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Allowed and forbidden transitions in an atom placed near an ideally conducting cylinder
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The properties of dipole-allowed and -forbidden~quadrupole! transitions in an atom placed near an ideally
conducting cylinder are considered. Explicit analytical expressions for transition rates for different orientations
of dipole and quadrupole are found. It is shown that the decay rates of dipole and quadrupole transitions with
radially oriented moments tend to infinity when the cylinder radius tends to zero. On the other hand, for
tangential orientation~w orientation!, the dipole transition rate decreases while the quadrupole transition rate
increases substantially. As a result, the quadrupole decay rates may approach the dipole decay rates. Such
behavior has analogy in neither spherical nor plane geometry of the metal interface.

PACS number~s!: 42.50.Ct, 32.70.Jz, 12.20.Ds
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I. INTRODUCTION

It is well known that the rates of quadrupole transitions
the optical region are lower by a factor of (a0 /l)2

}1026– 1028 ~wherea0 is the Bohr radius andl is the ra-
diation wavelength! than those of their dipole counterpar
@1# and that the dipole transition probability is strongly i
fluenced by the presence of macroscopic bodies near th
diating atom~see, for example,@2,3#. The question arises in
this connection: How do material bodies affect quadrupole
multipole transitions?

To explain this problem let us consider the amplitude
the decay of an excited atomic state to a lower-energy s
accompanied by the emission of a photon. In that case,
transition matrix element has the form

V}E cout* ~r !“•@c in~r !A~r !#dr ,

where A is the wave function of the photon emitted, wi
allowance made for the presence of material bodies,
c in (cout) is the wave function of the excited~unexcited!
state. As in the case of free space, the wave functions of
atomc(r ) vary faster than the wave function of the photo
and this allows one to expand the wave function of the p
ton into a series in powers of coordinates in the vicinity
the atom. Where dipole radiation is forbidden, the first te
in this series goes to zero, and the value of the matrix
ment is governed by that of the gradient of the photon w
function in the neighborhood of the atom, which is suppos
to be atr0 :

V}
]

]r 0,j
Ai~r0!E cout* ~r !

]

]r i
c in~r !r jdr .

*Email address: klimov@rim.phys.msu.su
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A principal difference between the case in hand and t
of free space is that the scale of the gradient of the pho
wave function depends, generally speaking, not only on
radiation wavelength, but also on the characteristic size
the problem. Moreover, in the case of an atom located cl
to a material body with a small radius of curvaturea, the
wave-function gradient is determined mainly by the surfa
curvature of the body and not by the radiation wavelength
free space. As a result, the quadrupole radiation probab
increases faster as compared with that in the case of
space. Note the fact that, when the characteristic geomet
size of the problem is close to the size of the atomic or
the radiation intensity may approach the intensity of dip
transitions. Specifically, for Rydberg and closely similar
oms, the orbit size may be as great as 1025 cm, and so one
can create appropriate geometrical conditions for observa
of the enhancement of quadrupole transitions.

The increasing of quadrupole transition rates near the
face of a dielectric microsphere was demonstrated in@4,5#.
However, geometries different from the dielectric micr
sphere are being investigated actively now. Recently,
cavity QED effects near a solid dielectric cylinder have a
become interesting and attractive, in particular, in the fie
of atom optics and atomic spectroscopy in a microcavity. F
instance, it has been suggested that stable helical motio
an atom around a solid optical fiber may be possible by us
evanescent waves developed near the cylindrical surface@6#.
Moreover, a quantum nondemolition measurement of
photon number inside an optical fiber has been perform
using Compton scattering of the electrons due to evanes
waves produced near the fiber@7#. The falling of atoms on
the singular potential of a charged metal wire was dem
strated in an experiment@8#. In @9#, use of dielectric fiber was
suggested to detect nondiagonal terms in the van der W
force.

In this paper, we investigate the influence of ideally co
ducting cylindrical surface on rates of allowed~dipole! and
forbidden ~quadrupole! transitions. The geometry of th
problem under investigation is shown in Fig. 1. According
©2000 The American Physical Society18-1
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V. V. KLIMOV AND M. DUCLOY PHYSICAL REVIEW A 62 043818
@2,3#, classical and quantum-electrodynamical calculatio
give the same result for the dipole transition rate normali
to its vacuum value. In@4# for the example of a dielectric
microsphere the same connection between classical and
culations of quadrupole rates was shown. In the present
per we shall investigate the influence of an ideally condu
ing cylinder on transition rates within the classical as well
the QED approach and show their equivalence.

In general, the problem of radiation from a point sour
near an ideally conducting cylindrical surface is classical a
well investigated@10–12#. The transition rates of a dipol
inside an ideally conducting cylinder were found in@13#. In
@14# some plots of dipole rates in an atom near a cylin
were presented. Nevertheless, a detailed analysis of allo
and forbidden transitions near a cylinder has not been car
out as far as we know. The results obtained reveal a subs
tial increase of dipole and quadrupole rates in compari
with the case of spherical or plane geometry.

The plan for the rest of the work is as follows. In Sec.
the influence of a cylinder on dipole transition rates is inv
tigated and explicit analytical expressions are obtained
any dipole orientation. In Sec. III the influence of a cylind
on quadrupole transition rates is investigated and exp
analytical expressions are obtained for any quadrupole or
tation. Section IV is devoted to analysis of the expressi
for rates obtained in Secs. II and III. In this section also
results obtained are compared with those for spherical
plane geometries. In the Conclusion we sum up and out
the directions of further investigation. In the Appendix w
present the QED derivation of decay rates for any dipole
quadrupole transition in an atom placed near an ideally c
ducting cylinder.

II. DIPOLE „ALLOWED … TRANSITIONS NEAR AN
IDEALLY CONDUCTING CYLINDER

Let us consider a classical oscillator located at the po
r 8 near an ideally conducting cylinder as a model of an ato
We suppose that the oscillator and cylinder are in vacu
The geometry of the problem is presented in Fig. 1. In
classical approach, the change in the radiation linewidth
associated with the radiation backreaction. If the atom
treated as a nonrelativistic oscillator consisting of a stati

FIG. 1. Geometry of the problem.
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ary charge2e and a chargee oscillating about it, the equa
tion of motion of the latter in vacuum has the form

md r̈5
2e2

3c3 d r&2mv0
2dr , ~1!

or, in the case of weak radiation reaction,

md r̈1mgdip,0d ṙ1mv0
2dr50,

gdip,05
2e2

3c3

v0
2

m
. ~2!

Here g0,dip. is the spontaneous linewidth in vacuum,dr is
the displacement of the moving charge from the balan
state, andv0 is the frequency of oscillations in vacuum.
the oscillator is located at the pointr 8 near a cylinder, it is
acted upon by an additional~compared to the case of fre
space! field E(1)(r 8), so that its equation of motion assum
the form

md r̈1mgdip,0d ṙ1mv0
2dr5eE~1!~r 81dr ,t !'eE~1!~r 8,t !,

md̈1mgdip,0ḋ1mv0
2d5e2E~1!~r 8,t !, ~3!

whered5edr is the electric dipole moment of the atom
transition. To find the reflected field it is necessary to so
the full system of Maxwell’s equations in which the source
the dipole oscillator moment.

Projecting Eq.~3! onto the oscillation direction, we get

md̈1mgdip,0ḋ1mv0
2d5e2

d0•E~1!~r 8,t !

d0
, ~4!

whered0 is the dipole oscillation amplitude. Assuming th
all the quantities involved are proportional to exp(2ivt)
from Eq. ~4!, we obtain the following dispersion equation
define the line characteristics in the presence of any bod

v21 ivgdip,02v0
21

e2

md0
2 d0•E~1!~r 8,v!50. ~5!

In the following we will assume that a perturbation a
proach can be applied. Then the solution of Eq.~5! may be
written in the form

v5v02
i

2
gdip,02

e2

2mv0

d0•E~1!~r 8,v0!

d0
2 . ~6!

Separating real and imaginary parts of this expression
using expression~2! for the linewidth in vacuum, we obtain
in this approximation the formula for the linewidth chang
~see, for example,@2#!,

gdip

gdip,0
511

3

2
Im

d0•E~1!~r 8,v0!

d0
2k3 . ~7!

Hereafter,k5v/c'v0 /c stands for the wave vector in fre
space.
8-2
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ALLOWED AND FORBIDDEN TRANSITIONS IN AN . . . PHYSICAL REVIEW A62 043818
Thus the reflected field must be found to determine
radiative linewidth~transition rate, decay rate!. To find the
reflected field, it is necessary to solve the full system
Maxwell’s equations where the dipole moment of the os
lator is the source. This solution is well known in the case
an ideally conducting cylinder@10–12#.

For our purpose the approach of Ref.@10# is most conve-
nient. According to this approach, the longitudinal comp
nents of the electric and magnetic fields are expres
through the densities of external charges and currents,

Ez~r !5E dr 8S ik
j z~r 8!

c
1r~r 8!

]

]z8DG1~r ,r 8!, ~8!

Hz~r !5
1

c E dr 8@ j ~r 8!3“8#zG2~r ,r 8!. ~9!

In Eqs. ~8! and ~9! G1 and G2 stand for Green’s functions
satisfying boundary conditions of the first and second ty
on the cylinder surface:

G1~r ,r 8!5
i

2 (
n52`

n5` E dh eih~z2z8!1 in~w2w8!Hn
~1!~nr!

3S Jn~nr8!2Hn
~1!~nr8!

Jn~na!

Hn
~1!~na! D , ~10!

G2~r ,r 8!5
i

2 (
n52`

n5` E dh eih~z2z8!1 in~w2w8!Hn
~1!~nr!

3S Jn~nr8!2Hn
~1!~nr8!

3
~d/dz!@Jn~z!#

~d/dz!@Hn
~1!~z!#

U
Z5na

D . ~11!

Here we use the cylindrical frame of referencer5(r,w,z)
and put the observation pointr at r.r8, wherer8 is the
radial coordinate of the oscillator. In Eqs.~10! and~11! h is
the wave number along thez axis andn5Ak22h2 is the
radial wave number. The integration contour overh in Eqs.
~10! and ~11! lies on the real axis if the wave vectork has
infinitely small imaginary part (k→k1 i«). Note that in Eqs.
~10! and ~11! the first terms@containing the factorJn(nr8)#
are related to the free-space Green’s function while the
ond terms@containing the factorHn

(1)(nr8)# are related to
reflected fields.

The remaining field components can be expressed thro
the z component of either the electric~TM modes! or the
magnetic field~TE modes!:

Er,h
TM5

ih

n2

]Ez,h

]r
, Ew,h

TM5
ih

n2

]Ez,h

r]w
, ~12!

Er,h
TE 5

ik

n2

]Hz,h

r]w
, Ew,h

TE 52
ik

n2

]Hz,h

]r
. ~13!
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In Eqs.~12! and~13! the subscripth denotes the appropriat
Fourier transformation overz. The full field is defined by the
sum of the TM and TE components.

Expressions for the charge density and the current o
dipole oscillator placed atr 8 can be produced in the regula
form

r52~d0•“ !d~r2r 8!e2 ivt,
~14!

j52 ivd0d~r2r 8!e2 ivt,

complying with the law of charge conservation. Hered is
Dirac’s delta function. Substituting these expressions i
Eqs. ~8! and ~9! and integrating by parts one can find th
components of the electric field that we need. As a resul
using Eq. ~7!, the final expression for the relative rate
dipole transitions of an atom placed atr 85(r85b,w8
50,z850) near a metal cylinder takes the following form

gdip

gdip,0
512 3

2 Re~W!. ~15!

In the case ofr and w orientations of the dipole, both TM
and TE modes give contributions to the decay rate:

Wr5 (
n52`

` E
0

k

dh
h2

k3 S d

dz
@Hn

~1!~z!#U
z5nb

D 2 Jn~na!

Hn
~1!~na!

1 (
n52`

` E
0

k

dh
n2

k S Hn
~1!~nb!

nb D 2
~d/dz!@Jn~z!#uz5na

~d/dz!@Hn
~1!~z!#uz5na

,

~16!

Ww5 (
n52`

` E
0

k

dh
h2n2

k3~nb!2

@Hn
~1!~nb!#2Jn~na!

Hn
~1!~na!

1 (
n52`

` E
0

k dh

k

3
$~d/dz!@Hn

~1!~z!#uz5nb%
2~d/dz!@Jn~z!#uz5na

~d/dz!@Hn
~1!~z!#uz5na

.

~17!

In the case ofz orientation of the dipole only TM modes giv
contributions to the decay rate:

Wz5 (
n52`

` E
0

k

dh
n2

k3

@Hn
~1!~nb!#2Jn~na!

Hn
~1!~na!

. ~18!

In all of these casesn5Ak22h2 is the radial wave number
It is interesting that in Eqs.~16!–~18! integration over the

wave numberh is restricted byk. This is due to the fact tha
at h.k there are no propagating waves that can carry
energy to infinity.

The expressions~15!–~18! have a form that is useful fo
some analytical investigations. However, it is difficult to re
ognize from Eqs.~15!–~18! that decay rates are positiv
quantities. If one calculates decay rates within the quan
8-3
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approach through Fermi’s golden rule, it is possible to obt
instead of Eqs.~15!–~18! the explicitly positive expression
~for details see the Appendix!

gdip,r

gdip,0
5

3

2 (
n52`

` E
0

k

dh
h2

k3 F d

dz
@Jn~z!#U

z5nb

2
Jn~na!

Hn
~1!~na!

d

dz
@Hn

~1!~z!#U
z5nb

G2

1
3

2 (
n52`

` E
0

k

dh
n2

k~nb!2 FJn~nb!

2
~d/dz!@Jn~z!#uz5na

~d/dz!@Hn
~1!~z!#uz5na

Hn
~1!~nb!G2

, ~19!

gdip,w

gdip,0
5

3

2 (
n52`

` E
0

k

dh
h2n2

k~kb!2n2 FJn~nb!2
Jn~na!

Hn
~1!~na!

3Hn
~1!~nb!G2

1
3

2 (
n52`

` E
0

k dh

k F d

dz
@Jn~z!#U

z-nb

2
~d/dz@Jn~z!#uz5na

~d/dz!@Hn
~1!~z!#uz5na

d

dz
@Hn

~1!~z!#U
z5nb

G2

,

~20!

gdip,z

gdip,0
5

3

2 (
n52`

` E
0

k

dh
n2

k3 FJn~nb!2
Jn~na!

Hn
~1!~na!

Hn
~1!~nb!G2

.

~21!

Using the identities
de
ge

sy

04381
n
(

n52`

n5`

Jn
2~z!51, (

n52`

n5`

n2Jn
2~z!5

z2

2
,

(
n52`

n5` S dJn~z!

dz D 2

5
1

2
,

one can show the equivalence of Eqs.~15!–~18! and ~19!–
~21!, i.e., the equivalence of the classical and quantum
proaches.

From Eqs.~15!–~18! it is easy to see that when an ato
has moved to infinity (b→`) the reflected field tends to zer
and the radiative linewidth tends to unity. The behavior
these rates becomes more interesting as an atom appro
the cylinder surface (b→a). In this case one can see from
Eqs.~20! and~21! that the transition rates for tangential or
entations (w,z) of the dipole vanish independently of th
radius of cylinder. On the other hand, the decay rate o
radially oriented dipole located on the surface (a5b) does
not vanish:

S g

g0
D

dip,r

5
6

p2 (
n52`

` E
0

k

dh
h2

k3~na!2

1

uHn
~1!~na!u2

1
6

p2 (
n52`

` E
0

k

dh
n2

k~na!4

1

z~d/dz!@Hn
~1!~z!#uz5naz2

~22!

Moreover, when the cylinder radius tends to zero, the de
rate of a radially oriented dipole tends to infinity. In the lim
ka5kb→0, the main contribution to Eq.~22! is due to the
TM mode withn50:
S g

g0
D

dip,r

;
kb5ka→0

3

2~ka!2 F11
2

p
arctan~L* !1

4~ ln 221!

p2~11L* 2!
1¯G 141¯ ,

L* 5
2

p F lnS ka

2 D1gG . ~23!
ve

bu-
po-

of
em
In Eq. ~23! g50.5772 is the Euler constant.

III. QUADRUPOLE „FORBIDDEN … TRANSITIONS NEAR
AN IDEALLY CONDUCTING CYLINDER

To investigate the quadrupole transitions near a cylin
one should first set an appropriate distribution of the char
and currents. It is well known@15# that generally the electric
quadrupole momentum can be described as a traceless
metric tensorDi j . The definition of this tensor is

Di j 5E drr~r !~3r i r j2d i j r
2! ~24a!
r
s

m-

within the classical approach and

Di j 5^coutu~3r̂ i r̂ j2d i j r̂
2!ucm& ~24b!

within the quantum picture.
In any case, this tensor can be fixed by setting its fi

independent components. It is known@16# that, when consid-
ering quadrupole radiation, any charge and current distri
tion can be represented by a system of two dipoles of op
site orientations with the momentsed1 and 2ed1 , one of
which is stationary and the other, displaced for a distance
dr (t), oscillating about the first. We consider such a syst
8-4
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ALLOWED AND FORBIDDEN TRANSITIONS IN AN . . . PHYSICAL REVIEW A62 043818
placed close to an ideally conducting cylinder of radiusa in
vacuum. The geometry of the classical problem is shown
Figs. 1 and 2.

The equation of motion of the movable dipole portion
the quadrupole in the case of a weak radiation reaction
the form

md r̈1mgQ,0d ṙ1mv0
2dr50. ~25!

Here

gQ,05
2e2d1

2

15c

k4

m
~26!

is the total quadrupole transition linewidth in vacuum.
An oscillating dipole located near a cylinder is acted up

additionally ~compared to the case of free space! by the re-
flected fieldE(1)(r 8), so that the equation of motion assum
the form

md r̈1mgQ,0d ṙ1mv0
2dr52e~d1•“ !E~1!~r 8!. ~27!

By solving in accordance with perturbation theory the d
persion equation following from Eq.~27!, one can easily find
the formulas for the linewidth variation@4#,

gQ5gQ,02
e

v0mdr 0
2 Im$dr0•@~d1•“8!E~1!~r 8!#%,

~28!

wheredr 0 is the oscillation amplitude of the moving dipole
Using Eq.~26!, one can write the following expressions fo
the relative quantities:

gQ

gQ,0
512

15

2edr0
2d1

2k5 Im$dr0•@~d1•“ !E~1!~r 8!#%.

~29!

Thus, to get concrete results, one should calcu
dr0•@(d1•“8)E(1)(r 8)# at the location of the oscillating di
pole. To do this one should solve the Maxwell’s equatio
for the system of charges under analysis.

The charge density of the stationary dipole may be
fined by the expression

r152e~d1•“ !d~r2r 8! ~30!

and that of the oscillating dipole by the expression

r25e~d1•“ !d„r2r 82dr ~ t !…. ~31!

FIG. 2. Structure of quadrupole.
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Accordingly, the total charge and current densities may
defined by the expressions

r tot52e~dr•“ !~d1•“ !d~r2r 8!, ~32!

j5ev~ t !~d1•“ !d~r2r 8!, v~ t !5d ṙ ~ t !. ~33!

The solution of Maxwell’s equations with a quadrupo
source of the general kind~32! and~33! can be found by the
substitution of Eqs.~32! and~33! into Eqs.~8! and~9!. In the
present paper, for simplicity, we will assume thatd1 is par-
allel to dr (t), i.e., d1idr (t). In this case the quadrupol
momentum tensor will be described by four rather than fi
independent components. Three of these components
scribe the orientation of tensor eigenaxes, while the fou
component is the magnitude of the quadrupole momen
D0 @17#. Let us to recall that in the frame of eigenaxes t
tensor of the quadrupole momentum has the following for

F 2D0/2 0 0

0 2D0/2 0

0 0 D0

G . ~34!

In our case, whend1idr (t), D0524edr 0d1 , and the spon-
taneous linewidth of the quadrupole takes the form

gQ,05
cD0

2k6

240E0
, ~35!

where E05mv0
2dr 0

2/25\v0 is the total initial oscillation
energy of the quadrupole.

Substituting Eqs.~32! and ~33! with d1idr (t) into Eqs.
~8! and~9! and integrating by parts, one can find the comp
nents of the electric field that we need. To calculate the li
width for aw-oriented axis of the quadrupole one should u
the covariant derivative overw @18# in Eq. ~29!:

“wEw5
1

r

]Ew

]w
1

Er

r
. ~36!

As a result of using Eq.~29!, the final expression for the
relative rate of quadrupole transitions of an atom placed
r 85(r85b,w850,z850) near an ideally conducting cylin
der takes the following form:

gQ

gQ,0
512 15

2 Re~W!. ~37!

In the case ofr and w orientations of the quadrupole, bot
TM and TE modes give contributions to the decay rate:

Wr5 (
n52`

` E
0

k

dh
h2n2

k5 S d2

dz2 @Hn
~1!~z!#U

z5nb
D 2 Jn~na!

Hn
~1!~na!

1 (
n52`

` E
0

k

dh
n2n2

k3 F d

dz S Hn
~1!~z!

z D U
z5nb

G2

3
~d/dz!@Jn~z!#uz5na

~d/dz!@Hn
~1!~z!#uz5na

, ~38!
8-5
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Ww5 (
n52`

` E
0

k

dh
h2

k~kb!4n2

Jn~na!

Hn
~1!~na! S nb

3
d

dz
@Hn

~1!~z!#U
z5nb

2n2Hn
~1!~nb! D 2

1 (
n52`

` E
0

k

dh
n2n2

k3

~d/dz!@Jn~z!#uz5na

~d/dz!@Hn
~1!~z!#uz5na

3F d

dz S Hn
~1!~z!

z D U
z5nb

G2

. ~39!

In the case ofz orientation only the TM modes give contr
butions to the decay rate:

Wz5 (
n52`

` E
0

k

dh
n2h2

k5

@Hn
~1!~nb!#2Jn~na!

Hn
~1!~na!

. ~40!

In all these casesn5Ak22h2 is the radial wave number.
The expressions~37!–~40! have a form that is useful fo

some analytical investigations. However, it is difficult to re
ognize from Eqs.~37!–~40! that decay rates are positiv
quantities. If one calculates decay rates within the quan
approach through Fermi’s golden rule, it is possible to obt
instead of Eqs.~37!–~40! the explicitly positive expression
~for details see the Appendix!

gQ,r

gQ,0
5

15

2 (
n52`

` E
0

k

dh
h2n2

k5 F d2

dz2 @Jn~z!#U
z5nb

2
Jn~na!

Hn
~1!~na!

d2

dz2 @Hn
~1!~z!#U

z5nb
G2

1
15

2 (
n52`

` E
0

k

dh
n2n2

k3 F d

dz S Jn~z!

z D U
z5nb

2
~d/dz!@Jn~z!#uz5na

~d/dz!@Hn
~1!~z!#uz5na

d

dz S Hn
~1!~z!

z D U
z5nb

G2

,

~41!

gQ,w

gQ,0
5

15

2 (
n52`

` E
0

k

dh
h2

k~kb!4n2F S z
d

dz
Jn~z!2n2Jn~z! D U

z5nb

2
Jn~na!

Hn
~1!~na!

S z
d

dz
Hn

~1!~z!2n2Hn
~1!~z! D U

z5nb
G2

1
15

2 (
n52`

` E
0

k

dh
n2n2

k3 F d

dz S Jn~z!

z D U
z5nb

2F ~d/dz!@Jn~z!#uz5na

~d/dz!@Hn
~1!~z!#uz5na

d

dz S Hn
~1!~z!

z D U
z5nb

G G2

,

~42!
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gQ,z

gQ,0
5

15

2 (
n52`

` E
0

k

dh
n2h2

k5

3UJn~nb!2
Jn~na!

Hn
~1!~na!

Hn
~1!~nb!U2

. ~43!

Using the identities

(
n52`

n5` S z
d

dz
Jn~z!2n2Jn~z! D 2

5
3z4

8
,

(
n52`

n5`

n2F d

dz S Jn~z!

z D G2

5
1

8
,

(
n52`

n5` S d2Jn~z!

dz2 D 2

5
3

8
,

one can show the equivalence of Eqs.~37!–~40! and Eqs.
~41!–~43!, i.e., the equivalence of the classical and quant
approaches.

From Eqs.~37!–~40! it is easy to see that when an ato
has moved to infinity (b→`) the reflected field tends to zer
and the radiative linewidth tends to the free-space value.
behavior of these rates becomes more interesting as the
approaches the cylinder surface (b→a). In this case it is
possible to show from Eq.~43! that the transition rate forz
orientation of the quadrupole tends to zero for any radius
cylinder. On the other hand, the decay rates for quadrup
with r and w orientations do not vanish when the atom
placed on the cylinder surface (b5a):

gQ,r

gQ,0
5

gQ,w

gQ,0
5

30

p2~ka!2 (
n52`

` E
0

k

dh
h2

k3~na!2

1

uHn
~1!~na!u2

1
30

p2~ka!2 (
n52`

` E
0

k

3dh
n2

k~na!4

1

z~d/dz!@Hn
~1!~z!#uz5naz2

. ~44!

It is interesting to note that the decay rates forr and w
orientations become equal. Moreover, these quadrupole
cay rates have a simple relation to the dipole decay rateb
5a):

gQ,r

gQ,0
5

gQ,w

gQ,0
5

5

~ka!2

gdip,r

gdip,0
. ~45!

When the cylinder radius tends to zero, the decay rate
quadrupole with these orientations tend to infinity. In t
limit ka5kb→0 the main contributions to Eqs.~44! and
~45! are due to the TM mode withn50:
8-6
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S g

g0
D

Q,r

5S g

g0
D

Q,w

;
kb5ka→0

15

2~ka!4

3S 11
2

p
arctan~L* !1

4~ ln221!

p2~11L* 2!
1¯ D

1
20

~ka!2 1¯ , ~46!

L* 5
2

p F lnS ka

2 D1gG .
In Eq. ~44! g50.5772 is the Euler constant.

IV. ANALYSIS OF RESULTS AND ILLUSTRATIONS

The expressions~15!–~23! and ~37!–~46! are the main
results of the present paper. In general, to calculate l
widths for specific parameters one should sum up an infi
series and perform integration of nontrivial Bessel functio
~see Ref.@18#, p. 5!. When an atom is moved off to infinity
(b→`), these series are poorly convergent and it is nec
sary to make the Watson transformation@19,20# to treat the
problem. However, this domain (b→`) is not the most in-
teresting, because the behavior of the linewidth is trivial.

One can expect the maximum influence of a cylinder
the linewidth when the atom is placed near its surface. Mo
over, specific features can be observed when the cylin
radius is small (ka<10).

The results of our calculations for dipole~allowed! tran-
sitions with different orientations of momentum are shown
Fig. 3. From this figure one can observe the qualitative
ference between radial~r! and tangential (w,z) orientations
of the dipole. The behavior of the linewidth for tangent
orientations is simple: atb5a ~atom located on the cylinde
surface! there is no radiation at all and the linewidth is zer

FIG. 3. Relative linewidth of dipole transitions for various or
entations as a function of the distanceb/a to the surface of a meta
cylinder (ka51).
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With further increase ofb, the relative linewidths tend to
unity with small oscillations.

The behavior of the linewidth for radial orientations
more interesting. Atb5a→0, the increase of decay rate
diverges like

gdip,r

gdip,0
}

1

~ka!2 . ~47!

The behavior of decay rates for forbidden~quadrupole!
transitions is shown in Fig. 4, for different orientations of t
quadrupole axis. Forz orientations the decay rate of an ato
placed on the cylinder surfaceb5a is equal to zero for any
radius of cylinder. When a quadrupole moves off the surfa
to infinity, the quadrupole decay rate approaches the fr
space value with small oscillations. This case is analogou
that of az-oriented dipole. The behavior of the quadrupo
decay rate forr andw orientations is more interesting. Whe
an atom is placed near the surface of the cylinder (b→a) the
quadrupole decay rates do not vanish. Moreover, the de
rates associated with such transitions tend to infinity wh
the cylinder radius tends to zero,a→0. According to Eq.
~46! these rates increase like

gQ,r

gQ,0
}

1

~ka!4 ~48!

which is more singular than in the dipole case@Eq. ~45!#.
In Fig. 5 the behavior of transition rates and their asym

totes atb5a→0 is shown. In this figure one can see th
unbounded increase of rates. One can also observe her
good agreement between the exact expressions~16! and~38!
and their asymptotes~23! and ~46!. Note, that according to
Eqs.~44! and ~45! the quadrupole decay rates withw orien-
tation are no different from those forr orientation.

According to Eq.~46! and Fig. 5, the relative decay rate
of quadrupoles increase much faster than those of dipole

FIG. 4. Relative linewidth of quadrupole transitions for vario
orientations as a function of the distanceb/a to the surface of a
metal cylinder (ka51).
8-7
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ka5kb→0. So it is of interest to find the ratio of the abs
lute values of the rates. From Eq.~45! it is easy to find that

gQ,r

gdip,r
5

5

~ka!2

gQ,0

gdip,0
. ~49!

It is well known @1# that the quadrupole decay rate is su
presed by the factor (ka0)2 in comparison with the dipole
decay rate~wherea0 is the Bohr radius!. As a result we get
instead of Eq.~49! the estimation

gQ,r

gdip,r
}5S a0

a D 2

. ~50!

For example, in the case of an atom located near a cond
ing carbon nanotube@21,22# with a'5 Å we have a signifi-
cant enhancement of the quadrupole transition rates:

gQ,r

gdip,r
}1022. ~51!

The singular behavior of dipole rates withr orientation
and quadrupole rates withr, w orientations differs substan
tially from the behavior of rates near an ideally conducti
sphere or plane. In the case of an ideally conducting pla
the expressions for dipole decay rates have the follow
form @2#:

gdip,'

gdip,0
5123

cos 2x

~2x!2 13
sin 2x

~2x!3 , ~52!

gdip,i

gdip,0
512

3

2 S sin 2x

2x
1

cos 2x

~2x!2 2
sin 2x

~2x!3 D . ~53!

FIG. 5. Relative linewidth for quadrupole and dipole transitio
in atoms located in close proximity to the surface of a metal cy
der (b5a) in the case of radial orientation as a function of t
cylinder radiuska. The crosses indicate asymptotic relations~23!
and ~46!.
04381
-

ct-

e,
g

Here x5k(b2a) is the dimensionless distance betwe
atom and surface. Here and elsewhere we use the symbo'
and i for orientations that are normal and tangential to t
surface.

In the case of quadrupole transitions withd1idr (t) one
can show that the expressions for the decay rate have a s
lar form although the singularity of different terms is highe

gQ,'

gQ,0
511

15

8
sin 2xS 3

x52
5

x3D1
15

4
cos 2xS 1

x22
3

x4D ,

~54!

gQ,i

gQ,0
511

15

64
sin 2xS 9

x52
16

x3D1
15

32
cos 2xS 4

x22
9

x4D .

~55!

In the domain of smallx→0 we obtain for the dipole

gdip,'

gdip,0
52,

gdip,i

gdip,0
50, ~56!

and for the quadrupole

gQ,'

gQ,0
5

gQ,i

gQ,0
50. ~57!

From these expressions one can see that in the case
plane interface only the dipole with radial orientation has
nonzero decay rate when placed on a surface. Moreo
there are no conditions when the decay rate tends to infin
The decay rates for a cylinder of infinite radius (ka→`)
agree, of course, with the rates~56! and ~57!.

The spherical geometry case has an intermediate pos
between cylindrical and plane interfaces, if one makes a c
sification by degree of singularity of decay rates. In the c
of spherical geometry, for a dipole placed atr 5b near an
ideally conducting sphere of radiusa, we have@23#

gdip,'

gdip,0
512

3

2
ReF (

n51

`

n~n11!~2n11!qnS hn
~1!~z!

z D 2G
z5kb

,

~58!

gdip,i

gdip,0
512

3

2
ReF (

n51

`

~n1 1
2 !H pn@hn

~1!~z!#2

1qnS d@zhn
~1!~z!#

z dz D 2J G
z5kb

~59!

wherepn andqn are Mie coefficients for an ideally conduc
ing sphere:

qn5
~d/dz2!@z2 j n~z2!#

~d/dz2!@z2hn
~1!~z2!#

U
z25ka

, ~60!

pn5
j n~z2!

hn
~1!~z2!

U
z25ka

. ~61!

-
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In the case of a quadrupole withd1idr (t) the decay rates
take the form@4,5#

gQ,'

gQ,0
512

15

2 (
n51

`

n~n11!~2n11!

3ReH qnF d

dz S hn
~1!~z!

z D G
z5kb

2 J , ~62!

gQ,i

gQ,0
512

15

8 (
n51

`

n~n11!~2n11!

3ReH qnF d

dz S hn
~1!~z!

z D G
z5kb

2 J 2
15

16 (
n51

`

~n21!

3~n12!~2n11!ReH qnF 1

z2

d

dz
@zhn

~1!~z!#G
z5kb

2 J
2

15

16 (
n51

`

~n21!~n12!~2n11!

3ReS pnF1

z
@hn

~1!~z!#G
z5kb

2 D . ~63!

In the case of an atom placed on the surface of an ide
conducting metal sphere whose radius tends to zero, one
obtain for dipole transitions

gdip,'

gdip,0
59,

gdip,i

gdip,0
50. ~64!

In the case of quadrupole transitions, the decay rates ten
infinity in all cases:

gQ,'

gQ,0
5

180

~ka!2 1¯ ,
gQ,i

gQ,0
5

45

~ka!2 1¯ . ~65!

From Eqs.~64! and ~65! one can see that dipole transitio
rates are limited~as in the case of plane geometry! while
both radial and tangential rates of quadrupole transiti
have the singularities 1/(ka)2 at kb5ka→0.

To summarize the situation, we put together asympto
expressions and limits for the dipole transitions in Tabl
and for the quadrupole transitions in Table II. From the
tables it is easy to see that in general a transition nea
cylinder of small enough radius (ka→0) has a higher deca

TABLE I. Dipole decay rates for different geometries and o
entations. Atom is on the surface (a5b, ka→0).

Orientation

Geometry

Plane Sphere Cylinder

Perpendicular to surface 2 9 3

2~ka!2

Parallel to surface~w! 0 0 0
Parallel to surface(z) 0 0 0
04381
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rate than near a plane or sphere. The only exception is for
z orientation of a quadrupole when the decay rate near
cylinder is equal to 0.

In Figs. 6 and 7 the behavior of transition rates in the c
of radial orientations of dipole and quadrupole moments
different geometries is shown. The singular behavior atka
→0 described above is clear in these figures. From Tabl
and II it is easy to find that to achieve the asymptotic regi
the radius of cylinder and sphere should satisfy the relat

3

2~ka!2.9 or ka,
1

A6
~dipole case!

and

15

2~ka!4.
180

~ka!2 or ka,
1

2A6
~quadrupole case!.

The substantial difference between the singular asym
totes of decay rates for the cylinder and sphere is due to
fact that a dipole or quadrupole placed near a cylinder g
erates surface current, which slowly decreases along thz

TABLE II. Quadrupole decay rates for different geometries a
orientations. Atom is on the surface (a5b, ka→0).

Orientation

Geometry

Plane Sphere Cylinder

Perpendicular to surface 0 180

~ka!2

15

2~ka!4

Parallel to surface~w! 0 45

~ka!2

15

2~ka!4

Parallel to surface(z) 0 45

~ka!2

0

FIG. 6. Relative linewidth of dipole transitions for different ge
ometries as a function of the distanceb/a to the surface of a meta
cylinder ~ka50.25, radial orientation!.
8-9
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V. V. KLIMOV AND M. DUCLOY PHYSICAL REVIEW A 62 043818
axis. The expression for the symmetrical part (n50) of the
total currentI z has the following form for a radial dipole
placed on the surface of a cylinder:

I z5
ac

2
Hw~r5a!5

2 icd0k

p E
0

`

dh
h

n
sin~hz!

H1
~1!~na!

H0
~1!~na!

,

~66!

ReI z5
22cd0k

p2a E
0

k

dh
h

n2

sin~hz!

uH0
~1!~na!u2 .

In Fig. 8 the dependence of the real part of current~66!,
ReIz, on the radius of the cylindera and distance along th
z axis is shown. From this figure one can see that curr
amplitude increases when the cylinder radius tends to z
As a result the radiation power and decay rate are increas

In other words, the cylinder is an antenna, which is eff
tively excited by a dipole or quadrupole oscillator. The hi
efficiency of antenna excitation is due to the fact that

FIG. 7. Relative linewidth of quadrupole transitions for differe
geometries as a function of the distanceb/a to the surface of a
metal cylinder~ka50.1, radial orientation!.

FIG. 8. The dependence of the real part of Eq.~66! on cylinder
radius and distance alongz axis. Radial dipole oscillates on th
surface of cylinder (b5a).
04381
nt
o.
g.
-

e

radiation pattern of dipole and quadrupole radiation withr
andw orientations has a maximum along thez direction.

V. CONCLUSION

In the present paper the behavior of dipole and quad
pole transitions in an atom placed near an ideally conduc
cylindrical surface was considered. Explicit analytical e
pressions for transition rates for different orientations of
pole and quadrupole were found. It was shown that the ra
of both dipole and quadrupole transition with radial orien
tion of the moments tend to infinity when the cylinder radi
tends to zero. The degree of singularity for the quadrup
rate is higher in comparison with the dipole rate. As tow
orientation, the dipole decay rate decreases when the ato
placed near a surface, while the quadrupole rate may incr
infinitely if the cylinder radius tends to zero. Such behav
has analogy in neither plane nor spherical interface ge
etry.

Such a behavior of the decay rates is connected with
fective excitation of surface waves, which absorb dipole
ergy and then radiate it. In the spherical case such waves
not excited and the degree of singularity is lower here. B
cause of these distinctions between spherical and cylindr
geometries, consideration of the problem of allowed and f
bidden transitions is of great interest within geometry wh
can be both spherical and cylindrical~e.g., a prolate ellipsoid
of rotation!.

In the present paper we have dealt with the case of
axis-symmetric distribution of currents in a radiating qua
rupole. That is why the investigation of radiation of an arb
trary quadrupole~and magnetic dipole! is also of interest.

Another important direction for investigation is the stud
of allowed and forbidden transitions near a dielectric fiber
small radius. Here we expect a number of different effec
because the modes propagating without attenua
~waveguided modes! exist in a dielectric cylinder of any
shape and size. There are no such modes near an id
conducting cylinder.

To test our predictions experimentally one can try to m
sure the fluorescence from excited atoms moving near a
electric or conducting cylinder. Optical fibers or the usu
wires of submicrometer diameter can be considered as s
cylinders. However, to enhance the effects one can try to
instead single-wall carbon nanotubes@21,22#. These bodies
have the form of a cylinder with radius of the order 5 Å and
they may be metallic or semiconducting with a wide g
depending on structure. These and related items are u
active investigation now.
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APPENDIX: QUANTUM THEORY OF RADIATION OF
AN ATOM PLACED NEAR AN IDEALLY

CONDUCTING CYLINDER

By and large the procedure for calculation of dipole a
quadrupole decay rates near a cylinder is similar to the c
of a dielectric microsphere@4#. To quantize the electromag
netic field it is convenient to place the cylinder inside a lar
cavity. In our problem, the cavity may be taken in the fo
of an ideally conducting cylinder of finite but large radiu
L→` and length L→`. Essentially the system
cylinder1cavity will form a coaxial resonator. The final re
sults will be independent ofL andL.

The expansion of the electromagnetic field and its vec
potential over the complete set of eigenfunctions of the c
sical problem~standing cylindrical waves! may be repre-
sented in the form

Ê5(
s

ase~s,r !2as
†e* ~s,r !

i&
,

B̂5(
s

asb~s,r !1as
†b* ~s,r !

&
, ~A1!

Â52(
s

c

vs

ase~s,r !1as
†e* ~s,r !

&
.

Hereas andas
† are the photon annihilation and creation o

erators in the corresponding modes with ordinary commu
tion relations, andvs are the frequencies of these mode
The vector indexs includes the mode type~TE or TM! and a
set of quantum numbers~see below!.

In our case the Maxwell’s equations defining photon wa
functions have the form

“3e~s,r !52
vs

c
b~s,r !,

~A2!

“3b~s,r !52
vs

c
e~s,r !.

Notice that for our choice of mode functions div(Ê)
5div(Â)50. We also assume that the photon wave functio
are normalized to 1 in a quantization volume. As a result
wave functions should satisfy the following conditions:

1

4p E dr e* ~s,r !•e~s8,r !5dss8\vs ,

~A3!
1

4p E dr b* ~s,r !•b~s8,r !5dss8\vs .

It is not very difficult to obtain expressions for the electr
field strengthe(s,r ) of the sth TM mode in terms of Besse
functions@24#:

ez5CTMn2@Jm~nr!2Ym~nr!qTM~m,na!#eimw cos~hz!,
04381
se

e

r
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-
.

e

s
e

er52CTMnh@Jm8 ~nr!2Ym8 ~nr!qTM~m,na!#eimw sin~hz!,
~A4!

ew5
2 iCTMhm

r
@Jm~nr!

2Ym~nr!qTM~m,na!#eimw sin~hz!.

In Eq. ~A4! the prime stands for the derivative,n is the radial
wave vector,h the longitudinal wave vector, and

qTM~m,na!5
Jm~na!

Ym~na!
,

~A5!

CTM5S 4p\vg

LLn@11qTM~m,na!2#k2D 1/2

.

The expression~A4! provides the fulfillment of boundary
conditions for TM modes on the cylinder surface (r5a) at
any h,n. To satisfy boundary conditions on the surface
quantization volume it is necessary to impose the follow
conditions onh,n:

h5
pnz

L
, nz50,1,2,...,

~A6!
Jm~nL!2Ym~nL!qTM~m,na!50.

In the limit L→` the second equation has the asympto
solution

n5
p

L
~nr1m/211/4!1¯ , nr50,1,2,... . ~A7!

The quantum number set$m,nz ,nr% forms the vector index
s5$m,nz ,nr% for the TM modes used above.

In the case of transverse electric modes the express
for the electric fields have the following form@24#:

ez50,

er52
CTEkm

r
@Jm~nr!2Ym~nr!qTE~m,na!#eimw sin~hz!,

~A8!
ew52 iCTEkn@Jm8 ~nr!2Ym8 ~nr!qTE~m,na!#eimw sin~hz!,

where

qTE~m,na!5
Jm8 ~na!

Ym8 ~na!
,

~A9!

CTE5S 4p\vs

LLn@11qTE~m,na!2#k2D 1/2

.

The expression~A8! provides the fulfillment of boundary
conditions for TE modes on the cylinder surface (r5a) at
any h,n. To satisfy boundary conditions on the surface
quantization volume it is necessary to impose the follow
conditions onh,n:
8-11
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h5
pnz

L
, nz50,1,2,...,

~A10!
Jm8 ~nL!2Ym8 ~nL!qTE~m,na!50.

In the limit L→` the second equation has the asympto
solution

n5
p

L
~nr1m/211/4!1¯ , nr50,1,2,... . ~A11!

The quantum number set$m,nz ,nr% forms the vector index
s5(n,m,n) for the TE modes used above.

In the case of a coaxial resonator, there are so-called
damental modes apart from the modes considered abov
our case, however, the fundamental modes give no contr
tion to dipole or quadrupole decay rates in the limitL→`.
In our case the frequencies of quantized modes are defi
by the following relation:

vs5cAn21h2 ~A12!

wheren, h are defined by the quantization conditions~A6!
and ~A10!.

To study the interaction between an atomic oscillator a
the continuum of electromagnetic modes modified by
presence of a cylinder, it is also necessary to know the d
sity of final states. From Eq.~A12! it is easy to find that the
density of final states will be defined by the simple expr
sion

rTM~v!5d„v2vs~nz ,nr!…
dnzdnr

\

5d~v2cAh21n2!
LL dh dn

p2\
5

LL

p2\c

k

n
dh.

~A13!

In deriving Eq.~A13!, we changed from discrete variable
nz ,nr to continuous wave vectorsh,n in the usual way. As a
result the longitudinal wave vector is the only independ
variable, whereas the radial wave number is expressed b
relationn5Ak22h2. In the case of TE modes we have th
same density of final states.

The Hamiltonian of interaction of the atom with the ele
tromagnetic field can be constructed in the usual way@2#. To
calculate the dipole and quadrupole rates within the low
order of perturbation theory, we need to keep only the f
lowing term from the full interaction Hamiltonian:

H int52
e

mc
Â~r !•p̂1¯ . ~A14!

Here Â(r ) is the vector potential operator at the electr
position, p̂ is the momentum of the electron, andm is the
electron mass.

Now, according to the golden rule the decay rates
given by @25#
04381
c

n-
In

u-

ed

d
e
n-

-

t
he

st
l-

e

g5
2p

\ (
final

z^ initialuH intufinal& z2r~v! ~A15!

where the sum is over all final states. Notice that to obt
from Eq.~A15! the correct expressions for the decay rates
dipole as well as quadrupole transitions one should place
atom~which is placed atr0! far enough from the left wall of
the quantization volume~which is atz50!. In other words,
one should take the limitz0→` in Eq. ~A15!. This proce-
dure is equivalent to the substitutions

sin2~hz!→ 1
2 , cos2~hz!→ 1

2 , sin~hz!cos~hz!→0.
~A16!

In the case of the dipole transitions it is easy to find fro
Eq. ~A15! the decay rate

gdip5
LL

p\2c S (
m52`

m5` E
0

k

ueTM~m,r0!•du2
k

n
dh

1 (
m52`

m5` E
0

k

ueTE~m,r0!•du2
k

n
dhD . ~A17!

Substituting the expressions for photon wave functions, E
~A4! and ~A8!, into Eq. ~A17!, and making substitutions
~A16!, one can obtain the expressions~19!–~21!, presented
in Sec. II.

In the case when the dipole transitions are forbidden, t
is in the case of quadrupole transitions, by the expansion
wave functions in Eq.~A15! we can find the following ex-
pression for the decay rate:

gQ5
LL

36p\2c S (
m52`

m5` E
0

k

u“ ieTM, j~m,r0!Di j u2
k

n
dh

1 (
m52`

m5` E
0

k

u“ ieTE,j~m,r0!Di j u2
k

n
dhD . ~A18!

In Eq. ~A17! Di j is the quadrupole momentum tensor,

Di j 5e^~3xixj2x2d i j !& f i . ~A19!

The covariant derivative of the photon electric field in t
cylindrical frame of reference is given by:

“kei5
1

Hk

]ei

]xk2
ek

HiHk

]Hk

]xi 1
d ik

Hk
(
l51

3
el

Hl

]Hi

]xl ~A20!

whereHi5(1,r ,1)i are the Lame´ coefficients of the cylindri-
cal coordinate system.

Notice that the expression for the decay rate of quad
pole transitions in the absence of a cylinder~free space! has
the following form:
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gQ,05
k5

90\ (
i , j

uDi j u2. ~A21!

Substituting the expressions for photon wave functions, E
~A4! and ~A8! into Eq. ~A18! and making substitutions
~A16!, one can obtain the expressions for decay rates
quadrupole transitions between arbitrary states.

The simplest expressions are obtained for transitions f
the ul 52, m50& to the ul 50, m50& state. In this case the
tensor of the quadrupole momentum has a diagonal form
with different orientations of the quantization axis we arri
at expressions~41!–~43! from Sec. III.

For transitions with a change of magnetic quantum nu
ber, for example, for transitions fromul 52, m51& to ul 50,
m50&, the tensor of quadrupole momentum has the form
s

c
ai

.

t

R

04381
s.

or

m

nd

-

Di j 5D1F 0 1 i

1 0 0

i 0 0
G

i j

. ~A22!

As a result the expression for the quadrupole decay rate f
ul 52, m51& to ul 50, m50& in free space has the form

gQ,05
2k5uD1u2

45\
. ~A23!

If the quantization axis is chosen along radiusr, from Eqs.
~A18!, ~A16!, and~A23! we obtain the following expression
for the quadrupole decay rate between theul 52, m51& and
ul 50, m50& states (r05b):
gQ

gQ,0
5

5

4 (
m52`

` E
0

k dh

k5

4h2m2n2@~d/dt!$@Jm~ t !2qTMYm~ t !#/t%# t5nb
2 1~n22h2!2@Jm8 ~ t !2qTMYm8 ~ t !# t5nb

2

11qTM
2

1
5

4 (
m52`

` E
0

k dhn2

k3

@ t~d/dt!$„Jm8 ~ t !2qTEYm8 ~ t !…/t%1~m2/t2!$Jm~ t !2qTEYm~ t !%# t5nb
2

11qTE
2

1
5

4 (
m52`

` E
0

k dh

k3

m2h2

~nb!2

@Jm~ t !2qTEYm~ t !# t5nb
2

11qTE
2 . ~A24!

On the cylinder surface (b5a) we have from Eq.~A24!

gQ

gQ,0
5

5

p2~ka!2 (
m52`

` E
0

k

dh
4h2m2n2/~na!21~n22h2!2

k5uHm
~1!~na!u2

1
5

p2~ka!2 (
m52`

` E
0

k

dh
n2@2m2/~na!221#21h2m2/~na!2

k3z~d/dt!@Hm
~1!~ t !#u t5naz2

.

~A25!

The decay rates for other transitions have a similar form.
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