAA6sA7s

E7s2E6s

1

2
~gS2gI !1.0024. ~2!

Here A6s and A7s are the hfs constants of the 6s and 7s
states of Cs, gS52.0025,gI520.0004, the coefficient
1.0024 was introduced to account for the many-body effe
This givesM1h f s5umB /cu0.8094(20)31025 @6,7#.

Values b527.024(43)(67)a0
3 and kPNC

50.9065(36)iea0 and measurements of Eq.~1! @2# lead to
the value of the weak charge of133Cs QW5
272.06(28)(34) which differs from the prediction of th
standard modelQW5273.20(13)@8# by 2.5s.

From the point of view of accurate atomic calculation
there are two major questions in the analysis above
should be considered. The first is whether the actual accu
of the PNC calculations is really 0.4%. The second
whether the semiempirical formula~2! is accurate. In the
present paper we address the second question, leaving
first one for later work.

II. PRELIMINARY ANALYSIS

M1h f s amplitude appears due to mixing of the 6s and 7s
states by the hfs interaction,

M1h f s5
^6s,FuHh f su7s,F&

E6s2E7s
^7s,FuM1u7s,F8&

1^6s,FuM1u6s,F8&
^6s,F8uHh f su7s,F8&

E6s2E7s
. ~3!

Two major assumptions have been made to arrive at Eq~2!
from Eq. ~3!. First, the nonrelativistic expression for the o
erator of theM1 transition was used:

M152umBug~L12S!. ~4!

Second, the square-root formula is assumed to be valid

^6suHh f su7s&5A^6suHh f su6s&^7suHh f su7s&. ~5!

The accuracy of both of these assumptions needs to be
amined. The situation is clear with the relativistic correctio
to theM1 operator~4!. According to the estimations of Bou
©2000 The American Physical Society01-1
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V. A. DZUBA AND V. V. FLAMBAUM PHYSICAL REVIEW A 62 052101
chiat and Piketty@6# the relativistic effects modify the am
plitudes ^6suM1u6s& and ^7suM1u7s& at only the 1024

level. This is in line with the many-body calculations of th
relativistic effects ing factors andM1-transition amplitudes
for C’s and other alkali atoms in our early works@9,10#.

The situation with the square-root formula~5! is less
clear. In their pioneering work Bouchiat and Piketty@6# es-
timated the first-order core polarization corrections to it a
introduced the correction factor 1.0017. In a later paper
Bouchiat and Gue´na@7# this factor was assumed to be 1.00
@see also formula~2!#. The accuracy of the estimation of th
many-body correction was assumed to be approxima
equal to the correction itself (;0.002) @6,7#. In these works
there were no accurate calculations of other many-body c
tributions to the hfs beyond the first-order core polarizat
corrections. However, it is known that these contributio
can be up to 20% of the hyperfine structure~see below!. The
applicability of Eq.~2! in this situation is not obvious.

The accurate relativistic many-body calculations of t
off-diagonal hfs matrix element~5! were recently performed
by the Notre Dame group@11#. The accuracy of the calcula
tions was about 1% and agreement with formula~5! within
this accuracy was achieved. Note that the theoretical a
racy for the diagonal hfs matrix elements is also about
~see Refs.@12# and@13# and this paper!. This accuracy is not
sufficient to find an accurate value ofb to add anything new
to the result of the cesium PNC experiment published in R
@2#.

However, we believe that the validity of the square-ro
formula ~5! can be demonstrated to much higher accur
than the absolute theoretical accuracy of the hfs calculat
~here we agree with Refs.@5–7#!. We suggest that the fol
lowing combination of matrix elements be calculated

R5
^6suHh f su7s&

A^6suHh f su6s&^7suHh f su7s&
21, ~6!

where all hfs matrix elements are calculated in the sa
approximation. The value ofR can be calculated with very
high accuracy because uncertainties in different matrix
ments cancel each other almost exactly. We will demonst
that inclusion of different many-body and relativistic effec
leave the formula

^6suHh f su7s&5A^6suHh f su6s&^7suHh f su7s& ~7!

valid to very high accuracy, so that the value ofR ~6! re-
mains very small.

Let us start from the analytical estimates of different co
tributions toR in Eq. ~6!. First note that in the single-electro
approximation, formula~7! is exact if the wave functions o
the 6s and 7s states are proportional:

c6s5Bc7s ~8!

(a0 is Bohr radius! at short distances from the nucleus,r
<a0 /Z. Dirac equations for the states 6s and 7s differ by
the energy only. Therefore, their solutions at short distan
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where the difference in energies is small compared to
potential, differ by normalization only. One can say that E
~8! is valid if

DE/uVu!1, ~9!

where DE50.08445 a.u. is the energy difference betwe
the 6s and 7s states of Cs andV is the atomic potential. The
Hamiltonian of the hfs interactionHh f s is proportional to
1/r 3 and the main contribution to its matrix elements com
from the distancesr<a0 /Z. Substitution of V5Ze2/r ,r
5a0 /Z, andZ555 into Eq.~9! gives

DE

V
'331025. ~10!

Note that fors waves the correction can be even small
Indeed, in the nonrelativistic approximation,s-wave hfs is
proportional to d(r ). Thus, the typical distancesr
;\/(mec)5aa0, wherea51/137.

Let us now consider the many-body effects. It is conv
nient to do this using the many-body perturbation theory
the residual Coulomb interactionU,U5H2HHF . HereH is
the exact Hamiltonian of the atom andHHF is the Hartree-
Fock Hamiltonian. We generate the complete ze
approximation set of the eigenvalues, wave functions,
Green’s functions using the Hartree-Fock Hamiltonian. T
small parameter of this many-body perturbation theory is
ratio of the nondiagonal matrix element of the residual int
action U to the large energy denominator for excitation
the electron from the closed electron shell~electron core!,
e.g., 5p electron:U/E5p;1022.

The perturbative~correlation! corrections to the hfs ma
trix element can be divided into two classes: the self-ene
corrections and the vertex corrections. The former can
included into Eq.~6! through the redefinition of the singl
electron wave functions while the latter are included throu
the redefinition of theHh f s operator.

Self-energy corrections dominate in the hfs of alkali
oms ~see, e.g., Ref.@14#!. The major contribution is due to
the correlations between an external electron and core e
trons. We include them by using so-called Brueckner orbit
instead of the Hartree-Fock orbitals as the single-elect
wave functions in Eq.~6!. The Brueckner orbitals are ob
tained by introducing an additional operatorŜ into the
Hartree-Fock equations for the external electron and solv
the Dyson-type equation@HHF1Ŝ(E)2E#c50. The Ŝ is
an energy-dependent nonlocal operator, which is also ca
the ‘‘correlation potential’’@12,15#. For the calculation ofŜ,
see the next section. The Brueckner type correlation cor
tion constitutes 20% of the hfs of 6s and 7s states of Cs.
However, if we neglect the dependence ofŜ on energy, the
estimation~10! is still valid. It follows from the calculations
that ]Ŝ/]E;1% for E;E6s ,E7s ~it is suppressed by the
parameterDE/E5p). This leaves condition~10! practically
unchanged.

Dominating vertex corrections to the hfs matrix eleme
are due to the effect of core polarization by the nuclear
1-2
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OFF-DIAGONAL HYPERFINE INTERACTION AND . . . PHYSICAL REVIEW A62 052101
pole magnetic field. Since the core states change in the m
netic field, the Hartree-Fock potentialV created by the core
electrons, as well as the correlation potentialŜ, also change.
The effect of this change on the hfs can be accounted fo
redefining the operator of the hfs interaction@12#:

Hh f s8 5Hh f s1dV1dŜ. ~11!

The correction to the hfs caused bydV is often called the
random-phase approximation~RPA!-type @16# correction,
while another correction associated withdŜ is the non-
Brueckner correlation correction or structural radiation@15#.
These corrections are more likely to cause deviation from
square-root formula since they are localized on larger
tances up to the core radius. Note, however, that in the c
of the hfs interactiondV is completely due to the Hartree
Fock exchange potential. There is no change to the Hart
Fock direct potential since the magnetic field does
change electron density in the first order of perturbat
theory. This means thatdV vanishes exponentially outsid
the core. Inside the core, atr;a0 , DE/V;0.01 and the 6s
and 7s orbitals are still proportional. Note that the potent
V at these distances may be estimated asV;2Ze f fe

2/r ,
whereZe f f;5. Since the contribution ofdV is about 10%,
we come to the estimate 1023 for the error of the square-roo
formula.

There is one more reason why the square-root formul
accurate. The expression forR @Eq. ~6!# is symmetric with
respect to the energiesE6s andE7s . Therefore, its expansion
in DE (DE5E6s2E7s) starts fromDE2:

R5a~DE!21b~DE!41•••. ~12!

Since all linear inDE terms are canceled out, one can s
that the error should be smaller than in the estimates ab
The dimensionless parameter for Eq.~12! is

~DE/E5p!2;1022,

where E5p'0.84 a.u. is the core excitation energy. Sin
the terma(DE)2 arises due todV anddŜ, which contribute
about 10% and 1%, respectively, into the hfs, the total
viation from the square-root formula caused by the RPA a
non-Brueckner corrections should be smaller than 1021

3102251023. We may add that the contribution ofdŜ to
the hfs is much smaller than the contribution ofŜ sincedŜ
has an additional suppression by the parameter (DE/E5p)
@15#.

There are also contributions to the self-energy and ve
due to the radiative corrections. We have not conside
these contributions in our calculations. However, they co
from the very short distancesr<\/mec5aa0 and should
not cause any significant deviation from the square-root
mula.

Finally, let us estimate contributions toM1h f s , which
cannot be presented in the form of Eq.~3!. Let us use the
basis of the exact atomic eigenstates and treatHh f s as a
perturbation in this basis. The result can be presented in
form
05210
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M1h f s5(
a

^6s̃,FuHh f sua,F&
E6s2Ea

^a,FuM1u7s̃,F8&

1(
b

^6s̃,FuM1ub,F8&
^b,F8uHh f su7s̃,F8&

Eb2E7s
.

~13!

Here u6s̃&,u7s̃&,ua&,ub& are the eigenstates that include a
possible configuration mixing,ua& and ub& may contain an
arbitrary number of pairs of excited electrons and holes
the electron core. All nondiagonal matrix elements of t
M1 operator vanish in the nonrelativistic limit. Moreover,
was demonstrated in our paper@9# that the dominant contri-
bution appears only in the second order in the spin-o
interaction and in the first order in configuration mixing, i.e
nondiagonalM1 matrix elements are of the orderM1
;(Za)4Qin /E;102421025umBu, whereQin is the nondi-
agonal matrix element of the Coulomb interaction cor
sponding to an excitation of a core electron andE is the
energy of this excitation. Indeed, the operator of the m
netic moment isM15mB(L12S)5mB(2J2L ) ~relativistic
correction to this expression;1025). Electron wave func-
tions are the eigenfunctions of the total electron angular m
mentumJ. Therefore,J does not give any nondiagonal ma
trix elements. On the other hand, the matrix element^a,J
51/2uL ub,J51/2& requires spin-orbit interaction both in th
bra ^a,J51/2u and ketub,J51/2& vectors, since in the non
relativistic limit they correspond to the total orbital angul
momentumL50, i.e., L ua&5L ub&50. Thus, we need the
second order in spin-orbit interaction. Note that the non
agonal in angular momentumL matrix elements of the hy-
perfine interaction likê s̃1/2uHhfsud̃3/2& do not help since in
this case both the hfs matrix element andM1 matrix element

^ s̃1/2uM1ud̃3/2& are very small.
Nondiagonal matrix elements ofM1 were calculated in

Refs. @9# and @10#; the value^6suM1u7s&'0.431024umBu
was measured in Refs.@17#, @5# and @18#. Thus, each term
with the nondiagonalM1 matrix element in Eq.~13! is sup-
pressed by a factor of 102421025. Therefore, we may
safely assume that the correction to the diagonalM1 contri-
bution ~3! does not exceed 1023.

We should note that it may not be easy to come to t
conclusion using perturbation theory in the Dirac basis
electron orbitals (j j scheme! ~Dirac basis was used in Re
@6#!. In this basis the small result must appear due to str
cancellations between different terms in the sum over in
mediate states.

III. MANY-BODY CALCULATIONS

To test the validity of the square-root formula~7! we per-
formed accurate many-body relativistic calculations of t
off-diagonal and diagonal hfs matrix elements. Detailed d
cussion of the accurate hfs calculations can be found e
where@12#. Here we repeat the main points emphasizing
role of different many-body effects.

We start calculations from the relativistic Hartree-Fo
1-3
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V. A. DZUBA AND V. V. FLAMBAUM PHYSICAL REVIEW A 62 052101
method in theVN21 approximation~calculations for the ex-
ternal electron are carried out in the frozen self-consis
field of the core!. The core polarization is calculated usin
the Hartree-Fock equations in an external field@14#. It is
equivalent to the well-known random-phase approximat
with exchange method~see, e.g., Ref.@16#!. The many-body
effects such as the Brueckner-type correlations, and
structural radiation are included by means of the correla
potential method@15#. As it was pointed out in the previou
section, the Brueckner-type correlation corrections are
cluded by solving the Dyson-type equation for the states
the external electron

~HHF1Ŝ2E!c50. ~14!

Correlation potentialŜ accounts for the correlation betwee
an external electron and core electrons. We use many-b
perturbation theory and the Feynman diagram techniqu
calculateŜ @12,19#. The perturbation expansion ofŜ in the
residual Coulomb interaction starts from the second ord
The corresponding diagrams are presented in Fig. 1. We
clude both the second-order diagrams and three domina
classes of higher-order correlations:

~1! Screening of the Coulomb interaction between an
ternal electron and core electrons by other core electron
This is a collective phenomenon and the corresponding c
of diagrams is enhanced by a factor approximately equa
the number of electrons in the external closed subshell~the
5p electrons on Cs!. We stress that our approach takes in
account screening diagrams with double, triple, and hig
core electron excitations in contrast to the popular coup
cluster method where only double and selected triple exc
tions are considered~see, e.g., Ref.@13#!. The effect of
screening is taken into account in all orders by summation
the corresponding chain of diagrams, which in the Feynm
digram technique form a matrix geometrical progression.

~2! Hole-particle interaction in the core polarizatio
operator—This effect is enhanced by the large ze
multipolarity diagonal matrix elements of the Coulomb inte

FIG. 2. Bruckner-type correlation diagrams for the hfs. Cro
denotes the hfs interaction. TheS operator includes second-orde
diagrams~Fig. 1! and higher-order diagrams as described in
text.

FIG. 1. Second-order diagrams for the self-energy of the

lence electron (Ŝ operator!. Dashed line is the Coulomb interactio
between core and valence electrons. Loop is the polarization o
atomic core, which corresponds to the virtual creation of the exc
electron and a hole in the core shells.
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action. We take it into account by amending the dire
Hartree-Fock potential in which the polarization operator
calculated.

~3! Iterations of the self-energy operator (Ŝ)—This chain
of diagrams describes the nonlinear effects of the correla
potential and is enhanced by the small denominator, whic
the excitation energy of an external electron~in comparison
with the excitation energy of a core electron!. The iterations
of Ŝ are included by solving Eq.~14!.

Substituting the Brueckner orbitals into Eq.~6! accounts
for the dominating correlation corrections to the hfs. Cor
sponding diagrams are presented in Fig. 2. These correc
constitute 23% of the hfs of the 6s state of Cs and 12% o
the hfs of the 7s state of Cs.

To take into account the core polarization effect we se
consistently solve the Hartree-Fock equation for the c
states in the nuclear magnetic field. The details are prese
in Ref. @14#. When all correctionsdcn to core states cause
by the magnetic field are found, they are used to calculate
correctiondV to the Hartree-Fock potential. Then core p
larization is included into the single-electron matrix eleme
^auHh f sub& between valence statesua& andub& by redefining
the operator of the hfs interactionHh f s8 5Hh f s1dV. This
corresponds to the summation of the infinite series of
RPA-type of diagrams presented in Fig. 3. The RPA-ty
core polarization contribution to the hfs of the 6s and 7s
states of Cs is about 15%.

Core polarization also leads to the change ofŜ. Corre-
sponding contributions to the hfs matrix element^audŜub&
are often called structural radiation. Second-order diagra
for structure radiation are presented in Fig. 4. We use di
summation over the complete set of single-electron state
calculate these diagrams.

There is also a contribution to the hfs due to the change
normalization of the wave function caused byŜ. This con-
tribution can be written in a form

Anorm5 1
2 ^auHh f sub&~^au]Ŝ/]Eua&1^bu]Ŝ/]Eub&!.

~15!

s

e

FIG. 3. Core polarization~RPA! diagrams for the hfs in the firs
and second order in Coulomb interaction.

FIG. 4. Structural radiation.
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TABLE I. Hyperfine structure matrix elements for the 6S and 7S states of133Cs ~MHz!.

Approximation A6S A7S AA6SA7S ^6Suhu7S&
^6Suhu7S&

AA6SA7S

21

c5cHF ^cuhuc& 1424.8 391.5 746.9 746.9 0
^cuh1dVuc& 1712.5 469.7 896.9 897.1 2.231024

^cuh1dV1dŜuc& 1687.8 466.9 887.7 887.6 1.131024

c5cBr ^cuhuc& 1952.4 459.5 947.2 947.2 0
^cuh1dVuc& 2302.0 541.4 1116.3 1116.7 3.531024

^cuh1dV1dŜuc& 2267.6 537.7 1104.3 1104.5 1.831024

c5c f i t
a ^cuh1dVuc& 2308.3 542.5 1119.0 1119.5 4.431024

^cuh1dV1dŜuc& 2273.8 538.8 1106.9 1107.3 3.631024

SDpTb 2278.5 540.6 1109.8
Experimentc 2298.2 545.9 1120.1

aBrueckner orbitals withŜ operator rescaled to fit the energy.
bSingle, double, and partly triple excitation approximation; calculations by the Notre Dame group, Ref@13#.
cReference@20#.
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The combined contribution of the structural radiation a
renormalization into the hfs of the 6s and 7s states of Cs are
1.5% and 0.6%, respectively.

When all dominating higher-order correlations are
cluded into the calculation of the Brueckner orbitals for t
6s and 7s states of cesium, the accuracy for the calcula
energies of these states is very high and constitutes a
0.1%. However, we introduced fitting parameters to resc
Ŝ to fit the energies exactly. This procedure allows us
effectively include some omitted higher-order correlatio
and to test the sensitivity of the hfs matrix elements to
value of Ŝ.

The results for the hfs are presented in Table I. In t
tableh[Hh f s , the matrix elements ofdV are RPA-type cor-
rections, the matrix elements ofdŜ are structural radiation
@including renormalization~15!# matrix elements withcBr
and include Brueckner-type correlation corrections. One
see that the correction to the square-root formula due to
considered many-body effects does not exceed 4.431024.
When all dominating many-body effects are taken into
count, the accuracy of the calculated hfs constants comp
to experiment is about 1%. However the square-root form
is still valid to the accuracy of about 1024. The most likely
cause of the remaining discrepancy with experiment
higher-order correlation corrections not included in our c
culations. These corrections are localized on the radius o
core and due to the fact that these corrections are very s
(;1% of the experimental hfs! it is extremely unlikely that
they can break the square-root formula. The same may
said about the very small radiative and Breit correctio
Note that our final results for the diagonal hfs matrix e
ments for the 6s and 7s states are in very good agreeme
with the calculations of the Notre Dame group@13#.

It follows from the above, that the correction to th
square-root formula is about an order of magnitude sma
than the estimations of Bouchiat and Gue´na @7#. However,
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there is no formal disagreement between the results, s
Bouchiat and Gue´na estimated the uncertainty of their resu
to be equal to the correction itself. We believe that for t
analysis of the PNC experiment it is safer to assume no
rection to the square-root formula. This slightly changes
numbers. TheM1h f s amplitude, tensor polarizabilityb, and
weak charge of the133Cs nucleus become

M1h f s5UmB

c U0.8074~8!31025,

b526.957~43!~27!a0
3 , ~16!

QW5271.88~28!~29!.

To stress the importance of the result here we used an
mate of the theoretical accuracy 0.4%@1# in the value of
kPNC . Our result forM1h f s is in very good agreement with
the result of Dereviankoet al. @11#

M1h f s5UmB

c U0.8070~73!31025, ~17!

but has better accuracy. The weak nuclear chargeQW in Eq.
~16! represents even larger deviation from the stand
model valueQW5273.20(13)@8# than the result presente
by Bennett and Wieman@1#. The deviation is 2.9s if 0.4%
accuracy of calculations of thekPNC is assumed. Note tha
even if 1% accuracy is assumed for the calculated value
kPNC , as it was claimed in both theoretical works@3,4#, then
there is still 1.5s deviation from the standard model. How
ever, we would like to stress once more that before mak
any conclusions about agreement or disagreement with
standard model the question about the accuracy of the ato
calculations of the PNC electronic matrix elementkPNC @see
Eq. ~1!# should be carefully reanalyzed.
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