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Nonlinear dynamical evolution of the driven two-photon Jaynes-Cummings model
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The driven two-photon Jaynes-Cummings mo@&M) exhibits a collapse and revival phenomenon in its
mean photon number on a time scale much larger than the periodic revival time for two-state inversion in the
usual two-photon JCM. The time scale of revivals for these oscillations is much larger than the corresponding
time scale for the driven one-photon JCM and can be explained with the Hamiltonian oftHtype
(1 +aP,)%(J,+aP,)? constructed explicitly for this purpose. The effect of Stark shifts is also studied
and it is observed that the dynamics is strongly influenced by such Stark shifts both at early stages as well as
at late stages of the evolution but in different ways, and thus Stark shifts play a significant role in determining
the dynamical evolution of the system.

PACS numbd(s): 36.40—c

[. INTRODUCTION two-photon JCM. In order to have a physical understanding
of the results, a nonlinear model has been explicitly con-
Both one- as well as two-photon Jaynes-Cummings modstructed in Sec. Ill. We compare our results with that of Ref.
els [1,2] describing interaction of a single-mode quantized[7] in Sec. IV. Some concluding remarks are presented in
electromagnetic field with a two-level or an effective two- Sec. V.
level system have a very significant role not only in many
theoretical prediction§3] but also in the explanation of ex-  |I. MODEL AND RESULTS FOR THE MEAN PHOTON
periments[4] in cavity quantum electrodynamics. These NUMBER
models exhibit collapse and revival phenomena of Rabi os- ) o ]
cillations[5] on different time scales when interacting witha VW& consider a two-photon JCM consisting of an effective
superposition of the Fock state field. A considerable amourfVo-level atom(transition frequency.o) undergoing a non-
of work on the various aspects of these models is available iféSOnant two-photon transition in a resonant single mode of
the literature[6]. the quantized r.adla}tl_on field haV|.ng freqpen@ysych that
Recently, Chough and Carmichdél] have discussed a 2@=wo. For S|mpI|C|ty of analyas,_the interaction of the
situation in which the usual one-photon JCM driven by anfield and atom will be considered in an ideal and closed
external field, interacting with a single-mode cavity field cavity so that field damping and the radiative damping can
(initially in the vacuum state is considered. They have b_e ignored. We include here Stark splitting d_ue_ to interme-
shown that it is possible to transform this kind of interactiondiate levels just to make our model more realistic. This sys-
Hamiltonian into a usual one-photon JCM Hamiltonian byt€m is also driven by a resonant undepleted external field.
using a displacement operator on the radiation mode. The©: the atom is interacting with the sum of two fields, which
most interesting aspects of this study are that the mean ph#ads to the following form of a Hamiltonian under the
ton number not only oscillates like the orbital motion of rotating-wave approximatiotRWA),
bound mechanical system, but it collapses and revives on a
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larger time scale as compared to the time scale of the usual
col?apse—revival phenomgnon of Rabi oscillations. Essenf-iHZZﬁw(UZ/Z)+ﬁw(aTa+1/2)+ﬁ
tially, they have uncovered the nonlinear oscillator character
of one-photon JCM not discussed eatrlier.

In this paper, we extend the work of Chough and Car-  X(Bi]e)(e|+ B|g)(g|) +i%g
michael[7] for a two-photon JCM. The motivation for this
work is threefold.(i) As the two-photon JCM describes a 2
nonlinear interaction of atom and field, so it would be inter- —o_|at+ Si“)
esting to know how a driven two-photon JCM would behave Vg
and how the dynamical evolution of the mean photon num-
ber would take place(ii) We would like to compare the in which 3,3, are the measures of Stark splittirgjs the
nonlinear oscillator model of the one-photon JCM with thatcoupling constant for two-photon transition in the cavity
of the two-photon JCM(iii) We would also examine the field, e is the real amplitude of the external driving field,
effect of Stark shifts arising due to the transitions to virtualand a (a') is the annihilation(creation operator.o.. are
levels which as we will see give rise to very interesting andpseudospin operators which along with the operatplare
novel changes in the dynamics. The rest of the paper is osatisfying the usual commutation relationships. ,o_]
ganized as follows. In Sec. I, we formulate the model and=o,,[0- ,0,]=F20-, andle) (|g)) is the excitedground
present results for the mean photon number and compaigate of the atom. The Hamiltonidf) can be written in the
them with collapse and revival phenomena in the standarthteraction picture as

o, at
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e e ser. The required experimental hardware to realize JCM is
H=#4|a"+ iﬂ) a+ i”) (B1)e)(e|+B,|g){a|) available in the momentlO]. Recently, it has been proposed
\/5 \/5 that the multiguantum JCNkimilar to Eq.(4) abovd could
2 2 be realized for a trapped and laser irradiated ion, far from the
: Eext Eext Lamb-Dicke regime under an appropriate resonance condi-
+ih at—| —o_|a'+—= 2 9 pprop
") 7+ \/5 \/6 @ tion [11]. The nonlinearity appearing in the vibronic cou-
_ _ _ pling is huge and thus it opens the possibility of the experi-
The Glauber displacement operator is defined as mental realization of the multiquantum JCM for a very long
time limit. The time-dependent Schiimger equation for the
D(a)=exd a,(a‘r— a)l, Hamiltonian(4) is
()
d ~ ~ ~
D'(a)aD(a)=a+a, iﬁa|¢,>:H|,r/j>_ (5)

wherea= e,/ /g. _
We transform Hamiltoniaf2) under the displacement op- The wave functiof) is related td¢) of Hamiltonian(1) as

erator(3) and get follows:
H=D(a)HD'(a)=ha'a(B|e)(e|+ B,|g)(gl) (1)) =D(a)|¥(1)), (6)
+ihg(o,a’—o_a'?), 4

which is the standard or usual two-photon Jaynes-Cummings [#(0)=D(@)|¢(0)=[a)]e). "
model in the interaction picture with Stark splitting included. We consider our effective two-state system to be consisting
We can revert back to the noninteracti@chralingen pic-  of the excited stat@) and the ground statg) with the initial

ture by including terms such a@swo,+%w(a’a+1/2) in  state of the total system of atom and electromagnetic field as
Eq. (4) and we refer to this Hamiltonian d3;. The con- |#(0))=[0)|e). So, with the help of Eq(7), we obtain
struction of the resonant two-photon JCM is such that thd@)=D(«)|0), a coherent state.

creation of two photons is accompanied by an atomic deex- It is very straightforward to calculate the mean photon
citation and the annihilation of two photons is accompaniediumber:

by an atomic excitation. Hence the operatoa'd)/2

+0,0_ commuting with the total Hamiltoniai is the (a'a)=(yla'aly)

constant of motion2]. This operator represents the total ex- _ _

citation in the atom-field interacting two-photon JC system, =(yl(a'~a)(a—a)|)

which is a conserved quantity. In the case of the one-photon ~ o~

JCM, the equivalent constant of motiph,6] is the operator =2a(a—(Ylaly))+2(1-Py), (8)

a'a+ o, o_. This kind of two-photon JC model is directly ~ ~ . . .
applicable to experiments 68] describing the process of the WherePe=(¢e)(e[¢) is the occupation probability of the
two-photon transition betwees, ,— — %3S, , levels in Ryd- e>§£:|ted ~state lee and we have used the fact that
berg ®Rb atoms through the relay levéfP,. Also, a  ((#la'aly))/2+ P, is a conserved?2] quantity [in concur-
trapped and laser irradiated ion exhibits a Jaynes-Cumming®nce with the discussion after Ed)], in which (Tp|a*a|7ﬁ>
dynamics in appropriate limit9]. The center-of-mass mo- represents the mean photon number as measured in the tilde
tion of the ion is quantized in the trap potential and it isstate. With the help of the solution of the standard two-
coupled to the internal degrees of freedom by a suitable laphoton JCM[2], we can find

n=o

<‘lr/‘/| al:@ = nzl CiCha

N VnXoXo— 1+ YN+ 2ypYn-1

VXG+YaXG +Ye

1
z(ﬁ

)coi(JXﬁ+yﬁ—JX§1+yﬁl)gt]

1 \/ﬁxnxn1+\/n+2ynyn1)
+5| V- cog (VX Yat VXa-1FYa-1)0t] |,
2 VXa+YaVXa_ 1Y n " "
9
Py(t)= 2 1+7—ZX% +—2—2=yﬁ Ew Chcod2gtyxa+yy)
¢ 2 Xp+Yn Xptypia=o " J Y
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FIG. 1. The mean photon numb(&m*a) as a function of time FIG. 2. The collapse and revival phenomenon in excitation
for the driven two-photon JCM witl/+/g= 7. CurveA is for with- p_robabilityPe(t) asa func_tion of time for t_he same parameters as in
out Stark shifts ,/g=0,8,=0) while curveB is for with Stark ~ Fig- 1. CurveA is for without Stark shifts £,/9=0,8,/9=0)
shifts (8,/9=0.6,8,/g=0.1). while curveB is for with Stark shifts 3,/g=0.6,83,/g=0.1).

1+(,31_32)2 312
in which x,=(nB;—(n+2)B5), y,=+(n+1)(n+2), and 87ab g2
g 8(B1—B2)°
2 a" 11— —
C,=e R n=0,12..., (10) 9
n!

with the Stark shift(Fig. 3, curveB). By analyzing Eq.(9)
whereC,, represents the expansion coefficient for a coherentvithout Stark shifts, i.e., by keeping, = 8,=0, we observe
state in terms of the Fock state such th@|? is the Pois- that there are two sets of frequencies determining the time
sonian probability of photon number distribution and factoreyolution of<~¢/,|a|l7,>_ These frequencies are the sum and
5 has been absorbed f&y . We have depicted the evolution gifference of\(n+1)(n+2)g and Vn(n+1)g and the cor-
of the mean photon numbg¢a'a) without Stark shifts 81  responding amplitudes of these frequency terms are
=0,8,=0) for ¢,/ Jg=7 in Fig. 1(curveA), which clearly  (\n+2— Jn)/2 and (/n+2+ \n)/2, respectively. In the in-

gives rise to orbital oscillations with the period of oscilla- tense cavity field when the photon field is large, we find that
tions equal to 2r/g. For the sake of comparison we have

plotted the quantityP.(t) in Fig. 2 (curve A). We observe
that there is synchronization in the orbital oscillatiqig.

1, curveA) and the collapse and revival phenomena of Rab
oscillations (Fig. 2, curveA). The effect of nonzero Stark
shifts (8,=0.6,8,=0.1) on(a'a) and P,(t) has been de-
picted in Fig. 1(curveB) and Fig. 2(curveB), respectively.
Clearly, the nonzero Stark shift
reduces the period of orbital oscillation to
27/\g?+ (B1— B,)? (approximately at intense fieldsand
introduces another time scale, i.e., modulation in the quantit 150 A .
(a'a). In Pg(t) (Fig. 2 also, there is a reduction in the

revival period from#/g (without Stark shift, curveA) to 100
g%+ (B1— B2)? (with Stark shift, curveB) and the mag-
nitude of revivals also reduces. Thus both the orbital oscil-
lations as well as collapse-revival phenomena in the excita . , , , , , ,
tion probability are strongly influenced by the Stark shift. 0 20 40 60 80 100 120 140 X 10°
However, the orbital motion exhibits a kind of collapse and ¢

revival phenomenon over a very long time period compared

to the revival time of Rabi oscillations. As we will see inthe  F|G. 3. The same as Fig. 1 but for large timings. Cubvis for
following, the revival time increases to 8ma®/g without  without Stark shifts 8,/g=0,8,=0) while curveB is for with
the Stark shift(Fig. 3, curveA) and to Stark shifts 3,/9=0.6,8,/g=0.1).

<a*a>(t)
n
i=3
53
|
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the difference frequency term dominates the time evolutiorEq. (9). Clearly, the orbital motion is represented by Ebjl)
and the contribution from the sum frequency is significantlyand the period of orbital oscillation is given by
small. Thus we obtain Itorit= 27= 20 T ey, (12)

in which T, is the revival time for the two-state inversion.

(a'a)=20”[1-coggt)]+3, 11 When Stark shifts are included, we find ti{afa) and the
orbital period satisfy the following equations for the intense
where (Pg(t))=3 represents the time average Bf(t) in fields:

(B1—B2)?

1
<aTa>=2a2[1—001{(,814—/32)1‘]C05(gt)]+ E 1+ m

X 92+ (ﬂl_ :82)2torbit

=2m=2V9+(B1—B2) Trev- (13

This confirms our numerical plots represented in Fig. 1. Notéhe frequency components of one standard deviation of the
that the orbital oscillations are completely sinusoidal in na-photon number distribution dephases from its central fre-
ture (with period 27/g, no Stark shift. On the other hand, if quency, i.e.,
we retain higher-order terms in the expansion of the expres-

— 5

sion y(n+1)(n+2)—n(n+1), then the approximate 9leoliapse=4er”. (15)

plosed-fok)rm expressiof?] of (in the absence of Stark shift Similarly, the revival time can be estimated as the time when

'S given 31 ~ the two neighboring oscillations acquire ar phase differ-
(¥|a|T)~ afe«’[1-codgtisa®)] ence,

xco§a?sin(gt/ida’)+gtl}. (14 Otrey=8ma®, (16)

Clearly, there is collapse and revival of the orbital motion inWhen Stark shifts are taken into account, then we can rewrite
this situation. The more detailed analysis can be carried ouhe modified Eqs(15) and (16) in the following way pro-
as in[6]. The collapse time can be calculated as a time whenwided (8,— 8,)/g<<1:

19 (B~ B2)?
gtcollapse:47705/ (1_?19—22 )

19 (B1— B2)? (17)
gtrev=87ra6/ (1—? 9 )

Note that both the collapse time and the revival time areplicity and include it at the end. For semiclassical construc-
elongated with the inclusion of Stark shifts. This result is intion we can write, using the work ¢#7] and[12],
marked contrast to the results obtained fafa) and P(t)

at the early stages of their evolutigRigs. 1 and 2 where 2(ylaly) = xu(t) + xi(1),
the inclusion of Stark shifts reduces both the period of orbital Xui(D)=ae™9t (18
motion as well as the revival time of the collapse-revival '
phenomenon of Rabi oscillations. in which y,, | is a complex number satisfying the equation
)'(u,I: Iig)(u,l )
Ill. CONSTRUCTION OF THE NONLINEAR MODEL
_ (19
Xu,l(o)_ a.

To have a better physical picture for the results of Egs.
(8)—(10), we look again at the problem from the point of For further details of such construction, refer[#12].
view of constructing semiclassical as well as quantized os- Next, we will discuss the dressed eigenstates and energies
cillators. We ignore the Stark shift at this stage just for sim-for the model under consideration. The dressed eigenstates of
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Hy, i.e., Hamiltonian(4) along with termstw(a‘a+1/2  the ground state is shared by the orthogonal subspaces so the
+0,) (Wherew=field frequency = atomic resonance fre- orthogonality is not complete. The operatdrsJ! andJ, ,J/

quency, such thaby,=2w) can easily be obtained as are thus limited to their respective subspaces and gp
lun=(In—2)le)~i[n)]g)/v2, ~9J,=0 and
(20 S TG LG e L
1)=(In=2)e)+i[m)|g)/V2, Judi =3134=190)(9ol.
with n=2,3,4,... and the eigenenergies are 313=1g0)(ga] +2|ua)1,], (26)
By, =it hyn(n=1)g, 3135=1g1)(gal +2l12)(uzl.
(21
E =nfio—fiyn(n—1)g. Note that Eq.(26) above is quite different from that of Eq.

(23) obtained in[7] and hence the two-photon JCM is non-
At high energies or at high photon number, the frequencytrivial from the one-photon JCM in this sense.
shift varies as Now we can represent Hamiltonid@3) using ladder op-

erators in the following form:
(Eu i, —Eu 1 )h—20~*g(2+1/4n%). (22

A=Ag(\3[33udu— V31330, (27)

In fact, whenn is large, we can neglect the term @f4n Eq.
(22) and thus the frequency shift becomes constant approxiclearly, the Hamiltonian(27) has got two orthogonal
mately. This kind of constant frequency shift reminds us ofexcited-state ladders in it. It is also possible to write the wave
the frequency shift in the levels of a simple harmonic oscil-fynction |3 (t)) as a sum of two orthogonal states,
lator exhibiting sinusoidal oscillations. In semiclassical pic-
tures this oscillator conserves the magnitude of the complex [p(1))=[|U(t)) +|L(1))]/2, (28)
field but a phase shift is accumulated relative to the harmonic
motion [as in Eq.(19)]. So the orbital motion exhibits sinu- ith
soidal oscillations. ~ . R

There is no collapse and revival phenomenon in the evo- |O(1))=v2exd +igtyJ;3,3,3,1P,[a)le), (29
lution of mean photon number in the semiclassical picture. It N _
should also be noticeffrom Eq. (22)] that the departure and®~U,L. The ladder operator3, andJ, are creation
from even spacing is smallefinvolves higher orders in and annihilation operators for the entangled excitation of the
1/y/n) for the two-photon JCM than for the one-photon Jcm field+atomic system. We can find dynamics~of both field
[7] and hence the revival time is longer in the former case.and atom with two orthogonal states defined|®y(t)). For

It would be interesting to have a quantum analog of theexample, the occupation probability of the excited states is
semiclassical picture discussed above for the driven twogiven by
photon JCM and rec_iiscover the orbital _motion. We_ foII_ow P.=(1+ Re(0|lse|t))/2, (30)
Ref.[7] closely for this purpose and rewrite the Hamiltonian

(4) in a slightly different manner, whereP.=|e)(e|, and by substituting it in Eq(30) we can

_ n-e get back the same expression as in &j. Note that in Eq.
H :ﬁgzz VRVn=1(up) (Ul =1l)(I)). 23 (g), P.={(|P¢|¥). From this we infer the localization of the
orthogonal wave functions, however at a certain time they
The above form is known as the energy representation. Weverlap and thus the two-state inversion and the orbital os-
can now define the lowering and raising operatass, lad- ~ cillations are synchronized. Finally, we calculd@'a) in

der operators terms of these orthogonal stafed,
n=om
A 1 apa
3,= 19001l +2190)(mal + 2 \nlm-2)(ml. (24 (alay=3 3 (B(113}3,10(1)
where|go)=1/v2(0,g), |9:)=1/1219), 7=u,l, and the 1 _ 3 1
commutator relationship is 2 ,,:EUJ ala Re(@(t)|.],,|®(t)>]+ 2’ (31)
[3,.301=P,+91)(g1] +|90){g0l, from which we are able to reproduce tf&'a) plot in Fig. 1
® (25) but without periodic dots because the(t) term is now
p = E | o) 70l absent. Note that the time evolution®f(t) is periodic hav-
=R ing a very compact wave-packet-like structure in tifsee

R A Fig. 2) and its magnitude is much smaller than the magnitude
The projection operatorB, and P, are defined for the or- of (a'a) for the parameters selected here in this study, so it
thogonal subspaces by laddeand|, respectively. However, appeargperiodically as tiny dots riding on the peaks in the
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plot of (a'a) as shown in Fig. XA). Such dots are absent V. CONCLUSIONS

when we plot Eq(31) becauseP(t) is absent here. _ _
It is not difficult to write the undisplaced Hamiltonian as [N this work we have proceeded to look for the dynamics
of a nonlinear two-photon JCM driven by an external field

H=H,+H,, (32 and we encountered a situation of a linear harmonic oscilla-
tor exhibiting sinusoidal orbital motion semiclassically.
Quantum mechanically, the usual two-photon JCM under-
goes collapse and revivals of Rabi oscillations and so does
H,= tﬁg\/(j;+ “ﬁ’n)z(jvﬁ a|5”)2, (33  the orbital motion. However, the; timg scale of the latter is far
larger than the former. The revival time-(r/g) of the phe-
which is the constructed quantized anharmonic oscillatofomenon of collapse and revival of Rabi oscillations in the
(but behaves as the linear harmonic oscillator for higfor ~ two-photon JCM is independent of the cavity field amplitude
the driven two-photon JCM completely explaining all its fea-and the revivals are compact and complete, which is in
tures. marked contrast to the collapse and revival phenomenon of
If we include Stark shifts, then it is very easy to show thatthe orbital motion for the driven two-photon JCM. We have
also shown that the Stark shifts arising from the transitions to
H=H3+H+H,+H,, (34  virtual levels can strongly affect the orbital motion for the
driven two-photon JCM. At early stages of evolution, Stark
in whichH ,, are as defined aboy&q. (33)] andH} is given  shifts cause reduction in the time period of oscillations of
by orbital motion as well as the revival time of the collapse-
A P ~ revival phenomenon of Rabi oscillations. For very large tim-
H, =13} +aP,)(3,+aP,) 1 Bile)(el+ Balg)(gl]. ings when orbital motion shows the collapse-revival phe-
(39 nomenon, the dynamic Stark shifts can elongate the revival

The above Hamiltonian E432) is the quantized anharmonic time of this phenomenon and thus further reduce the nonl_in-
oscillator model of the driven two-photon JCM explaining €&F nature of the two-photon JCM. These results clearly in-
the features of collapse and revivals in the mean photoﬁ“cate that the nonlinear behavior of the driven two-photon
number. We have notice@s discussed at the end of Seg. II JCM is very much different from that of the driven one-
that there were no collapses and revivals of the mean photddhoton JCM as well as from the standard nonlinear two-
number in the semiclassical approximation. It is possible t@ohoton JCM. Thus the Stark shift arising from the transition
recover the semiclassical picture of “orbital” oscillations in to virtual levels plays a very significant role in determining
the short time limit of the above modgkq. (32)]. Also, this  the orbital motion of the driven two-photon JCM. It can af-
Hamiltonian may turn out to be useful as a starting point forfect the characteristic oscillation/revival time of the orbital

where

further studies. motion in the opposite manner during its early and late
stages of evolution. Hence the intrinsic nonlinear nature of

IV. COMPARISION OF THE DRIVEN TWO-PHOTON the driven two-photon JCM becomes quite sensitive to the
JCM WITH THE DRIVEN ONE-PHOTON JCM Stark effect and must be carefully determined in the course

of its dynamical evolution. Only under very special circum-
stances, i.e., whe@i; = 3, or the strength of couplings of the
lower and upper level to the intermediate level is equal, the
ffect of the Stark shifts is not pronounced on the dynamical
volution of the above system. It is quite likely that in deter-
mining other features of the driven JC model, e.g., statistical

the Stark shift in the former. The Stark shift influences bothpropertiesgintensity-int.ens_ity correlations,_e)aas well as in
the orbital oscillations as well as the collapse and revivaP"y experimental realizatiofas discussed in Sec) bf such

phenomenon in the excitation probability. At short times, the® M0del, the Stark shift can bring about quantitative changes
Stark shift introduces modulation in the orbital oscillations ini" general and hence a proper estimation may be essential.
the two-photon JCM. The orbital oscillations exhibit a kind AlSO. it would be quite interesting to know the dynamical
of collapse and revival phenomenon over a very long timegvolution of the drivem-photon JCM in general along with
period in both one- and two-photon JCM’s under discussionthe effects of the Stark shift.

However, the revival times for the long time collapse and

revival phenomenon are78%/g for the two-photon JCM

and 8ra®/g for the one-photon JCM, respectively. These ACKNOWLEDGMENTS

revival times clearly depend am Note that the revival time

for the collapse and revival phenomenon of Rabi oscillations The author is thankful to Professor Howard Carmichael
in the usual two-photon JCM is simply/g. Further, the (Oregon for his very keen interest in this problem and for
revival-time period for the driven two-photon JCM can elon- his many suggestions and fruitful comments to complete this
gate with the inclusion of the Stark shift. work.

The important similarity between our results for the
driven two-photon JCM and that of the driven one-photon
JCM (Ref. [7]) is synchronization of orbital oscillations and
the collapse and revival phenomenon of Rabi oscillations bug
on different time scales for the two models. The major dif-
ference between our work and the work of Réf] is due to
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