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Harmonic linear Paul trap: Stability diagram and effective potentials
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We present the single-particle stability diagram for the radial motion in a linear Paul trap in a situation where
the applied axial dc potential gives rise to a harmonic defocusing radial potential. Although most linear Paul
trap experiments have been conducted in a regime where this approximation is reasonably valid, the effect of
the axial confinement on the stability of the radial motion has not previously been analyzed. The defocusing
effect in both radial directions leads to a stability diagram different from that of the two-dimensional quadru-
pole mass filter, and hence points toward new studies of few ion dynamics. Expressions for the effective or
pseudopotentials for one and two charged particles are presented and discussed.

PACS numbgs): 32.80.Pj, 05.45-a, 39.10+]

Since the first realization of two- and three-dimensionaloretical and experimental investigations. We finally present
radio frequency traps for charged particles in the 1950]s expressions for the effective or pseudopotential for this trap
(generally referred to as Paul trapmany varieties of such in the case of one and two charged particles.
traps have been suggested and construdgdEven though When discussing the radial motion of charged particles,
the linear Paul trap in retrospect seems to be one of the mo§om now on referred to as ions, in linear Paul traps, the
obvious configurations for obtaining three-dimensional con-similar motion in the quadrupole mass filter is often the start-
finement, it was first proposed and demonstrated by Prestagdfeg point. For the mass filteiFig. 1 with Ugn¢=0), the mo-
et al.[2] 10 years ago. In all Paul traps the charged particlegion of a single ion in thexy plane is described by the fol-
have a spatially dependent micromotion at the driving fredowing equations:
guency superposed on a typically slower harmonic motion.

In contrast to the original three-dimensional hyperbolic Paul X+ (a—2qcos 2r)x=0, (1)
trap[1], the linear trap has a trap axis rather than just a single
point in coordinate space where the micromotion vanishes.

This fact has been the main reason for the popularity of the y—(a=2qcos2ry=0, @
linear Paul trap in atomic physics, quantum optics, and me-

. . . ) . . where
trology, since a string of ions rather than just a single ion can
be studied without unwanted Doppler shifts induced by mi-
cromotion. Several proposals for realization of quantum a= 4QUgc  2QUge and r= EQt 3)
computers have also been based on a string of ions in a linear Mol 9= MQ2r2’ 27

Paul trag 3,4]. Furthermore, since ianypoint in space there
is no micromotion along the trap axis direction, it is possiblegre Uge and Q are the amplitude and frequency of the
to laser cool large ion clouds along this axis without theapplied RF field, respectivel the mass an@) the charge

heating effects connected with the micromotion-inducedys yhe jon, r, the minimum distance from the electrodes to
Doppler shifts[5]. This has enabled investigations of Iargethe trap axisz, while U refers to a dc voltage applied to

lon COUIme crys'gal$6,7]. o diagonal electrodes. The derivatives are given with respect to
Generically, a linear Paul trap is just a quadrupole Mas$ o dimensionless time

filter [1] with dc voltage confinement along the center axis (  gyapje radial motion for a single ion is achieved whenever

axig) as sketched in Fig. 1. The defocusing effect of the OICthe dimensionless parameteysinda are within the hatched

axial potential in the radial plane is obvious from the Laplaceareas denoted and B in Fig. 2 [9]. The quadrupole mass

law, ar}dr:t has also fb_een accourrllted for |_Ir]hpreV|ou§ des}f:r'rﬁlter description is, however, a reasonable approximation for
tions of t © mot!on orions in suc trap&]. € quequn O the radial motion in linear Paul traps only when the defocus-
under which axial confinement conditions stable radial mo-Ing effect of the axial confinement can be neglected, i.e.

tions exist has, however, not been addressed previously. icaily when the middle electrodes are much longer than
I,n this B.”E’f Report, we provide aStab,'I'ty d|agram_ for the e radial spacing of the electrodes. In the opposite case,
radial motions in the case of a harmonic dc potential along,here the middle electrodes are short, the defocusing effect

the z axis. Though this might seem to be a special case, glyy pe strong and significant for the stability of the radial
least at smaII_ dlst_ances from the trap center, it is generally thotion. In the specific case &f4.=0, the equations of radial
good approximation. Furthermore, we discuss some of thf‘hotion can now be written: ¢

special features of such traps in contrast to the quadrupole

mass filter and the original Paul trap, and point toward the- .
X+ (a—2qcos2r)x=0, (4)

*Electronic address: drewsen@ifa.au.dk y+(a+2qcos2r)y=0 (5)
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FIG. 1. Sketch of a linear Paul trap. The trap
consists essentially of four rod-electrodes in a

Uy(0) quadrupole mass filter configuration. Each rod is
U sectioned into three, allowing a dc voltadg,qto
be applied to the eight end-electrode pieces. The
U0 voltagesU;(t) in the figure are given byJ,(t)
yo =—(Ugrg2)coslt, U,(t) = (Ured2)cost

+Uge,  Us(t)=—(Ugd2)cosOQt+U.,q, and
U4(t) = (U RIJZ) COS()I+ Udc+ Uend-

with original Paul trap[5,11,13. If an additional dc voltage is
applied to diagonal electrodes, as often done with mass fil-
4QUgq ters, the radial stability region becomes the intersection of
azm, (6)  two stability regions as the gray-shaded one in Fig. 2, dis-
0

placed by+ a,. along thea axis, respectively. Heray. is the

] ] ] value ofa associated by the applied diagonal dc voltage.
whereUg is a voltage proportional to the applied dc voltage |t 5, —0 anda,q2<1, the effective or pseudopotential for
Uenq OF the eight end-electrode pieces to accommodate axigj single ion can be approximated by

trapping(see Fig. 1L The exact factor of proportionality de-

pends on the specific trap geometry. Apparently, these equa- 1 1

tions of motion(4) and(5) are equivalent to those in Eq4) Upseudb!12) = war2+ Ewﬁzz, (7)
and(2). There is, however, an important difference since the

sign of the term containing the parameter is now the same it

for the x andy motions. This means that the condition for

stable motion is the same for tixeandy directions, and the 1

stability region for radial confinement is now given as the wr=1\/a+ qu, w,=+v—2a and r’=x*+y? (8
gray-shaded region in Fig.[20]. It should be noted that, in
order to obtain axial confinement, tleeparameter must al-
ways be negative. In contrast to the mass filter or the origin
Paul trap, stable motion can in principle be obtained for an
applied RF voltage, though the stability range for thpa-
rameter rapidly gets narrow for large valuesqofThe stabil-

here a is defined as in Eq(6) and w, and w, are the
ffective radial and the axial oscillation frequencies, respec-
Yively.
When describing the motion of two identical ions simul-

) X o - _taneously present in the trap, the Coulomb interaction be-
ity region for the harmonic linear Paul trap presented in F'gtween them has to be taken into account. In this case it is

2 contains the_d|310|nt st_ablllty_areas(p_artly) a’?dB for the practical to separate the motion of the ions into a relative and
mass filter. This feature is particularly interesting when com-

) . . . I a center-of-mass motion. The latter is identical to the one
paring nonlinear dynamics of two or more ions in this type of

. , X resented in Eq.7) for the motion of a single ion. Denoting
trap with those of the mass filter as well as with those of th he relative coordinates, y, andz the following equations

are obtained for the relative motion:

14
. X
4 X=— —(a—2qcos 2r)X, (9)
0 3
p
1 4 . Yy
y=—3—(a+2q Cos 2r)Y, (10
a P
-2
. Z
z=—+ 2az, (12
P
3 B
] where p=x>+y?+7? is the distance between the ions.
" Here all lengths are measured in units3Q? me,MQ?,
: T " T " T d which is of the order of a micron whefl is in the MHz
0 1 2 3 . .
q range. In the case where the center of mass motion is ceased

by some cooling mechanism, Eq®)—(11) describe com-
FIG. 2. Single-ion stability diagrams for the quadrupole massPletely the motion of the ions. Applying the same method as
filter (the hatched areas andB) and for the harmonic linear Paul that used in Ref.13] for determining the pseudopotential for
trap (gray-shaded argaThe dimensionless parametarsndg are  two ions in the original Paul trap, the following pseudopo-
defined in the text. tential is found:
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0.0 approximation. Due to the last term in Ed.2), there are,

however, only two possible orientations within the plane.
The ions orient either along the line definedxsyy or along
the line defined by= —y. This is in contrast to the hyper-
bolic Paul trap, where “peculiar” crystal orientations can be
presen13,14. Simulations performed using Eq®)—(11)
confirm this. Curves representing the borderlines for crystals
oriented along the axis derived from the full pseudopoten-
tial in Eq. (12) or obtained from molecular dynamics simu-
lations based on Eq$9)—(11) are represented in Fig. 3 by
the dashed and solid curves, respectively. While the simpli-
fied pseudopotential given by E() plus the 15 Coulomb
term are appropriate for determining the two-ion crystal ori-
. entation for small values df, it is clear from Fig. 3 that the
0.0 A 10 more general potential given by E@L2) yields nearly the
q correct crystal orientation for all values qf
Currently, we plan to investigate experimentally the va-

FIG. 3. Section of the stability diagram for the harmonic Iinear"dity of the pseudopotential approximation by studying the

Paul trap(gray-shaded arg¢aThe curves represent the borderline shape of ion Coulomb crystals as a function of trapping pa-

a -0.1-4

-0.2 4

for two-ion crystals being oriented along taexis for the simpli- 3 meters, and we have initiated theoretical studies of the ion
fied pseudopotential given by Eq7) plus a 1p Coulomb term .y qta) stability within the single ion stability diagram shown
(dotted ling, for the pseudopotential given by E¢l2) (dashed inyFig 3 y 9 y diag

line), and from molecular dynamics simulatiofslid line). Above
the lines, the two-ion crystal is supposed to be oriented along the
axis.

In the same way as a dc voltage applied to diagonal elec-
trodes can be used to obtain mass selection in a quadrupole
mass filter, the voltage on the end-electrode piddgg can
1 1 be used to obtain mass selection in a hqrmonic Iinear Paul
UpeoudhX,y,2) = =+ =ar?—az trap. Recently, we have been able to ejétfMg™ ions

p 2 selectively, while keeping*Mg™ ions trapped in a linear
2 12x2y2) Paul trap using this technique. This mass selection process

q_2 (4—a)r?+ — — has also been applied to show that'Nmolecular ions have
A p° p° been trapped and cooled translatorically by laser-cooled
(12) 2“Mg™ ions. The motion of the ions becomes unstable due to
a vanishing effective potential in practically the entig
where, againr2=x2+y?2, p2=r2+z? and plane simultaneously with an increasibg,q, in contrast to
the mass filter for which the increase hy; leads only to
1 1 3r? instability along one specific axis. This difference may lead
A={4-at+—||4-at —S——|. (13 to areduced heating and loss of the remaining ions when the
P PP axial voltage is used as the mass selector. Furthermore, in a

This expression is rather complicated, but for the limit where!'n_ear Pal_“ trap that_ meets the h_armor_uc assumptions above,
a,q?<1 and p>1, the potential reduces to the single-ion it is possible experimentally to investigate larger ion Cou-

potential given by Eq(7) with an additional Coulomb term Iomp crystals in RF traps under variou_s effective harmonicgl
1/p. When the two ions are close to their equilibrium dis- confinement conditions. In such experiments, possible devia-

tance at zero temperatures- 1 is fulfilled if a,q%<1. When tions of these crystals’ outer shapes and inner structures from

such a simplified equation is used to determine the orienta%hz;fneoﬁ{f;"gg?e%'afg&]tizz%ec’fsgjglig?jmb crystals in static

tion of a two-ion crystaldefined as the equilibrium configu- | e h ted a stability di ¢
ration at zero temperatyrén the trap, one finds that the ion h conclusion, we have presented a stability diagram for
the linear Paul trap that in many situations is more appropri-

crystal will lie in thexy plane with no preferred orientation if o . :

w,>w,, While for w,< w, its orientation will be along the ate than the S.tab'“ty dlagrqm for the two—dwpensmnal quad-

axis. The equilibrium distance would ke 22 (in the scaled rupole mass filter. Expressions for the effective pseudopoten-
. tials for the one- and two-ion cases have been derived, and,

units usegl whereo is the smallest of the secular frequen- we have pointed toward various new theoretical and experi-
cies. The borderline between these two types of orientation is P P

defined byw, = w, , leading toa= — g2, The corresponding mental work involving harmonic linear Paul traps.

curve within the single-ion stability region is presenteodt- M.D. is grateful for financial support from the Danish

ted curve in Fig. 3. National Research Foundation through the Aarhus Center of
When the full pseudopotential E€L2) is used, one finds Atomic Physics(ACAP), the Danish Natural Science Foun-

that the two-ion crystal will be oriented either along the dation(SNF), and the authors are grateful to Torkild Ander-

axis or in thexy plane, as predicted by the above simplesen for critical reading of the manuscript.
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