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Nonlinear dynamical evolution of the driven two-photon Jaynes-Cummings model
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The driven two-photon Jaynes-Cummings model~JCM! exhibits a collapse and revival phenomenon in its
mean photon number on a time scale much larger than the periodic revival time for two-state inversion in the
usual two-photon JCM. The time scale of revivals for these oscillations is much larger than the corresponding
time scale for the driven one-photon JCM and can be explained with the Hamiltonian of typeHh5

6A(Jh
†1aPh)2(Jh1aPh)2 constructed explicitly for this purpose. The effect of Stark shifts is also studied

and it is observed that the dynamics is strongly influenced by such Stark shifts both at early stages as well as
at late stages of the evolution but in different ways, and thus Stark shifts play a significant role in determining
the dynamical evolution of the system.

PACS number~s!: 36.40.2c
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I. INTRODUCTION

Both one- as well as two-photon Jaynes-Cummings m
els @1,2# describing interaction of a single-mode quantiz
electromagnetic field with a two-level or an effective tw
level system have a very significant role not only in ma
theoretical predictions@3# but also in the explanation of ex
periments @4# in cavity quantum electrodynamics. The
models exhibit collapse and revival phenomena of Rabi
cillations @5# on different time scales when interacting with
superposition of the Fock state field. A considerable amo
of work on the various aspects of these models is availabl
the literature@6#.

Recently, Chough and Carmichael@7# have discussed a
situation in which the usual one-photon JCM driven by
external field, interacting with a single-mode cavity fie
~initially in the vacuum state!, is considered. They hav
shown that it is possible to transform this kind of interacti
Hamiltonian into a usual one-photon JCM Hamiltonian
using a displacement operator on the radiation mode.
most interesting aspects of this study are that the mean
ton number not only oscillates like the orbital motion
bound mechanical system, but it collapses and revives o
larger time scale as compared to the time scale of the u
collapse-revival phenomenon of Rabi oscillations. Ess
tially, they have uncovered the nonlinear oscillator charac
of one-photon JCM not discussed earlier.

In this paper, we extend the work of Chough and C
michael@7# for a two-photon JCM. The motivation for thi
work is threefold.~i! As the two-photon JCM describes
nonlinear interaction of atom and field, so it would be inte
esting to know how a driven two-photon JCM would beha
and how the dynamical evolution of the mean photon nu
ber would take place.~ii ! We would like to compare the
nonlinear oscillator model of the one-photon JCM with th
of the two-photon JCM.~iii ! We would also examine the
effect of Stark shifts arising due to the transitions to virtu
levels which as we will see give rise to very interesting a
novel changes in the dynamics. The rest of the paper is
ganized as follows. In Sec. II, we formulate the model a
present results for the mean photon number and com
them with collapse and revival phenomena in the stand
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two-photon JCM. In order to have a physical understand
of the results, a nonlinear model has been explicitly co
structed in Sec. III. We compare our results with that of R
@7# in Sec. IV. Some concluding remarks are presented
Sec. V.

II. MODEL AND RESULTS FOR THE MEAN PHOTON
NUMBER

We consider a two-photon JCM consisting of an effect
two-level atom~transition frequencyv0) undergoing a non-
resonant two-photon transition in a resonant single mode
the quantized radiation field having frequencyv such that
2v5v0 . For simplicity of analysis, the interaction of th
field and atom will be considered in an ideal and clos
cavity so that field damping and the radiative damping c
be ignored. We include here Stark splitting due to interm
diate levels just to make our model more realistic. This s
tem is also driven by a resonant undepleted external fi
So, the atom is interacting with the sum of two fields, whi
leads to the following form of a Hamiltonian under th
rotating-wave approximation~RWA!,

H52\v~sz/2!1\v~a†a11/2!1\S a†1
«ext

Ag
D S a1

«ext

Ag
D

3~b1ue&^eu1b2ug&^gu!1 i\gFs1S a1
«ext

Ag
D 2

2s2S a†1
«ext

Ag
D 2G , ~1!

in which b1 ,b2 are the measures of Stark splitting,g is the
coupling constant for two-photon transition in the cav
field, «ext is the real amplitude of the external driving field
and a (a†) is the annihilation~creation! operator.s6 are
pseudospin operators which along with the operatorsz are
satisfying the usual commutation relationships@s1 ,s2#
5sz ,@s6 ,sz#572s6 , andue& ~ug&! is the excited~ground!
state of the atom. The Hamiltonian~1! can be written in the
interaction picture as
©2000 The American Physical Society12-1



-

in
d

th
e
ie

x-
m
to

y
e

in
-
is
l

is
d

the
ndi-
-
ri-
g

ting

as

on

at

tilde
o-

AMITABH JOSHI PHYSICAL REVIEW A 62 043812
H5\S a†1
«ext

Ag
D S a1

«ext

Ag
D ~b1ue&^eu1b2ug&^gu!

1 i\gFs1S a1
«ext

Ag
D 2

2s2S a†1
«ext

Ag
D 2G . ~2!

The Glauber displacement operator is defined as

D~a!5exp@a~a†2a!#,
~3!

D†~a!aD~a!5a1a,

wherea5«ext/Ag.
We transform Hamiltonian~2! under the displacement op

erator~3! and get

H̃5D~a!HD†~a!5\a†a~b1ue&^eu1b2ug&^gu!

1 i\g~s1a22s2a†2!, ~4!

which is the standard or usual two-photon Jaynes-Cumm
model in the interaction picture with Stark splitting include
We can revert back to the noninteraction~Schrödinger! pic-
ture by including terms such as\vsz1\v(a†a11/2) in
Eq. ~4! and we refer to this Hamiltonian asH̃T . The con-
struction of the resonant two-photon JCM is such that
creation of two photons is accompanied by an atomic de
citation and the annihilation of two photons is accompan
by an atomic excitation. Hence the operator (a†a)/2
1s1s2 commuting with the total HamiltonianH̃T is the
constant of motion@2#. This operator represents the total e
citation in the atom-field interacting two-photon JC syste
which is a conserved quantity. In the case of the one-pho
JCM, the equivalent constant of motion@1,6# is the operator
a†a1s1s2 . This kind of two-photon JC model is directl
applicable to experiments of@8# describing the process of th
two-photon transition between44S1/2←→43S1/2 levels in Ryd-
berg 85Rb atoms through the relay level39P3/2. Also, a
trapped and laser irradiated ion exhibits a Jaynes-Cumm
dynamics in appropriate limits@9#. The center-of-mass mo
tion of the ion is quantized in the trap potential and it
coupled to the internal degrees of freedom by a suitable
04381
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ser. The required experimental hardware to realize JCM
available in the moment@10#. Recently, it has been propose
that the multiquantum JCM@similar to Eq.~4! above# could
be realized for a trapped and laser irradiated ion, far from
Lamb-Dicke regime under an appropriate resonance co
tion @11#. The nonlinearity appearing in the vibronic cou
pling is huge and thus it opens the possibility of the expe
mental realization of the multiquantum JCM for a very lon
time limit. The time-dependent Schro¨dinger equation for the
Hamiltonian~4! is

i\
]

]t
uc̃&5H̃uc̃&. ~5!

The wave functionuc̃& is related touc& of Hamiltonian~1! as
follows:

uc̃~ t !&5D~a!uc~ t !&, ~6!

uc̃~0!&5D~a!uc~0!&5ua&ue&. ~7!

We consider our effective two-state system to be consis
of the excited stateue& and the ground stateug& with the initial
state of the total system of atom and electromagnetic field
uc(0)&5u0&ue&. So, with the help of Eq.~7!, we obtain
ua&5D(a)u0&, a coherent state.

It is very straightforward to calculate the mean phot
number:

^a†a&5^cua†auc&

5^c̃u~a†2a!~a2a!uc̃&

52a~a2^c̃uauc̃& !12~12Pe!, ~8!

wherePe5^c̃ue&^euc̃& is the occupation probability of the
excited state ue& and we have used the fact th
(^c̃ua†auc̃&)/21Pe is a conserved@2# quantity @in concur-
rence with the discussion after Eq.~4!#, in which ^c̃ua†auc̃&
represents the mean photon number as measured in the
state. With the help of the solution of the standard tw
photon JCM@2#, we can find
^c̃uauc̃&5 (
n51

n5`

CnCn21F1

2 S An1
Anxnxn211An12ynyn21

Axn
21yn

2Axn21
2 1yn21

2 D cos@~Axn
21yn

22Axn21
2 1yn21

2 !gt#

1
1

2 S An2
Anxnxn211An12ynyn21

Axn
21yn

2Axn21
2 1yn21

2 D cos@~Axn
21yn

21Axn21
2 1yn21

2 !gt#G ,

~9!

Pe~ t !5
1

2 S 11
xn

2

xn
21yn

2 1
yn

2

xn
21yn

2 (
n50

n5`

Cn
2 cos~2gtAxn

21yn
2!D
2-2
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in which xn5„nb12(n12)b2…, yn5A(n11)(n12), and

Cn5e2uau2/2
an

An!
, n50,1,2, . . . , ~10!

whereCn represents the expansion coefficient for a coher
state in terms of the Fock state such thatuCnu2 is the Pois-
sonian probability of photon number distribution and fact
1
2 has been absorbed inbL. We have depicted the evolution
of the mean photon number^a†a& without Stark shifts (b1

50,b250) for «ext/Ag57 in Fig. 1~curveA!, which clearly
gives rise to orbital oscillations with the period of oscilla
tions equal to 2p/g. For the sake of comparison we hav
plotted the quantityPe(t) in Fig. 2 ~curve A!. We observe
that there is synchronization in the orbital oscillations~Fig.
1, curveA! and the collapse and revival phenomena of Ra
oscillations ~Fig. 2, curveA!. The effect of nonzero Stark
shifts (b150.6,b250.1) on ^a†a& and Pe(t) has been de-
picted in Fig. 1~curveB! and Fig. 2~curveB!, respectively.
Clearly, the nonzero Stark shif
reduces the period of orbital oscillation t
2p/Ag21(b12b2)2 ~approximately at intense fields! and
introduces another time scale, i.e., modulation in the quan
^a†a&. In Pe(t) ~Fig. 2! also, there is a reduction in the
revival period fromp/g ~without Stark shift, curveA! to
p/Ag21(b12b2)2 ~with Stark shift, curveB! and the mag-
nitude of revivals also reduces. Thus both the orbital os
lations as well as collapse-revival phenomena in the exc
tion probability are strongly influenced by the Stark shi
However, the orbital motion exhibits a kind of collapse an
revival phenomenon over a very long time period compar
to the revival time of Rabi oscillations. As we will see in th
following, the revival time increases to;8pa6/g without
the Stark shift~Fig. 3, curveA! and to

FIG. 1. The mean photon number^a†a& as a function of time
for the driven two-photon JCM with«/Ag57. CurveA is for with-
out Stark shifts (b1 /g50,b250) while curveB is for with Stark
shifts (b1 /g50.6,b2 /g50.1).
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g F S 11
~b12b2!2

g2 D 3/2

U12
8~b12b2!2

g2 U G
with the Stark shift~Fig. 3, curveB!. By analyzing Eq.~9!
without Stark shifts, i.e., by keepingb15b250, we observe
that there are two sets of frequencies determining the time
evolution of ^c̃uauc̃&. These frequencies are the sum and
difference ofA(n11)(n12)g andAn(n11)g and the cor-
responding amplitudes of these frequency terms are
(An122An)/2 and (An121An)/2, respectively. In the in-
tense cavity field when the photon field is large, we find that

FIG. 3. The same as Fig. 1 but for large timings. CurveA is for
without Stark shifts (b1 /g50,b250) while curveB is for with
Stark shifts (b1 /g50.6,b2 /g50.1).

FIG. 2. The collapse and revival phenomenon in excitation
probabilityPe(t) as a function of time for the same parameters as in
Fig. 1. CurveA is for without Stark shifts (b1 /g50,b2 /g50)
while curveB is for with Stark shifts (b1 /g50.6,b2 /g50.1).
2-3
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the difference frequency term dominates the time evolut
and the contribution from the sum frequency is significan
small. Thus we obtain

^a†a&52a2@12cos~gt!#1 1
2 , ~11!

where ^Pe(t)&5 1
2 represents the time average ofPe(t) in
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nEq. ~9!. Clearly, the orbital motion is represented by Eq.~11!
and the period of orbital oscillation is given by

gtorbit52p52gTrev, ~12!

in which Trev is the revival time for the two-state inversion
When Stark shifts are included, we find that^a†a& and the

orbital period satisfy the following equations for the inten
fields:
^a†a&52a2 @12cos@~b11b2!t#cos~gt!#1
1

2 S 11
~b12b2!2

~b12b2!21g2D
3Ag21~b12b2!2torbit

52p52Ag21~b12b2!2Trev. ~13!
the
re-

en

rite
This confirms our numerical plots represented in Fig. 1. N
that the orbital oscillations are completely sinusoidal in n
ture ~with period 2p/g, no Stark shift!. On the other hand, if
we retain higher-order terms in the expansion of the exp
sion A(n11)(n12)2An(n11), then the approximate
closed-form expression@2# of ~in the absence of Stark shift!
is given by

^C̃uauC̃&'a$e2a2@12cos~gt/4a6!#

3cos@a2 sin~gt/4a6!1gt#%. ~14!

Clearly, there is collapse and revival of the orbital motion
this situation. The more detailed analysis can be carried
as in@6#. The collapse time can be calculated as a time w
e
-

s-

ut
n

the frequency components of one standard deviation of
photon number distribution dephases from its central f
quency, i.e.,

gtcollapse54pa5. ~15!

Similarly, the revival time can be estimated as the time wh
the two neighboring oscillations acquire a 2p phase differ-
ence,

gtrev58pa6. ~16!

When Stark shifts are taken into account, then we can rew
the modified Eqs.~15! and ~16! in the following way pro-
vided (b12b2)/g!1:
gtcollapse54pa5Y S 12
19

2

~b12b2!2

g2 D ,

~17!
gtrev58pa6Y S 12

19

2

~b12b2!2

g2 D .
uc-

gies
es of
Note that both the collapse time and the revival time
elongated with the inclusion of Stark shifts. This result is
marked contrast to the results obtained for^a†a& and Pe(t)
at the early stages of their evolution~Figs. 1 and 2!, where
the inclusion of Stark shifts reduces both the period of orb
motion as well as the revival time of the collapse-reviv
phenomenon of Rabi oscillations.

III. CONSTRUCTION OF THE NONLINEAR MODEL

To have a better physical picture for the results of E
~8!–~10!, we look again at the problem from the point
view of constructing semiclassical as well as quantized
cillators. We ignore the Stark shift at this stage just for si
e

l
l

.

s-
-

plicity and include it at the end. For semiclassical constr
tion we can write, using the work of@7# and @12#,

2^c̃uauc̃&5xu~ t !1x l~ t !,
~18!xu,l~ t !5ae7 igt,

in which xu,l is a complex number satisfying the equation

ẋu,l57 igxu,l ,
~19!xu,l~0!5a.

For further details of such construction, refer to@7,12#.
Next, we will discuss the dressed eigenstates and ener

for the model under consideration. The dressed eigenstat
2-4
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H̃T , i.e., Hamiltonian~4! along with terms\v(a†a11/2
1sz) ~wherev5field frequency,v05atomic resonance fre
quency, such thatv052v) can easily be obtained as

uun&5~ un22&ue&2 i un&ug&/&,
~20!

u l n&5~ un22&ue&1 i un&ug&)/&,

with n52,3,4,... and the eigenenergies are

Eun
5n\v1\An~n21!g,

~21!
El n

5n\v2\An~n21!g.

At high energies or at high photon number, the frequen
shift varies as

~Eun ,l n
2Eun22 ,l n22

!/\22v'6g~211/4n2!. ~22!

In fact, whenn is large, we can neglect the term 1/4n2 in Eq.
~22! and thus the frequency shift becomes constant appr
mately. This kind of constant frequency shift reminds us
the frequency shift in the levels of a simple harmonic os
lator exhibiting sinusoidal oscillations. In semiclassical p
tures this oscillator conserves the magnitude of the comp
field but a phase shift is accumulated relative to the harmo
motion @as in Eq.~19!#. So the orbital motion exhibits sinu
soidal oscillations.

There is no collapse and revival phenomenon in the e
lution of mean photon number in the semiclassical picture
should also be noticed@from Eq. ~22!# that the departure
from even spacing is smaller~involves higher orders in
1/An) for the two-photon JCM than for the one-photon JC
@7# and hence the revival time is longer in the former cas

It would be interesting to have a quantum analog of
semiclassical picture discussed above for the driven t
photon JCM and rediscover the orbital motion. We follo
Ref. @7# closely for this purpose and rewrite the Hamiltoni
~4! in a slightly different manner,

H̃5\g (
n52

n5`

AnAn21~ uun&^unu2u l n&^ l nu!. ~23!

The above form is known as the energy representation.
can now define the lowering and raising operators~i.e., lad-
der operators!,

Ĵh5ug0&^g1u1&ug1&^h2u1 (
n53

n5`

Anuhn21&^hnu, ~24!

where ug0&51/A2u0,g&, ug1&51/A2u1,g&, h5u,l , and the
commutator relationship is

@ Ĵh ,Ĵh
† #5 P̂h1ug1&^g1u1ug0&^g0u,

~25!

P̂h5 (
n52

`

uhn&^hnu.

The projection operatorsP̂u and P̂l are defined for the or-
thogonal subspaces by ladderu andl, respectively. However
04381
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the ground state is shared by the orthogonal subspaces s
orthogonality is not complete. The operatorsĴu ,Ĵu

† andĴl ,Ĵl
†

are thus limited to their respective subspaces and soĴuĴl

5 Ĵl Ĵu50 and

ĴuĴl
†5 Ĵl Ĵu

†5ug0&^g0u,

Ĵu
†Ĵl5ug1&^g1u12uu2&^ l 2u, ~26!

Ĵl
†Ĵu5ug1&^g1u12u l 2&^u2u.

Note that Eq.~26! above is quite different from that of Eq
~23! obtained in@7# and hence the two-photon JCM is no
trivial from the one-photon JCM in this sense.

Now we can represent Hamiltonian~23! using ladder op-
erators in the following form:

Ĥ5\g~AJu
†Ju

†JuJu2AJl
†Jl

†JlJl !. ~27!

Clearly, the Hamiltonian~27! has got two orthogona
excited-state ladders in it. It is also possible to write the wa
function uc̃(t)& as a sum of two orthogonal states,

uc̃~ t !&5@ uŨ~ t !&1uL̃~ t !&]/2, ~28!

with

uQ̃~ t !&5& exp@7 igtAJh
†Jh

†JhJh# P̂hua&ue&, ~29!

and Q;U,L. The ladder operatorsJh
† and Jh are creation

and annihilation operators for the entangled excitation of
field1atomic system. We can find dynamics of both fie
and atom with two orthogonal states defined byuQ̃(t)&. For
example, the occupation probability of the excited states
given by

Pe5~11Rê ŨuP̂euL̃&!/2, ~30!

whereP̂e5ue&^eu, and by substituting it in Eq.~30! we can
get back the same expression as in Eq.~9!. Note that in Eq.
~9!, Pe5^c̃uP̂euc̃&. From this we infer the localization of the
orthogonal wave functions, however at a certain time th
overlap and thus the two-state inversion and the orbital
cillations are synchronized. Finally, we calculate^a†a& in
terms of these orthogonal states@7#,

^a†a&5
1

2 (
h5u,l

^Q~ t !uĴh
† ĴhuQ~ t !&

5
1

2 (
h5u,l

a@a2Rê Q~ t !uĴhuQ~ t !&#1
1

2
, ~31!

from which we are able to reproduce the^a†a& plot in Fig. 1
but without periodic dots because thePe(t) term is now
absent. Note that the time evolution ofPe(t) is periodic hav-
ing a very compact wave-packet-like structure in time~see
Fig. 2! and its magnitude is much smaller than the magnitu
of ^a†a& for the parameters selected here in this study, s
appears~periodically! as tiny dots riding on the peaks in th
2-5
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AMITABH JOSHI PHYSICAL REVIEW A 62 043812
plot of ^a†a& as shown in Fig. 1~A!. Such dots are absen
when we plot Eq.~31! becausePe(t) is absent here.

It is not difficult to write the undisplaced Hamiltonian a

H5Hu1Hl , ~32!

where

Hh56\gA~ Ĵh
†1a P̂h!2~ Ĵh1a P̂h!2, ~33!

which is the constructed quantized anharmonic oscilla
~but behaves as the linear harmonic oscillator for highn! for
the driven two-photon JCM completely explaining all its fe
tures.

If we include Stark shifts, then it is very easy to show th

H5Hu
s1Hl

s1Hu1Hl , ~34!

in which Hh are as defined above@Eq. ~33!# andHh
s is given

by

Hh
s 5@~ Ĵh

†1a P̂h!~ Ĵh1a P̂h!#@b1ue&^eu1b2ug&^gu#.
~35!

The above Hamiltonian Eq.~32! is the quantized anharmoni
oscillator model of the driven two-photon JCM explainin
the features of collapse and revivals in the mean pho
number. We have noticed~as discussed at the end of Sec.!
that there were no collapses and revivals of the mean ph
number in the semiclassical approximation. It is possible
recover the semiclassical picture of ‘‘orbital’’ oscillations
the short time limit of the above model@Eq. ~32!#. Also, this
Hamiltonian may turn out to be useful as a starting point
further studies.

IV. COMPARISION OF THE DRIVEN TWO-PHOTON
JCM WITH THE DRIVEN ONE-PHOTON JCM

The important similarity between our results for th
driven two-photon JCM and that of the driven one-phot
JCM ~Ref. @7#! is synchronization of orbital oscillations an
the collapse and revival phenomenon of Rabi oscillations
on different time scales for the two models. The major d
ference between our work and the work of Ref.@7# is due to
the Stark shift in the former. The Stark shift influences bo
the orbital oscillations as well as the collapse and revi
phenomenon in the excitation probability. At short times,
Stark shift introduces modulation in the orbital oscillations
the two-photon JCM. The orbital oscillations exhibit a kin
of collapse and revival phenomenon over a very long ti
period in both one- and two-photon JCM’s under discussi
However, the revival times for the long time collapse a
revival phenomenon are 8pa6/g for the two-photon JCM
and 8pa3/g for the one-photon JCM, respectively. The
revival times clearly depend ona. Note that the revival time
for the collapse and revival phenomenon of Rabi oscillatio
in the usual two-photon JCM is simplyp/g. Further, the
revival-time period for the driven two-photon JCM can elo
gate with the inclusion of the Stark shift.
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V. CONCLUSIONS

In this work we have proceeded to look for the dynam
of a nonlinear two-photon JCM driven by an external fie
and we encountered a situation of a linear harmonic osc
tor exhibiting sinusoidal orbital motion semiclassicall
Quantum mechanically, the usual two-photon JCM und
goes collapse and revivals of Rabi oscillations and so d
the orbital motion. However, the time scale of the latter is
larger than the former. The revival time (;p/g) of the phe-
nomenon of collapse and revival of Rabi oscillations in t
two-photon JCM is independent of the cavity field amplitu
and the revivals are compact and complete, which is
marked contrast to the collapse and revival phenomeno
the orbital motion for the driven two-photon JCM. We ha
also shown that the Stark shifts arising from the transitions
virtual levels can strongly affect the orbital motion for th
driven two-photon JCM. At early stages of evolution, Sta
shifts cause reduction in the time period of oscillations
orbital motion as well as the revival time of the collaps
revival phenomenon of Rabi oscillations. For very large ti
ings when orbital motion shows the collapse-revival ph
nomenon, the dynamic Stark shifts can elongate the rev
time of this phenomenon and thus further reduce the non
ear nature of the two-photon JCM. These results clearly
dicate that the nonlinear behavior of the driven two-pho
JCM is very much different from that of the driven on
photon JCM as well as from the standard nonlinear tw
photon JCM. Thus the Stark shift arising from the transiti
to virtual levels plays a very significant role in determinin
the orbital motion of the driven two-photon JCM. It can a
fect the characteristic oscillation/revival time of the orbit
motion in the opposite manner during its early and la
stages of evolution. Hence the intrinsic nonlinear nature
the driven two-photon JCM becomes quite sensitive to
Stark effect and must be carefully determined in the cou
of its dynamical evolution. Only under very special circum
stances, i.e., whenb15b2 or the strength of couplings of th
lower and upper level to the intermediate level is equal,
effect of the Stark shifts is not pronounced on the dynam
evolution of the above system. It is quite likely that in dete
mining other features of the driven JC model, e.g., statist
properties~intensity-intensity correlations, etc.! as well as in
any experimental realization~as discussed in Sec. II! of such
a model, the Stark shift can bring about quantitative chan
in general and hence a proper estimation may be essen
Also, it would be quite interesting to know the dynamic
evolution of the drivenn-photon JCM in general along with
the effects of the Stark shift.
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