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Duality between partial coherence and partial entanglement
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Entangled-photon pairs~biphotons! generated by spontaneous optical parametric down-conversion exhibit a
number of properties that are analogous to those of ordinary photons generated by incoherent sources. The
spatial pump-field distribution and the two-particle wave function in the biphoton case play the respective roles
of the source intensity distribution and the second-order coherence function in the incoherent case. The van
Cittert–Zernike theorem, which is applicable for incoherent optical sources emitting independent photons, has
a counterpart for biphotons. Likewise, the partial-coherence theory of image formation has an analogous
counterpart for biphoton beams transporting spatial information. However, an underlying duality, rather than
analogy, accompanies the mathematical similarity between incoherent and biphoton emissions if the compari-
son is made between the photon count rate in the incoherent case and the biphoton count rate in the entangled-
photon case. The smaller the size of an incoherent source, the more separable is the coherence function and the
more coherent is the field, and therefore the higher the visibility of ordinary interference fringes. In contrast,
the narrower the size of a biphoton pump source, the more separable is the wave function and the less
entangled is the field, and therefore the lower the visibility of biphoton interference fringes. This duality is
similar to the complementarity between single and two-photon interference exhibited for biphotons.

PACS number~s!: 42.50.Dv, 42.65.Ky
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I. INTRODUCTION

Spontaneous parametric down-conversion~SPDC! is a
weak nonlinear optical process that takes place via a th
wave interaction@1#. A coherent light wave entering a non
linear optical medium results in the generation of two lig
waves of longer wavelengths; conservation of energy
momentum govern the properties of the down-conver
waves@2–4#. A standard laboratory source of such noncla
sical light comprises a highly monochromatic pump la
emitting light that is passed through an anisotropic opti
crystal endowed with a quadratic nonlinear susceptibi
x (2) @5#. By virtue of the conservation principles that gove
their creation, the down-converted beams are quant
mechanically correlated@6# and are therefore referred to a
twin beams. Down-converted photon pairs are also ca
‘‘biphotons,’’ an appellation first put forth by Klyshko@7#.
Although the down-converted photon pairs are created ne
simultaneously@8#, the marginal photon occurrence times,
well as the coincidence occurrences, behave as Poisson
processes@9#. The pairs are said to be entangled because
quantum state that characterizes the biphoton field is n
separable@10#.

Depending on the configuration of the experiment and
cut of the crystal, the photon pairs can be entangled in
number of variables: time, frequency, direction of propa
tion, and polarization@11#. Because of their remarkabl
properties, entangled-photon beams have found use
broad variety of experiments that stretch from the fundam
tal to the applied. Studies carried out with twin-phot
beams range from the examination of quantum parado
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@12–14# to applications in optical measurements@7,15–18#,
communications @19#, single-photon range finding@20#,
spectroscopy@21#, and quantum information@22,23#. In
many of these experiments the down-converted beams
split and recombined with the help of beam splitters in
variety of interferometric configurations@4,11,13,14,18,22–
26#.

A number of these and other papers@25–31# have empha-
sized the spatial and spatiotemporal correlations of SP
biphoton beams, and several imaging applications have b
proposed and demonstrated@27,30,32–34#. In those applica-
tions where spatial information is transported by optic
beams, both diffraction and transverse correlation effe
govern the resolution.

In this paper we demonstrate that the theory of spa
correlation of biphoton beams is mathematically analog
to the coherence theory of ordinary light sources. Moreov
we show that biphoton counterparts emerge for such w
known relationships as the van Cittert–Zernike theorem a
indeed, for the quantum theory of partial coheren
@4,35,36#. Furthermore, because of the similarity of the law
describing the propagation of photons and biphotons thro
optical systems, the behavior of ordinary incoherent light
such systems has its counterpart for down-converted ligh

The mathematicalanalogybetween biphoton optics an
its ordinary ‘‘single-photon’’ counterpart becomes obvio
when the biphoton wave function~representing the probabil
ity amplitude of the two-photon field! is regarded as the ana
log of the second-order coherence function. However, if
comparison is made between the biphoton rate and the
ton rate in ordinary optics, then the result is aduality much
like the complementarity between single- and two-pho
interference in biphoton optics. This duality~rather than
analogy! has the following origin: separability of the secon
order coherence function is associated with thepresence of
©2000 The American Physical Society16-1
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SALEH, ABOURADDY, SERGIENKO, AND TEICH PHYSICAL REVIEW A62 043816
coherence and thereby high-visibility ordinary interferen
fringes, whereas separability in the biphoton wave functi
is associated with theabsence of entanglement which resu
in low-visibility biphoton interference fringes.

For purposes of reference and comparison, a brief o
view of the well-known equations of the theory of parti
coherence for photons is presented in Sec. II. A simplifi
version of the corresponding partial-entanglement theory
biphotons is developed in Sec. III, under the restrictions t
the nonlinear crystal is thin and that the signal and id
waves are passed through narrow-band filters so that
emerging beams are quasimonochromatic. The analogy
quasimonochromatic partial-coherence theory is most o
ous in this regime. Temporal and spectral effects on pa
coherence and partial entanglement, and the effects of so
thickness, are considered in Secs. IV and V, respectiv
Throughout the paper we consider two elementary opti
system constructs: the Fourier transform (2-f ) system,
which lies at the heart of Fourier optics, and the imag
(4- f ) system, which serves as a generic linear sh
invariant system that exhibits diffraction or interference d
pending on the nature of the aperture.

II. PARTIAL COHERENCE THEORY FOR PHOTONS

The theory of optical coherence is well establish
@4,35,36#. We provide here an overview of its basic equ
tions for reference throughout this paper.

A. Coherence and separability

For a quasimonochromatic optical field, coherence in
second order is characterized by the coherence func
G(1)(x1 ,x2)5^Ê2(x1)Ê1(x2)&, where Ê1(x) and Ê2(x)
are the positive- and negative-frequency components of
electric field operator at the positionx in some plane, and̂•&
indicates ensemble averaging. The field is said to be c
pletely coherent if, and only if, the functionG(1)(x1 ,x2) is
separable. A partially coherent field can generally be
panded as a superposition of coherent~separable! contribu-
tions ~modes!,

G~1!~x1,x2!5(
n

mnwn* ~x1!wn~x2!, ~2.1!

where the functionswn(x) and the parametersmn are appro-
priate eigenfunctions and eigenvalues. A single-mode fiel
separable~completely coherent!, whereas a multimode field
is nonseparable~partially coherent!. A completely incoherent
field, for whichG(1)(x1 ,x2)}d(x12x2), is characterized by
a uniformly weighted superposition of modes~equal eigen-
values!.

B. Propagation

Consider quasimonochromatic light emitted from a th
planar light source, transmitted through an arbitrary lin
optical system, and observed at some observation plan
illustrated in Fig. 1. Ifh(x1 ,x) is the impulse response func
tion of the system, then the second-order coherence func
04381
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at the output plane,G(1)(x1 ,x2), is related to the second
order coherence function at the source plane,Gs

(1)(x,x8), by

G~1!~x1 ,x2!5E E Gx
~1!~x,x8!h* ~x1 ,x!h~x2 ,x8!dx dx8.

~2.2!

The range of the integrals is@2`,`# throughout, unless oth
erwise indicated. For simplicity, we assume thatx is one
dimensional; generalization to the two-dimensional case
straightforward. If the source field is completely incohere
i.e., Gs

(1)(x,x8)5I s(x)d(x2x8), where I s(x) is the source
intensity, then,

G~1!~x1 ,x2!5E I s~x!h* ~x1 ,x!h~x2 ,x!dx, ~2.3!

from which

G~1!~x1 ,x2!5
1

4p2 E E Ĩ s~q12q2!H* ~x1 ,q1!

3H~x2,q2!dq1dq2 , ~2.4!

where Ĩ s(q)5* I s(x)e2 iqxdx is the Fourier transform of
I s(x) andH(x1 ,q) is the Fourier transform ofh(x1 ,x) with
respect to2x.

Equation~2.3! represents a continuous modal expans
similar to that in Eq.~2.1! with the summation indexn re-
placed by the variablex, and the eigenvaluesmn replaced by
the source functionI s(x). It follows that each point of the
source creates its own coherent mode. If the source itself
single point@ I s(x)}d(x)#, we have a single mode with
separable, and hence completely coherent, field. As
source size increases, the number of modes increases
‘‘separability’’ diminishes, and coherence is reduced.

The optical intensity at the output plane,I (x1)
5G(1)(x1 ,x1), which is proportional to the rate of photo
arrivals, is a linear transformation of the source intensity

I ~x1!5E dx Is~x!uh~x1 ,x!u2. ~2.5!

C. van Cittert –Zernike theorem

For the Fourier-transform optical system depicted in F
2~a!, called a 2-f system, h(x1 ,x)}exp@2i2p(x1 /lf )x#,
where l is the wavelength of the light andf is the focal
length of the lens. In this case Eq.~2.3! gives

FIG. 1. Propagation of light emitted from an incoherent sou
through a linear optical system of impulse response funct
h(x1 ,x).
6-2
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DUALITY BETWEEN PARTIAL COHERENCE AND . . . PHYSICAL REVIEW A62 043816
G~1!~x1 ,x2!}E I s~x!expS 2 i2p
x22x1

l f
xDdx

5 Ĩ sS 2p
x22x1

l f D , ~2.6!

whereĨ s(q) is the Fourier transform ofI s(x). Equation~2.6!
is known as the van Cittert–Zernike theorem and is the b
of a well-known technique for measurement of the angu
diameters of stars@4#.

D. Diffraction and interference

For a 4-f system with an aperturet(x) placed at the Fou-
rier plane, as illustrated in Fig. 2~b!, the impulse respons
function is h(x1 ,x)}T@2p(x2x1)/l f # where T(q) is the
Fourier transform oft(x), and the axes at the output plan
are inverted with respect to the input plane, so that Eq.~2.3!
yields

G~1!~x1 ,x2!}E I s~x!T* S 2p
x2x1

l f DTS 2p
x2x2

l f Ddx.

~2.7!

For a point sourceI s(x)}d(x), the coherence function
G(1)(x1 ,x2)}T* (22px1 /l f )T(22px2 /l f ) is separable,
and the corresponding intensityI (x1)}uT(22px1 /l f )u2 is
the diffraction pattern created by the aperturet(x) when il-
luminated by a coherent source.

For a double-slit aperture with slits separated by a d
tancea, t(x)5d(x2a/2)1d(x1a/2), and Eq.~2.7! gives

G~1!~x1 ,x2!}FS1 cosS p
x11x2

L D1cosS p
x12x2

L D G ,
~2.8!

whereL5l/u is the fringe period,u5a/ f is the angle sub-
tended by the pinholes, andS15 Ĩ s(1/L)/ Ĩ s(0). Thecorre-
sponding intensityI (x1)5G(1)(x1 ,x1) is

FIG. 2. ~a! 2- f ~Fourier-transform! optical system.~b! 4- f ~im-
aging! optical system with an aperturet(x) placed in the Fourier
plane.
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I ~x1!}F11S1 cosS 2p
x1

L D G , ~2.9!

which is an interference pattern with visibility

Vinc5S15
Ĩ s~L21!

Ĩ s~0!
. ~2.10!

The subscript ‘‘inc’’ is used to denote incoherent light.
For a light source of uniform intensity confined within a

area of width b, S15sinc(b/L), where sinc(x)
[sin(px)/px. In the limit of a small source (b!L), the light
at the slit plane is coherent and the visibilityVinc5S1→1,
whereas in the opposite limit of a large source (b@L) the
light at the slit is incoherent, and the visibilityVinc5S1
→0.

E. Fourth-order coherence function

The coincidence rate of photoevents detected at the p
tions x1 andx2 is proportional to the fourth-order coherenc
function G(2)(x1 ,x2)5^Ê2(x1)Ê2(x2)Ê1(x2)Ê1(x1)&. If
the incoherent light is thermal~which used to be referred to
as chaotic!, the rate of photon coincidences is related to t
second-order coherence function by the Siegert relation@37#,

Gth
~2!~x1 ,x2!5G~1!~x1 ,x1!G~1!~x2 ,x2!1uG~1!~x1 ,x2!u2,

~2.11!

where the subscript ‘‘th’’ is used to denote incoherent th
mal light. This equation is the basis of the Hanbury-Brow
Twiss effect @4,35#. A fundamental difficulty in observing
this effect is the small relative magnitude of the second te
on the right-hand side of Eq.~2.11! when the coherence tim
of the detected field is much smaller than the detection t
interval. As will be shown in Sec. IV, this term then turns o
to be multiplied by a small factor~the ratio of the two times!,
so that it becomes difficult to observe in the presence of
undiminished first term@37#.

It is therefore useful to define an excess fourth-order
herence function

DGth
~2!~x1 ,x2!5Gth

~2!~x1 ,x2!2G~1!~x1 ,x1!G~1!~x2 ,x2!.

~2.12!

This function vanishes if the photons arrive independently
x1 andx2 , as is the case for a coherent field. For a therm
source, Eq.~2.12! becomes

DGth
~2!~x1 ,x2!5uG~1!~x1 ,x2!u2. ~2.13!

III. PARTIAL ENTANGLEMENT THEORY
FOR BIPHOTONS

We now consider light generated by spontaneous p
metric down-conversion from a thin planar nonlinear crys
and examine its transmission through the same systems
scribed in Sec. II. Here, the light is generated in the form
photon pairs, denoted as the signal and idler, emitted fro
6-3
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SALEH, ABOURADDY, SERGIENKO, AND TEICH PHYSICAL REVIEW A62 043816
common position within the nonlinear crystal. Although t
direction of each photon of a pair is random, it is high
correlated with the direction of its twin by virtue of conse
vation of momentum.

A. Entanglement and separability

The two-photon field is characterized by the stateuC& or
the wave function c(x1 ,x2)5^0,0uÊ1(x2)Ê1(x1)uC&,
where u0,0& is the vacuum state. The state is said to be
tangled if the functionc(x1 ,x2) is not separable. Using a
modal expansion similar to that in Eq.~2.1!, this function
may be written as a superposition of separable functions

c~x1 ,x2!5(
n

hnc1n* ~x1!c2n~x2!. ~3.1!

The single-mode case corresponds to a separable~nonen-
tangled! state, while the multimode case describes a parti
entangled state. The indexn may represent the frequenc
wave vector, or polarization of the mode. The probabil
of coincidence of photons at the positionsx1 and
x2 , G(2)(x1 ,x2)5^CuÊ1

2(x1)Ê2
2(x2)Ê2

1(x2)Ê1
1(x1)uC&, is

simply the square magnitude of the two-photon wave fu
tion:

G~2!~x1 ,x2!5uc~x1 ,x2!u2. ~3.2!

The marginal rate of single-photon arrivalsG(1)(x1 ,x1) may
be obtained by integratingG(2)(x1 ,x2) with respect tox2 .
As in Eq.~2.12!, it is useful to define the excess fourth-ord
coherence function~excess biphoton rate!

DG~2!~x1 ,x2!5G~2!~x1 ,x2!2G~1!~x1 ,x1!G~1!~x2 ,x2!,

~3.3!

which is the coincidence rate in excess of that expected if
particles were independent~unentangled!.

B. Propagation

Consider SPDC light emitted from a planar thin nonline
crystal ~NLC! illuminated by a pump beam with transver
electric-field distributionEp(x). The emitted signal and idle
beams are transmitted through separate optical systems,
impulse response functionshs(x1 ,x) and hi(x2 ,x), and are
detected by detectorsD1 andD2 , respectively. The arrival o
the photon pair at positionsx1 andx2 in the output plane is
observed by measuring the coincidence rate~or biphoton
rate! G(2)(x1 ,x2). The system is illustrated schematically
Fig. 3.

It can be shown~see the Appendix! that the two-photon
wave function is given by

c~x1 ,x2!}E Ep~x!hs~x1 ,x!hi~x2 ,x!dx. ~3.4!

A special case of this formula when the signal and id
systems comprise free-space propagation was developed
viously @38#. The physics underlying Eq.~3.4! may be elu-
cidated in the Fourier-transform domain~momentum space!.
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Expanding each of the three spatial functions in the integr
in terms of its Fourier transform, we write Eq.~3.4! in the
form

c~x1 ,x2!}E E Ẽp~qs1qi !Hs~x1 ,qs!Hi~x2 ,qi !dqs dqi ,

~3.5!

whereẼp(q) is the Fourier transform ofEp(x), Hs(x1 ,qs) is
the Fourier transform ofhs(x1 ,x) with respect to2x, and
Hi(x2 ,qi) is similarly defined. The functionẼp(q) is the
amplitude of a pump plane-wave component traveling in
direction corresponding to the spatial frequencyq. It is evi-
dent from Eq.~3.5! that the signal and idler plane wave
with spatial frequenciesqs andqi , are coupled to the pump
plane-wave component with spatial frequencyq5qs1qi ,
indicating conservation of momentum in the transverse
rection. Since the nonlinear crystal is assumed to be t
momentum conservation in the longitudinal direction is n
invoked. This limitation will be removed in Sec. V.

C. Comparison between incoherent thermal and SPDC light

For an ordinary incoherent light source the second-or
coherence functionG(1)(x1 ,x2) is given by Eq.~2.3!, while
for SPDC light the biphoton wave functionc(x1 ,x2) is
given by Eq.~3.4!. The similarity between these two equ
tions is striking. In this analogy, the pumpfield Ep(x) plays
the role of the sourceintensity Is(x), and, except for a con
jugation operation in the incoherent case@Eq. ~2.3!#, the im-
pulse response functions of the optical systems play sim
roles. If the incoherent source is thermal, then in view of
Siegert relation, the excess coincidence rate@Eq. ~2.13!# is
DGth

(2)(x1 ,x2)5uG(1)(x1 ,x2)u2, whereas in the SPDC cas
the photon coincidence rate @Eq. ~3.2!# is
G(2)(x1 ,x2)5uc(x1 ,x2)u2. The fourth-order coherence func
tion for a thermal source is therefore distinguished only b
background term, which typically dominates Eq.~2.11! as
discussed earlier. This background term is absent in the
photon case, as has been recognized by Belinsky and
shko @26#. In view of this, we conclude that every conve
tional system making use of thermal light has an analog
biphoton system.

Another perspective for comparing the two light sourc
is to regard the biphoton rate in the SPDC case@Eqs. ~3.2!
and ~3.4!# as the dual to the single-photon rate in the inc
herent case@Eq. ~2.5!#. From this perspective, the effect o

FIG. 3. Biphotons generated in a nonlinear crystal~NLC! are
transmitted through a pair of linear optical systems and detecte
a coincidence counter.
6-4
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the spatial distribution of the sourceI s(x) in the incoherent
case is opposite that of the pump spatial distributionEp(x) in
the biphoton case. It is immediately evident from Eq.~2.5!
that the smaller the width of the incoherent sourceI s(x), the
more ‘‘coherent’’ is the emitted light; indeed when th
source is reduced to a point, the emitted light is complet
coherent and its second-order coherence function at any
cation within the system is separable@as can also be see
from Eq. ~2.3!#. Therefore, if two slits are placed within th
system, the resultant Young’s interference fringes will ha
high visibility. In contrast, it is evident from Eq.~3.4! that
the wider the pump beamEp(x) in the biphoton case, the
more ‘‘entangled’’ are the emitted signal and idler photo
If the pump beam is reduced to a point, the wave funct
c(x1 ,x2) factors, and the emitted light is unentangled; t
visibility of biphoton ~fourth-order! interference fringes~vis-
ibility as a function ofx12x2) then vanishes. A quantitativ
derivation of this effect is provided later in this section, a
several examples highlighting the duality are provided.

D. Biphoton van Cittert –Zernike theorem

If each of the signal and idler systems separately co
prises a 2-f optical system, as illustrated in Fig. 2~a!,
then hs(x1 ,x)}exp„2 i2p(x1x)/ls f … and hi(x2 ,x)
}exp„2 i2p„x2x)/l i f …, so that Eqs.~3.4! and~3.2! provide

G~2!~x1 ,x2!}UẼpF2p

f S x1

ls
1

x2

l i
D GU2

, ~3.6!

whereẼp(q) is the Fourier transform ofEp(x). This equa-
tion is the biphoton version of the classical van Citter
Zernike theorem, Eq.~2.6!.

There are distinctions between the two theorems. T
pump field in the biphoton case plays the role of the sou
intensity in the incoherent case. The pump field is, of cou
a complex function whose phase may introduce interes
effects that are not present in the incoherent case. Moreo
in the biphoton case, the argument of the Fourier transform
proportional to (x1 /ls1x2 /l i) instead of (x1 /l2x2 /l).
For example, if the source is of uniform intensity and
width b, then in the incoherent caseG(1)(x1 ,x2) is a sinc
function of widthl f /b centered atx25x1 . In the biphoton
case, for a uniform pump beam of widthb traveling in the
longitudinal direction, and assuming thatls5l i5l, the bi-
photon rateG(2)(x1 ,x2) is a sinc2 function of width l f /b
centered atx252x1 , where sinc(x)5sin(px)/px. If the
pump beam is tilted by a small angleu, i.e., if Ep(x) is
modified by a phase factor (2p/lp)ux5(2p/l)(2u)x, then
the Fourier transform is shifted so that its peak is centere
x252x112u f . The fact that the angular spectrum of th
pump beam is represented in the biphoton rate is an im
tant feature of the biphoton process@3,29,30#.

E. Biphoton diffraction

If each of the signal and idler beams separately compr
a 4-f system with an aperturet(x), then, in the degenerat
case,hs(x1 ,x)5hi(x1 ,x)}T@2p(x2x1)/l f #, where T(q)
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is the Fourier transform oft(x) and l is the wavelength of
the signal/idler wave. In this case Eq.~3.4! provides

c~x1 ,x2!}E Ep~x!TS 2p
x2x1

l f DTS 2p
x2x2

l f Ddx,

~3.7!

which is analogous to Eq.~2.7! in the incoherent case.
For a narrow pump beam centered atx50, Ep(x)

}d(x), and the biphoton rateG(2)(x1 ,x2)5uc(x1 ,x2)u2

}uT@2p(2x1)/l f #u2uT@2p(2x2)/l f #u2 is separable. The
light is then unentangled and the biphoton~coincidence! dif-
fraction pattern is the product of the single-photon diffra
tion patterns, i.e.,DG(2)(x1 ,x2)50. In the opposite limit of
a uniform pump, Ep(x)5const, G(2)(x1 ,x2)}uT @2p(x2
2x1)/l f #u2, whereT (q) is the Fourier transform oft(x)t
(2x). This is the fully entangled case, which represents t
biphoton diffraction.

F. Biphoton interference

For a degenerate SPDC source with a pair of 4-f systems,
each incorporating a double-slit aperturet(x)5d(x2a/2)
1d(x1a/2), Eqs.~3.7! and ~3.2! give

G~2!~x1 ,x2!5
1

2L2

1

11S2
2 FS2 cosS p

x11x2

L D
1cosS p

x12x2

L D G2

5
1

4L2 H 11
1

11S2
2 FS2

2 cosS 2p
x11x2

L D
1cosS 2p

x12x2

L D12S2 cosS 2p
x1

L D
12S2 cosS 2p

x2

L D G J , ~3.8!

whereL5l/u is the fringe period,u5a/ f is the angle sub-
tended by the pinholes, andS25Ẽp(L21)/Ẽp(0). Thefunc-
tion G(2)(x1 ,x2) in Eq. ~3.8! was normalized such that it
integral with respect tox1 andx2 over the interval from 0 to
2L is 1. Since the photons are indistinguishable, the pr
ability that the pair is found anywhere within@0,2L# is unity.

The marginal signal~or idler! photon rate associated wit
the joint signal-idler rate in Eq.~3.8! may be obtained by
integratingG(2)(x1 ,x2) with respect tox2 ~or x1) over the
interval 0 to 2L, yielding

G~1!~x1 ,x1!5
1

2L F11
2S2

11S2
2 cosS 2p

x1

L D G . ~3.9!

A similar expression forG(1)(x2 ,x2) is obtained. The vis-
ibility of this interference pattern is

V152uS2u/~11S2
2!. ~3.10!
6-5
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When the pump beam has a uniform distribution tha
confined to an aperture of widthb, S25sinc(b/L). For a
pump beam of large width (b@L), S2→0, and

G~2!~x1 ,x2!5
1

4L2 F11cosS 2p
x12x2

L D G , ~3.11!

which is a fourth-order interference pattern of unity visib
ity. This corresponds to the fully entangled limit. In the o
posite limit of a pump beam of narrow width (b!L), S2
→1, whereupon the biphoton rate becomes

G~2!~x1 ,x2!5
1

4L2 F11cosS 2p
x1

L D GF11cosS 2p
x2

L D G ,
~3.12!

which is a separable function. In this case, each of the e
ted photons passes through its own slits independently
forms its own interference pattern~with unity visibility!.

In the general case, we can compute the ‘‘true’’ biphot
interference by determining the excess coincidence
DG(2)(x1 ,x2) defined by Eq.~3.3!. It turns out@39# that this
subtraction also removes a constant background of 1/4L2,
which must be added to obtain the ‘‘corrected’’ ra
DG(2)(x1 ,x2)5DG(2)(x1 ,x2)11/4L2. Using Eqs.~3.8! and
~3.9! we obtain

DG~2!~x1 ,x2!5
1

4L2 F11V12sinS 2p
x1

L D sinS 2p
x2

L D
1V12

2 cosS 2p
x1

L D cosS 2p
x2

L D G
5

1

4L2 F11
1

2
~V121V12

2 !cosS 2p
x12x2

L D
2

1

2
~V122V12

2 !cosS 2p
x11x2

L D G , ~3.13!

where

V125
12S2

2

11S2
2 . ~3.14!

This is a fringe pattern with visibilityV12. The visibilities of
the marginal single-photon and pure biphoton patterns,V1
and V12, respectively, are related by the complementa
relation

V1
21V12

2 51, ~3.15!

which is sketched in Fig. 4~a!. This relation was first noted in
Ref. @39#.

If we now compare the visibility of biphoton fringes wit
the visibility of single-photon fringesVinc created by an
equivalent ordinary incoherent source of the same source
tribution, so that the parametersS15S2 , we find that the
visibilities are related by
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V125
12Vinc

2

11Vinc
2 . ~3.16!

As illustrated in Fig. 4~b!, this monotonically decreasing re
lation is not unlike that betweenV12 andV1 .

IV. TEMPORAL AND SPECTRAL EFFECTS IN PARTIAL
COHERENCE AND PARTIAL ENTANGLEMENT

The analogy between the entanglement properties of l
emitted from a SPDC source and the properties of light em
ted from an incoherent source can be extended to incl
temporal/spectral effects and is therefore also applicable
nonmonochromatic light. We begin with a brief overview
conventional coherence theory for polychromatic light a
then establish the equivalent polychromatic biphoton
tanglement theory. The thin-source assumption is retaine
this section.

A. Coherence theory for polychromatic incoherent sources

The coherence properties of polychromatic station
light are described by a second-order coherence functio
the form @4,35,36#

G~1!~x1 ,t1 ;x2 ,t2!5E G̃~1!~x1 ,x2 ;v!e2 iv~ t12t2!dv,

~4.1!

whereG̃(1)(x1 ,x2 ;v) is the spectral coherence function.
the light is generated from a spatially incoherent station
planar source with spectral coherence function

G̃s
~1!~x ,x8 ;v!5I s~x;v!d~x2x8!, ~4.2!

transmitted through a linear system with impulse respo
function h(x1 ,x;v) at the angular frequencyv, then

G̃~1!~x1 ,x2 ;v!5E I s~x;v!h* ~x1 ,x;v!h~x2 ,x;v!dx.

~4.3!

FIG. 4. ~a! Visibility V12 of pure biphoton fringes versus vis
ibility V1 of marginal single-photon fringes in an interference e
periment using light emitted by spontaneous parametric do
conversion. ~b! Visibility V12 of pure biphoton fringes in an
interference experiment using light emitted by spontaneous p
metric down-conversion, versus visibilityVinc of single photons in
an equivalent interference experiment using a conventional inco
ent light source.
6-6
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This relation may also be written in the form,

G̃~1!~x1 ,x2 ;v!5
1

4p2 E E Ĩ s~q22q1 ;v!H* ~x1 ,q1 ;v!

3H~x2 ,q2 ;v!dq1 dq2 , ~4.4!

where H(x1 ,q;v) is the Fourier transform ofh(x1 ,x;v)
with respect to the variablex, and Ĩ s(q;v) is the Fourier
transform ofI s(x;v). The intensity of the transmitted light i

I ~x!5E G̃~1!~x,x;v!dv. ~4.5!

If the incoherent source is thermal, the rate of coincide
of a photon at (x1 ,t1) and another at (x2 ,t2) is given by the
Siegert relation

Gth
~2!~x1 ,t1 ;x2 ,t2!5I ~x1!I ~x2!1uG~1!~x1 ,t1 ;x2 ,t2!u2.

~4.6!

If this rate is measured with detectors of resolution timeT,
serving as integrators, then the rate of two-photon coin
dence in the interval is

Cth~x1 ,x2!}
1

T E
0

TE
0

T

Gth
~2!~x1 ,t1 ;x2 ,t2!dt1dt2 . ~4.7!

Substituting from Eq.~4.6!,

Cth~x1 ,x2!}I ~x1!I ~x2!1
1

T2

3E
0

TE
0

T

uG~1!~x1 ,t1 ;x2 ,t2!u2dt1 dt2 .

~4.8!

Using Eq.~4.1! and assuming thatT is much greater than th
inverse of the spectral bandwidth of the light,

Cth~x1 ,x2!}I ~x1!I ~x2!1
1

T E uG̃~1!~x1 ,x2 ;v!u2dv.

~4.9!

It can be shown that the ratio of the second to the first te
in Eq. ~4.9! is of the order of (TV)21 whereV is the spectral
width. ForT@1/V, this is a small number.

B. Entanglement theory for polychromatic biphoton sources

We now consider SPDC emission from a thin nonline
crystal illuminated by a monochromatic pump beam of a
gular frequencyvp and amplitudeEp(x). The emitted signal
and idler beams are assumed to travel through separate l
systems with spatial impulse response functionshs(x1 ,x;v)
andhi(x1 ,x;v), respectively. The biphoton rate at positio
x1 andx2 at timest1 and t2 ,

G~2!~x1 ,t1 ;x2 ,t2!

5^CuÊ1
2~x1 ,t1!Ê2

2~x2 ,t2!Ê2
1~x2 ,t2!Ê1

1~x1 ,t1!uC&,
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is related to the wave function c(x1 ,t1 ;x2 ,t2)
5^0,0uÊ2

1(x2 ,t2)Ê1
1(x1 ,t1)uC& by

G~2!~x1 ,t1 ;x2 ,t2!5uc~x1 ,t1 ;x2 ,t2!u2, ~4.10!

where~as is shown in the Appendix!

c~x1 ,t1 ;x2 ,t2!5e2 ivpt2E e2 ivs~ t12t2!c̃~x1 ,x2 ;vs!dvs

~4.11!

and

c̃~x1 ,x2 ;vs!}E Ep~x!hs~x1 ,x;vs!hi~x2 ,x;vp2vs!dx.

~4.12!

Equation ~4.12! is identical to Eq.~3.4!, with the spectral
dependence now explicitly identified. In the spatial Four
domain Eq.~4.12! takes the form

c̃~x1 ,x2 ;vs!}E E Ẽp~qs1qi !Hs~x1 ,qs ;vs!

3Hi~x2 ,qi ;vp2vs!dqs dqi , ~4.13!

which is identical to Eq.~3.5!. Here, Ẽp(q) is the Fourier
transform ofEp(x), Hs(x1 ,qs ;vs) is the Fourier transform
of hs(x1 ,x;vs) with respect to the variablex, and a similar
relation applies to the idler system.

If the biphoton rate is measured with detectors that are
sufficiently fast to record the exact times of arrival of th
photon pair, then the responseC(x1 ,x2) is given by Eq.
~4.7!. In the limit of largeT ~in comparison with the inverse
of the spectral bandwidth of the signal/idler system!, substi-
tution of Eq.~4.11! into Eqs.~4.10! and ~4.7! leads to

C~x1 ,x2!5E uc̃~x1 ,x2 ;vs!u2dvs . ~4.14!

C. Equivalence of formulations for polychromatic
incoherent and SPDC sources

Comparing Eqs.~4.3! and~4.12!, we see that the spectra
wave function c̃(x1 ,x2 ;vs), in the SPDC case, and th
spectral coherence functionG̃(1)(x1 ,x2 ;v) in the conven-
tional case, have the same dependence on the source an
propagation systems, and therefore exhibit similar behav
Comparing Eqs.~4.5! and~4.14!, we see that in the conven
tional case the photon rateI (x) is the spectral integral of the
spectral coherence function, while in the SPDC case the
photon rateC(x1 ,x2) is the spectral integral of the square
magnitude of the spectral wave function. On the other ha
comparing Eq.~4.9! with Eq. ~4.14! reveals that the biphoton
~coincidence! rate is free from the large background ter
that is present in the conventional thermal rate.

We now proceed to examine the spectral effects for
same optical systems considered in Secs. II and III. In m
ing this comparison, we assume that the spectral distribu
of the incoherent source is uniform within a bandwidthV
6-7
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SALEH, ABOURADDY, SERGIENKO, AND TEICH PHYSICAL REVIEW A62 043816
centered about a central frequencyv0 , i.e., I s(x;v)5I s(x)
for uv2v0u<V/2, and zero otherwise. Likewise, in the b
photon case, while the pump is assumed to be monoc
matic at frequencyvp , the signal and idler components o
the emitted biphoton, which are generally broadband,
assumed to be passed through filters with uniform trans
tance of widthV centered about the degenerate freque
v05vp/2.

D. Polychromatic photon and biphoton
van Cittert –Zernike theorems

For the 2-f system illustrated in Fig. 2~a!, assuming that
the lens and the detection system are achromatic, we h
h(x1 ,x;v)5hs(x1 ,x;v)5hi(x1 ,x;v)}exp(2ivx1x/cf ). In
the incoherent case, Eq.~4.3! gives

G̃~1!~x1 ,x2 ;v!} Ĩ sS v

c

x22x1

f D , uv2v0u<V/2,

~4.15!

while in the biphoton case Eq.~4.12! gives

c̃~x1 ,x2 ;vs!}ẼpS vs

c

x1

f
1

vp2vs

c

x2

f D
5ẼpS v0

c

x11x2

f
1

vs2v0

c

x12x2

f D ,

uvs2v0u<V/2. ~4.16!

The essential equivalence between the conventional and
photon sources is evident in Eqs.~4.15! and~4.16!. There are
differences, however. Whereas the spectral coherence f
tion G̃(1)(x1 ,x2 ;v) in the conventional case is homogeneo
~a function ofx12x2), c̃(x1 ,x2 ;vs) is generally not homo-
geneous. Only the degenerate frequency componentvs
5v0 corresponds to a wave function that is dependent
x11x2 , but not onx12x2 .

At points for whichx15x2 the spectral wave function i
independent of frequency~within the filter bandwidth! so
that the two-photon coincidence rate for photons arriving
the same position is given by

G~2!~x,t1 ;x,t2!}V2UẼpS 2p
x

lpf D U
2

sinc2S t12t2

tc
D ,

~4.17!

where tc52p/V. This function has a half width at hal
maximum oft12t250.44tc , so thattc is a measure of the
entanglement time. The rate of arrival of photon pairs at
same position is obtained by use of Eq.~4.14!,

C~x,x!}VUẼpS vpx

c f D U2

. ~4.18!

This is proportional to the ordinary diffraction pattern
monochromatic coherent light at the pump frequency.

In a similar setup using an incoherent source, the rate
arrival of single photons, obtained from Eq.~4.5!, is I (x)
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}VĨ s(0), which is independent of position. Likewise the ra
of accidental arrival of photon pairs at the same point,
given by Eq.~4.8!, is independent of position. In contrast, th
rate of arrival of photon pairs at two different positions,
derived from Eq.~4.8!, is ~assuming the incoherent source
thermal!

Cth~x1 ,x2!}11
1

VT

3F 1

V E
v02V/2

v01V/2U Ĩ sS v

c

x22x1

f D Y Ĩ s~0!U2

dvG .
~4.19!

The result is a spectrally averaged version of the van Citte
Zernike distribution multiplied by the small factor 1/VT and
added to a large background term.

E. Polychromatic photon and biphoton diffraction

We now consider a 4-f system, as illustrated in Fig. 2~b!,
with Fourier-plane aperture of frequency-independ
transmittance t(x), so that h(x1 ,x;v)5hs(x1 ,x;v)
5hi(x1 ,x;v)5T@(v/c)(x2x1)/ f # whereT(q) is the Fou-
rier transform oft(x). In this case,

G̃~1!~x1 ,x2 ;v!}E I s~x!T* S v

c

x2x1

f D
3TS v

c

x2x2

f Ddx ~incoherent!,

~4.20!

c̃~x1 ,x2 ;v!}E Ep~x!TS v

c

x2x1

f D
3TS vp2v

c

x2x2

f Ddx ~biphoton!.

~4.21!

These expressions may be used to determine the biph
ratesG(2) andC.

In the limit of a narrow source or narrow pump beam, E
~4.20! ~with the additional assumption that the incohere
source is thermal!, and Eq.~4.21! lead to

Cth~x1 ,x2!}11
1

T E UTS 2
v

c

x1

f D U2

3UTS 2
v

c

x2

f D U2

dv ~incoherent thermal!,

~4.22!
6-8



bl
hr
e

rm
f
to
at

y

at

-

n
s

to
bi-

e

pat-

DUALITY BETWEEN PARTIAL COHERENCE AND . . . PHYSICAL REVIEW A62 043816
C~x1 ,x2!}E UTS 2
v

c

x1

f D U2

3UTS 2
vp2v

c

x2

f D U2

dv ~biphoton!.

~4.23!

Note that that neither of these two functions is separa
although the source is a point. This is because the polyc
matic source introduces spectral modes that reduce the s
rability ~coherence/entanglement!.

In the opposite limit of an extended source, say a unifo
source,I s(x)5I 0 andEp(x)5E0 , the coherence function o
the incoherent source and the wave function of the bipho
source are least separable. As an example, suppose th
apertures are slits of widthD, so that t(x)5rect(x/D),
where rect(x) is a symmetric rectangular function of unit
width. In this case, for the biphoton source,

G~2!~x,t1 ;x,t2!54G0F ~12r!sincS t12t2

tc
D

2
r

2
sinc2 S t12t2

2tc
D G2

, ~4.24!

G~2!~x1 ,t;x2 ,t !54S 12
r

2D 2

3G0 sinc2S ~22r!
x12x2

xc
D

3sinc2S r
x12x2

xc
D , ~4.25!

where G0516p4E0
2/xc

2tc
2, r5V/vp , tc52p/V, xc

54lpF#52l0F#, andF#5 f /D is theF number of the lens.
The parameterxc is the resolution of a diffraction-limited
incoherent optical system at the degenerate frequencyv0 .
For r!1, i.e., if a narrow filter centered at the degener
frequency is used, and in the limitr51,

G~2!~x,t1 ;x,t2!54G0 sinc2S t12t2

tc
D , r!1

5G0 sinc4S t12t2

2tc
D , r51; ~4.26!

G~2!~x,t1 ;x2 ,t !54G0 sinc2S 2
x12x2

xc
D , r!1

5G0 sinc4S x12x2

xc
D , r51. ~4.27!

The temporal width~half width at half maximum value! of
the functionG(2)(x,t1 ;x,t2) in Eq. ~4.24! is 0.44tc for a
small spectral width (r!1), and decreases slightly with in
crease ofr, reaching a value of 0.42tc for r50.3. The spa-
tial width ~half width at half maximum value! of the function
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G(2)(x1 ,t;x2 ,t) in Eq. ~4.25! increases slightly from 0.22xc
to 0.26xc as r increases from 0 to 0.3. The functio
C(x1 ,x2) has approximately the same width a
G(2)(x1 ,t;x2 ,t).

F. Polychromatic photon and biphoton interference

In the special case of a two-slit aperture,t(x)5d(x
2a/2)1d(x1a/2), the previous equations may be used
determine expressions for the interference pattern. In the
photon case,

C~x1 ,x2!}11
1

11S2
2 FS2

2m1~x12x2!cosS 2p
x11x2

L D
1m2~x11x2!cosS 2p

x12x2

L D G
1

2S2

11S2
2 Fm~x1!cosS 2p

x1

L D
1m~x2!cosS 2p

x2

L D G , ~4.28!

whereS25Ẽp(2p/L)/@*2rp/L
rp/L uẼp(q)u2dq#1/2 and

m1~x!5sincS r
x

L
D ,

m2~x!5
z*2rp/L

rp/L uẼp~q!u2eiqxdqz

z*2rp/L
rp/L uẼp~q!u2dqz

,

~4.29!

m~x!5
*2rp/L

rp/L Ẽp~q!eiqxdq

@*2rp/L
rp/L uẼp~q!u2dq#1/2

.

Here, as before,L52pc/v0u5l0 /u is the period of the
interference pattern,u5a/ f is the angle subtended by th
pinholes, andr5V/v0 is the normalized spectral width. In
the narrow-band limit,r→0, m1(x)5m2(x)5m(x)51,
and Eq.~4.28! reproduces Eq.~3.8!.

In the incoherent case, the single-photon interference
tern is

I ~x!}F11m inc~x!S1 cosS 2p
x

L
1w D G , ~4.30!

whereS15 Ĩ s(L
21)/ Ĩ s(0) and

m inc~x!5
L

2pr
U E

2pL21~12r/2!

2pL21~11r/2! Ĩ s~q!

Ĩ s~2pL21!
eiqxdqU ,

~4.31!

and w is a phase factor of no consequence. In the limitr
→0, m inc(x)51, so that Eq.~4.30! reproduces Eq.~2.9!. In
general, the interference pattern in Eq.~4.30! has a visibility
Vinc5S1m inc(x), which has a maximum valueVmax5S1 at
x50.
6-9
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We have computed the two-photon and single-photon
ibilities, V12 and V1 , respectively, for the biphoton sourc
and the visibilityVinc for the equivalent incoherent sourc
and plotted the complementarity and the duality relations
a few values of the normalized spectral widthr. The results
are exhibited in Fig. 5, which is the generalization of Fig
for finite spectra width.

It is of interest to observe that the single complementa
relationship Eq.~3.15! that governs the visibilities of the
marginal single-photon and pure biphoton patterns is v
only for monochromatic SPDC light@Fig. 5~a!, r50#.

V. EFFECT OF SOURCE THICKNESS ON PARTIAL
COHERENCE AND PARTIAL ENTANGLEMENT

The analogy between the SPDC biphoton source and
conventional incoherent source is also applicable to th
sources, but the nature of the equivalence is somewhat
ferent. We begin with a brief overview of conventional c
herence theory for a thick incoherent source and then es
lish the equivalence with SPDC light generated from a th
nonlinear crystal.

A. Coherence theory for thick polychromatic
incoherent sources

A thick source extending between the transverse pla
z52 l andz50 @see Fig. 6~a!# emits incoherently at a pho
ton rate corresponding to the spectral densityI s(x,z;v). The
emissions from any two points~x,z! and (x8,z8) are uncor-
related so that the second-order spectral coherence fun
is

FIG. 5. ~a! Visibility V12 of pure biphoton fringes versus vis
ibility V1 of marginal single-photon fringes in a SPDC interferen
experiment.~b! Visibility V12 of pure biphoton fringes in a SPDC
interference experiment versus visibilityVinc of single photons gen-
erated by an equivalent incoherent source. The parameterr is the
normalized spectral width of the source.
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G̃s
~1!~x,z,x8,z8;v!5I s~x,z;v!d~x2x8!d~z2z8!.

~5.1!

The emitted light is transmitted through a linear system a
is observed at points at the planez5d.0. Propagation be-
tween a transverse planez within the source (2 l ,z,0) and
the observation planez5d is described by an impulse re
sponse functionhz(x1 ,x;v) at the angular frequencyv,
where~x,z! is a point within the source and (x1 ,d) is a point
in the observation plane. Under these conditions, the sec
order spectral coherence function at two points in the ob
vation plane is

G̃~1!~x1 ,x2 ;v!5E E I s~x,z;v!hz* ~x1 ,x;v!

3hz~x2 ,x;v!dx dz. ~5.2!

The systemhz may be segmented as the cascade o
system describing propagation between the planez within
the source and the frontal plane of the source (z50), fol-
lowed by a system describing propagation between
source frontal plane and the observation plane. If these
tems have impulse response functionshz

s(x1 ,x;v) and
h(x1 ,x;v), respectively, we may substitutehz(x1 ,x;v)
5*h(x1 ,x8;v)hz

s(x8,x;v)dx8 into Eq. ~5.2! and obtain

G̃~1!~x1 ,x2 ;v!5E E Gs~x8,x9v!h* ~x1 ,x8;v!

3h~x2 ,x9;v!dx8dx9, ~5.3!

where

Gs~x8,x9;v!5E E I s~x,z;v!hz
s* ~x8,x;v!

3hz
s~x9,x;v!dx dz. ~5.4!

Equation~5.3! describes the propagation of partially cohe
ent light with spectral coherence functionGs(x,x8;v) be-
tween the planesz50 andz5d.

It follows that a thick incoherent source may be replac
with an equivalent partially coherent thin planar source. T
is not surprising since partial coherence is acquired as a
sult of propagation of light emitted incoherently within th
t-

l

FIG. 6. ~a! Light emitted from
a thick incoherent source transmi
ted through an optical system.~b!
SPDC light emitted from a thick
crystal transmitted through signa
and idler systems.
6-10
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source to the frontal plane of the source. Equation~5.3! may
also be translated to the spatial Fourier domain,

G̃~1!~x1 ,x2 ;v!5
1

4p2 E E G̃s~2q1 ,q2 ;v!H* ~x1 ,q1 ;v!

3H~x2 ,q2 ;v!dq1 dq2 , ~5.5!

where G̃s(q1 ,q2 ;v) is the two-dimensional Fourier trans
form of Gs(x8,x9;v).

B. Entanglement theory for thick polychromatic
biphoton sources

We now consider spontaneous parametric dow
conversion from a thick crystal of widthl pumped by a
monochromatic beam of angular frequencyvp and ampli-
tude Ep(x), as illustrated in Fig. 6~b!. The signal and idler
beams are transmitted through linear systems of impulse
sponse functionshs(x1 ,x;v) and hi(x2 ,x;v), respectively,
at the angular frequencyv. It is shown in the Appendix tha
the spectral wave function at the output of these systems~the
observation plane! is given by

c̃~x1 ,x2 ;v!5E E G~x8,x9;v!hs~x1 ,x8;v!

3hi~x2 ,x9;vp2v!dx8dx9 ~5.6!

or

c̃~x1 ,x2 ;v!5
1

4p2 E E L~qs ,qi ;v!Hs~x1 ,qs ;v!

3Hi~x2 ,qi ;vp2v!dqs dqi , ~5.7!

whereHs(x1 ,qs ;v) is the Fourier transform ofhs(x1 ,x;v)
with respect to the variablex, and similarly for the idler
system. The kernelsG and L in Eqs. ~5.6! and ~5.7! are
related to the pump distribution by

G~x8,x9;vs!5E Ep~x!z~x1x8,x1x9;vs!dx ~5.8!

and

L~qs ,qi ;v!5Ẽp~qs1qi !z̃~qs ,qi ;v!, ~5.9!

where

z̃~qs ,qi ;vs!5 l sincS l

2p
Dr DexpS 2 j

l

2
Dr D ~5.10!

with Dr 5r p2r s2r i and r 5An2(v)v2/c22q2. The quan-
tity z̃(qs,qi ;vs) is related to the crystal parameters a
z(x8,x9;vs) is its inverse Fourier transform. Using the abo
expression for the spectral wave function, the wave funct
c(x1 ,t1 ,x2 ,t2) and the biphoton rateC(x1 ,x2) may be
readily determined by the use of Eqs.~4.11! and ~4.14!.

The structure of Eq.~5.6! is identical to that for partially
coherent imaging, Eq.~5.3!, with the functionG(x8,x9;vs)
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playing the role of the source coherence functi
Gs(x8,x9;v). It follows that SPDC light generated by a thic
crystal is similar to partially coherent light emitted by a pl
nar surface, or incoherent light emitted by a thick source

In the special case of a uniform pump of unity amplitud
Eq. ~5.8! simplifies to

G~x8,x9;vs!5E z~x1x8,x1x9;vs!dx[g~x82x9;vs!,

~5.11!

where g(x,vs) is the inverse Fourier transform ofz̃(qs ,
2qs ;vs). In this case, the source function is homogeneo
as expected for a uniform pump and a crystal of infin
transverse spatial extent. The functiong(x;vs) is entirely
determined by the thickness and dispersive properties of
nonlinear crystal at the signal and idler frequencies.

C. van Cittert-Zernike theorems for thick polychromatic
photon and biphoton sources

For the 2-f system shown in Fig. 2~a!, Hs(x1 ,q;v)
5Hi(x1 ,q;v)}d@q2(v/c)(x1/ f )# so that Eq.~5.7! gives

c̃~x1 ,x2 ;vs!}ẼpS vs

c

x1

f
1

vp2vs

c

x2

f D
3zS vs

c

x1

f
,
vp2vs

c

x2

f
;vsD . ~5.12!

Equation~5.12! is a generalization of Eq.~4.16!. The bipho-
ton rate is determined from Eq.~5.12! by use of Eqs.~4.10!
and ~4.11! or ~4.14!. Here, the spatial Fourier transform o
the pump distribution, which appears in the previously d
rived biphoton van Cittert–Zernike theorem, is multiplied b
a factorz representing the degree of phase matching perm
ted by the thickness of the nonlinear crystal.

D. Biphoton diffraction for a thick polychromatic biphoton
source

If the signal and idler systems are 4-f systems with aper-
tures of frequency-independent transmittancests(x) and
t i(x) placed in the Fourier plane, as shown in Fig. 2~b!,
then Hs(x,q;v)}e2 ixqts@(c f /v)q# and Hi(x,q;v)
}e2 ixqt i@(c f /v)q#, so that

c̃~x1 ,x2 ;vs!}E E e2 i ~qsx11qix2!z̃~qs ,qi ;vs!Ẽp~qs1qi !

3tsS c f

vs
qsD t i S c f

vp2vs
qi Ddqs dqi . ~5.13!

For a uniform pump

c̃~x1 ,x2 ;vs!}E e2 iqs~x12x2!z̃~qs ,2qs ;vs!ts

3S c f

vs
qsD t i S 2c f

vp2vs
qsDdqs . ~5.14!
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We have evaluated the integral in Eq.~5.14! numerically and
used Eqs.~4.11! and ~4.10! to determine the biphoton rat
G(2)(x,t1 ,x,t2) as a function of the time separationt12t2 ,
and the rateC(x1 ,x2) of Eq. ~4.14! as a function of the
spatial separationx12x2 for 4-f signal and idler system
with aperture functions ts(x)5t i(x)5rect(x/D), corre-
sponding to diffraction-limited imaging with a lens ofF
numberF#5 f /D55. The pump was assumed to be unifor
and monochromatic and to have a wavelengthlp5325 nm.
The parameters for a beta-barium-borate~BBO! crystal in a
type-I configuration were assumed in the calculation@
ne(vp)51.667 at an angle of 36.44° andno(vs)5no(v i)
were determined by use of the Sellmeier equations#. Three
crystal widths,l 50.1, 1, and 10 mm, were used. Filters
width V50.05vp centered at the degenerate frequencyv0
5vp/2 were used in both the signal and idler beams~i.e.,
r50.05). The results are displayed in Fig. 7. The valu
obtained when the crystal width isl 50.1 mm are approxi-
mately the same as those predicted for the thin-crystal l
~Sec. IV!.

The widths~half width at half maximum values! of the
functions C(x1 ,x2) shown in Fig. 7~a!, are approximately
0.27xc , 0.85xc , and 2.0xc for l 50.1, 1, and 10 mm, respec
tively. In the thin-crystal limit, this width is 0.23xc . Thus the
width of C(x1 ,x2), which determines the fourth-order cohe
ence area, increases significantly with increase of the cry
thickness. The temporal widths~half width at half maximum
values! of the functionsG(2)(x,t1 ;x,t2), which are shown in
Fig. 7~b!, are approximately 0.44tc , 0.43tc , and 0.53tc for
l 50.1, 1, and 10 mm, respectively. In the thin-crystal lim
that width is 0.44tc . Thus the width ofG(2)(x,t1 ,x,t2),
which determines the fourth-order coherence time, is re
tively insensitive to the crystal thickness.

VI. CONCLUSION

The emission of pairs of photons~biphotons! from a non-
linear crystal illuminated by a pump wave in a spontane
parametric down-conversion process is analogous to
spontaneous emission of single photons from a conventi
incoherent source. The uncorrelated nature of the emiss
from different points of the source, whether single photo
or entangled-photon pairs, governs the process of prop
tion of the emitted light through optical systems. The tw
particle wave function in the biphoton case is analogous
the second-order coherence function in the incoherent c
and the pump spatial profile is analogous to the source in
sity distribution. With this analogy, it has been established
this paper that the phenomena of diffraction, interferen
and growth of coherence in conventional optics have th
counterparts in biphoton optics. This similarity is applicab
for quasimonochromatic and broadband light, and for b
thin and thick sources.

The underlying mathematical similarity between the tw
theories results in a duality between the theory of par
coherence in conventional sources and partial entanglem
in sources of spontaneous parametric down-convers
Since the process of spontaneous parametric do
conversion is governed by conservation of energy and
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mentum, the emitted light exhibits spatial and spectral
tanglement. The larger the size of the pump, the l
separable the two-photon wave function, and the greater
entanglement. In the dual world of spontaneous emiss
from a conventional incoherent source, the smaller
source, the more separable the coherence function of
emitted light, and the more coherent the emission. Th
nonseparability of the joint wave function, which is the e
sence of entanglement in the biphoton case, correspond
the absence of coherence in the conventional case. Se
bility is associated with nonentanglement in one world, a
with coherence in the other.

This duality means that, for an optical system illuminat
by a conventional source with geometry such that the tra
mitted light is of greater coherence, the dual biphoton sys
will manifest lower entanglement. As an interferometer, t
former system produces ordinary interference fringes w

FIG. 7. Biphoton rates~in arbitrary units! at the output of a 4-f
optical system for a SPDC source using a crystal with thicknel
and spectral widthV50.05vp ~i.e., r50.05). The system uses
lens of F number F#55. ~a! Dependence of the biphoton rat
C(x1 ,x2) on the separation (x12x2) normalized to the resolution
length xc52l0F#. ~b! Dependence of the biphoton rat
G(2)(x,t1 ,x,t2) on the time delay (t12t2) normalized to the inverse
spectral widthtc52p/V.
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DUALITY BETWEEN PARTIAL COHERENCE AND . . . PHYSICAL REVIEW A62 043816
higher visibility, whereas the latter will reveal biphoton in
terference fringes of lower visibility. As the geometry of th
system is altered to reduce coherence~fringe visibility! in the
conventional case, increased entanglement~fringe visibility!
will emerge in the dual biphoton case.
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APPENDIX

Expressions for the SPDC biphoton stateuc& are derived
under various conditions.

The simplest theory, used in Sec. III, is applicable fo
thin planar crystal under quasimonochromatic conditio
Here, the biphoton state is written as

uC&5E E dx dx8Ep~x!d~x2x8!âs
†~x!âi

†~x8!u0,0&,

~A1!

where u0,0& is the vacuum state,âs
† and âi

† are creation op-
erators for the signal and idler modes, respectively,
Ep(x) is the electric field of the pump, which is assumed
be classical and controls the rate of down-conversion. T
function is also affected by the aperture of the nonlin
crystal if the pump is not confined within the crystal. Th
operators for the positive-frequency portions of the sig
and idler electric fields at the detection plane are expresse
terms of the annihilation operatorsâs(x) and âi(x) at the
source plane~the crystal! and the impulse response functio
of the signal and idler systems:

Ê1
1~x1!5E hs~x1 ,x!âs~x!dx,

~A2!

Ê2
1~x2!5E hi~x2 ,x!âi~x!dx.

By simple substitution, it follows that the wave functio
c(x1 ,x2)5^0,0uÊ1(x2)Ê1(x1)uC& is related to the pump
distribution and the system functions by Eq.~3.4!.

We now consider the more general case of a thick crys
and include temporal and spectral effects. We express
state of the emitted biphoton in the wave-vector domain

uC&5E E dks dk iF~ks ,k i !â
†~ks!â

†~k i !u0,0&, ~A3!

where â†(ks) and â†(k i) are the photon creation operato
for signal and idler waves of wave vectorsks andk i , respec-
tively, andF(ks ,k i) is a function representing the couplin
between the wave vectors, which results from the conse
tion of energy and momentum that are inherent in the pa
metric process. The emitted signal and idler waves tra
through the signal and idler optical systems and create
field operators
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Ê1
1~x,t !5E dksHs~x,ks!e

2 ivstâks
,

~A4!

Ê2
1~x,t !5E dk iHi~x,k i !e

2 iv i tâki

at the detection plane, where theâ are the photon annihila
tion operators. Each field is a superposition of contributio
from the plane waves emitted by the source, each weigh
by factors determined by the systems. The factorHs(x,ks) is
the response of the signal system at positionx when illumi-
nated by a monochromatic plane wave of wave vectorks and
unit amplitude; Hi(x,k i) has a similar meaning for the
idler wave. The wave function c(x1 ,t1 ;x2 ,t2)
5^0,0uÊ2

1(x2 ,t2)Ê1
1(x1 ,t1)uC& at positionsx1 and x2 and

times t1 and t2 is then

c~x1 ,t1 ;x2 ,t2!5E E e2 i ~vst11v i t2!F~ks ,k i !

3Hs~x1 ,ks!Hi~x2 ,k i !dks dk i . ~A5!

Using a plane-wave expansion of the pump waveẼp(kp),
we expressF(ks ,k i) in the form

F~ks ,k i !5E dkpẼp~kp!j~kp2ks2k i !d~v2vs2v i !,

~A6!

where perfect energy conservation is represented by thd
function, whereasj~•! represents the imperfect phase matc
ing that results from the finite size of the parametric inter
tion volume. The angular frequenciesvs , v i , andv corre-
spond to the wave vectorsks , k i , and kp , respectively.
Since the finite size of the crystal in the transverse direct
is equivalent to a pump with finite aperture, and since
assume that the pump is of arbitrary transverse distribut
there is no loss of generality in assuming that the crysta
infinite in the transverse direction.

Equations~A4! and ~A5! are simplified by replacing the
wave vectork with the transverse componentq ~which is
assumed, for simplicity, to be one dimensional! and the cor-
responding frequencyv. Thus the vectork will be replaced
by the two scalars (q,v). For example,Hs(x1 ,ks) will be
denoted asHs(x1 ,qs ;vs), and so on. If the signal system
characterized by its spatial impulse response funct
hs(x1 ,x;vs) at the angular frequency vs , then
Hs(x1 ,qs ,vs) is simply the spatial Fourier transform o
hs(x1 ,x,vs) with respect to the variable2x. Similar rela-
tions apply to the idler system. We assume that the pum
a monochromatic beam of angular frequencyvp and ampli-
tudeEp(x), so that

Ẽp~kp!5Ẽp~q!d~v2vp!, ~A7!

where Ẽp(q) is the Fourier transform ofEp(x), the pump
spatial distribution at the input face of the crystal.
6-13
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We first consider the limit of a thin crystal~relating to
Sec. IV! and then generalize the results to a crystal of a
trary thickness~relating to Sec. V!. For a sufficiently thin
crystal, the phase-matching condition is applicable only
the transverse direction, so that

j~kp2ks2k i !5d~qp2qs2qi !, ~A8!

whereqs , qi , andqp are the transverse components of t
wave vectorsks , k i , andkp , respectively. The combinatio
of Eqs.~A5!–~A8! then leads to the biphoton wave functio
given in Eqs.~4.11! and ~4.13!. Using Fourier-transform re
lations leads to Eq.~4.12!.

We now consider the effect of finite thickness of the no
linear crystal. For a crystal of thicknessl in the longitudinal
direction, but infinite extent in the transverse direction,
phase-matching function is
r,

w

.
-

s

tt

r.

J

r.

J.

04381
i-

n

-

e

j~kp2ks2k i !5d~qp2qs2qi !l sincS l

2p
~Dr ! D

3expS 2 j
l

2
Dr D , ~A9!

whereDr 5r p2r s2r i andr 5An2(v)v2/c22q2 is the lon-
gitudinal component of a wave vectork of transverse com-
ponentq, angular frequencyv, and refractive indexn(v).
As before, the subscriptsp, s, andi denote the pump, signa
and idler, respectively. Therefore, for a monochroma
pump of frequencyvp ,

j~kp2ks2k i !5d~qp2qs2qi !z̃~qs ,qi ;vs!, ~A10!

where z̃(qs ,qi ;vs) is given by Eq.~5.10!. Substituting Eq.
~A10! into Eqs.~A6! and ~A5! leads to Eqs.~5.7!–~5.9!.
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