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Allowed and forbidden transitions in an atom placed near an ideally conducting cylinder
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The properties of dipole-allowed and -forbidd@uadrupolé transitions in an atom placed near an ideally
conducting cylinder are considered. Explicit analytical expressions for transition rates for different orientations
of dipole and quadrupole are found. It is shown that the decay rates of dipole and quadrupole transitions with
radially oriented moments tend to infinity when the cylinder radius tends to zero. On the other hand, for
tangential orientatiorie orientation, the dipole transition rate decreases while the quadrupole transition rate
increases substantially. As a result, the quadrupole decay rates may approach the dipole decay rates. Such
behavior has analogy in neither spherical nor plane geometry of the metal interface.

PACS numbsd(s): 42.50.Ct, 32.70.Jz, 12.20.Ds

I. INTRODUCTION A principal difference between the case in hand and that
of free space is that the scale of the gradient of the photon
It is well known that the rates of quadrupole transitions inwave function depends, generally speaking, not only on the
the optical region are lower by a factor ofag/\)? radiation wavelength, but also on the characteristic size of
«10 °-10 8 (wherea, is the Bohr radius and is the ra-  the problem. Moreover, in the case of an atom located close
diation wavelengththan those of their dipole counterparts to a material body with a small radius of curvatuaethe
[1] and that the dipole transition probability is strongly in- wave-function gradient is determined mainly by the surface
fluenced by the presence of macroscopic bodies near the ragrvature of the body and not by the radiation wavelength in
diating atom(see, for exampld,2,3]. The question arises in free space. As a result, the quadrupole radiation probability
this connection: How do material bodies affect quadrupole oincreases faster as compared with that in the case of free
multipole transitions? space. Note the fact that, when the characteristic geometrical
To explain this problem let us consider the amplitude ofsjze of the problem is close to the size of the atomic orbit,
the decay of an excited atomic state to a lower-energy statghe radiation intensity may approach the intensity of dipole
accompanied by the emission of a photon. In that case, thgansitions. Specifically, for Rydberg and closely similar at-
transition matrix element has the form oms, the orbit size may be as great as 1ém, and so one
can create appropriate geometrical conditions for observation
of the enhancement of quadrupole transitions.
Vocf GOV [ in(H)A(r)]dr, The increasing of quadrupole transition rates near the sur-
face of a dielectric microsphere was demonstratef#if].
However, geometries different from the dielectric micro-
where A is the wave function of the photon emitted, with sphere are being investigated actively now. Recently, the
allowance made for the presence of material bodies, andavity QED effects near a solid dielectric cylinder have also
Uin (Pou) is the wave function of the excite@inexcited  become interesting and attractive, in particular, in the fields
state. As in the case of free space, the wave functions of thef atom optics and atomic spectroscopy in a microcavity. For
atom y(r) vary faster than the wave function of the photon, instance, it has been suggested that stable helical motion of
and this allows one to expand the wave function of the phoan atom around a solid optical fiber may be possible by using
ton into a series in powers of coordinates in the vicinity ofevanescent waves developed near the cylindrical suftdce
the atom. Where dipole radiation is forbidden, the first termMoreover, a quantum nondemolition measurement of the
in this series goes to zero, and the value of the matrix elephoton number inside an optical fiber has been performed
ment is governed by that of the gradient of the photon waveising Compton scattering of the electrons due to evanescent
function in the neighborhood of the atom, which is supposedvaves produced near the fibjgf]. The falling of atoms on
to be atry: the singular potential of a charged metal wire was demon-
strated in an experimef8]. In[9], use of dielectric fiber was
J J fsuggested to detect nondiagonal terms in the van der Waals
o« A * ey _ orce.
v o} A'(rO)J Youl ) ar Yin(r)rdr. In this paper, we investigate the influence of ideally con-
ducting cylindrical surface on rates of allowédipole) and
forbidden (quadrupol¢ transitions. The geometry of the
*Email address: klimov@rim.phys.msu.su problem under investigation is shown in Fig. 1. According to
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dipole or ¢ p ary charge—e and a charge oscillating about it, the equa-

quadrupole tion of motion of the latter in vacuum has the form
2
" € 2
mor = 33 oF —muwgor, (1)

or, in the case of weak radiation reaction,

MST + Mygip,0 + Mwgdr =0,

- 2¢? w(z)
Ydip0~ 353 1y - (2

Here vy gip- is the spontaneous linewidth in vacuud, is
FIG. 1. Geometry of the problem. the displacement of the moving charge from the balanced
state, andwg is the frequency of oscillations in vacuum. If
[2,3], classical and quantum-electrodynamical calculationghe oscillator is located at the point near a cylinder, it is
give the same result for the dipole transition rate normalizedcted upon by an addition&tompared to the case of free
to its vacuum value. If4] for the example of a dielectric space field E®)(r’), so that its equation of motion assumes
microsphere the same connection between classical and calhe form
culations of quadrupole rates was shown. In the present pa-
per we shall investigate the influence of an ideally conduct- M&Y + My, 087 +Ma§sr =eEN (r' + o t)~eED(r' 1),
ing cylinder on transition rates within the classical as well as .
the QED approach and show their equivalence. md+ My, 1+ modd=e?EX(r' 1), 3)

In general, the problem of radiation from a point source
near an ideally conducting cylindrical surface is classical anavhered=edr is the electric dipole moment of the atomic
well investigated[10—12. The transition rates of a dipole transition. To find the reflected field it is necessary to solve
inside an ideally conducting cylinder were found[it8]. In  the full system of Maxwell's equations in which the source is
[14] some plots of dipole rates in an atom near a cylindeithe dipole oscillator moment.
were presented. Nevertheless, a detailed analysis of allowed Projecting Eq.(3) onto the oscillation direction, we get
and forbidden transitions near a cylinder has not been carried
out as far as we know. The results obtained reveal a substan-
tial increase of dipole and quadrupole rates in comparison
with the case of spherical or plane geometry.

The plan for the rest of the work is as follows. In Sec. Il whered, is the dipole oscillation amplitude. Assuming that
the influence of a cylinder on dipole transition rates is invesall the quantities involved are proportional to expft)
tigated and explicit analytical expressions are obtained fofrom Eq.(4), we obtain the following dispersion equation to
any dipole orientation. In Sec. Ill the influence of a cylinder define the line characteristics in the presence of any body:
on quadrupole transition rates is investigated and explicit
analytical expressions are obtained for any quadrupole orien-
tation. Section IV is devoted to analysis of the expressions
for rates obtained in Secs. Il and Ill. In this section also the
results obtained are compared with those for spherical and In the following we will assume that a perturbation ap-
plane geometries. In the Conclusion we sum up and outlingroach can be applied. Then the solution of E5).may be
the directions of further investigation. In the Appendix we written in the form
present the QED derivation of decay rates for any dipole or

L . ; 2 (L)t
guadrupole transition in an atom placed near an ideally con- _ I e” do-EN(r',wp)
ducting cylinder. @T @05 Vb 0T Hmg, d?

do- E®(r' 1)

md+ My, od + Mewjd = e 3 ,
0

4

2
. e ,
w2+|w'ydip’0—wé+ m—d(z)d0~E(l)(r ,)=0. (5)

(6)

Separating real and imaginary parts of this expression and

using expressiofi2) for the linewidth in vacuum, we obtain

in this approximation the formula for the linewidth change
Let us consider a classical oscillator located at the pointsee, for example,2]),

r' near an ideally conducting cylinder as a model of an atom. D

We suppose that the oscillator and cylinder are in vacuum. b _ 3 do-EV(r",mq) @

Il. DIPOLE (ALLOWED ) TRANSITIONS NEAR AN
IDEALLY CONDUCTING CYLINDER

The geometry of the problem is presented in Fig. 1. In the Ydip,0 2 d%k3

classical approach, the change in the radiation linewidth is

associated with the radiation backreaction. If the atom idHereafterk=w/c~wq/c stands for the wave vector in free
treated as a nonrelativistic oscillator consisting of a stationspace.
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Thus the reflected field must be found to determine thdn Eqgs.(12) and(13) the subscriph denotes the appropriate
radiative linewidth(transition rate, decay rateTo find the  Fourier transformation ovex The full field is defined by the
reflected field, it is necessary to solve the full system ofsum of the TM and TE components.

Maxwell's equations where the dipole moment of the oscil- Expressions for the charge density and the current of a
lator is the source. This solution is well known in the case ofdipole oscillator placed at’ can be produced in the regular

an ideally conducting cylinddr10-12. form
For our purpose the approach of REif0] is most conve- _
nient. According to this approach, the longitudinal compo- p=—(do-V)o(r—r")e ',
nents of the electric and magnetic fields are expressed ) (14
through the densities of external charges and currents, j=—lwdgs(r—r")e ',

A" P complying with the law of charge conservation. Hefés
Ez(r)zf dr’(ianLp(r’)E Gy(r,r’), (8 Dirac’s delta function. Substituting these expressions into
Egs. (8) and (9) and integrating by parts one can find the
1 components of the electric field that we need. As a result of
H(r)== | dr'[i(r' )XV 1,G.(r.r'). 9 using Eq.(7), the final expression for the relative rate of
A" Cf L) 1:Ga(rr") © dipole transitions of an atom placed at=(p'=b,¢’

=0,z' =0) near a metal cylinder takes the following form:
In Egs. (8) and(9) G, and G, stand for Green'’s functions

satisfying boundary conditions of the first and second types Ydip
on the cylinder surface: Yai =1-2ReW). (15)
ip,0
i h(z—2')+in D In the case ofp and ¢ orientations of the dipole, both TM
Gy(r,r )— 2.2, f dhé ¢ ¢H D (vp) and TE modes give contributions to the decay rate:
In(va) o [k, h*/d 2 Jn(va)
(1) ’ n W .= dh— | — H(l) -
Wn(rp")~HP ) s | @0 = 2| dhig| GHY@)] _vGa
. S L HY(vD) |2 (d/d2)[34(2)]l2 v
Gy(r,r')=15 f dh gh@z)sinte=e Iy ((pp) ne Joo kL wb ] (d/d2)[HP(2)]]= 0
n=—ow
(16)
J ’ _H(l) ’
n(VP ) n (VP ) h2n2 [Hf)(vb)]an(va)
We ngw d k3(vb)? H Y (va)
(d/d2)[J(2)] ) D - n
(1) : 0
(drdg[H(2)]],_ . S kdh
n=—w=x
Here we use the cylindrical frame of reference (p,¢,2) .
and put the observation pointat p>p’, wherep’ is the {(d/dZ)[Hg (D)= 6} 2(dIAD[IN(D) |- 1a
radial coordinate of the oscillator. In Eqd.0) and(11) his X (d/d2)[HD(2)]|,-
. . n Z=va
the wave number along the axis andv=\k?’—h? is the
radial wave number. The integration contour ohen Eqs. (17

(10) and (11) lies on the real axis if the wave vectkrhas
infinitely small imaginary partK—k+ie). Note that in Egs.
(10) and(12) the first termq containing the factod,(vp')]

In the case of orientation of the dipole only TM modes give
contributions to the decay rate:

are related to the free-space Green’s function while the sec- 2 [H<1)(vb)]2J (va)
ond terms[containing the factoH " (vp’)] are related to W, = 2 o (18)
reflected fields. n== H. (va)

The remaining field components can be expressed through ) .
the z component of either the electrid@™ modes or the In all of these cases= \k?—h? is the radial wave number.

magnetic field TE modes: It is interesting that in EqY16)—(18) integration over the
wave numbeh is restricted byk. This is due to the fact that
i ih 9E.p i ih Ep at h>k th_ere_ are no propagating waves that can carry off
ph="2 5 ph= 72 (120  energy to infinity.
Ve ap pie’ The expression§l5)—(18) have a form that is useful for
) ] some analytical investigations. However, it is difficult to rec-
e _1K &th TE __K IHzn (13) ognize from Egs.(15)—(18) that decay rates are positive
P02 pae eh 2 gp quantities. If one calculates decay rates within the quantum
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instead of Eqs(15)—(18) the explicitly positive expressions
(for details see the Appendix

approach through Fermi’s golden rule, it is possible to obtain n

7dip,p 3 ” k h2 d
— == dh —[J.(z
Ydip,0 nZw 0 i3 dz[ (2] z=vb
Jo(va) d 2
__m = = H(l)
Hﬁl)(va) dz[ n (2)] zzyJ
3 & k n2
+§n;w Jodh—k(vb)z Jn(vb)

 (d/dD[In(2)]]z=a
(d/d)[HP(2)]],=a

2
H<n1><vb>} , (19

Yipe 3 w [k 2n2 3 (va)
T~ 5 h———"— _
Ydip,0 n;oc od k(kb)“v In(vb) Hgl)(va)
2 3% («dh[d
(1) 3 dhfd
XHy (vb) +2n:2_m fo " [dz[an(z)] »
d/dAIN(2)]p-ra d 2
AN D Ly |
@A)z P
(20)
Ydipz _ 3 i fkdhvz 1 ob Jn(va) HO( b 2
7dip,0_ n=—« Jo k3 n(y) H(nl)(va) n (vb)| .
(21)

Using the identities
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n=o 2

z
2, 2=

> R@=1,

n

"= (d(2))\? 1
2 ( dz ):E’

n=—oo

one can show the equivalence of E¢k5)—(18) and (19)—
(21), i.e., the equivalence of the classical and quantum ap-
proaches.

From Egs.(15—(18) it is easy to see that when an atom
has moved to infinity lf— o) the reflected field tends to zero
and the radiative linewidth tends to unity. The behavior of
these rates becomes more interesting as an atom approaches
the cylinder surfacel{(—a). In this case one can see from
Egs.(20) and(21) that the transition rates for tangential ori-
entations (,z) of the dipole vanish independently of the
radius of cylinder. On the other hand, the decay rate of a
radially oriented dipole located on the surfacge=(b) does
not vanish:

y 6 < Jk h? 1
. = dh
(3’0 dip.p ?nzz—w o K(va)? |H§11)(Va)|2
k n2 1
+— h .
2% oo k(va)* [(dIdD[AD(2)]],= el

(22

Moreover, when the cylinder radius tends to zero, the decay
rate of a radially oriented dipole tends to infinity. In the limit
ka=kb—0, the main contribution to Eq22) is due to the
TM mode withn=0:

(7) 3 [, 2.4 i 4(In2-1) a
v ~ oA —arcta e
Y0/ gip,p kb—ka_02(ka)® T 72(1+L*2)
2| [ka
= —_—
i '”(2)*7- 23
|
In Eq. (23) y=0.5772 is the Euler constant. within the classical approach and
Ill. QUADRUPOLE (FORBIDDEN) TRANSITIONS NEAR Di; =<¢out|(3fifj_ 5ijf2)|lﬂm> (24b)

AN IDEALLY CONDUCTING CYLINDER

To investigate the quadrupole transitions near a cylinder
one should first set an appropriate distribution of the charges

and currents. It is well knowfi5] that generally the electric

guadrupole momentum can be described as a traceless sy

metric tensoD;; . The definition of this tensor is

Dﬁf drp(r)(3rirj—&;r?) (243

within the quantum picture.

In any case, this tensor can be fixed by setting its five
independent components. It is knoyd®] that, when consid-
g}'ing guadrupole radiation, any charge and current distribu-
tion can be represented by a system of two dipoles of oppo-
site orientations with the momenesl; and —ed;, one of
which is stationary and the other, displaced for a distance of
or(t), oscillating about the first. We consider such a system
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-e e Accordingly, the total charge and current densities may be
/‘ defined by the expressions
d pror= —€(or-V)(dy-V)a(r—r’), (32

3ry(t) / ' | |
j=ev(t)(d;-V)s(r—r"), v(t)=or(1). (33

€ The solution of Maxwell's equations with a quadrupole
FIG. 2. Structure of quadrupole. source of the general kin@2) and(33) can be found by the
substitution of Eqs(32) and(33) into Egs.(8) and(9). In the
placed close to an ideally conducting cylinder of radiis ~ present paper, for simplicity, we will assume tluatis par-
vacuum. The geometry of the classical problem is shown irallel to or(t), i.e., d;llor(t). In this case the quadrupole
Figs. 1 and 2. momentum tensor will be described by four rather than five
The equation of motion of the movable dipole portion of independent components. Three of these components de-
the quadrupole in the case of a weak radiation reaction hascribe the orientation of tensor eigenaxes, while the fourth

the form component is the magnitude of the quadrupole momentum
Dy [17]. Let us to recall that in the frame of eigenaxes the
mét + Myg o6F + Mwgor =0. (25  tensor of the quadrupole momentum has the following form:
Here —Do/2 0 0
0 —Dy/2 0|, 34
2e%d? k4 0 34
yQ'OZ—lSC m (26) 0 0 Do
_ L In our case, wheul||5r(t), Do=—4edrqd,, and the spon-
An oscillating dipole located near a cylinder is acted upon
additionally (compared to the case of free spabg the re- cng6
flected fieldE™™)(r"), so that the equation of motion assumes Y007 2408, (35
the form

i _ , o where Eq=mw36r5/2=rfiw, is the total initial oscillation
MéF +Myq o6t +Mawgdr = —e(dy- VIED(r').  (27) energy of the quadrupole.
o . . . Substituting Eqs(32) and (33) with dllér(t) into Egs.
By s_olvmg in _accordan_ce with perturbation theory_ thg dIS-(8) and(9) and integrating by parts, one can find the compo-
persion equation following from E¢27), one can easily find - nents of the electric field that we need. To calculate the line-

the formulas for the linewidth variatiof#], width for a ¢-oriented axis of the quadrupole one should use
o the covariant derivative ovep [18] in Eq. (29):
= - . VHED (¢’
Y0= 79,0 WW{&O [(dy- VHEW(r)]}, 1, E,
(29 V‘pE‘p—;%‘f‘?. (36)

whereér, is the oscillation amplitude of the moving dipole. As a result of using Eq(29), the final expression for the
Using Eq.(26), one can write the following expressions for relative rate of quadrupole transitions of an atom placed at
the relative quantities: r'=(p'=b,¢’=0z2"=0) near an ideally conducting cylin-
der takes the following form:
20y im{ar [y VIEH()])
’)’Q,o Zeﬁrodlk ' ﬁ: __ 15
29 Yoo 1- 2 ReW). (37)

Thus, to get concrete results, one should calculatén the case op and ¢ orientations of the quadrupole, both

8ro-[(dy- V)EM(r')] at the location of the oscillating di- TM and TE modes give contributions to the decay rate:

pole. To do this one should solve the Maxwell's equations . P )

for the system of charges under analysis. woS kdhh—v d—[H“)( 1 Jn(va)
The charge density of the stationary dipole may be de- "'» <=, |, k> n - Hﬁ“(va)

fined by the expression

Sk, vn?[d (HP(2) 2
p1=—e(d;-V)8(r—r’) (30) +n:E_w Jdh=3 [d—z< =)
and that of the oscillating dipole by the expression y (AdD[I(D)]]5era 8
pa=e(dy- V)8 —r'—5r(1)). (31) (d/d2[HP (D)]o- e’
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h? n(Va)
We n_E,x dhk(kb)42H (Va)(
d (1) (1) ’
a )
X g5lHn (2] - n Hn(ng
n2V2 (d/dz)[Jn(Z)]|z=va

>

e Jo K (dld)[HP(D)]],-1a

d(Hﬁ”(z)) 2
8 d_Z z=vb .

z
In the case ot orientation only the TM modes give contri-
butions to the decay rate:

(39

W Z k “an 1v?h2 [H(M(vb)]2J,(va)
k® HY (va)

n=—wx

(40

In all these cases= Vk?—h? is the radial wave number.
The expression§37)—(40) have a form that is useful for

some analytical investigations. However, it is difficult to rec-
ognize from EQs.(37)—(40) that decay rates are positive
guantities. If one calculates decay rates within the quantu
approach through Fermi’s golden rule, it is possible to obtai
instead of Eqs(37)—(40) the explicitly positive expressions
(for details see the Appendix

z
:|2
z=vb

(2)

2
z=vb

4
ng(z)) r
z=vb ,

z
(41

v2n?| d
3

dz
d
dz

15 &
23

n=-—w

 (d/dD)[In(D)]]=a
(d/d2)[HY ()], a

15 & k h?

Yoe f dh—— 7
0 k(kb) 4

YQ.0

2 n=-—ow

d 2
zd—ZJn(z) —n<Jy(2)

}2
z=vb
)’Z=Vb

Hﬁ”(Z)) H2
z=vb '

z
(42)

z=vb

Jn(va) d

ROy 2

H(l)(z) n2H(1)(Z))

fooner| el

_{ (d/d2)[In(2)]|,=ra d (

n(2)

z

=

2 n=—w

(d/d2)[HI(2)]] - ,a dz
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’yQ’z J~ 2h2
’)/Q 0 2 n=-—o
Jn(va) 2
% _ a8

Using the identities

2 324
Jn(2)— nZJn(Z)) =5

(Jn(
Tz

z))

dan(Z))

3 (e

n=—

1
8

bE

n=o

2|

3

8 1

one can show the equivalence of E¢37)—(40) and Egs.
(41)—(43), i.e., the equivalence of the classical and quantum
approaches.
From Egs.(37)—(40) it is easy to see that when an atom

-:Fuas moved to infinitylf— o) the reflected field tends to zero

and the radiative linewidth tends to the free-space value. The
behavior of these rates becomes more interesting as the atom
approaches the cylinder surfack—¢a). In this case it is
possible to show from Eq43) that the transition rate fa
orientation of the quadrupole tends to zero for any radius of
cylinder. On the other hand, the decay rates for quadrupoles
with p and ¢ orientations do not vanish when the atom is
placed on the cylinder surfacb€a):

h? 1
dhisa)? IHP(va)|?

7Q<P
YQ.0

YQ.p _
YQ,0

>

n=-—w

fj

n? 1
k(va)® [(d/d2)[HP(2)]],-

Z(ka)Z

©

N 30
7T2(ka)2 n=—ox

(44)

It is interesting to note that the decay rates foland ¢
orientations become equal. Moreover, these quadrupole de-
cay rates have a simple relation to the dipole decay rate (
=a):

YQ.e _ ) Ydip.p

‘},Q’p = =
YQ,0 (ka)? Vdip,0

YQ,0

(45

When the cylinder radius tends to zero, the decay rates of
quadrupole with these orientations tend to infinity. In the
limit ka=kb—0 the main contributions to Eq$44) and
(45) are due to the TM mode with=0:
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ka =1

0
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FIG. 3. Relative linewidth of dipole transitions for various ori-
entations as a function of the distartw&a to the surface of a metal

cylinder ka=1).

15

A
Yolq, \Y0/q, kb—kao2(ka)*

4
atom position, b/fa

FIG. 4. Relative linewidth of quadrupole transitions for various
orientations as a function of the distanibfa to the surface of a
metal cylinder ka=1).

With further increase ob, the relative linewidths tend to
unity with small oscillations.
The behavior of the linewidth for radial orientations is

2 . 4(In2—1) more interesting. Atb=a—0, the increase of decay rates
X| 1+ ;arctamL )+—772(1+L*2)+“. diverges like
20 Ydip.p 1
+ +eee, 46 = o . 4
ka)? (49 Yapo (K2 0
5 Ka The behavior of decay rates for forbiddéguadrupolg
L*=—|In| =|+ /. transitions is shown in Fig. 4, for different orientations of the
™ 2 quadrupole axis. Far orientations the decay rate of an atom

placed on the cylinder surfade=a is equal to zero for any

radius of cylinder. When a quadrupole moves off the surface

to infinity, the quadrupole decay rate approaches the free-

V. ANALYSIS OF RESULTS AND ILLUSTRATIONS space value ywth sma_lll oscillations. Th.IS case is analogous to

that of az-oriented dipole. The behavior of the quadrupole

The expressiong15)—(23) and (37)—(46) are the main decay rate fop and ¢ orientations is more interesting. When

results of the present paper. In general, to calculate linean atom is placed near the surface of the cylinder-@) the

widths for specific parameters one should sum up an infinitgluadrupole decay rates do not vanish. Moreover, the decay

series and perform integration of nontrivial Bessel functiongates associated with such transitions tend to infinity when

(see Ref[18], p. 5. When an atom is moved off to infinity the cylinder radius tends to zera,—0. According to Eq.

(b—), these series are poorly convergent and it is neced46) these rates increase like

sary to make the Watson transformatidr®,2Q to treat the

problem. However, this domairb(-) is not the most in- Y,

teresting, because the behavior of the linewidth is trivial. Yoo (ka)*
One can expect the maximum influence of a cylinder on

the linewidth when the atom is placed near its surface. Morewhich is more singular than in the dipole cd&sy. (45)].

over, specific features can be observed when the cylinder In Fig. 5 the behavior of transition rates and their asymp-

radius is small ka<10). totes atb=a—0 is shown. In this figure one can see the
The results of our calculations for dipofellowed tran-  unbounded increase of rates. One can also observe here the

sitions with different orientations of momentum are shown ingood agreement between the exact expresgibh)sand (38)

Fig. 3. From this figure one can observe the qualitative dif-and their asymptote®3) and (46). Note, that according to

ference between radigp) and tangential ¢,z) orientations Egs.(44) and (45) the quadrupole decay rates wighorien-

of the dipole. The behavior of the linewidth for tangential tation are no different from those farorientation.

orientations is simple: di=a (atom located on the cylinder According to Eq.(46) and Fig. 5, the relative decay rates

surface there is no radiation at all and the linewidth is zero. of quadrupoles increase much faster than those of dipoles at

In Eq. (44) y=0.5772 is the Euler constant.

1
Y0 (48)
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J ' ‘ ' ' ' ' ' ' Here x=k(b—a) is the dimensionless distance between
4 atom and surface. Here and elsewhere we use the symbols
10 E and |l for orientations that are normal and tangential to the
Quadrupole surface.

In the case of quadrupole transitions wilkll or(t) one
can show that the expressions for the decay rate have a simi-
lar form although the singularity of different terms is higher:

, (Y/YQZ

2102 Yo.i 15 3 5 15 1 3
g ——=1+5sSiNnX| 5— —3|+ - COSX| 52— =7/,
=R Y0.0 8 x° x4 x? x*
54)
10' :
—= —SIN2X| —5— —3| + 55C0S X| —=5— —z].
Y00 64 x> x3) 32 x> x*
i (55
01 02 03 04 05 06 07 08 09
cylinder radius, ka In the domain of smalk— 0 we obtain for the dipole
FIG. 5. Relative linewidth for quadrupole and dipole transitions Vi Y
in atoms located in close proximity to the surface of a metal cylin- P _ 2, Ll =0, (56)
der (b=a) in the case of radial orientation as a function of the Ydip,0 Ydip,0
cylinder radiuska. The crosses indicate asymptotic relatiq2s)
and (46). and for the quadrupole
ka=kb—0. So it is of interest to find the ratio of the abso- YoL _Ml_gq (57)
lute values of the rates. From E@5) it is easy to find that YQ0 YQpo

5 From these expressions one can see that in the case of a
Yor _ . YQo (49  plane interface only the dipole with radial orientation has a
Yaipp (K& Ydpo nonzero decay rate when placed on a surface. Moreover,
there are no conditions when the decay rate tends to infinity.
It is well known [1] that the quadrupole decay rate is sup-The decay rates for a cylinder of infinite radiuksa— )
presed by the factorkfy)? in comparison with the dipole agree, of course, with the ratés6) and (57).

decay ratdwherea, is the Bohr radius As a result we get The spherical geometry case has an intermediate position
instead of Eq(49) the estimation between cylindrical and plane interfaces, if one makes a clas-
sification by degree of singularity of decay rates. In the case
ag\? of spherical geometry, for a dipole placedratb near an
’YQ,p 0 . R .
m“5 a (50)  ideally conducting sphere of radias we have[23]
P
E i Yapr . 3_]< hiV(2)\?
or example, in the case of an atom located near a conduct="P— _ 1 _ “Rd > nn+1)(2n+1)q, '
ing carbon nanotubf21,22 with a~5 A we have a signifi-  Ydip,0 2 |i=1 z 2=kb
cant enhancement of the quadrupole transition rates: (598
y _ i 3 1<
Sx107 (5D M:l__m[z (n+3)| palhiM(2)]7
Ydip,p Ydip,0 2 n=1
2
The singular behavior of dipole rates withorientation N d[zh(2)] 59
and quadrupole rates with, ¢ orientations differs substan- n zdz ‘b
7=

tially from the behavior of rates near an ideally conducting

sphere or plane. In the case of an ideally conducting plangyherep  andq, are Mie coefficients for an ideally conduct-
the expressions for dipole decay rates have the followmgng sphere:

form [2]:
o o Q= (d/d25)[25)n(25) ] ‘ (60)
Yaips _, 08 sin " (dldz)[zh ()],
Yoo T (207 2207 (52 TR
v 3(sin2x cosX sin2x p ——jn(ZZ) (61
Jdpl_q_ 2 _ LNEY :
Ydip,0 ol (29% (2x)°) ®3 n (22,
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TABLE |. Dipole decay rates for different geometries and ori-  TABLE Il. Quadrupole decay rates for different geometries and

entations. Atom is on the surfaca<b, ka—0). orientations. Atom is on the surfaca<£b, ka—0).
Geometry Geometry

Orientation Plane Sphere Cylinder Orientation Plane Sphere Cylinder
Perpendicular to surface 2 9 3 Perpendicular to surface 0 180 15

2(ka)? (ka)? 2(ka)*
Parallel to surfacée) 0 0 0 Parallel to surfacée) 0 45 15
Parallel to surfacgz) 0 0 0 (ka)? 2(ka)?

Parallel to surfacéz) 0 45 0
(ka)?

In the case of a quadrupole withyllor(t) the decay rates
take the form(4,5]

YQL

N|'—‘

YQ,0

rate than near a plane or sphere. The only exception is for the
n=1 cylinder is equal to 0.
d (1)(2)) In Figs. 6 and 7 the behavior of transition rates in the case
e[ i z_kJ’ different geometries is shown. The singular behaviokat
—0 described above is clear in these figures. From Tables |
Ezl_ _nzl n(n+1)(2n+1) the radius of cylinder and sphere should satisfy the relation
d (hP(2))]?
dz

2 n(n+1)(2n+1) z orientation of a quadrupole when the decay rate near the
5 (62) of radial orientations of dipole and quadrupole moments for
z
Yau 15 and Il it is easy to find that to achieve the asymptotic regime
X Re{ dnl 5= =

155 3 -9 orka<— (dipole case
S — - or ka<— (dipole cas
_wp)  16n=1 (n=1) 2(ka)? V6 P

1d_ 2 and
X(n+2)(2n+1)R qn?d—z[zwn '(2)]
ko 15 180 1 (quadrupole cas
15" Skad (ka2 Or ka<_—= (quadrupole case
-5 (n=1)(n+2)(2n+1) (ka)*” (kay 2.6
n=1
The substantial difference between the singular asymp-
1 1 2 totes of decay rates for the cylinder and sphere is due to the
X Re pn E[hn (2)] @ (63 fact that a dipole or quadrupole placed near a cylinder gen-
7=

erates surface current, which slowly decreases along the

In the case of an atom placed on the surface of an ideally
conducting metal sphere whose radius tends to zero, one ca 1% T i T -
obtain for dipole transitions

Ydip, L o, Ydip,l —o. (64)
Ydip,0 Ydip,0
gof
In the case of quadrupole transitions, the decay rates tend ts
infinity in all cases: <
]
Yq. 180 YoI 45 S
:_2.4_...' _:_2.+..._ (65) B
YQ,0 (ka) YQ,0 (ka) o s}

From Egs.(64) and (65) one can see that dipole transition
rates are limitedas in the case of plane geometmyhile
both radial and tangential rates of quadrupole transitions
have the singularities @) at kb=ka—0. 0 . . . . .
To summarize the situation, we put together asymptotic 1 2
expressions and limits for the dipole transitions in Table |
and for the quadrupole transitions in Table Il. From these FIG. 6. Relative linewidth of dipole transitions for different ge-
tables it is easy to see that in general a transition near @metries as a function of the distanisé to the surface of a metal
cylinder of small enough radiuké—0) has a higher decay cylinder (ka=0.25, radial orientation

atom position, b/a
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radiation pattern of dipole and quadrupole radiation with
and ¢ orientations has a maximum along théirection.

V. CONCLUSION

In the present paper the behavior of dipole and quadru-
pole transitions in an atom placed near an ideally conducting
cylindrical surface was considered. Explicit analytical ex-
pressions for transition rates for different orientations of di-
pole and quadrupole were found. It was shown that the rates
of both dipole and quadrupole transition with radial orienta-
tion of the moments tend to infinity when the cylinder radius
tends to zero. The degree of singularity for the quadrupole
rate is higher in comparison with the dipole rate. As¢o
orientation, the dipole decay rate decreases when the atom is
placed near a surface, while the quadrupole rate may increase
infinitely if the cylinder radius tends to zero. Such behavior

FIG. 7. Relative linewidth of quadrupole transitions for different has analogy in neither plane nor spherical interface geom-
geometries as a function of the distantzéa to the surface of a etry.

metal cylinder(ka=0.1, radial

axis. The expression for the symmetrical part=0) of the
total currentl, has the following form for a radial dipole

placed on the surface of a

orientation

cylinder:

ac —icdgk (= . H
|Z:?H¢(p:a)= TJ;) dh;SIn(hZ)—Va

z ’7728. 0

_—2cd0kfk h sin(hz)

v [HP (va)[>

Such a behavior of the decay rates is connected with ef-
fective excitation of surface waves, which absorb dipole en-
ergy and then radiate it. In the spherical case such waves are
not excited and the degree of singularity is lower here. Be-
cause of these distinctions between spherical and cylindrical
geometries, consideration of the problem of allowed and for-
bidden transitions is of great interest within geometry which
can be both spherical and cylindridelg., a prolate ellipsoid
of rotation).

In the present paper we have dealt with the case of an
axis-symmetric distribution of currents in a radiating quad-
rupole. That is why the investigation of radiation of an arbi-

In Fig. 8 the dependence of the real part of currgs@), ~ trary quadrupoleand magnetic dipoleis also of interest.

Rel,, on the radius of the cylindex and distance along the Another important direction _f_or investigation is t_he _study

z axis is shown. From this figure one can see that curren®f @llowed and forbidden transitions near a dielectric fiber of

amplitude increases when the cylinder radius tends to zergMall radius. Here we expect a number of different effects,

As a result the radiation power and decay rate are increasingecause the modes propagating without attenuation
In other words, the cylinder is an antenna, which is effec{Waveguided modesexist in a dielectric cylinder of any

tively excited by a dipole or quadrupole oscillator. The highShape and size. There are no such modes near an ideally

efficiency of antenna excitation is due to the fact that theconducting cylinder. _
To test our predictions experimentally one can try to mea-

sure the fluorescence from excited atoms moving near a di-
electric or conducting cylinder. Optical fibers or the usual
wires of submicrometer diameter can be considered as such
cylinders. However, to enhance the effects one can try to use
instead single-wall carbon nanotubgxl,22. These bodies
have the form of a cylinder with radius of the ordeA and

they may be metallic or semiconducting with a wide gap
depending on structure. These and related items are under
active investigation now.
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FIG. 8. The dependence of the real part of E&f) on cylinder
radius and distance alorgaxis. Radial dipole oscillates on the
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APPENDIX: QUANTUM THEORY OF RADIATION OF e,= — Cryrh[Ji(vp) = Yio(vp) Gr(m, va) J€™ sin(h2),
AN ATOM PLACED NEAR AN IDEALLY (A4)
CONDUCTING CYLINDER
By and large the procedure for calculation of dipole and e :M[Jm( vp)
qguadrupole decay rates near a cylinder is similar to the case ¢ P

of a dielectric microsphergt]. To quantize the electromag- _ ime
netic field it is convenient to place the cylinder inside a large Ym(vp)Grm(m,va) Je¥ sin(h2).

cavity. In our problem, the cavity may be taken in the form|y gq. (A4) the prime stands for the derivativejs the radial

of an ideally conducting cylinder of finite but large radius \yaye vectorh the longitudinal wave vector, and
A—o and length L—o. Essentially the system

cylinder+cavity will form a coaxial resonator. The final re- JIm(va)
sults will be independent of andL. Grm(m,va) =3 (va)’
. . . . m
The expansion of the electromagnetic field and its vector (A5)
potential over the complete set of eigenfunctions of the clas- 47hw 12
sical problem(standing cylindrical wavgsmay be repre- Ctwm g

= 7.2
sented in the form LAv[1+qgmw(m,va)]k

The expressionA4) provides the fulfillment of boundary

t
E=D S, 3 (S 1) conditions for TM modes on the cylinder surfage<(a) at
s iv2 ’ any h,v. To satisfy boundary conditions on the surface of
quantization volume it is necessary to impose the following
A asb(s,r)+alb*(sr) conditions onh, v:
B=2 , (A1)
s V2 n,
h=-—" n=012.,
. c a.g(s,r)+ale*(sr) (A6)
A__g w_s V2 ' ‘]m(VA)_Ym(VA)qTM(m,Va)ZO.

L . In the limit A—o the second equation has the asymptotic
Hereag and al are the photon annihilation and creation op- solution - q ymp

erators in the corresponding modes with ordinary commuta-

tion relations, andwg are the frequencies of these modes. -

The vector indes includes the mode typ@ E or TM) and a v=p(ntm2+ g+, n,=012,.. (A7)
set of quantum numbersee below

In our case the Maxwell’'s equations defining photon waverp,q quantum number sém,n,,n,} forms the vector index

functions have the form s={m,n,,n,} for the TM modes used above.
® In the case of transverse electric modes the expressions
VXe(s,r)=——b(s,r), for the electric fields have the following forf24]:
c
(A2) e,=0,
Wg
be(s,r)z—Fe(s,r). Crekm .
&y== =, LIn(vp) = Yn(vp)dre(m,va)]e" sin(h2),
Notice that for our choice of mode functions d&)( (A8)

=div(A) = 0. We also assume that the photon wave functions€,= —iCrekv[J/(vp) = Y (vp)Gre(m, va)]e™* sin(hz),
are normalized to 1 in a quantization volume. As a result the

wave functions should satisfy the following conditions: where
1 . , (1, va)= In(va)
EJ dre*(s,r)-e(s',r)=é6sgfiwg, Qrelm,va)= Y (va)’
(A3) (A9)
1 . ’ c Amrhwg 12
EJ' drb*(s,r)-b(s ,r):b‘sslﬁws. TE™ LAV[1+qTE(m,Va)2]k2

It is not very difficult to obtain expressions for the electric The expressionA8) provides the fulfilment of boundary
field strengthe(s,r) of the sth TM mode in terms of Bessel conditions for TE modes on the cylinder surfage<(a) at

functions[24]: any h,v. To satisfy boundary conditions on the surface of
A guantization volume it is necessary to impose the following
e,= Crur[Im(vp) — Ym(vp)drm(m,va)]e™¢ cog hz), conditions onh, v:
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mn, 2w _ i )
h= , n,=0172,..., y=— >, |(initial|H{final)[?p( ) (A15)
L h final
, , (A10)
In(vA) =Y (vA)gre(m, va)=0. where the sum is over all final states. Notice that to obtain

from Eq.(A15) the correct expressions for the decay rates of
Cdipole as well as quadrupole transitions one should place an
atom(which is placed atg) far enough from the left wall of
- the quantization voluméwhich is atz=0). In other words,
y= K(np+ m/i2+1/4)+---, n,=0,1.2,... (All) one should take the limit,— in Eq. (A15). This proce-
dure is equivalent to the substitutions

In the limit A—o the second equation has the asymptoti
solution

The quantum number sém,n,,n,} forms the vector index ] N L )
s=(n,m,n) for the TE modes used above. sirf(hz)—3, cos(hg)—3, sinhz)coghz)—0.

In the case of a coaxial resonator, there are so-called fun- (A16)
damental modes apart from the modes considered above. In ] N o ]
our case, however, the fundamental modes give no contribu- In the case of the dipole transitions it is easy to find from
tion to dipole or quadrupole decay rates in the limit-.  Ed- (A15) the decay rate
In our case the frequencies of quantized modes are defined

by the following relation: LA [ " [k , K
- ')’dip_m(mE_w foleTM(m'rO)'C” —dh
ws=C\r°+h (A12)
m=co
where v, h are defined by the quantization conditiof#s6) + > k|eTE(m,ro)-d|2—kdh). (A17)
and(A10). m=-x= Jo 4

To study the interaction between an atomic oscillator and

the continuum of electromagnetic modes modified by theSubstituting the expressions for photon wave functions, Egs.

presence of a cylinder, it is also necessary to know the denA4) and (A8), into Eq. (A17), and making substitutions

sity of final states. From EqAL12) it is easy to find that the (A16), one can obtain the expressiofi®)—(21), presented

density of final states will be defined by the simple expres4in Sec. Il.

sion In the case when the dipole transitions are forbidden, that
is in the case of quadrupole transitions, by the expansion of
wave functions in Eq(A15) we can find the following ex-

dn,dn ression for the decay rate:
pTM(ﬁ)):a((x)_wS(nZJ]p))% p y

LA dhdv LA k m=oo
= 8(w—cyhZ+ 12 = —dh. LA k K
e T e v YO G | . Jo Viema(Mro)Dyl*dh
(A13) .
- ) .
In deriving Eq.(A13), we changed from discrete variables + fo |VierE,j(m,fo)Dij|2;dh)- (A18)
m= —o

n,,n, to continuous wave vectorg » in the usual way. As a
result the longitudinal wave vector is the only independent
variable, whereas the radial wave number is expressed by the
relation »=ykZ—hZ. In the case of TE modes we have the In EQ. (A17) Dj; is the quadrupole momentum tensor,
same density of final states.

The Hamiltonian of interaction of the atom with the elec- Djj =e((3xix,-—x25ij))ﬁ . (A19)
tromagnetic field can be constructed in the usual {2dyTo
calculate the dipole and quadrupole rates within the lowesthe covariant derivative of the photon electric field in the
order of perturbation theory, we need to keep only the fol-cylindrical frame of reference is given by:
lowing term from the full interaction Hamiltonian:
3

e . v . 1 0€; ey 0”H|( 5”(2 e (9H| 20
Hin=— —A(r)-p+---. (AL4) CH, XK HiH, o R Hy oo A0

Here A(r) is the vector potential operator at the electronwhereH;=(1r,1); are the Lameoefficients of the cylindri-
position, p is the momentum of the electron, andis the cal coordinate system.

electron mass. Notice that the expression for the decay rate of quadru-
Now, according to the golden rule the decay rates argole transitions in the absence of a cylindeee spacghas
given by[25] the following form:
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0 1 i
1 0 0| . (A22)
Substituting the expressions for photon wave functions, Egs. 100 ij

(A4) and (A8) into Eq. (A18) and making substitutions .
(A16), one can obtain the expressions for decay rates foAS a result the expression fqr the quadrupole decay rate from
quadrupole transitions between arbitrary states. fi=2,m=1) to[1=0, m=0 in free space has the form

The simplest expressions are obtained for transitions from

k5
=—— D |2 A21
YQ,0 907121 | |1| ( ) Dij=D1

5 2
the [|=2, m=0) to the || =0, m=0) state. In this case the y :M (A23)
tensor of the quadrupole momentum has a diagonal form and Q0 45h
with different orientations of the quantization axis we arrive
at expression$41)—(43) from Sec. Ill. If the quantization axis is chosen along radpj§rom Egs.

For transitions with a change of magnetic quantum num{A18), (A16), and(A23) we obtain the following expression
ber, for example, for transitions froth=2, m=1) to || =0,  for the quadrupole decay rate between fihre2, m=1) and
m=0), the tensor of quadrupole momentum has the form |I=0, m=0) states po=Db):

Y9 5 < fkdh4h2m2v2[<d/dt>{[Jm<t>—qmvm(t)]/t}]?_yw<v2—h2>2[J;n(t>—qTMY;1<t>]f-yb

Q.0 S Ant. k® 1+Q$M
kdhu2 [t(d/d){(}(1) = GreY (D)t + (M2 {In() — GreYm(DHE Lo
$2 E
m=—c 1+d7e

kd|’1 m?h? [Jn() = AreY¥m(D 1,0

(vb)? 1+ qTE
On the cylinder surfaceb=a) we have from Eq(A24)

Yo 2 k  4h%m? 2/(va)2+(v2—h2)2 5 E v’[2m?/(va)®—1]%+h?m?/(va)?
Yoo (ka)zm,_m 0 KSIHD (va)|2 w(ka)?me oo K(d/AOIHP (O]l
(A25)
The decay rates for other transitions have a similar form.
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