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Field-gradient-induced second-harmonic generation in magnetized vacuum
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The photon-photon scattering in vacuum can give rise to the second-harmonic generation of intense laser
radiation in a dc magnetic field in the “box” diagram approximation of quantum electrodynamics if the
symmetry of interaction is broken hyodulation or/and nonuniformitgf optical wave+dc field system in
time or/and space. Specific examples considered here are: an ppiigblane wave or a Gaussian laser beam
propagating in uniform or nonuniform dc fields.

PACS numbds): 42.65.Ky, 12.20-m

[. INTRODUCTION points of view(see also earlier work6]), pointing out that
SHG in configuration[13] should vanish. While being in
Photon-photon scatteririd,2] is perhaps one of the most agreement with the major point of Refd4,15 that SHG
fundamental quantum electrodynami¢®ED) processes, due to the box diagram vanishes for a cw plane wave and
which may also result in nonlinear optical effects in vacuumuniform dc field (which was also the main case considered
such as the birefringence of the refractive index seen by garlier[3—15]), our reply[16] and later consideratiofi7]
probe field under the action of either a dc magn@ice]ec- SuggeStEd, however, that the nonvaniShing effect may result
tric) field [3] or intense laser pumpirig], multivave mixing ~ from the spatiahonuniformityof the field.
[5], and merging of two photons into orige., sum fre- Hence, the fundamental question arises whether the van-
quency generatidr[G] under the action of a dc field. All of |Sh|ng contribution of the box diagram is due to fundamental
these effects are based on the lowest order, so called “boxtaws of QED, or only due to the conventionallgnd thus
diagram approximation, Fig. 1It was also proposed that unfavorably chosen configuration: plane monochromatic
using hexagona| diagram, high_order harmon[@i and (CW) Optical waveruniform dc field. In this paper, we show
second-order subharmonic, a so-called photon splif;j, that the nonvanishing contribution of the box diagram can
can be generated with a dc magnetic figllobserved, these result from the nonuniformityor gradient of any compo-
effects may provide a fundamental Optica| test of QED nent of theentire field SyStem(bOth the laser and dc mag-
From any realistic point of view the only hope to attain Netic fields in spaceor/andtime (Sec. I). In particular, we
observable effects in the laboratory is to use lowest-ordegonsider a plane wave modulatedtime by a pulse with an
processes{i_e_, those due to the box d|agranyet the re- arbitrary prOﬁIe and finite durationiSeC. “D, and a cw
quired optical fields are still enormously high and not pres-Gaussian(i.e., spatiallyinhomogeneouslaser beam in a
ent|y available. It has also been apparent that a dc fmld magnetic field with an arbitrary Spatial diStribUti@eC. |\0,
ther electric or magnetiamay greatly assist the interaction, in particular in both uniform (Sec. V} and nonuniform
which have attracted much attentif®—8]. One of the most  fields—magnetic dipole and quadrupd¢®ec. V). We dem-
interesting and fundamental are dc field-assisted processed?strate that the nonvanishing SHG in the low@st, box
the merging of two photons into one, e.g., the Secondapproximaﬂon exists in all these Configurations. The most
harmonic generatio(SHG) Fig. 1[3,8] (see als$9,10]), and important fact is that the SHG effe@) exists in the approxi-
photon “splitting” [6,3,8], (see also[11])—in essence, a mation in which the plane-wave SHG vanishes completely,
parametric process—in the presence of a dc field. Howeve@nd (i) that it is of the expected order of magnitude; for
these processes have been the subject of a long persistifijample, for a Gaussian laser field with maximum amplitude
controversy, with the work3,6,8 maintaining (correctly,  E1 in the focal plane in a uniform dc magnetic fietg, the
see belowthat these effects vanish in the box approximationefficiency of SHG conversiows; g is
(and under condition of cw wave and uniform and constant
dc field, which is an important point in the context of this 20
papej, whereas the work9—11] suggestederroneously, see
Refs.[3], [8b], and[12]) nonvanishing effect for the same
approximation and conditions. The previous works on the
subject have been reviewed [ii2] with a conclusion that
none of them were fully correct although the res(ittg] are By
much closer to those of Refl3], [6], [8] [the results 0f12]
suggests the box diagram contribution for the plane wave is
nonzero, yet smaller than that from the next order, hexago-
nal, diagram. Our recent proposal13] of laser-induced FIG. 1. Fourth-ordern*"box” ) Feynman diagram for photon-
SHG in vacuum in the presence of a dc magnetic field haghoton scattering in a dc field resulting in second-harmonic genera-
been criticized from QEN14] and phenomenologic4ll5]  tion (SHG.
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Wsno=(a/45)?0[ (E,B,/B3)?], (1.)  These equations are valid fdE|,|B|<B. and A>\c,
_ - _ [18,19, where \ is the field wavelength and -=#A/mgc
[see Eq(5.7) below], whereB,, is the QED critical fieldsee  =3.862< 1073 A is the Compton wavelength of the electron.

below), anda=e?/Ac=1/137 is the fine structure constant; A cw p|ane wave does not exhibit any nonlinear effects,
the advent of laser and magnet technology may make thgince due to its properties,

observation of vacuum SHG feasible in the foreseeable fu-

ture (Sec. VII). Our interpretation of field-gradient-induced E2=B2, E-B=0 (i.e.,a=b=0),

SHG in vacuum relates the field nonuniformity to momen-

tum transfer between photons and the dc fi@dc. VI). The  the nonlinearity, Eq(2.4), vanishes. This “degeneracy” of
total number of SHG photons in such a system is many orthe third-order nonlinearity may be broken by the field non-
ders of magnitude higher than that due to the next, hexagonahiformity that can give rise tsecond-ordenonlinearopti-
diagram contribution, such that SHG appears to be truly otal effects in the presence of a stroaatic field. If an un-

the “box diagram™ nature(Sec. VI). perturbed fundamental wavés; and B,, propagates in
vacuum in the presence of a dc magnetic fiélg,, Eq.(2.4)
Il. SECOND-ORDER OPTICAL NONLINEARITY IN A dc can be rewritten as
MAGNETIC FIELD
SNL_ 2 2 2 LRe
The Heisenberg-Euler Lagrangidh,2] for PPS can be DNt=x(—2BgE 1+ 7beByo) +D?, (2.5a
written as

HNL=2yB2 Byot 2x(B2B 1+ 2bgBy.+H?, (2.50
L:L2+L4+L6+"' y
where bg=B;-By;, be=E;-Bg., and the only terms that

WhereL2=(E2— BZ)/Z is a linear term, and may give rise to SHG are
L,=(x/2)(a®+b?); (a=E?-BZ%b=E-B) (2.1 D@ = y(4bgE;—7beB;); H® = y(4bgB;+7bcE,).
(2.6
is the first nonlinear term; it corresponds to the box Feynman
diagram. Here Suppose now that the unperturbed fundamental light beam at
the frequencyw; is a quasiplane and/or quasi-cw wave with
x=al457B2=2.6x10"%* tesla 2 the wave vectok,=q;k;, k;=w;/c, q;=1, such that
is a nonlinear interaction constant and |§1= Biuy(F,¥)-e 1, élmqlx El, i G,=0,
2.7

Ba=mac®/eti=4.4x10° tesla . o
where p; is a polarization vector |f;|=1), ¢=w;t

is the QED critical field.Lg corresponds to the hexagonal —F-Izlo is a retarded coordinate, andg is a “slow” enve-
Feynman diagrantsee below, Sec. \/J]4etc. Using the ac-  |ope, whose variations in spaceand iny are much slower
tloq fqr the' first two terms(L,+L,)d*x, and t.akmg the  thane ¥ (for a cw plane wavep,u,=cons). Here K,
variation with respect to the four-vector potential, the malc-_k - hered. | it tor al th . 0 f
roscopic equations in the form of classical Maxwell's equa-— 1G1,, Whereqy, IS a unity vector along the main axis o

tions are obtained d4,2,6,18 tEe beam propagation. Using Ed&.6) and (2.7), we find
that

B@.H2=0; |B@|=|H?|: A?~—g§,xDB?,

(2.2 2.9

VXE+aBlcat=0, VXH-gD/cat=0,
The SHG wave equations can then be obtained from Egs.
with the constitutive relation§l,2,18 between the electric (2.2) and(2.4) as

displacemenD and magnetic fieldd, and electric fieldE

and magnetic inductioB being: VXEy+(1/e)dBy/t=0,

_ (2.9
B=E+DBN., A=B-HM, 2.3 VXB,—(1/c)dE,/t=F - ye 2,
where where
. - - - =_ 1 3(2) 3(2)7. @209
BNL= oL, 19E = x(2aE+TbB), (2.43 F=x""(1lc)dD'“/at+VXxXH“]-e (2.10
R R R R is a slow envelope of nonlinear driving terfor source.
HNY=9L,/9B= y(—2aB+ 7bE). (2.4b  Using Egs.(2.6) and(2.7), we find
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F=kyaf/ay— VX[ Gy X F1+ 2ik AqX¥[ Gy X f], 4ik, 90,y + A | = — 2ik, xF. (2.1
(2.1
X s = lll. PULSE PROPAGATION IN AN UNIFORM dc
whereAq=dy~dy, and MAGNETIC FIELD
f= B UZBye, (2.12) Consider first the perhaps simplest and fundamental ex-
ample of apulse plane wave propagating in @aniform dc
P2=—4P1- ([A1XP1]-Egct 7(P1- €y [ A1 X Pal, magnetic field By=Bg&,; €4=8, normal to the wave

(2.127) propagation axisy, i.e.,d; =&, . Suppose that the amplitude
(and/or phaseof fundamental plane wave\( u;=0) is ar-

with Py, G;, andé .= By./By. being the unity vectors of the .., . L :
wave polarization, the wave direction of propagation, and thebltrarlly modulated in time with &complex envelopeus (i)

dc magnetic field, respectively. In E.12, P, is a (non-  and letd; be the angle betweem, and By [i.e., p1=(P1)o
unity in general SH polarization vector. Because of the spa-— SN 1 &+ C€0s6; &,]. The SHG driver, Eq(2.11), is then
tial anisotropy imposed by a dc magnetic field, SHG depend&educed to:

upon the polarization of laser fundamental wave; &j12 - - . 2

reflects induced birefringence of the nonlinear interaction. If F=kq10f/9¢=k,Bopod[ui(¢)]/d¢, (3.9)
the fundamental wave propagates along the dc magnetic field

By, thenD®@=0, H®=0 [Eq. (2.4)], and nonlinear effects Where

vanish identically. The strongest interaction occurs when the Po=(4+3 cog 6,)&,— 3 sinfd, cosh,&,. (3.2

light propagatesiormally to B, and is polarized parallel to

B,, in which case (Note again that for6,=0, i.e., whenp,liBy, then p,
. R =78&,, andp,lp;. When 6,==/2, i.e., if p;IBo, we have
P1=€gc, and Pp=7[q1xpP1], (213 5,=4p,.) Thus, SHG may occur only if the fundamental

wave envelope igime (or ¢) dependentThe plane-wave

i.e., here the SH polarization vectps is normalto the fun- - . . . .
damental polarization vectgy; . This is the manifestation of lsoAuinudZ;SO) solution of Eq(2.16) with a driver, Eq.(3.1), is

birefringence; note that when the fundamental light is polar-
ized (and propagatesiormally to the magnetic field, the SH

- _ = 2
polarization coincides with that of the fundamental radiation: Uz(y.y) == (XI2)kiBoPay dluz(v) J/dy (33

assuming that the fielB, is “turned on” aty=0. Equation
(3.3 demonstrates the same dependence ordigtanceof
The first term in the right-hand side of E€.11) is due to  interaction (i,>y) as for SHG in a “classical” nonlinear
the time dependence of the dc field and the intensity of th&nedium with ideal phase matching, with the significant dif-
fundamental wave, whereas the second and third terms aférence being that SHG is proportional now to the time de-
due to spatial nonuniformity of the wave intensity and phasetivative of the driving envelope. The use of very broad spec-
respectively. Equatiof2.11) clearly indicates that the driver trum radiation can further enhance the SHG effect.

it Pill6ge & Gill6g, then P,=4p;. (2.14

F (and therefore, SHG itselfvanishes(consistently with The SHG energy flux at each point in theaxis is
[14,15,6), if the radiation is a cw plane wave and the dc field .

is uniform and constant, since in _suph a casey=0, Aq ESHG(y):(C/Z)j |u,|2dt.

=0, andV=0. Thus, the nonvanishing effect may be ex- —

pected only if the field system varies in space and/or time. ) ) ) )

The evolution of an unperturbed fundamental wave enveAssuming a Gaussian temporal intensity envelope of the fun-
lope u, of a diffracting light beam in a vacuum is governed damental wave,
by a so-called paraxial wave equation that approximates Egs.

2_pE2 2742
(2.2) under the conditiom?E, /dy?<k,dE, /dy: ug=E7 exp(—t/t}),
2ik,0uy/ay+A u; =0, (2.15  Wwhere 2, is total pulse length, we obtain from EQ.3) that
where we assumed the laser beam to propagate along the SSHG(y)=(p§/8ctp) V7l2(xBoE2y)2. (3.9

axis (i.e., G, =8&); A, =0%ax*+ /2% is a “transverse”
Laplacian. Since in this approximation, vacuum is disper{For 61=0, [p,|=7, while for 6,= /2, |p,|=4.) Since the
sionless, no time derivativéor d/dy) enters this equation, energy flux at the fundamental frequency i,
i.e., the temporalor ¢ modulation of the envelope; re- =(C(2)f§|U1|2dt' we obtain the efficiency of the SHG con-
mains intact as the wave propagates. Using the same apgersion as:

proximation for SHG, assuminig, = (', #)e~2'¥ and slow

variation ofl§dC in time/space, we obtain a paraxial equation Esndy) - 1

for an SHG slow envelopd, as & v2

2
(Olpz BoE1 Y ) 3.5

907 BZ ct,
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IV. TWO-DIMENSIONAL (2D) cw GAUSSIAN BEAM IN A where f:4u%BdC, ql:éy cos¢p+é,sing, and p
dc MAGNETIC FIELD = (840, Cosp—(8y)y Sin¢. Recalling that

Considering nowspatial nonuniformity of nonplanafin
particular, Gaussigrwave, we assume a cw wavigis clear
however that a combined time/space nonuniformity may sig
nificantly enhance the nonlinear interactipsuch that in Eq. when it is inhomogeneous, see bejovand thus & p
(2.11), 9/9=0. The calculations of the beam propagationzo(d) 24125) <<, we find ’
for SHG in the general case become tedious, and to make d-co7B '
them more traceable, we consider here the probably simplest 4ik,fp SirP( p12) ~ikyf 2 (4.6)
case of spatially nonuniform problem: the propagation of a ! vy '
2D Gaussian beartor so calledslabbean), in which case it
is assumed uniform along only one directisay in thex
axis, so thaw/dx=0), and having a Gaussian profile in the P _ )
other direction(say thez axis) normal to the direction of the div(d.fp)=d($f)/az+ ot oy, (4.6)
propagatior(they axis). In_ this caS(za thg transverse I__aplacian or, since we assumed thaj<zg, i.e., that the dc magnetic
in Egs.(2.19 and (2.1 is A, =9°/9z°. To maximize the  fie|q B, (y,7) is changing much slower across the optical

interaction, we assume that the dc magnetic fiBld, is  beam(i.e., as function of) than the light intensity2(y,z),
normal (or almost normal to the direction of the wave

¢<1, (édc)y<(édc)zv and 20<kZg,

(where zg is the z-spatial scale of the dc magnetic field

where we neglected terntg ¢3), and

propagation(such thatB,|>|B,|, andB,=0), and the fun- I pu?)  I(u?Bgyo)
i i R i div(q;fp)=4| Bye (4.7
damental wave is polarized normally By., with 9z ay
I21: paue””, Substituting Eqs(4.6) and(4.7) into Eq.(4.5), and using Eq.
2_p2 _ S )
where nowy= w,t—kyy andp,=8&,. A fundamental solu- (4.2), U =ELY(y)ex ~Y(Y)Z* /7], we obtain finally:
tion of Eq.(2.15 in such a case is a 2D Gaussian beam: 2
F=4p,uf aB“—i(B—‘“ |Y<y)|2(1—|Y|2i (4.9
u=EG(y,2); G=\Y(y) exd — Y(y)Z*/2z}]; Py v )|

Y(y)=(1+iylyg) 1, (4.1  Here, the first term in square brackets is due to the spatial
nonuniformity of the dc field, whereas the rest of the expres-
where E;=const is its maximum amplitudéi.e., at the sjon is due to the inhomogeneity of the laser field. Note
waist, a functionG describes a Gaussian transverse ampli-again that for the plane wave and uniform dc field, i.e., when
tude (and phasgprofile and its spatial evolution due to dif- z,—ox, y,—o, anddBy/dy=0, the effect vanishes since
fraction. Y(y) is a “diffraction” factor, z is the minimum  {hen F.0. A significant feature of the solution for the
size of the beantat the waisty=0), and driver, Eq.(4.8), is that in addition to the expected compo-
2 _ 1 nent simply mimicking thgsquare of the Gaussian profile
Ya=Zoki =20l by, bg=(kizo) "<1, 42 4f the fundamental wavéhe terms in the brackets indepen-
dent of2), it also has a term proportional #3 [the last term
in Eq. (4.8)], which reflects the generation of a higher-order
Gaussian component in the SHG bedfor a 3D cylindri-
cally symmetric beam17] not considered here, the counter-
26(y)=20\1+(ylyg)? or zglyq= a1+ (ylys)?. part of such a mode would be a so called “doughnut” mode.
(4.1) Itis worth noting that the doughnut SHG mode has been
observed experimentally with “classic” SHG in

whereyy is the Rayleigh parametédiffraction length of the
beam, with¢4 being a diffraction angle. Note that the size of
the Gaussian beam is found as

From Eq.(2.12 we obtain the SHG polarization vector gasses plasmag20], wherein the effect has also been attrib-
- L L. o uted to the field gradient.
P2=40G1 %€ (P2 01=0: PallPy). (4.3 Considering now SHG spatial dynamics with=p,u,

. . . and du,/dx=0, and normalizing our variables as
Here the the componentg=(j - €; of the propagation vec- 2 g

tor g, are:gq,=0, gy=C0s¢, q,=sin¢, where

— . — z . _ _ Bdc
§= ) gzz_oi U= ﬁ: B_O, (49)

1<

b= = b,

Zly

z
oll¥d whereB, is maximal dc magnetic field, we reduce EB.16)
is the angle of the energy propagatigrormal to the phase 1O:

front of the fundamental wayet each pointy,2. Equation

(2.10) yields v &Zv__ZY(g)e,Y{Z i%

st BIVE-IYP |
If=ﬁl[div((jlfp)—4ik1fpsin2(¢/2)], 4.5 (4.10
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The exactdriven solution of this equation can be expressedso that
in terms of combination of the fundamentaeroth order

vso and second-order, standard Gaussian modes: Poo=1910l’[Y];  Pa=1g2l*(2]YD7%.  (4.18
UE D =vot v, V. A GAUSSIAN BEAM IN AN UNIFORM dc
=[910(&) +92(£) (2= [2Y]7D)]¥(§)e "¢, MAGNETIC FIELD
(4.1 Consider first the simplest case: the dc magnetic field is

— _ uniform, By.=Bo&,=const, and thug3=const=1, B’ =0.
where Y(£)=(1+i£)"", and the amplitudego(§) and  ysing a variable,®=(tan 1&)/2, the full solution of Eq.

92(£) of the respective modes are governed by the ordinarys 12 with such a right-hand side can be written as
differential equations:

2igfot+9roY=—(iB" +3B|Y|%44); (4.123 gf0=(3/4)iei‘b(cos2b)—1’2f e ®(cos 2b)2dd;
2ig}—3g,Y = BIY|*; (4128 (613
where prime denotes/d¢. Note that a standard second- g,=—ie 3%(cos gp)wf e3®(cos 20)2dd.
order mode in Eq(4.1)) is constructed in such a wagee
the “bias” term, |2Y| 2?) as to secure the orthogonality of (5.1b
@© * _ - . .
the modesJ”..vjov; d{=0, at each point ir¢. With the Evaluating integrals in Eq5.1), we obtain:
zero driver(say, 8=0), the solution of Eq(4.12) is:
_ =(3/8)[s(®)e'®—1];
Oio(§)=CroY YH&): G(H)=CoY¥2 (413 Oro=(3/B)s(D)e™~1] 5
(whereC;, andC, are integration constantswhich are ex- go=—(1/4)cos 2d[s(P)e ¥ +1],
pected amplitudes of the zeroth and second-order modes of
Gaussian beam in a linear vacuum; if no light at the fre-WNere
guency 2 is incident upon the system &t- —, we natu- _ —
rally have C;,=C,=0. For thedriven solution, one has to S(®)=[In(v2 cos®+ ycos 2P)
stipulate that the total SHG power vanishesgat —«. The +i[ 72+ sin1(v2 sin®)]](2 cos 2b) 12
total SHG power,Wgyg, per unity length in thex axis
through the entire beam’s cross section normal to the axis of 53

propagatiory is and the dependence @ncan be recovered by recalling that

w tan 2b=¢ and thus
WSHG(y):(CIZ)f |ua(y,2)|?dz
— cos2b=(1+¢?) Y2 cod d=(1+cos2b)/2.

_ 20 \2, 75
=(CI2)(4xE1Bo) 2oV 7/ 2Pspe, (414 pg integration constants in E¢5.2) are chosen in such a

or way thatPyqandP,,, EQ.(4.18, vanish ag— —o. Figure
2 depicts the spatial dynamics of the mode component nor-
Wspe= (46W,Bo)2\2ImPgyg/czy, (4.15  malized powerdy, andP,; (as well as the total normalized
SHG power, Pgpg=Pgot P2y), calculated by using Egs.
where (5.2 and (4.18 as functions of the point of observatign

. All' of them have similar asymptotics af— —x, P
W1=(c/2)f luy|? dz=(c/2)Efzo\/; (4.16 =0(£73). The amplitudes’ asymptotics gt—x is as

_ _ _ |9rol*=&[2(37/16)*+0(£7H)];
is the laser powefi.e., that of fundamental harmoniper (5.4)
unity length in thex axis, andP g is dimensionless normal- |g,|%= (7?1320 ¢ 3+ 0(£73).
ized total SHG power:
One can see from Fig. 2 that the main SHG transformation
— 2 dre occurs within the focal area, after passing a few diffraction
Psnel£) \/mJlmM d0=Poot Pz (417 lengths, with thePgyg steadily increasing. A§—oo, the

. . . SHG power reaches steady state, with the zeroth-order
Here Pqg and P,, are dimensionless normalized powers OfGaussian mode Strong|y dominatin@m> P22:

zeroth and second-order modes, respectively, defined as
Poo(®)=(m/16)%  Poo®)=18P*);

o - 5,
Pjj(&) WLC'”J(“)' dz, P (%) = 19P (o) ~ 0.7325. °9
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FIG. 2. Spatial dynamics of the SHG Gaussian mode compo- FIG. 3. The SHG spatial dynamics in the dc magnetic dipole in
nents in the uniform dc magnetic field. Power of the zeroth-ordetthe casezg=y4 (8g=1). Curves and designation—same as in Fig.
Poo and second-ordeP,, components and the total normalized 2. Inset: propagation configuration with the magnetic dipioeo
SHG powerPgyg=Pgot P, vs the normalized propagation dis- magnetic wires shown by holloM and darkened circles.
tanceé=yly,. Curves: dash-dotted lineBy,, dashed linesP,,,
solid lines: Psyg. Inset: propagation configuration; a GaussianwhereC, andC, are integration constants. This yields that
beam at the fundamental frequency, with the beam normalized sizg)r the finite propagation length.(<y,), in a dc magnetic
6=12ly4, propagates in th¢ axis; the dc magnetic fielB, is nor-  fie|d, the efficiency of the SHG conversiong.g(L), is

mal to &

, o Wgpa(L) 11 [ a\?/E;Bo\%( L \?
Using Eq.(4.195, we can evaluate now the efficiency of the =~ Wgyg(L)= W = a2\ ZE =2 _
SHG conversionwgy(*), as 1 47*V2 o ) \Yd

1IWspg() [2 L \2
W) =Wspg(*)/ Wy :S—HG() = (5.9
19 K yd

=\2m(W,/c2)Psuc() X (4xBo)®, (5.6)

i.e., Wsya(L)—0 asyy— > as expected.

or, using Eq.(4.16 for W,, and Eq.(5.5 for Pgyg(), as
VI. A GAUSSIAN BEAM IN A dc MAGNETIC DIPOLE
19 [ a\?(E;B,)2 E,B,)2 AND QUADRUPOLE
B ez o 22’ oo -
16v2 |45 Bg Bg To study the gradient-induced SHG imanuniformmag-
(5.7 netic field, we consider first a magnetic field originated by a

2D magnetic dipole, i.e., two thin parallel “magnetic” wires
SincePgug(%°) is a constant independent of any parameter of17]. We will assume them located at the focal point of the
the problem, one can see from E§.6) that for the fixed fundamental Gaussian beam, positioned in the plane or-
laser poweW,; and the dc magnetic fiel, the total output thogonal to the bearfand extended, e.g., along tReaxis),
SHG powerWg, g is inversely proportional to the focal spot and spaced by Z(>z,) with the laser beam crossing the
sizezy. Thus, the effect increases with tighter focusiagd  wire plane exactly in the middle of the structure, see inset in
vanishes for plane wayewhich is perfectly expected by Fig. 3. The magnetic field of such a 2D dipole is
now. On the other hand, the efficienagyg(), Eq. (5.7),

Wspg(®) =

for the fixedfield E; doesnot depend on the nonuniformity B,=0; By=Bozgy(I;°~1-7)/2,
of the driving field (e.g., on the focal size, or diffraction o . (6.2
lengthy,). Of course, this does not suggest the feasibility of B,=Bozel(zs+2)I [ “+(z5—2)| _7]/2,

SHG in aplane wave one must note that E¢5.7) implies _ . o _ o
that the propagation lengthis much larger than diffraction whereBy is thezmaX|mum dc fieldi.e., the field at the origin
length y4. However, aszy—= andyy—c, for any fixed Y=2=0) andlZ=y?*+(zz*2)? (The same field is origi-
(finite) L, one hasL<y,; using the exact solution in the nated by a pair of cylinders dinite radiusr ¢, in which case
form of Eqgs.(5.1) and (5.2 (with new integration constant Zg= JZZ—rZ, wherez. is the distance between centers of
corresponding td’gy vanishing now at finitey) and evalu-  the cylinders. Since due to the conditionZg>z,, we can
ating the output field at finite distange=L, one can readily assumeB,>B,, and since near the center of the beam, the
show that Wgsy(L/yq—0)/W;—0. Indeed, using in Eq. longitudinal component of the dc field,, does not affect
(5.1 the fact thaf®|<1, |¢|<1, andd~ &/2, we obtain SHG anyway, the only dc component of consequence, as was

shown in Sec. 1V, is the transverse dc component, which, in

010~ (3i18)(+Cq;  go=—(i2)é+Cy; (5.8 the plane of symmetryz=0), is
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FIG. 4. (a) The output(power in the far-field areaof SHG, due
to the dc magnetic dipole for the individual modeg, andP,, and
the total poweP g vs the normalized half-size of the dipdiee.,
half-spacing between wirg$z=zg/y4; the maximal dc magnetic
field is maintained constaf8,, same as the reference uniform dc
field. Curves and designation—same as in Figs. 2 an@)3The
same for the normalized efficiencipgy, p,», andpsyg, When the
magnetic “charge” of each wire is retained constantsgsvaries.

B,(y)=Bo(1+y?/z5) "%, (with B,=0, B,=0).
(6.2

Using again Eq(4.12 with
B=(1+£%63)"1, where Ss=zzlyq; (6.3
and following the same procedure as in E@s1) and(5.2),

one can obtain analytic solution of EGt.12 for both the
zeroth-order §,;) and second-ordergp) SHG Gaussian

components in closed form. Without writing them here in

PHYSICAL REVIEW A62 043805

focal point, which is also the position of magnetic dipole, in
the casezg=yy (dg=1). For the sake of comparison with
the data foruniform dcmagnetic field, one is to remember
that the absolute output SHG pow#fsc, see Eq(4.15), is
proportional toB3. Therefore, the output for absolute powers
Wqq, W,,, andWsys, using Fig. 3, can be directly related to
the respective data for aniform dcmagnetic field(see the
previous Sectiop if the magnetic dipole is chosen in such a
way, that the maximum dc fiel&, (i.e., here, the field at the
point of origin é£&={=0), is the same as for the reference
uniform field. The most notable feature of the dc magnetic-
dipole induced SHG, as seen in Fig. 3, is a large peak of the
SHG power near the dipole position, the significant part of
which, however, is converted back into fundamental fre-
quency as the laser beam propagates. The peak shdgmehs
its intensity increasgsas the spacing between wires in the
magnetic dipole decreases. In principle, this feature can be
used to enhance the SHG output signal or directly measure it
at the focal point, although the experimental realization of
such measurements may prove to be difficult.

The transition from a dipole to a uniform field corre-
sponds to the limitdg— oo (provided that the dc fiel@8, at
the focal point for both of these configurations is fixethe
gradual increase of the normalized output power of both the
SHG component and total SHG power in the far-field area
(i.e., fory>y4 or ¢>1) is shown in Fig. 4a); one can see
that they indeed approach the respective values for the uni-
form dc field.

Note that the behavior of the normalized powBrs does
not depend on the magnitud&,. Thus, to analyze the de-
pendance orB,, one needs to look at the absolute total
powerW, Eq.(4.15), or the efficiency of the SHG conversion
w Eq. (5.6). If instead of maintaining the maximum dc field
B, constant, the magnetic “charge” of each wire is retained
constant (which amounts toByzg=const), the absolute
power W Eg. (4.195 of both the SHG components and the
total SHG power in the far-field area increases as the dipole
half-sizezg decreasesThis behavior is depicted in Fig(l4)
where we show the normilized “efficiencies”

poo=Poo/ €, p2=P2l&, psnc="Psncl/E,

vs & This corresponds to the choice of the reference magni-
tude B, of the dc field to be that of the dipole with ttm
=VYd-

Another interesting feature of the dipole-induced SHG is
that, while the zeroth-order SHG component dominates over
the second-order component in the uniform dc field-induced
SHG, Eq.(5.5), the ratio between these two components can
be controlled by the size of the dc dipole. In particular, the
powers of these two components equates whgi0.43
[see Fig. 4b)], and the second-order component becomes
dominant for smalleg .

To illustrate the evolution of the SHG spatial dynamics

explicit form, we depict their behavior in Figs. 3 and 4. The (in particular, large peaks formatipas the nonuniformity of

normalized power of these componerRg, andP,, (4.18),

the dc magnetic field becomes more complicated, we con-

respectively, as well as the total normalized SHG poweisider a dc magnetiquadrupole which consists of four mag-

Pshe= Poot P22 Vs the normalized propagation distanée,
=vylyy4, is shown in Fig. 3, wher€=0 corresponds to the

netic wires forming e.g., squar@ig. 5, with the spacing
between any pair of adjacent wires beinggs@=245gyy). In
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0.3

Pgug(s™H) =p1Wsnd2h
~1.2xX 10738, (W) 1 1 (W/cnm?)\ (um)B3(ts),

02t (7.0

wherep, is the total time-averaged power of fundamental
harmonics(in W), \ is the wavelength of fundamental har-
monics(in um), |, is the maximal intensity of fundamental
harmonicgiin W/cn?) at focal point, and magnetic fiel, is
in Tesla. Rapid advent of laser and magnet technologies
makes the observation of vacuum SHG feasible in the near
future. Let us consider, for example, a laser with
Nurgaliseataes o propagathiol ~0.8um (as in Ti-Spph laser with p;~10° W and inten-
sity at focal pointl ;~10?>W/cn? (both of which constitute
FIG. 5. The SHG spatial dynamics in the dc magnetic quadru-about two orders of improvement to the best existing lasers
pole in the cas@= 1. Curves and designation—same as in Figs. 2and B,~ 10° ts (which can currently be obtained by explo-
and 3. Inset: propagation configuration with the magnetic quadrusiong. Equation(7.1) yields then~85 photons/day.
pole (four magnetic wirep An apparent interpretation of nonvanishing SHG is that
the nonuniformity allows for the momentum transfer be-
this case, the normalized transverse component of the dieen photons and dc fiel@vhich would ultimately result in
magnetic field in the plane of symmetrg<0) in Eq.(4.12  the recoil of material system generating the dc fiettius
is breaking the symmetry that causes vanishing interaction of a
completely uniform field system. This explanation could be
directly corroborated by e.g., direct QED calculations of
B=[1+(&l85+1)?1 ' —[1+(&é/65—1)*1"" (64  SHG by two collinear photonselementary sourcéparticle
of the dc field, similarly to quasielastic scattering ddiagle
photon at a Coulomb potentif22], see also Ref§2,18,19
O(_QED calculations of photon splitting probability in a
nucleus Coulomb potential using the recoil momentum can
be found in Ref[23]). Examples of such sources could be
protons(or heavy nucleior neutrons with two collinear pho-
tons “SHG scattered” at the particle spin and Coulomb dc
(electrig field. In macroscopic terms, the paraxial approxi-
mation for SHG, Eq(2.10, is not valid here, and SHG is
riginated by an elementary multipole source, E7), in a
imited volume <\3 (similarly to Sec. V in Ref[6]); we
found that in the lowest approximation, the source is a dipole
for a spin and a quadrupole for a Coulomb field.
VII. DISCUSSION OF THE RESULTS All the calculations in this paper were based on the QED
box approximation involving only the ternb,. Let us
This paper does not pursue specific experimental desigroughly estimate the order of magnitude of the next, hexago-
or optimization calculations for the SHG effect in magne-nal term Lg. Using the approach of Ref§l,2], Ls was
tized vacuum. Next step to such a design is to calculate 3[@valuated by us as:
cw (i.e., cylindrig Gaussian beam propagation in a dc mag-
netic field (compare with 2D Gaussian beam, see here Sec. Lg=ya(b?/2+a%13) with y=(26/315a/7B,
IV=VI), and combine it, in the general case, with temporal (7.2
effect in a laser pulsésee Sec. I). However, to get the idea
of expected effect, we can have an order-of-magnitude estivherea and b are the same as in Eqél.1) and (2.4), it
mate using the results obtained here. First, we note that in tH@sults in the nonlinear ternj47]:
conventional soursd$asers, the spatial compressidfocus-

0.1

Intensities of SHG components (arb. units)

with the dc field vanishing at the origil3=0 at é{={=0.
The power of zeroth- and second-order Gaussian comp
nents, Poy and Py, EQ. (4.18, respectively, as well as
Psuc=Poot P22, vs the normalized propagation distance,
&=ylyy, is shown in Fig. 5, wheré&=0 corresponds to the
focal point, which is also the center of magnetic quadrupole
in the casezg=Yyy (dg=1). One can see pronounced large
peaks in the vicinity of each of the dipoles forming the quad-
rupole. However, a considerable SHG can still be observe
in the far-field area.

ing) of laser beams is much stronger that temporal compres- DN=y[(b?+6a?%/13)E+abB], (7.39
sion(i.e., zo/N =0(1)<t,w/2m). Most recently, there were
quite a few proposals to achieve a single-cycle or subcycle HNL= y[—(b%+ 6a2/13)B+abE] (7.3b

subfemtosecond puls¢&1], but even when experimentally

obtained, they will have too broad a spectrum and may nofcompare with Eq(2.4)]. To fully compare box and hexago-
be optimal for the first observation of a coherent SHG. Thusal term contributions, one has to solve the propagation con-
at this point, to be on conservative side, we neglect tempordlgurations(considered here fdr,) for Lg now, which is far
effects and consider only spatial effects. Total SHG photorbeyond the scope of this paper. A very rough estimate, how-
output,® g, IS ever, can be made presuming that inhomogeneity plays the
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same role in bothLg andL, approximations, in which case intense laser radiation in a dc magnetic field in a vacuum; the
the ratio between the respective SHG outputs can be est8HG effect does not vanish in the QED box diagram ap-
mated as proximation only if the participating fields are temporarily/

spatially nonuniform.
(Wspohhex! (Wsolbo= O(max E$,B3)/BY).  (7.4)

For the highest currently available laser and dc fields, this
ratio is~10 18— 101, Even for the example considered in
the beginning of this section, this ratiois10™ 2 Thus, the

hexagonal term makes a negligible contribution to SHG for_ We are indebted to M. G. Raizen, B. Rosenstein, G. W.
any fields accessible in the laboratory now and in the foreFord, and D. G. Steel, whose critical and valuable comments

seeable future. and ensuing discussions provided an essential momentum for
us to undertake this research. One of A€.K.) thanks P. L.
Shkolnikov and 1. Bialynicki-Birula for interesting discus-
sions and Dmitri Bitouk for his help with the figures. The

In conclusion, we demonstrated the feasibility of field- work of A.E.K. is supported by the U.S. Air Force Office of
gradient-induced second-harmonic generati®HG) by the  Scientific Research.
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