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Field-gradient-induced second-harmonic generation in magnetized vacuum
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The photon-photon scattering in vacuum can give rise to the second-harmonic generation of intense laser
radiation in a dc magnetic field in the ‘‘box’’ diagram approximation of quantum electrodynamics if the
symmetry of interaction is broken bymodulation or/and nonuniformityof optical wave1dc field system in
time or/and space. Specific examples considered here are: an opticalpulseplane wave or a Gaussian laser beam
propagating in uniform or nonuniform dc fields.

PACS number~s!: 42.65.Ky, 12.20.2m
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I. INTRODUCTION

Photon-photon scattering@1,2# is perhaps one of the mos
fundamental quantum electrodynamics~QED! processes,
which may also result in nonlinear optical effects in vacuu
such as the birefringence of the refractive index seen b
probe field under the action of either a dc magnetic~or elec-
tric! field @3# or intense laser pumping@4#, multiwave mixing
@5#, and merging of two photons into one~i.e., sum fre-
quency generation! @6# under the action of a dc field. All o
these effects are based on the lowest order, so called ‘‘b
diagram approximation, Fig. 1.~It was also proposed tha
using hexagonal diagram, high-order harmonics@7#, and
second-order subharmonic, a so-called photon splitting@3,8#,
can be generated with a dc magnetic field.! If observed, these
effects may provide a fundamental optical test of QED.

From any realistic point of view the only hope to atta
observable effects in the laboratory is to use lowest-or
processes~i.e., those due to the box diagram!; yet the re-
quired optical fields are still enormously high and not pr
ently available. It has also been apparent that a dc field~ei-
ther electric or magnetic! may greatly assist the interaction
which have attracted much attention@3–8#. One of the most
interesting and fundamental are dc field-assisted proces
the merging of two photons into one, e.g., the seco
harmonic generation~SHG! Fig. 1 @3,8# ~see also@9,10#!, and
photon ‘‘splitting’’ @6,3,8#, ~see also@11#!—in essence, a
parametric process—in the presence of a dc field. Howe
these processes have been the subject of a long pers
controversy, with the work@3,6,8# maintaining ~correctly,
see below! that these effects vanish in the box approximat
~and under condition of cw wave and uniform and const
dc field, which is an important point in the context of th
paper!, whereas the work@9–11# suggested~erroneously, see
Refs. @3#, @8b#, and @12#! nonvanishing effect for the sam
approximation and conditions. The previous works on
subject have been reviewed in@12# with a conclusion that
none of them were fully correct although the results@12# are
much closer to those of Refs.@3#, @6#, @8# @the results of@12#
suggests the box diagram contribution for the plane wav
nonzero, yet smaller than that from the next order, hexa
nal, diagram#. Our recent proposal@13# of laser-induced
SHG in vacuum in the presence of a dc magnetic field
been criticized from QED@14# and phenomenological@15#
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points of view~see also earlier work@6#!, pointing out that
SHG in configuration@13# should vanish. While being in
agreement with the major point of Refs.@14,15# that SHG
due to the box diagram vanishes for a cw plane wave
uniform dc field ~which was also the main case consider
earlier @3–15#!, our reply @16# and later consideration@17#
suggested, however, that the nonvanishing effect may re
from the spatialnonuniformityof the field.

Hence, the fundamental question arises whether the v
ishing contribution of the box diagram is due to fundamen
laws of QED, or only due to the conventionally~and thus
unfavorably! chosen configuration: plane monochroma
~cw! optical wave1uniform dc field. In this paper, we show
that the nonvanishing contribution of the box diagram c
result from the nonuniformity~or gradient! of any compo-
nent of theentire field system~both the laser and dc mag
netic fields! in spaceor/andtime ~Sec. II!. In particular, we
consider a plane wave modulated intime by a pulse with an
arbitrary profile and finite duration~Sec. III!, and a cw
Gaussian~i.e., spatially inhomogeneous! laser beam in a
magnetic field with an arbitrary spatial distribution~Sec. IV!,
in particular in both uniform ~Sec. V! and nonuniform
fields—magnetic dipole and quadrupole~Sec. VI!. We dem-
onstrate that the nonvanishing SHG in the lowest~i.e., box!
approximation exists in all these configurations. The m
important fact is that the SHG effect~i! exists in the approxi-
mation in which the plane-wave SHG vanishes complete
and ~ii ! that it is of the expected order of magnitude; f
example, for a Gaussian laser field with maximum amplitu
E1 in the focal plane in a uniform dc magnetic fieldB0 , the
efficiency of SHG conversionwSHG is

FIG. 1. Fourth-order~‘‘box’’ ! Feynman diagram for photon
photon scattering in a dc field resulting in second-harmonic gen
tion ~SHG!.
©2000 The American Physical Society05-1
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wSHG5~a/45!2O@~E1B0 /Bcr
2 !2#, ~1.1!

@see Eq.~5.7! below#, whereBcr is the QED critical field~see
below!, anda5e2/\c51/137 is the fine structure constan
the advent of laser and magnet technology may make
observation of vacuum SHG feasible in the foreseeable
ture ~Sec. VII!. Our interpretation of field-gradient-induce
SHG in vacuum relates the field nonuniformity to mome
tum transfer between photons and the dc field~Sec. VII!. The
total number of SHG photons in such a system is many
ders of magnitude higher than that due to the next, hexag
diagram contribution, such that SHG appears to be truly
the ‘‘box diagram’’ nature~Sec. VII!.

II. SECOND-ORDER OPTICAL NONLINEARITY IN A dc
MAGNETIC FIELD

The Heisenberg-Euler Lagrangian@1,2# for PPS can be
written as

L5L21L41L61¯ ,

whereL25(E22B2)/2 is a linear term, and

L45~x/2!~a21b2!; ~a[E22B2;b[EW •BW ! ~2.1!

is the first nonlinear term; it corresponds to the box Feynm
diagram. Here

x5a/45pBcr
2 52.6310224 tesla22

is a nonlinear interaction constant and

Bcr[m0
2c3/e\54.43109 tesla

is the QED critical field.L6 corresponds to the hexagon
Feynman diagram~see below, Sec. VII!, etc. Using the ac-
tion for the first two terms,*(L21L4)d4x, and taking the
variation with respect to the four-vector potential, the ma
roscopic equations in the form of classical Maxwell’s equ
tions are obtained as@1,2,6,18#

¹W •BW 50, ¹W •DW 50,
~2.2!

¹W 3EW 1]BW /c]t50, ¹W 3HW 2]DW /c]t50,

with the constitutive relations@1,2,18# between the electric
displacementDW and magnetic fieldHW , and electric fieldEW

and magnetic inductionBW being:

DW 5EW 1DW NL, HW 5BW 2HW NL, ~2.3!

where

DW NL5]L4 /]EW 5x~2aEW 17bBW !, ~2.4a!

HW NL5]L4 /]BW 5x~22aBW 17bEW !. ~2.4b!
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These equations are valid foruEu,uBu!Bcr and l@l̄C ,
@18,19#, where l is the field wavelength andl̄C5\/m0c
53.86231023 Å is the Compton wavelength of the electro

A cw plane wave does not exhibit any nonlinear effec
since due to its properties,

E25B2, EW •BW 50 ~ i.e.,a5b50!,

the nonlinearity, Eq.~2.4!, vanishes. This ‘‘degeneracy’’ o
the third-order nonlinearity may be broken by the field non
uniformity that can give rise tosecond-ordernonlinearopti-
cal effects in the presence of a strongstatic field. If an un-
perturbed fundamental wave,EW 1 and BW 1 , propagates in
vacuum in the presence of a dc magnetic field,BW dc, Eq.~2.4!
can be rewritten as

DW NL5x~22Bdc
2 EW 117bEBW dc!1DW ~2!, ~2.5a!

HW NL52xBdc
2 BW dc12x~Bdc

2 BW 112bBBW dc1HW ~2!, ~2.5b!

where bB5BW 1•BW dc, bE5EW 1•BW dc, and the only terms tha
may give rise to SHG are

DW ~2!5x~4bBEW 127bEBW 1!; HW ~2!5x~4bBBW 117bEEW 1!.
~2.6!

Suppose now that the unperturbed fundamental light bea
the frequencyv1 is a quasiplane and/or quasi-cw wave wi
the wave vectorkW15qW 1k1 , k15v1 /c, q151, such that

EW 15pW 1u1~rW,C!•e2 ic, BW 1'qW 13EW 1 , pW 1•qW 150,
~2.7!

where pW 1 is a polarization vector (upW 1u51), c5v1t

2rW•kW10
is a retarded coordinate, andu1 is a ‘‘slow’’ enve-

lope, whose variations in spacer and inc are much slower
than e2 ic ~for a cw plane wave,pW 1u15const!. Here kW10

5k1qW 10
, whereqW 10

is a unity vector along the main axis o
the beam propagation. Using Eqs.~2.6! and ~2.7!, we find
that

DW ~2!
•HW ~2!50; uDW ~2!u5uHW ~2!u; HW ~2!'2qW 13DW ~2!.

~2.8!

The SHG wave equations can then be obtained from E
~2.2! and ~2.4! as

¹3EW 21~1/c!]BW 2 /]t50,
~2.9!

¹3BW 22~1/c!]EW 2 /]t5FW •xe22ic,

where

FW 5x21@~1/c!]DW ~2!/]t1¹3HW ~2!#•e2ic ~2.10!

is a slow envelope of nonlinear driving term~or source!.
Using Eqs.~2.6! and ~2.7!, we find
5-2
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FW 5k1] fW /]c2¹3@qW 13 fW#12ik1DW q3@qW 13 fW#,
~2.11!

whereDW q5qW 12qW 10
and

fW5pW 2•u1
2Bdc, ~2.128!

pW 2524pW 1•~@qW 13pW 1#•eWdc17~pW 1•eWdc!@qW 13pW 1#,

~2.1288!

with pW 1 , qW 1 , andeWdc5BW dc/Bdc being the unity vectors of the
wave polarization, the wave direction of propagation, and
dc magnetic field, respectively. In Eq.~2.12!, pW 2 is a ~non-
unity in general! SH polarization vector. Because of the sp
tial anisotropy imposed by a dc magnetic field, SHG depe
upon the polarization of laser fundamental wave; Eq.~2.12!
reflects induced birefringence of the nonlinear interaction
the fundamental wave propagates along the dc magnetic
BW 0 , thenDW (2)50, HW (2)50 @Eq. ~2.4!#, and nonlinear effects
vanish identically. The strongest interaction occurs when
light propagatesnormally to BW 0 and is polarized parallel to
BW 0 , in which case

pW 15eWdc, and pW 257@qW 13pW 1#, ~2.13!

i.e., here the SH polarization vectorpW 2 is normal to the fun-
damental polarization vectorpW 1 . This is the manifestation o
birefringence; note that when the fundamental light is po
ized ~and propagates! normally to the magnetic field, the SH
polarization coincides with that of the fundamental radiatio

if pW 1ieWdc & qW 1ieWdc, then pW 254pW 1 . ~2.14!

The first term in the right-hand side of Eq.~2.11! is due to
the time dependence of the dc field and the intensity of
fundamental wave, whereas the second and third terms
due to spatial nonuniformity of the wave intensity and pha
respectively. Equation~2.11! clearly indicates that the drive
FW ~and therefore, SHG itself! vanishes~consistently with
@14,15,6#!, if the radiation is a cw plane wave and the dc fie
is uniform and constant, since in such a case]/]c50, Dq
50, and¹50. Thus, the nonvanishing effect may be e
pected only if the field system varies in space and/or tim

The evolution of an unperturbed fundamental wave en
lope u1 of a diffracting light beam in a vacuum is governe
by a so-called paraxial wave equation that approximates E
~2.2! under the condition]2E1 /]y2!k1]E1 /]y:

2ik1]u1 /]y1D'u150, ~2.15!

where we assumed the laser beam to propagate alongy
axis ~i.e., qW 10

5êy!; D'5]2/]x21]2/]z2 is a ‘‘transverse’’
Laplacian. Since in this approximation, vacuum is disp
sionless, no time derivative~or ]/]c! enters this equation
i.e., the temporal~or c! modulation of the envelopeu1 re-
mains intact as the wave propagates. Using the same
proximation for SHG, assumingEW 25uW 2(rW,c)e22ic and slow
variation ofBW dc in time/space, we obtain a paraxial equati
for an SHG slow envelopeuW 2 as
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4ik1]uW 2 /]y1D'uW 2522ik1xFW . ~2.16!

III. PULSE PROPAGATION IN AN UNIFORM dc
MAGNETIC FIELD

Consider first the perhaps simplest and fundamental
ample of apulse plane wave propagating in auniform dc

magnetic field (BW dc5B0êz ; eWdc5êz) normal to the wave
propagation axis,y, i.e.,qW 15êy . Suppose that the amplitud
~and/or phase! of fundamental plane wave (D'u150) is ar-
bitrarily modulated in time with a~complex! envelopeu1(c)
and letu1 be the angle betweenpW 1 andBW dc @i.e., pW 15(pW 1)0
[sinu1 êx1cosu1 êz#. The SHG driver, Eq.~2.11!, is then
reduced to:

FW 5k1] fW /]c5k1B0pW 2d@u1
2~c!#/dc, ~3.1!

where

pW 25~413 cos2 u1!êx23 sinu1 cosu1êz . ~3.2!

~Note again that foru150, i.e., when pW 1iBW 0 , then pW 2

57êx , andpW 2ipW 1 . Whenu15p/2, i.e., if pW 1iBW 0 , we have
pW 254pW 1 .) Thus, SHG may occur only if the fundament
wave envelope istime ~or c! dependent. The plane-wave
(D'u250) solution of Eq.~2.16! with a driver, Eq.~3.1!, is
found as

uW 2~c,y!52~x/2!k1B0pW 2yd@u1
2~c!#/dc, ~3.3!

assuming that the fieldB0 is ‘‘turned on’’ at y50. Equation
~3.3! demonstrates the same dependence on thedistanceof
interaction (u2}y) as for SHG in a ‘‘classical’’ nonlinear
medium with ideal phase matching, with the significant d
ference being that SHG is proportional now to the time d
rivative of the driving envelope. The use of very broad sp
trum radiation can further enhance the SHG effect.

The SHG energy flux at each point in they axis is

ESHG~y!5~c/2!E
2`

`

uu2u2 dt.

Assuming a Gaussian temporal intensity envelope of the f
damental wave,

u1
25E1

2 exp~2t2/tp
2!,

where 2tp is total pulse length, we obtain from Eq.~3.3! that

ESHG~y!5~p2
2/8ctp!Ap/2~xB0E1

2y!2. ~3.4!

~For u150, up2u57, while for u15p/2, up2u54.) Since the
energy flux at the fundamental frequency isE1

5(c/2)*`
`uu1u2 dt, we obtain the efficiency of the SHG con

version as:

ESHG~y!

E1
5

1

&
S ap2

90p

B0E1

Bcr
2

y

ctp
D 2

. ~3.5!
5-3
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IV. TWO-DIMENSIONAL „2D… cw GAUSSIAN BEAM IN A
dc MAGNETIC FIELD

Considering nowspatial nonuniformity of nonplanar~in
particular, Gaussian! wave, we assume a cw wave~it is clear
however that a combined time/space nonuniformity may s
nificantly enhance the nonlinear interaction!, such that in Eq.
~2.11!, ]/]c50. The calculations of the beam propagati
for SHG in the general case become tedious, and to m
them more traceable, we consider here the probably simp
case of spatially nonuniform problem: the propagation o
2D Gaussian beam~or so calledslabbeam!, in which case it
is assumed uniform along only one direction~say in thex
axis, so that]/]x50), and having a Gaussian profile in th
other direction~say thez axis! normal to the direction of the
propagation~they axis!. In this case the transverse Laplaci
in Eqs. ~2.15! and ~2.16! is D'5]2/]z2. To maximize the
interaction, we assume that the dc magnetic fieldBW dc, is
normal ~or almost normal! to the direction of the wave
propagation~such thatuBzu@uByu, andBx50), and the fun-
damental wave is polarized normally toBW dc, with

EW 15pW 1u1e2 ic,

where nowc5v1t2k1y and pW 15êx . A fundamental solu-
tion of Eq. ~2.15! in such a case is a 2D Gaussian beam:

u15E1G~y,z!; G5AY~y! exp@2Y~y!z2/2z0
2#;

Y~y![~11 iy /yd!21, ~4.1!

where E15const is its maximum amplitude~i.e., at the
waist!, a functionG describes a Gaussian transverse am
tude ~and phase! profile and its spatial evolution due to di
fraction. Y(y) is a ‘‘diffraction’’ factor, z0 is the minimum
size of the beam~at the waist,y50), and

yd5z0
2k15z0 /fd , fd5~k1z0!21!1, ~4.2!

whereyd is the Rayleigh parameter~diffraction length! of the
beam, withfd being a diffraction angle. Note that the size
the Gaussian beam is found as

zG~y!5z0A11~y/yd!2 or zG /yd5fdA11~y/yd!2.
~4.18!

From Eq.~2.12! we obtain the SHG polarization vector

pW 254qW 13eWdc; ~pW 2•qW 150; pW 2ipW 1!. ~4.3!

Here the the componentsqj[qW 1•eW j of the propagation vec
tor qW 1 are:qx50, qy5cosf, qz5sinf, where

f5
zy

~y21yd
2!

5fdF z

z0
GF y

yd
G uY~y!u2!1 ~4.4!

is the angle of the energy propagation~normal to the phase
front of the fundamental wave! at each point~y,z!. Equation
~2.11! yields

FW 5pW 1@div~qW 1f p!24ik1f p sin2~f/2!#, ~4.5!
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where f 54u1
2Bdc, qW 15êy cosf1êzsinf, and p

5(êdc)z cosf2(êdc)y sinf. Recalling that

f!1, ~ êdc!y!~ êdc!z , and z0!zB ,

~where zB is the z-spatial scale of the dc magnetic fie
when it is inhomogeneous, see below!, and thus 12p
5O(fd•z0 /zB),,,, we find

4ik1f p sin2~f/2!' ik1f f2, ~4.68!

where we neglected termso(fd
2), and

div~qW 1f p!5]~f f !/]z1] f /]y, ~4.68!

or, since we assumed thatz0!zB , i.e., that the dc magnetic
field Bdc(y,z) is changing much slower across the optic
beam~i.e., as function ofz! than the light intensityu1

2(y,z),

div~qW 1f p!54FBdc

]~fu1
2!

]z
1

]~u1
2Bdc!

]y G . ~4.7!

Substituting Eqs.~4.6! and~4.7! into Eq.~4.5!, and using Eq.
~4.1!, u1

25E1
2Y(y)exp@2Y(y)z2 /z0

2#, we obtain finally:

FW 54pW 1u1
2F]Bdc

]y
2 i S Bdc

yd
D uY~y!u2S 12uYu2

z2

z0
2 D G . ~4.8!

Here, the first term in square brackets is due to the spa
nonuniformity of the dc field, whereas the rest of the expr
sion is due to the inhomogeneity of the laser field. No
again that for the plane wave and uniform dc field, i.e., wh
z0→`, yd→`, and dBdc/dy50, the effect vanishes sinc
then FW →0. A significant feature of the solution for th
driver, Eq.~4.8!, is that in addition to the expected comp
nent simply mimicking the~square of! the Gaussian profile
of the fundamental wave~the terms in the brackets indepe
dent ofz!, it also has a term proportional toz2 @the last term
in Eq. ~4.8!#, which reflects the generation of a higher-ord
Gaussian component in the SHG beam.~For a 3D cylindri-
cally symmetric beam@17# not considered here, the counte
part of such a mode would be a so called ‘‘doughnut’’ mod
It is worth noting that the doughnut SHG mode has be
observed experimentally with ‘‘classic’’ SHG in
gasses1plasmas@20#, wherein the effect has also been attri
uted to the field gradient.!

Considering now SHG spatial dynamics withuW 25pW 1u2
and]u2 /]x50, and normalizing our variables as

j[
y

yd
; z[

z

z0
; y[

u2

4xE1
2B0

; b[
Bdc

B0
, ~4.9!

whereB0 is maximal dc magnetic field, we reduce Eq.~2.16!
to:

4i
]y

]j
1

]2y

]j2 522Y~j!e2Yz2F i
]b

]j
1buYu2~12uYu2z2!G .

~4.10!
5-4
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The exactdriven solution of this equation can be express
in terms of combination of the fundamental~zeroth order!
y f 0 and second-ordery2 standard Gaussian modes:

y~j,z!5y f 01y2

5@gf 0~j!1g2~j!~z22u2Yu22!#Y~j!e2Yz2
,

~4.11!

where Y(j)5(11 i j)21, and the amplitudesgf 0(j) and
g2(j) of the respective modes are governed by the ordin
differential equations:

2ig f 08 1gf 0Y52~ ib813buYu2/4!; ~4.12a!

2ig2823g2Y5buYu4; ~4.12b!

where prime denotesd/dj. Note that a standard secon
order mode in Eq.~4.11! is constructed in such a way~see
the ‘‘bias’’ term, u2Yu22) as to secure the orthogonality o
the modes,*2`

` y f 0y2* dz50, at each point inj. With the
zero driver~say,b50), the solution of Eq.~4.12! is:

gf 0~j!5Cf 0Y21/2~j!; g2~j!5C2Y3/2, ~4.13!

~whereCf 0 andC2 are integration constants!, which are ex-
pected amplitudes of the zeroth and second-order modes
Gaussian beam in a linear vacuum; if no light at the f
quency 2v is incident upon the system atj→2`, we natu-
rally haveCf 05C250. For thedriven solution, one has to
stipulate that the total SHG power vanishes atj→2`. The
total SHG power,WSHG, per unity length in thex axis
through the entire beam’s cross section normal to the axi
propagationy is

WSHG~y!5~c/2!E
2`

`

uu2~y,z!u2 dz

5~c/2!~4xE1
2B0!2z0Ap/2PSHG, ~4.14!

or

WSHG5~4jW1B0!2A2/pPSHG/cz0 , ~4.15!

where

W15~c/2!E
2`

`

uu1u2 dz5~c/2!E1
2z0Ap ~4.16!

is the laser power~i.e., that of fundamental harmonic! per
unity length in thex axis, andPSHG is dimensionless normal
ized total SHG power:

PSHG~j!5A2/pE
2`

`

uyu2 dz5P001P22. ~4.17!

Here P00 and P22 are dimensionless normalized powers
zeroth and second-order modes, respectively, defined as

Pj j ~j!5A2/pE
2`

`

uy j~j,z!u2 dz,
04380
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so that

P005ugf 0u2uYu; P225ug2u2~2uYu!23. ~4.18!

V. A GAUSSIAN BEAM IN AN UNIFORM dc
MAGNETIC FIELD

Consider first the simplest case: the dc magnetic field
uniform, BW dc5B0êz5const, and thusb5const51, b850.
Using a variable,F[(tan21j)/2, the full solution of Eq.
~4.12! with such a right-hand side can be written as

gf 05~3/4!ieiF~cos 2F!21/2E e2 iF~cos 2F!1/2dF;

~5.1a!

g252 ie23iF~cos 2F!3/2E e3iF~cos 2F!1/2dF.

~5.1b!

Evaluating integrals in Eq.~5.1!, we obtain:

gf 05~3/8!@s~F!eiF21#;
~5.2!

g252~1/4!cos2 2F@s~F!e23iF11#,

where

s~F![@ ln~& cosF1Acos 2F!

1 i @p/21sin21~& sinF!##~2 cos 2F!21/2

~5.3!

and the dependence onj can be recovered by recalling tha
tan 2F5j and thus

cos 2F5~11j2!21/2; cos2 F5~11cos 2F!/2.

The integration constants in Eq.~5.2! are chosen in such a
way thatP00 andP22, Eq. ~4.18!, vanish asj→2`. Figure
2 depicts the spatial dynamics of the mode component n
malized powersP00 andP22 ~as well as the total normalize
SHG power, PSHG5P001P22), calculated by using Eqs
~5.2! and ~4.18! as functions of the point of observationj.
All of them have similar asymptotics atj→2`, Pj j
50(j23). The amplitudes’ asymptotics atj→` is as

ugf 0u25j@2~3p/16!21o~j21!#;
~5.4!

ug2u25~p2/32!j231o~j23!.

One can see from Fig. 2 that the main SHG transformat
occurs within the focal area, after passing a few diffracti
lengths, with thePSHG steadily increasing. Asj→`, the
SHG power reaches steady state, with the zeroth-o
Gaussian mode strongly dominating,P00@P22:

P22~`!5~p/16!2; P00~`!518P22~`!;
~5.5!

PSHG~`!519P22~`!'0.7325.
5-5
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Using Eq.~4.15!, we can evaluate now the efficiency of th
SHG conversion,wSHG(`), as

WSHG~`![WSHG~`!/W1

5A2p~W1 /cz0!PSHG~`!3~4xB0!2, ~5.6!

or, using Eq.~4.16! for W1 , and Eq.~5.5! for PSHG(`), as

WSHG~`!5
19

16&
S a

45D
2S E1B0

Bcr
2 D 2

'2.231028S E1B0

Bcr
2 D 2

.

~5.7!

SincePSHG(`) is a constant independent of any paramete
the problem, one can see from Eq.~5.6! that for the fixed
laser powerW1 and the dc magnetic fieldB0 the total output
SHG powerWSHG is inversely proportional to the focal spo
sizez0 . Thus, the effect increases with tighter focusing~and
vanishes for plane wave! which is perfectly expected by
now. On the other hand, the efficiencywSHG(`), Eq. ~5.7!,
for the fixedfield E1 doesnot depend on the nonuniformity
of the driving field~e.g., on the focal sizez0 or diffraction
lengthyd). Of course, this does not suggest the feasibility
SHG in aplane wave; one must note that Eq.~5.7! implies
that the propagation lengthL is much larger than diffraction
length yd . However, asz0→` and yd→`, for any fixed
~finite! L, one hasL!yd ; using the exact solution in th
form of Eqs.~5.1! and ~5.2! ~with new integration constan
corresponding toPSHG vanishing now at finitey! and evalu-
ating the output field at finite distancey5L, one can readily
show that WSHG(L/yd→0)/W1→0. Indeed, using in Eq
~5.1! the fact thatuFu!1, uju!1, andF'j/2, we obtain

gf 0'~3i /8!j1C0 ; g2'2~ i /2!j1C2 ; ~5.8!

FIG. 2. Spatial dynamics of the SHG Gaussian mode com
nents in the uniform dc magnetic field. Power of the zeroth-or
P00 and second-orderP22 components and the total normalize
SHG powerPSHG5P001P22 vs the normalized propagation dis
tancej[y/yd . Curves: dash-dotted lines:P00, dashed lines:P22,
solid lines: PSHG. Inset: propagation configuration; a Gaussi
beam at the fundamental frequency, with the beam normalized
d5z/yd , propagates in thej axis; the dc magnetic fieldB0 is nor-
mal to j.
04380
f

f

whereC0 andC2 are integration constants. This yields th
for the finite propagation lengthL(!yd), in a dc magnetic
field, the efficiency of the SHG conversion,wSHG(L), is

WSHG~L ![
WSHG~L !

W1
5

11

4p2&
S a

45D
2S E1B0

Bcr
2 D 2S L

yd
D 2

5
11WSHG~`!

19 S 2

p

L

yd
D 2

~5.9!

i.e., wSHG(L)→0 asyd→` as expected.

VI. A GAUSSIAN BEAM IN A dc MAGNETIC DIPOLE
AND QUADRUPOLE

To study the gradient-induced SHG in anonuniformmag-
netic field, we consider first a magnetic field originated by
2D magnetic dipole, i.e., two thin parallel ‘‘magnetic’’ wire
@17#. We will assume them located at the focal point of t
fundamental Gaussian beam, positioned in the plane
thogonal to the beam~and extended, e.g., along thex axis!,
and spaced by 2zB(@z0) with the laser beam crossing th
wire plane exactly in the middle of the structure, see inse
Fig. 3. The magnetic field of such a 2D dipole is

Bx50; By5B0zBy~ l 1
222 l 2

22!/2,
~6.1!

Bz5B0zB@~zB1z!l 1
221~zB2z!l 2

22#/2,

whereB0 is the maximum dc field~i.e., the field at the origin
y5z50) and l 6

2 5y21(zB6z)2. ~The same field is origi-
nated by a pair of cylinders offinite radiusr C , in which case
zB5AzC

2 2r C
2 , wherezC is the distance between centers

the cylinders.! Since due to the condition 2zB@z0 , we can
assumeBz@By , and since near the center of the beam,
longitudinal component of the dc fieldBy , does not affect
SHG anyway, the only dc component of consequence, as
shown in Sec. IV, is the transverse dc component, which
the plane of symmetry (z50), is

-
r

ze

FIG. 3. The SHG spatial dynamics in the dc magnetic dipole
the casezB5yd (dB51). Curves and designation—same as in F
2. Inset: propagation configuration with the magnetic dipole~two
magnetic wires shown by hollowN and darkenedS circles!.
5-6
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Bz~y!5B0~11y2/zB
2 !21, ~with By50, Bx50!.

~6.2!

Using again Eq.~4.12! with

b5~11j2/dB
2 !21, where dB[zB /yd ; ~6.3!

and following the same procedure as in Eqs.~5.1! and~5.2!,
one can obtain analytic solution of Eq.~4.12! for both the
zeroth-order (g0 f) and second-order (g2) SHG Gaussian
components in closed form. Without writing them here
explicit form, we depict their behavior in Figs. 3 and 4. T
normalized power of these components,P00 andP22 (4.18),
respectively, as well as the total normalized SHG pow
PSHG5P001P22 vs the normalized propagation distance,j
5y/yd , is shown in Fig. 3, wherej50 corresponds to the

FIG. 4. ~a! The output~power in the far-field area! of SHG, due
to the dc magnetic dipole for the individual modesP00 andP22 and
the total powerPSHG vs the normalized half-size of the dipole~i.e.,
half-spacing between wires! dB5zB /yd ; the maximal dc magnetic
field is maintained constantB0 , same as the reference uniform d
field. Curves and designation—same as in Figs. 2 and 3.~b! The
same for the normalized efficienciesr00, r22, andrSHG, when the
magnetic ‘‘charge’’ of each wire is retained constant asdB varies.
04380
r

focal point, which is also the position of magnetic dipole,
the casezB5yd (dB51). For the sake of comparison wit
the data foruniform dcmagnetic field, one is to remembe
that the absolute output SHG powerWSHG, see Eq.~4.15!, is
proportional toB0

2. Therefore, the output for absolute powe
W00, W22, andWSHG, using Fig. 3, can be directly related t
the respective data for auniform dcmagnetic field~see the
previous Section!, if the magnetic dipole is chosen in such
way, that the maximum dc field,B0 ~i.e., here, the field at the
point of origin j5z50), is the same as for the referenc
uniform field. The most notable feature of the dc magne
dipole induced SHG, as seen in Fig. 3, is a large peak of
SHG power near the dipole position, the significant part
which, however, is converted back into fundamental f
quency as the laser beam propagates. The peak sharpen~and
its intensity increases! as the spacing between wires in th
magnetic dipole decreases. In principle, this feature can
used to enhance the SHG output signal or directly measu
at the focal point, although the experimental realization
such measurements may prove to be difficult.

The transition from a dipole to a uniform field corre
sponds to the limitdB→` ~provided that the dc fieldB0 at
the focal point for both of these configurations is fixed!. The
gradual increase of the normalized output power of both
SHG component and total SHG power in the far-field a
~i.e., for y@yd or j@1) is shown in Fig. 4~a!; one can see
that they indeed approach the respective values for the
form dc field.

Note that the behavior of the normalized powersPi j does
not depend on the magnitudeB0 . Thus, to analyze the de
pendance onB0 , one needs to look at the absolute to
powerW, Eq.~4.15!, or the efficiency of the SHG conversio
w Eq. ~5.6!. If instead of maintaining the maximum dc fiel
B0 constant, the magnetic ‘‘charge’’ of each wire is retain
constant ~which amounts toB0zB5const), the absolute
power W Eq. ~4.15! of both the SHG components and th
total SHG power in the far-field area increases as the dip
half-sizezB decreases. This behavior is depicted in Fig. 4~b!
where we show the normilized ‘‘efficiencies’’

r005P00/j2, r225P22/j2, rSHG5PSHG/j2,

vs j. This corresponds to the choice of the reference mag
tude B0 of the dc field to be that of the dipole with thezB
5yd .

Another interesting feature of the dipole-induced SHG
that, while the zeroth-order SHG component dominates o
the second-order component in the uniform dc field-induc
SHG, Eq.~5.5!, the ratio between these two components c
be controlledby the size of the dc dipole. In particular, th
powers of these two components equates whendB'0.43
@see Fig. 4~b!#, and the second-order component becom
dominant for smallerdB .

To illustrate the evolution of the SHG spatial dynami
~in particular, large peaks formation! as the nonuniformity of
the dc magnetic field becomes more complicated, we c
sider a dc magneticquadrupole, which consists of four mag-
netic wires forming e.g., square~Fig. 5!, with the spacing
between any pair of adjacent wires being 2zB(52dByd). In
5-7
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this case, the normalized transverse component of the
magnetic field in the plane of symmetry (z50) in Eq.~4.12!
is

b5@11~j/dB11!2#212@11~j/dB21!2#21 ~6.4!

with the dc field vanishing at the origin;b50 at j5z50.
The power of zeroth- and second-order Gaussian com
nents, P00 and P22, Eq. ~4.18!, respectively, as well as
PSHG5P001P22, vs the normalized propagation distanc
j5y/yd , is shown in Fig. 5, wherej50 corresponds to the
focal point, which is also the center of magnetic quadrupo
in the casezB5yd (dB51). One can see pronounced lar
peaks in the vicinity of each of the dipoles forming the qua
rupole. However, a considerable SHG can still be obser
in the far-field area.

VII. DISCUSSION OF THE RESULTS

This paper does not pursue specific experimental de
or optimization calculations for the SHG effect in magn
tized vacuum. Next step to such a design is to calculate
cw ~i.e., cylindric! Gaussian beam propagation in a dc ma
netic field ~compare with 2D Gaussian beam, see here S
IV–VI !, and combine it, in the general case, with tempo
effect in a laser pulse~see Sec. III!. However, to get the idea
of expected effect, we can have an order-of-magnitude e
mate using the results obtained here. First, we note that in
conventional sourses~lasers!, the spatial compression~focus-
ing! of laser beams is much stronger that temporal comp
sion ~i.e., z0 /l5O(1)!tpv/2p). Most recently, there were
quite a few proposals to achieve a single-cycle or subcy
subfemtosecond pulses@21#, but even when experimentall
obtained, they will have too broad a spectrum and may
be optimal for the first observation of a coherent SHG. Th
at this point, to be on conservative side, we neglect temp
effects and consider only spatial effects. Total SHG pho
output,FSHG, is

FIG. 5. The SHG spatial dynamics in the dc magnetic quad
pole in the casedB51. Curves and designation—same as in Figs
and 3. Inset: propagation configuration with the magnetic qua
pole ~four magnetic wires!.
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FSHG~s21!5 r̄1wSHG/2\v

'1.2310238r̄1~W!I 1~W/cm2!l~mm!B0
2~ ts!,

~7.1!

where r̄1 is the total time-averaged power of fundamen
harmonics~in W!, l is the wavelength of fundamental ha
monics~in mm!, I 1 is the maximal intensity of fundamenta
harmonics~in W/cm2! at focal point, and magnetic fieldB0 is
in Tesla. Rapid advent of laser and magnet technolog
makes the observation of vacuum SHG feasible in the n
future. Let us consider, for example, a laser withl
'0.8mm ~as in Ti-Spph laser!, with r̄1;105 W and inten-
sity at focal pointI 1;1022W/cm2 ~both of which constitute
about two orders of improvement to the best existing lase!,
and B0;103 ts ~which can currently be obtained by explo
sions!. Equation~7.1! yields then;85 photons/day.

An apparent interpretation of nonvanishing SHG is th
the nonuniformity allows for the momentum transfer b
tween photons and dc field~which would ultimately result in
the recoil of material system generating the dc field!, thus
breaking the symmetry that causes vanishing interaction
completely uniform field system. This explanation could
directly corroborated by e.g., direct QED calculations
SHG by two collinear photons1elementary source~particle!
of the dc field, similarly to quasielastic scattering of asingle
photon at a Coulomb potential@22#, see also Refs.@2,18,19#
~QED calculations of photon splitting probability in
nucleus Coulomb potential using the recoil momentum c
be found in Ref.@23#!. Examples of such sources could b
protons~or heavy nuclei! or neutrons with two collinear pho
tons ‘‘SHG scattered’’ at the particle spin and Coulomb
~electric! field. In macroscopic terms, the paraxial appro
mation for SHG, Eq.~2.10!, is not valid here, and SHG is
originated by an elementary multipole source, Eq.~2.7!, in a
limited volume !l1

3 ~similarly to Sec. V in Ref.@6#!; we
found that in the lowest approximation, the source is a dip
for a spin and a quadrupole for a Coulomb field.

All the calculations in this paper were based on the Q
box approximation involving only the termL4 . Let us
roughly estimate the order of magnitude of the next, hexa
nal term L6 . Using the approach of Refs.@1,2#, L6 was
evaluated by us as:

L65ga~b2/21a2/13! with g5~26/315!a/pBcr
4 ,

~7.2!

where a and b are the same as in Eqs.~1.1! and ~2.4!, it
results in the nonlinear terms@17#:

DW NL5g@~b216a2/13!EW 1abBW #, ~7.3a!

HW NL5g@2~b216a2/13!BW 1abEW # ~7.3b!

@compare with Eq.~2.4!#. To fully compare box and hexago
nal term contributions, one has to solve the propagation c
figurations~considered here forL4) for L6 now, which is far
beyond the scope of this paper. A very rough estimate, h
ever, can be made presuming that inhomogeneity plays

-
2
-
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same role in bothL6 andL4 approximations, in which cas
the ratio between the respective SHG outputs can be
mated as

~WSHG!hex/~WSHG!box5O„max~E1
4,B0

4!/Bcr
4
…. ~7.4!

For the highest currently available laser and dc fields,
ratio is;10218210216. Even for the example considered
the beginning of this section, this ratio is;10212. Thus, the
hexagonal term makes a negligible contribution to SHG
any fields accessible in the laboratory now and in the fo
seeable future.

VIII. CONCLUSION

In conclusion, we demonstrated the feasibility of fiel
gradient-induced second-harmonic generation~SHG! by the
m-

,

.

n-

04380
ti-

is

r
-

intense laser radiation in a dc magnetic field in a vacuum;
SHG effect does not vanish in the QED box diagram a
proximation only if the participating fields are temporaril
spatially nonuniform.
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