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Duality between partial coherence and partial entanglement
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Entangled-photon pairbiphoton$ generated by spontaneous optical parametric down-conversion exhibit a
number of properties that are analogous to those of ordinary photons generated by incoherent sources. The
spatial pump-field distribution and the two-particle wave function in the biphoton case play the respective roles
of the source intensity distribution and the second-order coherence function in the incoherent case. The van
Cittert—Zernike theorem, which is applicable for incoherent optical sources emitting independent photons, has
a counterpart for biphotons. Likewise, the partial-coherence theory of image formation has an analogous
counterpart for biphoton beams transporting spatial information. However, an underlying duality, rather than
analogy, accompanies the mathematical similarity between incoherent and biphoton emissions if the compari-
son is made between the photon count rate in the incoherent case and the biphoton count rate in the entangled-
photon case. The smaller the size of an incoherent source, the more separable is the coherence function and the
more coherent is the field, and therefore the higher the visibility of ordinary interference fringes. In contrast,
the narrower the size of a biphoton pump source, the more separable is the wave function and the less
entangled is the field, and therefore the lower the visibility of biphoton interference fringes. This duality is
similar to the complementarity between single and two-photon interference exhibited for biphotons.

PACS numbeps): 42.50.Dv, 42.65.Ky

I. INTRODUCTION [12-14 to applications in optical measuremeh#s15-18,
communications[19], single-photon range findind?20],
Spontaneous parametric down-conversi@PDQ is a  spectroscopy[21], and quantum informatiof22,23. In
weak nonlinear optical process that takes place via a threenany of these experiments the down-converted beams are
wave interactiorf1]. A coherent light wave entering a non- split and recombined with the help of beam splitters in a
linear optical medium results in the generation of two lightvariety of interferometric configuratiorigt,11,13,14,18,22—
waves of longer wavelengths; conservation of energy andg).
momentum govern the properties of the down-converted A number of these and other papf2§—31] have empha-
waves[2-4]. A standard laboratory source of such nonclas-sized the spatial and spatiotemporal correlations of SPDC
sical light comprises a highly monochromatic pump lasermiphoton beams, and several imaging applications have been
emitting light that is passed through an anisotropic opticabroposed and demonstratg?¥,30,32—3% In those applica-
crystal endowed with a quadratic nonlinear susceptibilitytions where spatial information is transported by optical
x® [5]. By virtue of the conservation principles that govern beams, both diffraction and transverse correlation effects
their creation, the down-converted beams are quantumgovern the resolution.
mechanically correlatef6] and are therefore referred to as  In this paper we demonstrate that the theory of spatial
twin beams. Down-converted photon pairs are also calle@dorrelation of biphoton beams is mathematically analogous
“biphotons,” an appellation first put forth by Klyshkp7].  to the coherence theory of ordinary light sources. Moreover,
Although the down-converted photon pairs are created nearlwe show that biphoton counterparts emerge for such well-
simultaneously8], the marginal photon occurrence times, asknown relationships as the van Cittert—Zernike theorem and,
well as the coincidence occurrences, behave as Poisson pointleed, for the quantum theory of partial coherence
processe§9]. The pairs are said to be entangled because thgt,35,36. Furthermore, because of the similarity of the laws
guantum state that characterizes the biphoton field is nordescribing the propagation of photons and biphotons through
separablg10]. optical systems, the behavior of ordinary incoherent light in
Depending on the configuration of the experiment and thesuch systems has its counterpart for down-converted light.
cut of the crystal, the photon pairs can be entangled in any The mathematicahnalogy between biphoton optics and
number of variables: time, frequency, direction of propagaidts ordinary “single-photon” counterpart becomes obvious
tion, and polarization[11]. Because of their remarkable when the biphoton wave functignepresenting the probabil-
properties, entangled-photon beams have found use in ity amplitude of the two-photon fiejds regarded as the ana-
broad variety of experiments that stretch from the fundamenlog of the second-order coherence function. However, if the
tal to the applied. Studies carried out with twin-photoncomparison is made between the biphoton rate and the pho-
beams range from the examination of quantum paradoxe®n rate in ordinary optics, then the result iglaality much
like the complementarity between single- and two-photon
interference in biphoton optics. This dualifyather than
*Electronic address: besaleh@bu.edu analogy has the following origin: separability of the second-
TURL: http:/Avww.bu.edu/gil order coherence function is associated with phesence of
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coherence and thereby high-visibility ordinary interference Incoherent
fringes whereas separability in the biphoton wave function source . x,
is associated with thabsence of entanglement which results L(x) N, Optical system

in low-visibility biphoton interference fringes h(x,%) *

For purposes of reference and comparison, a brief over-
view of the well-known equations of the theory of partial
coherence for photons is presented in Sec. Il. A simplified FIG. 1. Propagation of light emitted from an incoherent source
version of the corresponding partial-entanglement theory fofrough a linear optical system of impulse response function
biphotons is developed in Sec. IlI, under the restrictions tha(X1,X)-
the nonlinear crystal is thin and that the signal and idler
waves are passed through narrow-band filters so that thed the output planeGM(xy,x,), is related to the second-
emerging beams are quasimonochromatic. The analogy witarder coherence function at the source plaBg)(x,x"), by
guasimonochromatic partial-coherence theory is most obvi-
ous in this regime. 'Temporal and spectral effects on partial G(l)(xl,xz)=f f G&l)(x,x’)h*(xl,x)h(xz,x’)dxd>(.
coherence and partial entanglement, and the effects of source
thickness, are considered in Secs. IV and V, respectively. 2.2
Throughout the paper we consider two elementary optical- i
system constructs: the Fourier transform {(2-system, 1N€ range of the integrals js-c ] throughout, unless oth-

which lies at the heart of Fourier optics, and the imagingE™Wise indicated. For simplicity, we assume thats one
(4-f) system, which serves as a generic linear shift.dimensional; generalization to the two-dimensional case is

invariant system that exhibits diffraction or interference de-Straightforward. If the source field is completely incoherent,

pending on the nature of the aperture. i.e., GH(x,x")=14(x)8(x—x"), wherel(x) is the source
intensity, then,

II. PARTIAL COHERENCE THEORY FOR PHOTONS

(1) _
The theory of optical coherence is well established G (Xl'XZ)_f Ls(0h* (1. )h(0xg x)dx, (2.3

[4,35,36. We provide here an overview of its basic equa-
tions for reference throughout this paper. from which

A. Coherence and separability 1 ~
. . N . G(l)(xl,xz)zﬁf f Is(d1—02)H* (X1,01)
For a quasimonochromatic optical field, coherence in the ™

second order is characterized by the coherence function
G (x1,%) =(E~(x1)E*(x2)), where E*(x) and E~(x)
are the positive- and negative-frequency components of th\?/hereTS(q):fls(x)e“qxdx is the Fourier transform of

electric field operator at the positionin some plane, ang) 1 (x) andH(x,,q) is the Fourier transform dfi(x,,x) with
indicates ensemble averaging. The field is said to be co ';spect to—x b b
pletely coherent iff and only if, thg functio ) (x, ,x;) is Equation(2.3) represents a continuous modal expansion
separable. A partially coherent field can generally be ex

e . similar to that in Eq.(2.1) with the summation index re-
Eggg?riozlseg superposition of coheréseparabl contribu- placed by the variablg, and the eigenvalues, replaced by

the source functiong(x). It follows that each point of the
source creates its own coherent mode. If the source itself is a
GO (X1, %) = ) i@ (X1) @n(X2), (2.1)  single point[l14(x)=8(x)], we have a single mode with a

" separable, and hence completely coherent, field. As the

where the functions,(x) and the parameteys, are appro- source size increases, the number of modes increases, the
¥n P Wn PP “separability” diminishes, and coherence is reduced.

priate eigenfunctions and eigenvalues. A single-mode field is The optical intensity at the output plane,(x,)
separablgcompletely coherent whereas a multimode field PN 2 which is yro ortional to t?}e raFt)e of, hloton
is nonseparabl@artially coherent A completely incoherent - ( L 1)’. proport ot pho
field, for which G (x, ,x,) % 8(X, — X,), is characterized by arrivals, is a linear transformation of the source intensity,
a uniformly weighted superposition of modésqual eigen-
values. |(x1)=J dx Ig(x)|h(xq,x)|2. (2.5

XH(Xz,0,)dg;dqy, (2.4

B. Propagation

Consider quasimonochromatic light emitted from a thin C. van Cittert —Zemnike theorem

planar light source, transmitted through an arbitrary linear For the Fourier-transform optical system depicted in Fig.
optical system, and observed at some observation plane, @), called a 2f system, h(x;,x)ocexd —i2m(X; /A f)X],
illustrated in Fig. 1. Ith(x;,X) is the impulse response func- where \ is the wavelength of the light anflis the focal
tion of the system, then the second-order coherence functidength of the lens. In this case E@®.3) gives
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[\ ixl [(Xq)o* 1+Slco{2w%) , (2.9
x2

which is an interference pattern with visibility

To(A™Y
@ Vine=5= i )
15(0)

t
ﬁx) (\ £x1 The subscript “inc” is used to denote incoherent light.

(2.10

For a light source of uniform intensity confined within an
U L‘ U area of width b, S;=sinc(b/A), where sincK)
f f

=sin(wx)/7x. In the limit of a small sourcef< A), the light

at the slit plane is coherent and the visibili,.= S;—1,

whereas in the opposite limit of a large sourde>A) the

light at the slit is incoherent, and the visibility;,.=S;
FIG. 2. (a) 2-f (Fourier-transformoptical system(b) 4-f (im- —0.

aging optical system with an apertut€¢x) placed in the Fourier

plane. E. Fourth-order coherence function
The coincidence rate of photoevents detected at the posi-
G(”(xl,xz)ocf Is(x)exp< _izwa—Xl)()dX tionsx; andx, is propor:[ional tE) the fqurth—o[der coherence
A function G@(x;,x,)=(E~ (x1)E~(X2)ET (x2) ET (xq)). If
Xo— X the incoherent light is thermaivhich used to be referred to
=TS( 2 2 1), (2.6) as chaotig, the rate of photon coincidences is related to the
A second-order coherence function by the Siegert rel48a@h
wherel ((q) is the Fourier transform df,(x). Equation(2.6) G (X1,%2) =G (x1,x1) GV (X5, %p) + |G (x1,%5) |2,
is known as the van Cittert—Zernike theorem and is the basis (2.11
of a well-known technique for measurement of the angular
diameters of starp4]. where the subscript “th” is used to denote incoherent ther-
mal light. This equation is the basis of the Hanbury-Brown—
D. Diffraction and interference Twiss effect[4,35]. A fundamental difficulty in observing

) this effect is the small relative magnitude of the second term
_ Fora 44 system with an aperturgx) placed at the Fou-  on the right-hand side of E¢2.11) when the coherence time
rier plane, as illustrated in Fig.(d), the impulse response of the detected field is much smaller than the detection time
function is h(x;,x)T[27(x—x1)/Af] where T(q) is the interval. As will be shown in Sec. IV, this term then turns out
Fourier transform of(x), and the axes at the output plane to be multiplied by a small factdthe ratio of the two times
are inverted with respect to the input plane, so thatB@) 5o that it becomes difficult to observe in the presence of an

yields undiminished first termi37].
X N It is therefore useful to define an excess fourth-order co-
G(D(Xl,Xz)“f |s(x)T*(27-r X 1>-|— ZWTZ>dX. herence function
(2.7 AGP(x1,%) =G (x1,%2) — G (x1,%1) G (X5,X5).
For a point sourcel ¢(x)«&(x), the coherence function (2.12

G(l)(Xl,Xz)O‘T*(—277)(1'/)\1c )T(=2mx /1) is separ?ple, This function vanishes if the photons arrive independently at
and the corresponding intensityx,) = |T(—2mx, /A f)[?is  x, andx,, as is the case for a coherent field. For a thermal

the diffraction pattern created by the apertt{®) when il-  source, Eq(2.12 becomes
luminated by a coherent source.
For a double-slit aperture with slits separated by a dis- AGP(x1,%) =|GM (xq,%)|2. (2.13

Ill. PARTIAL ENTANGLEMENT THEORY
FOR BIPHOTONS

G(l)(xl 1X2)OC

1

tancea, t(x) = 6(x—al2)+ §(x+al2), and Eq.(2.7) gives
S cos{ lezxz) +c05< wxlez)
(2.8 We now consider light generated by spontaneous para-
_ _ ) _ metric down-conversion from a thin planar nonlinear crystal
whereA =\/6 is the fringe periodf=a/f is the angle sub-  and examine its transmission through the same systems de-
tended by the pinholes, arj=14(1/A)/14(0). Thecorre- scribed in Sec. Il. Here, the light is generated in the form of
sponding intensity (x;)=G™M(x;,x,) is photon pairs, denoted as the signal and idler, emitted from a
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common position within the nonlinear crystal. Although the Pump

direction of each photon of a pair is random, it is highly E,(x) Signalsystem | Vg D1

correlated with the direction of its twin by virtue of conser- hy(x;,x) G(x,x,)

vation of momentum. P —— v
hGox) | 2 NDe

A. Entanglement and separability

NLC
The two-photon field is characterized by the st@ite¢ or y )
: _ L. . FIG. 3. Biphotons generated in a nonlinear crystdLC) are
the  wave . function ¢(x,%) =(0,0E (XZ).E ().(l)m,)’ transmitted through a pair of linear optical systems and detected by
where|0,0) is the vacuum state. The state is said to be en-° >
. . . . a coincidence counter.
tangled if the function(x4,X,) is not separable. Using a
modal expansion similar to that in EQ.1), this function

may be written as a superposition of separable functions, Expanding each of the three spatial functions in the integrand

in terms of its Fourier transform, we write E(.4) in the
form

:,//(xl,xz):; Mailin(X1) Yan(Xa). (3.)

The single-mode case corresponds to a separaideen- ‘p(xl*XZ)“f f Ep(dstdi)Hs(X1,0s)Hi(X2,0;)dags dg;
tangled state, while the multimode case describes a partially (3.5
entangled state. The indexmay represent the frequency,

wave vector, or polarization of the mode. The probability, e
of coincidence of photons at the positions; and
X2, G (x1,%2) =(W|E1 (x1) E; (X2) E5 (X2) Ef (X)| W), is
simply the square magnitude of the two-photon wave func
tion:

p(a) is the Fourier transform dE(x), Hs(X1,0s) is
the Fourier transform ohg(x;,x) with respect to—x, and

Hi(X,,q;) is similarly defined. The functiorﬁp(q) is the
amplitude of a pump plane-wave component traveling in a
direction corresponding to the spatial frequermgyt is evi-

2 _ 2 dent from Eq.(3.5 that the signal and idler plane waves,
Gx1,x2) =|9(x1,%2) [ @32 Lith spatial frequenciegs andg;, are coupled to the pump

The marginal rate of single-photon arriv&@)(x, ,x,) may  Plane-wave component with spatial frequengy qs+a;,

be obtained by integratinG®(x ,x,) with respect tox,.  indicating conservation of momentum in the transverse di-
As in Eq.(2.12), it is useful to define the excess fourth-order '€ction. Since the nonlinear crystal is assumed to be thin,
coherence functiolexcess biphoton rate momentum conservation in the longitudinal direction is not

invoked. This limitation will be removed in Sec. V.
AG(Z)(Xl,Xz):G(z)(Xl,Xz)_G(l)(xlyxl)G(l)(Xzyxz),

(3.3 C. Comparison between incoherent thermal and SPDC light
which is the coincidence rate in excess of that expected if the For an ordinary incoherent light source the second-order
particles were independefinentangleg coherence functio® (x4 ,x,) is given by Eq.(2.3), while

for SPDC light the biphoton wave functiog(x,,x,) is
B. Propagation given by Eq.(3.4). The similarity between these two equa-

Consider SPDC light emitted from a planar thin nonlineartions iS striking. In this analogy, the puniield E,(x) plays
the role of the sourcentensity k(x), and, except for a con-

crystal (NLC) illuminated by a pump beam with transverse ' ; > . :
electric-field distributiorE (). The emitted signal and idler 4gation operation in the incoherent cd®. (2.3, the im-

beams are transmitted through separate optical systems, wiBi/Se response functions of the optical systems play similar

impulse response functiorg(x,x) andh;(x,,x), and are roles. If the incoherent source is thermal, then in view of the
[} i ) [l . . . . .

detected by detectof®,; andD,, respectively. The arrival of S'e%;;rt relation, t(?)e excess coincidence f&tq. (2.13] is

the photon pair at positions, andx, in the output plane is G’ (X1.X2) =[G™(x1,Xz)|*, whereas in the SPDC case,

observed by measuring the coincidence réte biphoton th(ez) photon  coincidence ~rate [Eq. (3.2] is

rate G(x, ,x,). The system is illustrated schematically in G'*'(X1.X2) =|#/(X1.,Xz)|*. The fourth-order coherence func-

Fig. 3. tion for a thermal source is therefore distinguished only by a
It can be showr(see the Appendixthat the two-photon Packground term, which typically dominates H@.11) as
wave function is given by discussed earlier. This background term is absent in the bi-

photon case, as has been recognized by Belinsky and Kly-
shko[26]. In view of this, we conclude that every conven-
¢’(X1’X2)°°j Ep()hs(xq,x)hi(xz,x)dx. (34 tional system making use of thermal light has an analogous
biphoton system.
A special case of this formula when the signal and idler Another perspective for comparing the two light sources
systems comprise free-space propagation was developed piis-to regard the biphoton rate in the SPDC cHzgs. (3.2
viously [38]. The physics underlying Ed3.4) may be elu- and(3.4)] as the dual to the single-photon rate in the inco-
cidated in the Fourier-transform domgmomentum spage  herent cas¢Eq. (2.5]. From this perspective, the effect of
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the spatial distribution of the sourdg(x) in the incoherent is the Fourier transform df(x) and\ is the wavelength of
case is opposite that of the pump spatial distribuig(x) in  the signal/idler wave. In this case E@.4) provides

the biphoton case. It is immediately evident from E2.5)

that the smaller the width of the incoherent sourge), the X=Xy X=Xz
more ‘“coherent” is the emitted light; indeed when the w(xl’XZ)xf EP(X)T(ZW A )T<2W 9%

source is reduced to a point, the emitted light is completely (3.7
coherent and its second-order coherence function at any lo-

cation within the system is separaljles can also be seen which is analogous to Ed2.7) in the incoherent case.

from Eq.(2.3)]. Therefore, if two slits are placed within the ~ For a narrow pump beam centered @t0, Ey(x)
system, the resultant Young’s interference fringes will havex §(x), and the biphoton rate5(®(x;,x,)=|¢(X;,X5)|?
high visibility. In contrast, it is evident from Eq3.4) that  o|T[27(—x,)/Nf]|2|T[27(—X,)/\f]|? is separable. The
the wider the pump bear,(x) in the biphoton case, the light is then unentangled and the biphot@eincidencg dif-
more “entangled” are the emitted signal and idler photons.fraction pattern is the product of the single-photon diffrac-
If the pump beam is reduced to a point, the wave functiortion patterns, i.e. AG®)(x;,x,)=0. In the opposite limit of
#(x1,%,) factors, and the emitted light is unentangled; thea uniform pump, E(x)=const, G®(x;,x,)*|T[2m(x,
visibility of biphoton (fourth-ordej interference fringegvis-  —x;)/\f]|?, where7(q) is the Fourier transform of(x)t
ibility as a function ofx; —x;) then vanishes. A quantitative (—x). This is the fully entangled case, which represents true
derivation of this effect is provided later in this section, andbiphoton diffraction.

several examples highlighting the duality are provided.

F. Biphoton interference
D. Biphoton van Cittert —Zernike theorem . .
) ] For a degenerate SPDC source with a pair df gystems,
If each of the signal and idler systems separately cOMaach incorporating a double-slit aperturex) = 5(x— a/2)
prises a 2t optical system, as illustrated in Fig.(&, 4 5(x+a/2), Egs.(3.7) and(3.2) give
then hg(xq,X)cexp(—i27(x1X)/Agf) and h;j(x5,x)

cexp(—i2m(X,x)/\; f), so that Eqs(3.4) and(3.2) provide @ 1 X1+ Xo
G(X1.X) = 572 72| S2c08 ™
2 2 2A 1+S5 A
GO (xg xp) | By o | 24 22 (3.6
a2 PLf N N/ ' 5( xl—x2> 2
+Co WT

whereEp(q) is the Fourier transform oE,(x). This equa- 1 X4 X
tion is the biphoton version of the classical van Cittert— =—2[ — Sﬁcos{Zw 172
Zernike theorem, Eq(2.6). 4A 1+S; A

There are distinctions between the two theorems. The Xi— X X
pump field in the biphoton case plays the role of the source +cos( 2 1A 2) +2S, cos(ZWXI)
intensity in the incoherent case. The pump field is, of course,

a complex function whose phase may introduce interesting X,
effects that are not present in the incoherent case. Moreover, +2S, cos( ZWK)
in the biphoton case, the argument of the Fourier transform is

proportional to &i/Ng+X5/\;) instead of & /N—X5/\).

For example, if the source is of uniform intensity and of WhereA=»\/@ is the fringe periodg=a/f is the angle sub-
width b, then in the incoherent cagg®(x,,x,) is a sinc  tended by the pinholes, ar®}=E (A ~*)/E,(0). Thefunc-
function of widthAf/b centered ak,=Xx;. In the biphoton tion G®)(x;,x,) in Eq. (3.8) was normalized such that its
case, for a uniform pump beam of widthtraveling in the integral with respect ta; andx, over the interval from 0 to
longitudinal direction, and assuming thei=\;=\, the bi- 2A is 1. Since the photons are indistinguishable, the prob-
photon rateG®)(x,,x,) is a siné function of width A f/b ability that the pair is found anywhere withjf,2A ] is unity.
centered atx,=—Xx;, where sinck)=sin(mx)/zx. If the The marginal signafor idler) photon rate associated with
pump beam is tilted by a small angl i.e., if E,(x) is the joint signal-idler rate in Eq(3.8) may be obtained by
modified by a phase factor @\,) 9x=(2m/\)(26)x, then  integratingG*)(x; ,x,) with respect tox, (or x;) over the

the Fourier transform is shifted so that its peak is centered dnterval 0 to 2\, yielding

X,=—X,+26f. The fact that the angular spectrum of the

: (3.9

pump beam is represented in the biphoton rate is an impor- D 1 2S, X1
tant feature of the biphoton proce29,3(. G (X1 x)=5x| 1+ _214-8200 2w (39
E. Biphoton diffraction A similar expression foiG™(x,,x,) is obtained. The vis-
If each of the signal and idler beams separately comprise'g’IIIty of this interference pattern is
a 4-f system with an aperturgx), then, in the degenerate 5
case,hy(x1,X)=h;(x,X) = T[27(x—x,)/\ f], where T(q) V1=2|S,|/(1+S). (3.10
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When the pump beam has a uniform distribution that is
confined to an aperture of width, S,=sinc(b/A). For a
pump beam of large widthb& A), S,—0, and

Xl_
A

XZ”, (3.11)

(2) 1
G (Xl,XZ):W 1+cog 2w

which is a fourth-order interference pattern of unity visibil-
ity. This corresponds to the fully entangled limit. In the op-
posite limit of a pump beam of narrow widttb&A), S,
—1, whereupon the biphoton rate becomes

1+cos( 1+cos<
(3.12

1 X1 Xo
G (x1,%)= In2 2m 27+

PHYSICAL REVIEW A62 043816

Visibility V12
Visibility Va2

i1 1. Il 0 1
04 06 08 02
Visibility V4

0 I
02

(;.4 0{6 OI.B
Visibility Vine
FIG. 4. (a) Visibility V4, of pure biphoton fringes versus vis-

ibility V, of marginal single-photon fringes in an interference ex-
periment using light emitted by spontaneous parametric down-
conversion. (b) Visibility V,, of pure biphoton fringes in an
interference experiment using light emitted by spontaneous para-
metric down-conversion, versus visibility;,. of single photons in

an equivalent interference experiment using a conventional incoher-

which is a separable function. In this case, each of the emitgnt light source.
ted photons passes through its own slits independently and

forms its own interference pattefwith unity visibility).

In the general case, we can compute the “true” biphoton
interference by determining the excess coincidence rate

AG@(x,,x,) defined by Eq(3.3). It turns out[39] that this
subtraction also removes a constant background of3/4
which must be added to obtain the “corrected” rate
AGP)(xy,%,)=AGP@(x,,x,) + 1/4A?. Using Eqs(3.8) and

(3.9 we obtain
X1 . X2
ZWK) sm( ZWX)
X1 X2
27TX COS( ZWK)

[ 1
AG (% %)= 737

A 1+V125in(

+V2, cos(

X1— Xz

A

|

|

1
= 7x2| 1+ 5 (Vaot viz)cos( 2

X1+
A

X2

1 2
- E(Vlz—Vlz)CO 2

where

Vv 1-S;
1271+

This is a fringe pattern with visibility}/1,. The visibilities of
the marginal single-photon and pure biphoton patte¥is,

(3.19

1-V3,
V=12

inc

(3.19

As illustrated in Fig. 4b), this monotonically decreasing re-
lation is not unlike that betweeyi;, andV;.

IV. TEMPORAL AND SPECTRAL EFFECTS IN PARTIAL
COHERENCE AND PARTIAL ENTANGLEMENT

The analogy between the entanglement properties of light
emitted from a SPDC source and the properties of light emit-
ted from an incoherent source can be extended to include
temporal/spectral effects and is therefore also applicable for
nonmonochromatic light. We begin with a brief overview of
conventional coherence theory for polychromatic light and
then establish the equivalent polychromatic biphoton en-
tanglement theory. The thin-source assumption is retained in
this section.

A. Coherence theory for polychromatic incoherent sources

The coherence properties of polychromatic stationary
light are described by a second-order coherence function of
the form[4,35,39

G(l)(xl,tl;xz,t2)=f GV (xy, %y w)e 1 @tim)d gy,
@.1)

and Vi, respectively, are related by the complementaritywhere G()(x,,x,;w) is the spectral coherence function. If

relation

Vi+Vi=1, (3.15
which is sketched in Fig.(4). This relation was first noted in
Ref. [39].

If we now compare the visibility of biphoton fringes with
the visibility of single-photon fringesV,,. created by an

equivalent ordinary incoherent source of the same source dis- ~

tribution, so that the paramete&=S,, we find that the
visibilities are related by

the light is generated from a spatially incoherent stationary
planar source with spectral coherence function
Gl (x,x";0)=14(X;0) 8(x—X"), (4.2)

transmitted through a linear system with impulse response
function h(x;,x; w) at the angular frequenay, then

(1)(X11X2;‘U):J | s(X; @)h* (X1,X; @)(Xo,X; @) dX.
4.3

G
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This relation may also be written in the form, is related to the wave function (Xq,t1;X5,t5)
=(0,0E; (Xp,t2) E7 (x1,t1)[¥) by

~ 1 ~
(1) ‘)= .- * .
G gy f f (027 Aa )T 0 G ) G2 (xy,ty;%0, ) =[Y(xe t1i %2, t2)[% (410

XH(Xz,0z;0)dd; dqy, (4.4 where(as is shown in the Appendix
where H(X;,0; ) is the Fourier transform oh(x;,X;w) ‘ _ 5
with respect to the variable, andT4(q;w) is the Fourier lﬂ(Xl,tl;Xz,tz):e_""ptZJ e sy (xy %) wg) dwg
transform ofl ((X; w). The intensity of the transmitted light is (4.11
I(x)= J GY(x,x; 0)dw. (4.5 and

If the incoherent source is thermal, the rate of coincidence ¢(X1aX2?ws)°‘f Ep(X)hs(X1, X wg)hi(X2,X; 0p— wg)dX.
of a photon at X, ,t;) and another atx;,t,) is given by the (4.12
Siegert relation
Equation(4.12) is identical to Eq.(3.4), with the spectral
G (X1,t11%2,t2) = 1 (X)) (X2) +|GM (X, ty X0, 1) [2. dependence now explicitly identified. In the spatial Fourier
(4.6 domain Eq.(4.12 takes the form

If this rate is measured with detectors of resolution time 5 _
serving as integrators, then the rate of two-photon coinci- z//(xl,xz;ws)ocf f Ep(dstdi)Hs(X1,0s; 05)
dence in the interval is

1 (T[T XHi(XZaQi;wp_ws)dqsina (4.13
o« (2) .

CnlXe Xz)> 7 fo fo G (X1 taixz o)Aty dtz. (4.7 which is identical to Eq(3.5. Here, E,(q) is the Fourier

transform ofE,(X), Hg(X1,ds;ws) is the Fourier transform

of hy(Xq,X; ws) with respect to the variablg, and a similar

1 relation applies to the idler system.

Cin(X1,%2) 1 (X)) 1 (Xp) + =5 If the biphoton rate is measured with detectors that are not

T sufficiently fast to record the exact times of arrival of the
Tt photon pair, then the respon&&x,,Xx,) is given by Eq.
Xf f |G (Xq,t1;%5,15)|2dt; dt,. (4.7). In the limit of largeT (in comparison with the inverse
070 of the spectral bandwidth of the signal/idler sysjesubsti-
(4.9 tution of Eqg.(4.1) into Egs.(4.10 and(4.7) leads to

Substituting from Eq(4.6),

Using Eq.(4.1) and assuming thak is much greater than the |~ ) 2
inverse of the spectral bandwidth of the light, Clx1.Xo)= | [9(X1,Xz;09)|*das. (4.14
11 = . . .
Cin(X1,X2) <1 (Xq)1(X5) + ?f |GV (X1,%0;0)|*dw. C. Equivalence of formulations for polychromatic

incoherent and SPDC sources
(4.9

Comparing Eqs(4.3) and(4.12), we see that the spectral
Myvave function ¥(x;,%»;ws), in the SPDC case, and the

spectral coherence functioB™(x;,X,;w) in the conven-
tional case, have the same dependence on the source and the
propagation systems, and therefore exhibit similar behavior.
Comparing Eqgs(4.5) and(4.14), we see that in the conven-

We now consider SPDC emission from a thin nonlineartional case the photon ratéx) is the spectral integral of the
crystal illuminated by a monochromatic pump beam of an-spectral coherence function, while in the SPDC case the bi-
gular frequencyw, and amplitudeE(x). The emitted signal photon rateC(xy,x,) is the spectral integral of the squared
and idler beams are assumed to travel through separate ling@@agnitude of the spectral wave function. On the other hand,
systems with spatial impulse response functibg,,x;w)  comparing Eq(4.9) with Eq. (4.14) reveals that the biphoton
andh;(x,,x;w), respectively. The biphoton rate at positions (coincidencg rate is free from the large background term

It can be shown that the ratio of the second to the first ter
in Eq. (4.9) is of the order of TQ) ~ whereQ is the spectral
width. ForT>1/Q), this is a small number.

B. Entanglement theory for polychromatic biphoton sources

X, andx, at timest; andt,, that is present in the conventional thermal rate.
We now proceed to examine the spectral effects for the
GP(x1,t1:X0,t5) same optical systems considered in Secs. Il and Ill. In mak-

. . . . ing this comparison, we assume that the spectral distribution
=(V|Eq (X1,t1)E; (X2,12) E5 (X2, 1) Eq (X1,1)[ W),  of the incoherent source is uniform within a bandwidbh
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centered about a central frequeney, i.e., I(X;w)=1s(X)  «QT(0), which is independent of position. Likewise the rate

for |o—wo|<Q/2, and zero otherwise. Likewise, in the bi- of accidental arrival of photon pairs at the same point, as
photon case, while the pump is assumed to be monochrgven by Eq.(4.9), is independent of position. In contrast, the

matic at frequencyw,, the signal and idler components of rate of arrival of photon pairs at two different positions, as
the emitted biphoton, which are generally broadband, argerived from Eq(4.8), is (assuming the incoherent source is

assumed to be passed through filters with uniform transmittherma)

tance of width() centered about the degenerate frequency
wo=w,/2.

1
Cin(X1,X0)*x 1+ 5=

D. Polychromatic photon and biphoton QT

van Cittert —Zernike theorems

) o . 1 [@ot02_ (@ X,—Xy _ 2
For the 2f system illustrated in Fig.(2), assuming that X ﬁf Il = - 15(0)] dw]|.
the lens and the detection system are achromatic, we have wo— /2 c
h(xy,X; ©) =hg(Xq,X; @) =hi(X1,X; @) < exp(—iwxx/cf). In (4.19

the incoherent case, E¢t.3) gives

Xo2—Xq
f

|0 — wo| < Q2 The result is a spectrally averaged version of the van Cittert—
’ o= Zernike distribution multiplied by the small factor(T and
(4.15 added to a large background term.

~ -~ | ®
G(l)(xl,xz;w)fxls(z

while in the biphoton case E@4.12) gives
E. Polychromatic photon and biphoton diffraction

We now consider a 4-system, as illustrated in Fig(12,
with Fourier-plane aperture of frequency-independent
_ transmittance t(x), so that h(xy,x;o)=hs(X{,X; )
=Ep(— + ) =h;(X,,X;0) =T[(w/c)(Xx—X,)/f] whereT(q) is the Fou-
rier transform oft(x). In this case,

|ws— wo|<Q/2. (4.19

w x—xl)
c f

. . . . G(D(lexziw)“f ls(x)T*
The essential equivalence between the conventional and bi-
photon sources is evident in Ed4.15 and(4.16). There are
i

w X2 .
Faa dx (incoherent,

differences, however. Whereas the spectral coherence func- :

tion GM(x,,X,;w) in the conventional case is homogeneous

(a function ofx; —X,), ¥(X;,X,; ws) is generally not homo- (4.20

geneous. Only the degenerate frequency componant

= wq corresponds to a wave function that is dependent on

X1+ X5, but not onx; —X,. TXr X' OCJ E (x T(
At points for whichx;=x, the spectral wave function is Y Xai0) pX)

independent of frequencgwithin the filter bandwidth so

that the two-photon coincidence rate for photons arriving at xT

the same position is given by

E.l 2 X
PLETNGE

w X_Xl
c f

wp—w X_X2

f

)dx (biphoton.

2 B (4.2
sinc’-(tl tz),

G (x,t1;X,tp)xQ?
Tc

(4.17  These expressions may be used to determine the biphoton
. . . ratesG(® andC.
where 7.=27/Q. This function has a half width at half In the limit of a narrow source or narrow pump beam, Eq.

maximum oft; —t,=0.447¢, so thatr, is a measure of the 4 50 (with the additional assumption that the incoherent
entanglement time. The rate of arrival of photon pairs at thesource is thermal and Eq.(4.21) lead to

same position is obtained by use of £4.14),

Cixx) 2B | 22 i 4.18 1 w Xy |2
' Ploef )| - ' Cth(Xl-Xz)‘Xl"'ij(_——
c f
This is proportional to the ordinary diffraction pattern of ® X5\ |2
monochromatic coherent light at the pump frequency. X|T| — < T) dw (incoherent thermal
In a similar setup using an incoherent source, the rate of
arrival of single photons, obtained from E@.5), is 1(x) (4.22
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” x1 G®)(x4,t;%,,1) in Eq. (4.25 increases slightly from 0.2
C(X1,Xp) -= to 0.26¢, as p increases from 0 to 0.3. The function
C(x1,X,) has approximately the same width as
G (xq,t;%5,1).

2
dw (biphoton.

4.2

.23 In the special case of a two-slit aperturgx)= 5(x
Note that that neither of these two functions is separable-a/2)+ §(x+a/2), the previous equations may be used to
although the source is a point. This is because the polychradetermine expressions for the interference pattern. In the bi-
matic source introduces spectral modes that reduce the sepshoton case,
rability (coherence/entanglement

In the opposite limit of an extended source, say a uniform 1

source |l ¢(x) =1y andEy(x) =E,, the coherence function of 32
the incoherent source and the wave function of the biphoton
source are least separable. As an example, suppose that all N n 5 X177 X3
apertures are slits of widtlD, so thatt(x)=rect(x/D), p- (X +xp)C08 27 —¢
where rectk) is a symmetric rectangular function of unity

F. Polychromatic photon and biphoton interference

X1+ X,
5| Sous (X — Xz)CO% 2@ A

C(Xl X2)°<1+

width. In this case, for the biphoton source, 232 ,u(xl)cos< _)
g A
t —
G<2>(x,tl;x,t2):460[(1—p)sinc< ! 2) X
e + u(X5)co 27TX , (4.28
p . (it
‘55'”8( 27¢ ” ’ 428 \heres,=E,(2m/A)/[ 7™ ,[Eq(a)|2dq]¥2 and
@y t: p\® (x)=sind p—
G (Xlrt’XZ!t)_4 1_5 M+ PA '
X1—X p
X Gy sin@| (2— p) =2 127 5 AlEp(@) 2 dq
X m-(X)=
) |72l Ep(a)|*da]
. —X2 4.2
XSIHCZ(p . ) (425) fpﬂ'/A/AE (q)eindq ( 9)
_ _J—pmiaEp
i px)=—"1% B (q)|2dq]*?
where Gy=167 O/X Tc, p=Qlwy, T=2mQ, X —pmiAlEpld q

=4\ F*=2\oF*, andF*=f/D is theF number of the lens.
The parametelxc is the resolution of a diffraction-limited
incoherent optical system at the degenerate frequengcy
For p<1, i.e., if a narrow filter centered at the degenerat
frequency is used, and in the limit=1,

Here, as beforeA =2mc/wga6=N\y/0 is the period of the
interference patterng=a/f is the angle subtended by the
eplnholes anp = Q/wq is the normalized spectral width. In
the narrow-band limit,p—0, u,.(X)=u_(X)=un(x)=1,
and Eq.(4.28 reproduces Eq3.8).

In the incoherent case, the single-photon interference pat-

t,—t ,
G<2>(x,tl;x,t2)=4Gosinc2( ! 2), p<1 tern is
Cc
X
=Gosin(f‘(t1_t2> b=1. (426 () 1+Mmc<x>slcos(2wx+<p), (430
27 )’ ' ’
%, whereS;=T¢(A ~1)/T40) and
G<2>(x,t1;x2,t)=4eosinc2(2 ) p<l
¢ A 20A~Y14p2) 14(Q) A
Xq— X :lenc(x)_ f . 8 Ns—le'qxdq ,
=Gy sinc| — 2), p=1. (4.27 27p | J2mA 102 T (27 A
. (4.31)

The temporal widththalf width at half maximum valdeof  and ¢ is a phase factor of no consequence. In the limit
the function G@(x,t;;x,t,) in Eq. (4.24 is 0.44r, for a  —0, uin(X)=1, so that Eq(4.30 reproduces Eq(2.9). In
small spectral width 4<1), and decreases slightly with in- general, the interference pattern in E4.30 has a visibility
crease ofp, reaching a value of 0.42 for p=0.3. The spa-  Vj,.=S;uind(X), which has a maximum valu¥,,=S, at
tial width (half width at half maximum valueof the function  x=0.
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1 < 1 GM(x,z,x",7";0)=14X,Z;0) S(x—x")8(z—Z").

(5.

o
@
T
1
o
@

o
>

The emitted light is transmitted through a linear system and
is observed at points at the plamed>0. Propagation be-
tween a transverse plaaavithin the source {1<z<0) and

the observation plane=d is described by an impulse re-

o
=
T

Visibility V12

b~
I
(=)
Visibility Va2

o
(Y]
T
o
o

0 oz o4 05 08 0 02 04 06 08 sponse functionh,(x;,X;w) at the angular frequencw,

0 L L 0 L

Visibility V4 isibility V4 : : o . .
1 Vistoilty Vine where(x,2 is a point within the source and{,d) is a point
FIG. 5. (a) Visibility V,, of pure biphoton fringes versus vis- N the observation plane. Under these condmon; the second-
ibility V; of marginal single-photon fringes in a SPDC interferenceorder spectral coherence function at two points in the obser-
experiment.(b) Visibility V,, of pure biphoton fringes in a SPDC Vvation plane is
interference experiment versus visibil¥4,. of single photons gen-

erated by an equivalent incoherent source. The pararpatethe _
normalized spectral width of the source. G(l)(xl,xz;w)zf f Is(X,Z; @)h3 (X1,X; @)
We have computed the two-photon and single-photon vis- X h,(X5,X;w)dx dz (5.2

ibilities, V4, and V,, respectively, for the biphoton source,
and the visibility V;,,. for the e_quwalent mcohgrent source, . systemh, may be segmented as the cascade of a
and plotted the complementarity and the duality relations forS stem describing bropadation between the planethin

a few values of the normalized spectral wigthThe results y g propag P

are exhibited in Fig. 5, which is the generalization of Fig. 4the source and the frontal plr_:me of the so_urzer@), fol-
lowed by a system describing propagation between the

for finite spectra width. source frontal plane and the observation plane. If these sys-
It is of interest to observe that the single complementarity P b ) y

relationship Eq.(3.15 that governs the visibilites of the °MS Mave Impulse response f“”Cti‘t’)hé.(Xléx;‘”) and
marginal single-photon and pure biphoton patterns is validq(xl'x'w);_ fesge‘it"’? Y, V‘fe_ may substitut Z(Xl‘?('w)
only for monochromatic SPDC lighFig. 5a), p=0]. =Jh(x,x";@)h(x",x;w)dx" into Eq. (5.2) and obtain

V. EFFECT OF SOURCE THICKNESS ON PARTIAL é(l)(xl’xz-w): f f (X' X" w)h* (X, X" @)
COHERENCE AND PARTIAL ENTANGLEMENT

The analogy between the SPDC biphoton source and the X h(xz,X"; w)dX dx", (5.3

conventional incoherent source is also applicable to thick

sources, but the nature of the equivalence is somewhat difyhere

ferent. We begin with a brief overview of conventional co-

herence theory for a thick incoherent source and then estab-

lish the equivalence with SPDC light generated from a thick TS(X’,X";w)Zf j l(X,Z;0)hS* (X', X; @)
nonlinear crystal.

Xh3(x",X;w)dx dz (5.9
A. Coherence theory for thick polychromatic
incoherent sources Equation(5.3) describes the propagation of partially coher-
A thick source extending between the transverse planesnt light with spectral coherence functidiy(x,x’;w) be-
z=—1 andz=0 [see Fig. 6a)] emits incoherently at a pho- tween the planeg=0 andz=d.
ton rate corresponding to the spectral denkifx,z; ). The It follows that a thick incoherent source may be replaced

emissions from any two pointx,2 and ’,z’) are uncor-  with an equivalent partially coherent thin planar source. This
related so that the second-order spectral coherence functias not surprising since partial coherence is acquired as a re-

is sult of propagation of light emitted incoherently within the
Incoherent  x I(x) ALE X
source i 1
® Slg}r:az;yit)em G(x,,x,) FIG. 6. (a) Light emitted from
I Optical system (x.2) R 2 e a thick incoherent source transmit-
(%2 o g x Idler system ted through an optical systertb)
(%2 s\ X, h(x,x) | x SPDC light emitted from a thick
‘ i crystal transmitted through signal
-/ 0 d z 7 o d Z and idler systems.
(@ ®)
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source to the frontal plane of the source. Equat@B) may playing the role of the source coherence function
also be translated to the spatial Fourier domain, I's(x',X"; w). It follows that SPDC light generated by a thick
crystal is similar to partially coherent light emitted by a pla-

WXy Xy 0) J J (- w)H* (X ) nar surface, or incoherent light emitted by a thick source.
Loz s 701,02 101 In the special case of a uniform pump of unity amplitude,
Eq. (5.8 simplifies to
XH(Xz,02;0)dq; dgs, (5.9

where T«(q;,q,; @) is the two-dimensional Fourier trans- F(X,'X"?“’s):J XX XX 0 dx=y(X' = X" ws),
form of I'y(x’ ,X"; ®). (5.11

B. Entanglement theory for thick polychromatic where y(x,w¢) is the inverse Fourier transform df(q.,

biphoton sources —(s;wg). In this case, the source function is homogeneous,

as expected for a uniform pump and a crystal of infinite
transverse spatial extent. The functigfix; wg) is entirely
determined by the thickness and dispersive properties of the
nonlinear crystal at the signal and idler frequencies.

We now consider spontaneous parametric down
conversion from a thick crystal of width pumped by a
monochromatic beam of angular frequenoy and ampli-
tude E,(x), as illustrated in Fig. @). The signal and idler
beams are transmitted through linear systems of impulse re-

sponse functiondig(x;,X;w) and h;(x,,X; ), respectively, C. van Cittert-Zernike theorems for thick polychromatic
at the angular frequenay. It is shown in the Appendix that photon and biphoton sources
the spectral wave function at the output of these systénes For the 2f system shown in Fig. (@), Hy(X;,q;)
observation planeis given by =H,(x1,q; ®)cd[q— (w/c)(x,/f)] so that Eq.(5.7) gives
(X1, X0 0)= r(x’',x" (X1, X" 0) WsX1  @pT WsXo
P(Xq Xz 0 so)hs(xy, X" @ V(Xq Xos 00 Ep| — = + 72
S c f c f
X hi(Xg,X"; 0p— @)dX dX’ (5.6 W5X1 wp— 05 Xp | 512
or cf' ¢ 9 ™
~ 1 Equation(5.12) is a generalization of Eq4.16). The bipho-
(X1, X2 @)= mj j A(Qs,0i;@)Hs(X1,0s; @) ton rate is determined from E¢56.12) by use of Eqs(4.10
and (4.11) or (4.14). Here, the spatial Fourier transform of
XHi(X2,0i;0p— w)dgsdq;, (5.7 the pump distribution, which appears in the previously de-

. ) rived biphoton van Cittert—Zernike theorem, is multiplied by
whereH(x,,qs; ) is the Fourier transform dfis(x,,X;w) 4 factor{ representing the degree of phase matching permit-
W|th respect to the Val’lab|&, and S|m|lar|y fOI’ the |d|er ted by the thickness of the nonlinear CrystaL
system. The kernel$ and A in Egs. (5.6) and (5.7) are

related to the pump distribution by D. Biphoton diffraction for a thick polychromatic biphoton

source

F(X/’X";“’s):f Ep(){(x+x" x+x" wg)dx (5.8 If the signal and idler systems aref4systems with aper-

tures of frequency-independent transmittandgls) and

and ti(x) placed in the Fourier plane, as shown in Figb)2
~ _ then Hy(x,q;0)xe” "%t (cf/lw)q] and H;(x,q;w)
A(Qs, i ;0) =Ep(gs+di){(ds,q; s @), (5.9 ce” X[ (cflw)q], so that
where

’lZ(Xl,XZ;wS)“f f e_i(stl*'Qin)Z’(qs'qi;ws)Ep(qS—{-qi)

cf cf
sw_sqs t; W, — W

- | |
§(qs,qi;ws)=lsinc(—Ar>exp(—j—Ar) (5.10
o ’ wqi>dQSin- (5.13

with Ar=r,—rs—r; andr = n?(w)w?/c?—q? The quan-
tity §(qs,q|,ws) is related to the crystal parameters andFor a uniform pump
{(X",X";wg) Is its inverse Fourier transform. Using the above
expression for the spectral wave function, the wave function
¥(Xq,t1,%5,15) and the biphoton rateC(xq,X,) may be
readily determined by the use of Ed4.11) and (4.14).

The structure of Eq(5.6) is identical to that for partially %
coherent imaging, Eq5.3), with the functionl' (x’,X"; ws)

Y(Xq Xg; 08) f e 19 (qg, — s wo)ts

cf —cf
Us ti —w ds dqs- (5-14)
p s
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We have evaluated the integral in E§.14) numerically and
used Egs(4.11) and (4.10 to determine the biphoton rate
G®@(x,t;,x,t,) as a function of the time separatiop—t,,
and the rateC(x4,x,) of Eq. (4.14 as a function of the
spatial separatiorx;—x, for 4-f signal and idler systems
with aperture functionstg(x)=t;(x) =rect(x/D), corre-
sponding to diffraction-limited imaging with a lens &
numberF#=f/D=5. The pump was assumed to be uniform
and monochromatic and to have a wavelengghk- 325 nm.
The parameters for a beta-barium-bor@@80) crystal in a 3 -
type-l configuration were assumed in the calculatipn P ormm
Ne(wp)=1.667 at an angle of 36.44° ant(ws)=nN,(w;) L gt
were determined by use of the Sellmeier equatioibree ? u I
crystal widths,| =0.1, 1, and 10 mm, were used. Filters of P R L I S
width 2 =0.050, centered at the degenerate frequengy 0 2

v : ; . . (a) (x1- x2)] x¢
=wy/2 were used in both the signal and idler beains.,

p=0.05). The results are displayed in Fig. 7. The values
obtained when the crystal width Is=0.1 mm are approxi-
mately the same as those predicted for the thin-crystal limit
(Sec. IV.

The widths(half width at half maximum valugsof the
functions C(x;,X,) shown in Fig. Ta), are approximately
0.27%., 0.85;, and 2.&. for | =0.1, 1, and 10 mm, respec- N _
tively. In the thin-crystal limit, this width is 0.28 . Thus the I
width of C(x4,X,), which determines the fourth-order coher- '\ 7 : —
ence area, increases significantly with increase of the crystal ] \ / _ \ ]
thickness. The temporal widttihalf width at half maximum e Ty
value$ of the functionsG(®)(x,t; :x,t,), which are shown in R Y
Fig. 7(b), are approximately 0.44, 0.43r., and 0.53 for i U A
[=0.1, 1, and 10 mm, respectively. In the thin-crystal limit, N L PR S
that width is 0.44,.. Thus the width ofG®)(x,t;,x,t,), (b) 0 ! (-t To 2
which determines the fourth-order coherence time, is rela-
tively insensitive to the crystal thickness. FIG. 7. Biphoton rategin arbitrary unit3 at the output of a 4¢

optical system for a SPDC source using a crystal with thickhess
VI. CONCLUSION and spectral widt)=0.050, (i.e., p=0.05). The system uses a
lens of F number F¥=5. (a) Dependence of the biphoton rate

The emission of pairs of photoribiphotong from a non-  C(x;,x,) on the separationxg—x,) normalized to the resolution
linear crystal illuminated by a pump wave in a spontaneougength x.=2\,F*. (b) Dependence of the biphoton rate
parametric down-conversion process is analogous to th6@(x,t1,x,t,) on the time delaytg —t,) normalized to the inverse
spontaneous emission of single photons from a conventiongpectral widthr,=27/(Q).
incoherent source. The uncorrelated nature of the emissions

from different points of the source, whether single photonsyenwm, the emitted light exhibits spatial and spectral en-
or entangled-photon pairs, governs the process of pmpag?zinglement. The larger the size of the pump, the less

tion of the emitted light through optical systems. The two-ggnaahje the two-photon wave function, and the greater the

particle wave function in the biphc.)ton. case !S analogous t%ntanglement. In the dual world of spontaneous emission
the second-order coherence function in the incoherent cas]erbm a conventional incoherent source, the smaller the

and the pump spatial profile is analogous to the source intens_ource the more separable the coherence function of the
sity distribution. With this analogy, it has been established in ' b

this paper that the phenomena of diffraction, inten‘erence‘?mItted light, and the more coherent the emission. Thus,

and growth of coherence in conventional optics have theiffonseparability of the joint wave function, which is the es-
counterparts in biphoton optics. This similarity is applicableS€Nce of entanglement in the biphoton case, corresponds to

for quasimonochromatic and broadband light, and for bot1® absence of coherence in the conventional case. Separa-
thin and thick sources. bility is associated with nonentanglement in one world, and
The underlying mathematical similarity between the twoWith coherence in the other.

theories results in a duality between the theory of partial This duality means that, for an optical system illuminated
coherence in conventional sources and partial entanglemehy @ conventional source with geometry such that the trans-
in sources of spontaneous parametric down-conversionmitted light is of greater coherence, the dual biphoton system
Since the process of spontaneous parametric dowrwill manifest lower entanglement. As an interferometer, the
conversion is governed by conservation of energy and moformer system produces ordinary interference fringes with

-

-—__.__ é =10 mm;
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higher visibility, whereas the latter will reveal biphoton in- . ,

terference fringes of lower visibility. As the geometry of the Ey(x,t)= f dksHg(x,kg)e™ sy,

system is altered to reduce cohere(fcage visibility) in the (Ad)
conventional case, increased entanglentgitige visibility)

will emerge in the dual biphoton case. EZ(x,t)=f dkiHi(Xaki)eiiwitaki
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APPENDIX nated by a monochromatic plane wave of wave vekiand

, ) . unit amplitude; H;(x,k;) has a similar meaning for the
unoIIEeer\r/easrilagsc;%rdtiggnzPDC biphoton staté are derived  ijier wave. The wave function P(Xq,t1:%0,15)
. _ fal + fal + .
The simplest theory, used in Sec. llI, is applicable for at._<0’nt2 ()éi’t?)lztﬁ(xl’tl)lq’> at positionsx; andx, and
thin planar crystal under quasimonochromatic conditions!'MeSts andtz 1S then

Here, the biphoton state is written as
w(xlvtl;XZ!tz):f f eii(wstl+wit2)q)(ks,ki)

|~Ir>=ffdxdxEp(x)a(x—x')ag(x)aﬁ(x')|o,o>,
X Hg(x1,ks)Hi(x2 ki) dks dk; . (A5)

(A1)

where|0,0) is the vacuum Statéil and éiT are creation op- Using a plane-wave expansion of the pump WE\Sekp)a
erators for the signal and idler modes, respectively, andve expressb(kg,k;) in the form

E,(X) is the electric field of the pump, which is assumed to

be classical and controls the rate of down-conversion. This _

function is also affected by the aperture of the nonlinear ®(Ks,ki)= | dkyEp(kp)&(Kp—Ks—kj) d(w— ws— o)),
crystal if the pump is not confined within the crystal. The (AB)
operators for the positive-frequency portions of the signal

and idler electric fields at the detection plane are expressed {fjere perfect energy conservation is represented bysthe
terms of the annihilation operatogs(x) and &;(x) at the  fynction, whereag(-) represents the imperfect phase match-
source planéthe crystal and the impulse response functions jnq that results from the finite size of the parametric interac-

of the signal and idler systems: tion volume. The angular frequencies, w;, andw corre-
spond to the wave vectorss, k;, andk,, respectively.
EI(Xl):J he(X1,X)ag(x)dXx, Since the finite size of the crystal in the transverse direction

is equivalent to a pump with finite aperture, and since we
(A2) assume that the pump is of arbitrary transverse distribution,
Eg(xz)zf hi(X2,%)&(x)dx. there is no loss of generality in assuming that the crystal is
infinite in the transverse direction.
) I . . Equations(A4) and (A5) are simplified by replacing the
By simple sub§tltutlor1, it follows that the wave function wave vectork with the transverse componeqt(which is
¥(%1,%2) =(0,0E" (x)E" (x)|¥) is related to the pump assumed, for simplicity, to be one dimensiored the cor-
distribution and the system functions by £g§.4. responding frequency. Thus the vectok will be replaced
Wg now consider the more general case of a thick crystaby the two scalarsq,»). For exampleH(x;,ks) will be
and include ter.nporal' and sp_ectral effects. We express th@enoted a$l(X;,0s; ws), and so on. If the signal system is
sState Of the em|tted b|ph0t0n n the wave-vector doma|n bycharacterized by |tS Spatia' impu'se response function
hy(x1,X;ws) at the angular frequency wg, then
|q,>:f f dks dk; @ (ks ki)at(k9al(k)[0,0, (A3) Hs(X1,Gs,@s) is simply the spatial Fourier transform of
hs(x1,X,wg) with respect to the variable-x. Similar rela-
tions apply to the idler system. We assume that the pump is
a monochromatic beam of angular frequengyand ampli-
tude Ey(x), so that

wherea'(ks) anda’(k;) are the photon creation operators
for signal and idler waves of wave vectdsandk; , respec-
tively, and® (k,k;) is a function representing the coupling
between the wave vectors, which results from the conserva- ~ ~

tion of energy and momentum that are inherent in the para- Ep(kp)=Ep(q) 8(w— wp), (A7)
metric process. The emitted signal and idler waves travel 5

through the signal and idler optical systems and create thehere E,(q) is the Fourier transform oE(x), the pump
field operators spatial distribution at the input face of the crystal.
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We first consider the limit of a thin crystdtelating to
Sec. IV) and then generalize the results to a crystal of arbi-

trary thickness(relating to Sec. Y. For a sufficiently thin
crystal, the phase-matching condition is applicable only in
the transverse direction, so that

|
£(kp—ks— ki) = 8(qp— ds— )] SinC<E(Af))

xex;{ —jIEAr), (A9)

é(kp—ks—kj)=38(dp—09s— ), (A8)  whereAr=r,—r—r; andr = yn%(w)w?/c?—q? is the lon-
gitudinal component of a wave vectkrof transverse com-
whereqs, ¢;, andq, are the transverse components of theonentq angular frequencyo, and refractive index(w).

wave vectors, ki, andkp, respectively. The combination g pefore, the subscripts s, andi denote the pump, signal,
of Egs.(AS5)—~(A8) then leads to the biphoton wave function g jgler, respectively. Therefore, for a monochromatic

given in Egs.(4.11) and(4.13. Using Fourier-transform re-

lations leads to Eq4.12. pump of frequencyo,
We now consider the effect of finite thickness of the non- &(kp—ks—ki) = 5(qp_q5_qi)2(qs,qi ‘wg), (A10)

linear crystal. For a crystal of thicknek# the longitudinal 5

direction, but infinite extent in the transverse direction, thewhere {(qs,q; ; ws) is given by Eq.(5.10. Substituting Eq.

phase-matching function is (A10) into Egs.(A6) and (A5) leads to Eqs(5.7)—(5.9).
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