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Metastable states of a coupled pair on a repulsive barrier
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Resonance penetration of two coupled particles through a repulsive barrier is considered. It is shown that a
local minimum of the total potential generates metastable bound states, and their spectrum determines the
position of resonances in the penetration probability. It is pointed out that the probabilities of tunneling of two
interacting particles from the false vacuum can be essentially higher than has been assumed earlier.

PACS numbgs): 03.65.Nk, 11.10.Jj, 21.45v

In a paper by Saito and KayanurfH|, it was pointed out 1 1 Mw?
that there exists a new quantum phenomenon—resonance ~ 7 —Ar~ EA,+Tr2+VO(R—r/2)+VO(R+r/2),
transparency of a single repulsive barrier for a coupled pair
of particles. To consider this effect, a one-dimensional rectyyritten in coordinates of the center of inertia of the pair
angular repulsive barrier and an infinite One-dimenSionalz(rl+r2)/2 and in an internal coordinate of the relative
rectangular potential well coupling the pair were chosenmotionr=r,—r, describes the three-dimensional motion of
Since the interactions were simple, it was possible t0 solvg three-dimensional oscillator with the frequency of vibra-
the initial two-dimensional Schdinger equation by reduc- tions . Since the potential barrier depends only on one vari-
ing it to a system of one-dimensional equations by means ofple, and the oscillatory interaction is additiverirprojec-
projection onto seven eigenfunctions. However, there stiltions, the wave function is factorized, and its nontrivial part
remained the question of how this effect manifests itself inescribing the process of scattering depends only on two

other systems. variables. It is convenient to represent these variables in the
This paper continues the study of the effect of resonancgimensionless form

transparency of two type one-dimensional barriers for a pair

of identical particles coupled by the oscillatory interaction. Imo mo

This pair interaction allows us to reduce the problem of X= T(xl—xz), y= T(xﬁxz).
three-dimensional scattering of a three-dimensional oscillator

to the solution of a two-dimensional equation analogous t
the equation derived in Refl]. Besides, it is just this sort of
pair interaction that is used in literatuf2] devoted to the [— 02— 2 +x2+V(x—y)+V(x+y)—E]¥=0, (1)
probability of induced decay of the false vacuum in colli- o ’

sions of high-energy particlésee, for instancé3,4]). [twas  \yhere the energ is written in unitsw/2, and the potential

pointed.qut there that it is possible to describg the process?%rrierV(xty)z(2/w)VO[(xiy)/M] in what follows
of transmon from the false vacuum on }he basis of quantumg, be written in a form convenient for us. Equatidd)
mechanical tunneling of a pair of particles through the bargy,,1q pe supplemented with boundary conditions. Let the
rier; but the study was performed for a system where Onlyprocess of scattering proceed from left to right, and the initial

one of the oscillator particles inter_acts v_vith the ba_lrrier. Heregiate of the oscillator be the staieThen the boundary con-
we show that, when the two particles interact with the bariiions are written in the form

rier, there arises the same effect of resonance transparency as
in Ref. [1].

The first potential barrier we study is taken in the Gauss- V|, . —.=exp(ikny) @n(X)— X, Syexp —ikjy)¢;(x),
ian form from Ref[2] in order to show that it is possible to J=N
drastically increase the probability of induced decay of the
false vacuum. The second potential barrier of the Coulomb

Crhe Schrdinger equation in these variables is of the form

‘P|y_>+w:_ Rnjexp(ik;y) ¢;(x),

form is investigated in order to draw attention to the fact that i=N
the resonance tunneling of the barrier is feasible in the prob- (2
lems of fusion of heavy nuclei. The method of investigation V| +.=0.

is based on the numerical solution of the two-dimensional
Schralinger equation without any further simplifications. ~ The wave functions of the oscillatas;(x) obey the Schro
Consider the penetration of a pair of identical particlesdinger equation
with massesn; =m,=m, and coordinates,; andr, coupled
by an oscillatory interaction through the potential barrier (—a§+x2—ei)goi=0 3
Vo(X1) +Vo(X5). The Hamiltonian of this systenfi=1)
with the energye;=2j+1 (j=0,1,2...), momentak;
=VE—gj, and the numbeN of the last open channeE(
*Email address: penkov@thsunl.jinr.ru —en+1<0). In what follows, we consider an oscillator com-
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posed of bosons, whose spectrum is convenient to number
from 1. So, hereafter;=4j—-3 (j=1,2,...).

The probabilities of penetratiol;; and reflectiorD;; are
defined as the ratio of the density of a penetrated or a re-
flected flux to the density of the flux of incident particles:

©

@

o=o

®

K K
Wij=|Rij|2ﬁ' Dij=|3j|2#-
I 1

—_
o

It is obvious that¥; - \(Wj;+Dj;) =1.

To determine the probabilities of penetratigmeflection
in the above way, it is necessary to solve the two-
dimensional differential equatiofl); its numerical solutions
will be given below. The numerical solution was based on a
three-diagonal approximation of second derivatives with
constant steps ix andy: h,=0.025, h,=0.005, respec-
tively. Finite dimensions|y.J=12 and |Xn{=7 of the
range of numerical calculations, at a given degree of discreti-
zation, provided accuracy to within the third decimal point in LT T T T T T T T LT T LT
all the presented calculations. E

As it was indicated above, in papers devoted to the in-
duced decay of false vacuum, use was made of the model of F|G. 1. Total probabilities of penetration through the barrier.
quantum-mechanical tunneling of a pair coupled by the 0sThe solid curve is for potential4); the dotted one, for potential
cillatory interaction through a barrig2]. The case when 2v(y). The explanation is given in the text.
only one particle interacts with the barrier was considered. In
the framework of the resonance tunneling, we can expect thahe probability of penetration of a structureless particle, i.e.,
the picture of tunneling would essentially change when thawith the solution of Eq(1) for the barrier potential 2(y).
interaction of both the incident particles with the barrier isTo estimate the contribution of narrow resonances to the
switched on. The barrier used in RgR], upon being made probability of penetration of the particle flux distributed over
dimensionless, is of the form energy, in Fig. 1, we plot the penetrated flux

E
W(E')dE’,
Eo

I(E)

@ " E-E,

2
V(X)= ——exg—g*X%w), X=xzy,
g°w

in the case when the incident flux is distributed uniformly
from E, till E; the quantityEy=5. It is seen that the main
contribution to the probability of penetration comes from
resonances. AE= 23, the difference from the background
penetration amounts to four orders.

wherew is the oscillator frequency, argf<1 is the model
parameter of false vacuum. In RE2], the dependence of the
tunneling probability was calculated in the rangegdffrom
0.09 till 0.01 and at fixed frequenay=1/2. In the present
calculations, the same value ofbut greater values @ are
accepted. The reason is that there arise extrertinlthe Now, we describe a simple scheme of arising barrier
framework of numerical calculationsiarrow resonances in metastable states that make the barrier transparent. It is not
the energy dependence of the tunneling probability of alifficult to verify that the potential energy(x,y)=V(x
coupled pair through the barrier. Therefore, in Fig. 1, we+y)+V(x—y)+x? possesses a local minimumyat 0 (the

present the results of numerical calculations of 8g.with
barrier (4) at g?=0.5, 0.3, 0.2 denoted by letters B, C,
respectively.

In Fig. 1, we draw the probabilities of penetration of a

center of mass in the middle of the barjiemd at some
values ofx= *Xx,. A maximum is atx=0.

Thus, there exist two potential “wells” separated by the
barrier. Bound states of that system split into even and odd

coupled pair from the ground state into all the possible statestates. The magnitude of splitting is determined by the prob-

i.e., W=2;_\yW,; at different values ofg?. A prominent

ability of penetration through the internal barrier. When

resonance dependence of the tunneling probability showaV(x=0y=0)>1, this shift can be very small, and the
that there do exist barrier resonances under discussion. Nogpectrum of even states is determined by the spectrum of an

that the first resonance with decreasig§ shifts toward
higher energies, but the quantigyE, diminishes.

Wheng?=0.2, the probability of resonance penetration is
many times ¢ 10P) as large as the probability of penetration
in the nonresonance regighackground Therefore, in Fig.

isolated “well.” In the first approximation, the position of
resonances can be described by the oscillator spectrum of
bound states at=0 andx=X,:

Enn,=Eot 20,1124 n) +20,(1/2+0,),  (5)

1, we present the results of calculations on the logarithmic
scale. They demonstrate not only the indicated exceeding buthere n, and n, are oscillator quantum numbers,
also the coincidence of the background part of the curve with=2V(x,); and frequencies, andw, are determined by the
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second derivatives at the point of local minimun, TABLE I. Comparison of positions of the first resonance with

= JAZU(X,y)/12, w,= \/&yZU(x,y)/Z the variational estimate

For potential(4), it is not difficult to obtain the oscillator-

2 2
model parameters 9 Evar Er 9°Er0/2
0.5 7.649 7.62 1.30
= —+ 2
Eo= o[ 1+2In(2w) /g7, 0.3 10.416 10.38 0.779
a)§= wi— 1.

in Fig. 1. Agreement can be considered good in the frame-

Let us compare the positions of resonances drawn in Fighork of the above-indicated accuracy. Whefi<1, the
1 atg?=0.2 with the results of calculation by formulés) yarlatlonal expressions get simplified and allow the follow-
and (6) from which it is clear that there exist small but ing decomposition:
clearly seen satellite resonances. The position of the first
resonanceE, = 13.65 is well described by the oscillator en- Esa~EootO(g?).
ergy in the ground stat&q,,=13.92. The second group of
resonances is generated by a single excitation of oscillatoris coincides, with an accuracy up ©(g?), with the energy
either alongy or alongx: E¢;=18.18,E,,=18.63. They are derived by a simple decomposition around the minimum of
associated with the resonances at energies 17.24 and 17.1x,y). So, the estimate of the resonance spectrum made by
The third group of resonances is generated by a double exermulas(5) and (6) is asymptotic ag)>—0. In particular,
citation Eg,=22.45, E;,=22.90, E»,=23.34, and respec- wheng?—0, we can indicate the limiting position of the first
tively, resonance energies are 20.58, 20.88, 21.72. So, thesonance in units of?, i.e., the quantityg’?Ew/2 used in
simple oscillator model of a metastable barrier state gives &ef.[2]:
correct qualitative picture of the origin of resonances. Com-
parison with Fig. 1 shows that the largest values of the tun- 9°Ew/2— w?[1+2 In(2/w)]/2.
neling probability correspond to metastable states with a
minimal excitation along the coordinate of the center of in-a¢ ,,—1/2, this energy tends to 0.472; this is shown in the
ertia. o _ o fourth column of Table I. In Ref[2] where the study was

Decomposition around the point of equilibrium does notmagde of the penetration of a pair through the barrier, a
exhaust all possibilities of the oscillator model. Agreementsmooth curve was obtained for the probability of penetration
between the resonance energy and the energy of a metastaleihe energy interval from 1.2 to 2. From the presented
state can be improved by a simple variational procedure. T@a|cyjations it follows that, if the interaction of both particles

this end, we consider the position of a minimutg and  yith the potential barrier is taken into account, this curve
frequenciesw, and w, to be unknown quantities that are pecomes essentially nonmonotone.

determined by the minimum of the average of the total
A M/\/
1 IJ

Hamiltonian 1.0

H=(uby| = 72— 2+ X2+V(X—y) + V(X+Y)| by by
0.5

over normalized eigenfunctions of the oscillator in the
ground state:

w. |\ V4 ® 0.0
¢x=(ﬁ) ex;{—fx(x—xo)z), \

<
(9]

TN T N T N T N B
o)

0.0
Varying H overxy, w,, andw,, we can derive a system of
three nonlinear equations, which will not be presented here
because they are too cumbersome. The two of the three equa .5
tions are solved analyticallyky= Xq(wy ,gy) ) Wy = \/wxz—l.
In this way, the function of one variablé=H(w,) is to be |
estimated numerically; its minimum determines the varia- 0.0 T T T T T
tional estimateE,, for the first resonance. Note that the ° 9 13 o 17 &l
variational connection ot, and w, is the same as in the
case of decompositiof6). In Table I, we present the com- FIG. 2. Probabilities of penetration through barriers of the Cou-
parison ofE,,, with positions of the first resonané&g drawn  lomb type. Explanations are given in the text.
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The barriers considered above are of the form of the In this case, a clear picture of the resonance tunneling of
Gaussian function. For completeness, below we present tieecoupled pair is also observed. We do not present the analy-
calculations for a barrier of the Coulomb shape cutoff both asis of the oscillator model for the position of resonances,

short and long distances: because the chosen potential is essentially of the model char-
acter. We only mention that satellite resonances manifest
Q/ Xmin X< Xmmin themselves clearly, and energies of principal resonances are
_ X <|X|< _ _ equidistant.
VOO=1 QX X =[X|<Xmai - X=xxy. (7) The considered mechanism of the transparency of barriers
Q/Xmax IX[>Xmax- for a coupled pair manifests itself for all the potential barriers

) , ) chosen for the investigation. As the resonance transparency
The cutoff at short distances was introduced for modeling thgyas first observedi1] for barriers of the rectangular shape,
nuclear Coulomb barrier in the framework of constraints im-gnd the coupling in a pair was of the nonoscillator type, it
posed by the one-dimensional scattering. With this cutoffcould be assumed that the resonance transparency of barriers
the notion of “barrier height” is meaningful for the one- for composite particles could be observed for a wide class of
dimensional model of scattering. For a greater analogy, théhteractions. Therefore, the effects of quantum transparency
barrier width atX| =X, should be small in spatial units of could occur in various fields of physics. In particular, when
the problem, i.e., as compared with the mean-square dimenhe interaction of two particles with a barrier is taken into
sion of the oscillator. The cutoff at long distances was intro-account, the picture of induced decay of the false vacuum
duced to make it possible to use an asymptotics of the typehanges essentially.
(2). The quantityX,., should be larger than one for imitating ~ The author expresses his deep gratitude to A.K. Mo-
the barrier of small transparency. Here we to$k;,=0.1, tovilov for the fruitful idea of realization of the numerical
Xmax=5. The quantityQ determines the energy height of the scheme and to Yu.M. Chuvil’skii for pointing the importance
barrier. In Fig. 2, we show the results of calculations@r of the study of the resonance transparency of Coulomb
=2, 4, 10 denoted by, B, andC, respectively. barriers.
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