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Metastable states of a coupled pair on a repulsive barrier

F. M. Pen’kov*
Joint Institute for Nuclear Research, 141980 Dubna, Russia

~Received 2 May 2000; published 5 September 2000!

Resonance penetration of two coupled particles through a repulsive barrier is considered. It is shown that a
local minimum of the total potential generates metastable bound states, and their spectrum determines the
position of resonances in the penetration probability. It is pointed out that the probabilities of tunneling of two
interacting particles from the false vacuum can be essentially higher than has been assumed earlier.

PACS number~s!: 03.65.Nk, 11.10.Jj, 21.45.1v
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In a paper by Saito and Kayanuma@1#, it was pointed out
that there exists a new quantum phenomenon—reson
transparency of a single repulsive barrier for a coupled p
of particles. To consider this effect, a one-dimensional re
angular repulsive barrier and an infinite one-dimensio
rectangular potential well coupling the pair were chos
Since the interactions were simple, it was possible to so
the initial two-dimensional Schro¨dinger equation by reduc
ing it to a system of one-dimensional equations by mean
projection onto seven eigenfunctions. However, there
remained the question of how this effect manifests itself
other systems.

This paper continues the study of the effect of resona
transparency of two type one-dimensional barriers for a p
of identical particles coupled by the oscillatory interactio
This pair interaction allows us to reduce the problem
three-dimensional scattering of a three-dimensional oscill
to the solution of a two-dimensional equation analogous
the equation derived in Ref.@1#. Besides, it is just this sort o
pair interaction that is used in literature@2# devoted to the
probability of induced decay of the false vacuum in co
sions of high-energy particles~see, for instance,@3,4#!. It was
pointed out there that it is possible to describe the proce
of transition from the false vacuum on the basis of quantu
mechanical tunneling of a pair of particles through the b
rier; but the study was performed for a system where o
one of the oscillator particles interacts with the barrier. He
we show that, when the two particles interact with the b
rier, there arises the same effect of resonance transparen
in Ref. @1#.

The first potential barrier we study is taken in the Gau
ian form from Ref.@2# in order to show that it is possible t
drastically increase the probability of induced decay of
false vacuum. The second potential barrier of the Coulo
form is investigated in order to draw attention to the fact t
the resonance tunneling of the barrier is feasible in the pr
lems of fusion of heavy nuclei. The method of investigati
is based on the numerical solution of the two-dimensio
Schrödinger equation without any further simplifications.

Consider the penetration of a pair of identical partic
with massesm15m25m, and coordinatesr1 andr2 coupled
by an oscillatory interaction through the potential barr
V0(x1)1V0(x2). The Hamiltonian of this system (\51)
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mv2

4
r 21V0~R2r /2!1V0~R1r /2!,

written in coordinates of the center of inertia of the pairR
5(r11r2)/2 and in an internal coordinate of the relativ
motion r5r12r2 describes the three-dimensional motion
a three-dimensional oscillator with the frequency of vibr
tionsv. Since the potential barrier depends only on one va
able, and the oscillatory interaction is additive inr projec-
tions, the wave function is factorized, and its nontrivial p
describing the process of scattering depends only on
variables. It is convenient to represent these variables in
dimensionless form

x5Amv

2
~x12x2!, y5Amv

2
~x11x2!.

The Schro¨dinger equation in these variables is of the form

@2]x
22]y

21x21V~x2y!1V~x1y!2E#C50, ~1!

where the energyE is written in unitsv/2, and the potential
barrier V(x6y)5(2/v)V0@(x6y)/A2mv# in what follows
will be written in a form convenient for us. Equation~1!
should be supplemented with boundary conditions. Let
process of scattering proceed from left to right, and the ini
state of the oscillator be the staten. Then the boundary con
ditions are written in the form

Cuy→2`5exp~ ikny!wn~x!2 (
j <N

Sn jexp~2 ik jy!w j~x!,

Cuy→1`5 (
j <N

Rn jexp~ ik jy!w j~x!,

~2!
Cux→6`50.

The wave functions of the oscillatorw j (x) obey the Schro¨-
dinger equation

~2]x
21x22« i !w i50 ~3!

with the energy« j52 j 11 ( j 50,1,2, . . . ), momenta kj

5AE2« j , and the numberN of the last open channel (E
2«N11,0). In what follows, we consider an oscillator com
©2000 The American Physical Society01-1
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posed of bosons, whose spectrum is convenient to num
from 1. So, hereafter,« j54 j 23 ( j 51,2, . . . ).

The probabilities of penetrationWi j and reflectionDi j are
defined as the ratio of the density of a penetrated or a
flected flux to the density of the flux of incident particles:

Wi j 5uRi j u2
kj

ki
, Di j 5uSi j u2

kj

ki
.

It is obvious that( j <N(Wi j 1Di j )51.
To determine the probabilities of penetration~reflection!

in the above way, it is necessary to solve the tw
dimensional differential equation~1!; its numerical solutions
will be given below. The numerical solution was based o
three-diagonal approximation of second derivatives w
constant steps inx and y: hx50.025, hy50.005, respec-
tively. Finite dimensionsuymaxu512 and uxmaxu57 of the
range of numerical calculations, at a given degree of discr
zation, provided accuracy to within the third decimal point
all the presented calculations.

As it was indicated above, in papers devoted to the
duced decay of false vacuum, use was made of the mod
quantum-mechanical tunneling of a pair coupled by the
cillatory interaction through a barrier@2#. The case when
only one particle interacts with the barrier was considered
the framework of the resonance tunneling, we can expect
the picture of tunneling would essentially change when
interaction of both the incident particles with the barrier
switched on. The barrier used in Ref.@2#, upon being made
dimensionless, is of the form

V~X!5
2

g2v
exp~2g2X2/v!, X5x6y, ~4!

wherev is the oscillator frequency, andg2!1 is the model
parameter of false vacuum. In Ref.@2#, the dependence of th
tunneling probability was calculated in the range ofg2 from
0.09 till 0.01 and at fixed frequencyv51/2. In the present
calculations, the same value ofv but greater values ofg2 are
accepted. The reason is that there arise extremely~in the
framework of numerical calculations! narrow resonances in
the energy dependence of the tunneling probability o
coupled pair through the barrier. Therefore, in Fig. 1,
present the results of numerical calculations of Eq.~1! with
barrier ~4! at g250.5, 0.3, 0.2 denoted by lettersA, B, C,
respectively.

In Fig. 1, we draw the probabilities of penetration of
coupled pair from the ground state into all the possible sta
i.e., W5( j <NW1 j at different values ofg2. A prominent
resonance dependence of the tunneling probability sh
that there do exist barrier resonances under discussion.
that the first resonance with decreasingg2 shifts toward
higher energies, but the quantityg2Er diminishes.

Wheng250.2, the probability of resonance penetration
many times (;108) as large as the probability of penetratio
in the nonresonance region~background!. Therefore, in Fig.
1, we present the results of calculations on the logarith
scale. They demonstrate not only the indicated exceeding
also the coincidence of the background part of the curve w
04470
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the probability of penetration of a structureless particle, i
with the solution of Eq.~1! for the barrier potential 2V(y).
To estimate the contribution of narrow resonances to
probability of penetration of the particle flux distributed ov
energy, in Fig. 1, we plot the penetrated flux

I ~E!5
1

E2E0
E

E0

E

W~E8!dE8,

in the case when the incident flux is distributed uniform
from E0 till E; the quantityE055. It is seen that the main
contribution to the probability of penetration comes fro
resonances. AtE523, the difference from the backgroun
penetration amounts to four orders.

Now, we describe a simple scheme of arising barr
metastable states that make the barrier transparent. It is
difficult to verify that the potential energyU(x,y)5V(x
1y)1V(x2y)1x2 possesses a local minimum aty50 ~the
center of mass in the middle of the barrier! and at some
values ofx56x0. A maximum is atx50.

Thus, there exist two potential ‘‘wells’’ separated by th
barrier. Bound states of that system split into even and
states. The magnitude of splitting is determined by the pr
ability of penetration through the internal barrier. Whe
2V(x50,y50)@1, this shift can be very small, and th
spectrum of even states is determined by the spectrum o
isolated ‘‘well.’’ In the first approximation, the position o
resonances can be described by the oscillator spectrum
bound states aty50 andx5x0:

Enxny
5E012vx~1/21nx!12vy~1/21ny!, ~5!

where nx and ny are oscillator quantum numbers;E0
52V(x0); and frequenciesvx andvy are determined by the

FIG. 1. Total probabilities of penetration through the barri
The solid curve is for potential~4!; the dotted one, for potentia
2V(y). The explanation is given in the text.
1-2
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BRIEF REPORTS PHYSICAL REVIEW A 62 044701
second derivatives at the point of local minimum:vx

5A]x
2U(x,y)/2, vy5A]y

2U(x,y)/2.
For potential~4!, it is not difficult to obtain the oscillator-

model parameters

E05v@112 ln~2/v!#/g2,

vx
254 ln~2/v!, ~6!

vy
25vx

221.

Let us compare the positions of resonances drawn in
1 at g250.2 with the results of calculation by formulas~5!
and ~6! from which it is clear that there exist small bu
clearly seen satellite resonances. The position of the
resonanceEr513.65 is well described by the oscillator e
ergy in the ground stateE00513.92. The second group o
resonances is generated by a single excitation of oscilla
either alongy or alongx: E01518.18,E10518.63. They are
associated with the resonances at energies 17.24 and 1
The third group of resonances is generated by a double
citation E02522.45, E11522.90, E20523.34, and respec
tively, resonance energies are 20.58, 20.88, 21.72. So
simple oscillator model of a metastable barrier state give
correct qualitative picture of the origin of resonances. Co
parison with Fig. 1 shows that the largest values of the t
neling probability correspond to metastable states with
minimal excitation along the coordinate of the center of
ertia.

Decomposition around the point of equilibrium does n
exhaust all possibilities of the oscillator model. Agreeme
between the resonance energy and the energy of a metas
state can be improved by a simple variational procedure
this end, we consider the position of a minimumx0 and
frequenciesvx and vy to be unknown quantities that ar
determined by the minimum of the average of the to
Hamiltonian

H̄5^fxfyu2]x
22]y

21x21V~x2y!1V~x1y!ufyfx&

over normalized eigenfunctions of the oscillator in t
ground state:

fx5S vx

2p D 1/4

expS 2
vx

4
~x2x0!2D ,

fy5S vy

2p D 1/4

expS 2
vy

4
y2D .

Varying H̄ overx0 , vx , andvy , we can derive a system o
three nonlinear equations, which will not be presented h
because they are too cumbersome. The two of the three e
tions are solved analytically:x05x0(vx ,vy), vy5Avx

221.

In this way, the function of one variableH̄5H̄(vy) is to be
estimated numerically; its minimum determines the var
tional estimateEvar for the first resonance. Note that th
variational connection ofvx and vy is the same as in the
case of decomposition~6!. In Table I, we present the com
parison ofEvar with positions of the first resonanceEr drawn
04470
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in Fig. 1. Agreement can be considered good in the fram
work of the above-indicated accuracy. Wheng2!1, the
variational expressions get simplified and allow the follo
ing decomposition:

Evar
as ;E001O~g2!.

It coincides, with an accuracy up toO(g2), with the energy
derived by a simple decomposition around the minimum
U(x,y). So, the estimate of the resonance spectrum mad
formulas ~5! and ~6! is asymptotic asg2→0. In particular,
wheng2→0, we can indicate the limiting position of the firs
resonance in units ofg2, i.e., the quantityg2Ev/2 used in
Ref. @2#:

g2Ev/2→v2@112 ln~2/v!#/2.

At v51/2, this energy tends to 0.472; this is shown in t
fourth column of Table I. In Ref.@2# where the study was
made of the penetration of a pair through the barrier
smooth curve was obtained for the probability of penetrat
in the energy interval from 1.2 to 2. From the presen
calculations it follows that, if the interaction of both particle
with the potential barrier is taken into account, this cur
becomes essentially nonmonotone.

FIG. 2. Probabilities of penetration through barriers of the Co
lomb type. Explanations are given in the text.

TABLE I. Comparison of positions of the first resonance wi
the variational estimate

g2 Evar Er g2Erv/2

0.5 7.649 7.62 1.30
0.3 10.416 10.38 0.779
0.2 13.680 13.65 0.683
1-3
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BRIEF REPORTS PHYSICAL REVIEW A 62 044701
The barriers considered above are of the form of
Gaussian function. For completeness, below we presen
calculations for a barrier of the Coulomb shape cutoff both
short and long distances:

V~X!5H Q/Xmin :uXu,Xmin

Q/uXu :Xmin<uXu<Xmax

Q/Xmax :uXu.Xmax.

; X5x6y. ~7!

The cutoff at short distances was introduced for modeling
nuclear Coulomb barrier in the framework of constraints i
posed by the one-dimensional scattering. With this cut
the notion of ‘‘barrier height’’ is meaningful for the one
dimensional model of scattering. For a greater analogy,
barrier width atuXu5Xmin should be small in spatial units o
the problem, i.e., as compared with the mean-square dim
sion of the oscillator. The cutoff at long distances was int
duced to make it possible to use an asymptotics of the t
~2!. The quantityXmax should be larger than one for imitatin
the barrier of small transparency. Here we tookXmin50.1,
Xmax55. The quantityQ determines the energy height of th
barrier. In Fig. 2, we show the results of calculations forQ
52, 4, 10 denoted byA, B, andC, respectively.
ys
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In this case, a clear picture of the resonance tunneling
a coupled pair is also observed. We do not present the an
sis of the oscillator model for the position of resonanc
because the chosen potential is essentially of the model c
acter. We only mention that satellite resonances mani
themselves clearly, and energies of principal resonances
equidistant.

The considered mechanism of the transparency of barr
for a coupled pair manifests itself for all the potential barrie
chosen for the investigation. As the resonance transpare
was first observed@1# for barriers of the rectangular shap
and the coupling in a pair was of the nonoscillator type
could be assumed that the resonance transparency of ba
for composite particles could be observed for a wide clas
interactions. Therefore, the effects of quantum transpare
could occur in various fields of physics. In particular, wh
the interaction of two particles with a barrier is taken in
account, the picture of induced decay of the false vacu
changes essentially.

The author expresses his deep gratitude to A.K. M
tovilov for the fruitful idea of realization of the numerica
scheme and to Yu.M. Chuvil’skii for pointing the importanc
of the study of the resonance transparency of Coulo
barriers.
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