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The spontaneous-emission rate is evaluated for dipole emitters situated in the thin slab region between two
semi-infinite one-dimensionally periodic photonic crystals, a situation reminiscent of planar cavity laser struc-
tures. It is pointed out that the long-wavelength electromagnetic fields supported by such complex structures
can be directly quantized provided that the pair of semi-infinite photonic crystals are treated within the
effective-medium approach, in which each photonic crystal is represented by a truncated uniaxial medium
whose dielectric tensor components are determinable in terms of layer thicknesses and dielectric functions of
the individual photonic crystal components. The spontaneous-emission rate is evaluated for a dipole emitter
situated in the slab region, and oscillating at a frequency resonant with one of the modes that are localized
within the slab and exponentially decaying within the photonic crystals. Both symmetric and asymmetric
structures are discussed. Interesting features are predicted when the variations of the adjustable parameters are
examined, including suppression and enhancement of the spontaneous rate.

PACS numbes): 42.50.Dv, 42.50.Ct, 42.70.Qs

[. INTRODUCTION plied to the study of various electromagnetic excitations in
layered structure§13—16. The effective-medium approxi-

It has been unambiguously established in cavity quantunmation considered here pertains to any layer structure formed
electrodynamic$CQED) that the spontaneous rate of a point by the alternate periodic stacking of two types of layers of
dipole emitter can be controlled at will by suitably tailoring locally isotropic materials of thicknessdg andd, with di-
the environment in which the dipole emitter is situated. Sinceelectric functionse; ande,, one or both of which may be
the pioneering work of Purce|ll], much research has been frequency dependent. This layer system is regarded as
carried out, especially recently, on the modification of theequivalent to a homogeneous uniaxial medium with a diag-
spontaneous rate and its practical consequences for dipolesal dielectric tensor containing two distinct components:
immersed in various dielectric media and cavity structures obne for propagation along the optical axis, and the second for
different shapes and sizes. The dielectric slab structure, ipropagation parallel to the interfaces. Once this approxima-
particular, has been the subject of investigation by many aution has been applied, one can deal with the quantization of
thors[2-6], but most treatments of this problem consideredthe electromagnetic field modes of a homogeneous, but an-
the simplest case in which the slab is sandwiched betweeisotropic medium which can then be made to form one of the
two much thicker layers of isotropic media. There has alssandwich layers in the slab structure under consideration in-
been little work done on the influence of possible frequencyolving two semi-infinite periodic photonic crystals. With
dependencg7] of the relevant dielectric functions in this the electromagnetic modes quantized, one can evaluate the
three-layer structure. spontaneous-emission rate, and explore its variations with

In a parallel development, considerable work was donghe controllable parameters of the system.
recently on electromagnetic modes guided within artificially = The plan of this paper is as follows. In Sec. Il we set up
fabricated ordered photonic crystal structuf@s11]. These the effective-medium formalism for the principal structure,
structures can lead to the generation of efficient semicondugtamely, a thin slab region between two semi-infinite one-
tor laser sources, principally because they can act not only atimensionally periodic layered structures identified as the
efficient waveguides, but also provide the possibility of re-photonic crystals and treated within the effective-medium
ducing, or maybe even completely suppressing, spontaneoapproach. Section Il deals with the formalism for the evalu-
emission. A particular configuration often encountered ination of the spontaneous-emission rate of a dipole positioned
planar cavity laser structures is that in which the dipole emitwithin the central slab region. The results of the theory are
ter is situated in the thin slab region between two semigiven in Sec. IV and are illustrated with reference to typical
infinite one-dimensionally periodic photonic crystdts2].  situations involving a GaAs slab sandwiched between pho-
We concentrate here on this configuration, because of it®nic crystals with frequency-independent dielectric func-
relevance to laser structures. We evaluate the spontaneotigns. Section IV A deals with the situation in which photo-
emission rate for this situation, and explore the factors thanic crystal regions have different layer compositions and/or
influence the suppression and enhancement of this rate. layer thicknesses, leading to different effective uniaxial me-

Fortunately, the problem can be reduced to that of thalia, while Sec. IVB concerns a symmetric structure with
three-layer slab structure mentioned above by invoking thédentical photonic crystal regions. Section V contains com-
effective-medium approach which has been successfully apnents and conclusions.
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Il. EFFECTIVE-MEDIUM THEORY OF DIELECTRIC
SLAB BETWEEN UNIAXIAL MEDIA

It is well known in electromagnetic theory that in aniso-

vopic media the eleiomagne filds are descrbed by >§\\\\\\\\\\\\\\\\§\\\\\\\\\\\\\\\

describe the mediudi.7]:
D=¢E, (1)
B=puH, (2

\ 0
wheree and u are tensors in general. Here we assume elec-

el aniaopi meda. b magnetcaly isorolc s %/}%///////}

tensor. This tensor has nine components in general, but we
assume that a principal coordinate system is used such that
this tensor is diagonal with only three componesys ¢,
ande, along the principal axes of the structure.

Moreover we shall specialize to uniaxial media where FIG. 1. A schematic representation of the layer system under
ex=gey=g, SO that our system has only two principal axesconsideration comprising a thin slab of dielectric functiey{«),
with the z axis as the optic axis. Thus we take the permittiv-occupying the region €z<L between two photonic crystals.

ity tensor as _ . _ .
ponents of the dielectric tensor appropriate for the photonic

g 0 O crystals were given in an illuminating argument in Ré2],
_ 0 0 and it is instructive to summarize the main ideas leading to
e=g, g - ©) - - -
the effective-medium approach. Consider the average value
0 0 & of the displacement vect®, parallel to interfaces over the

period d,+dp) of a photonic crystalwith layers labeleda

The dispersion relations obtained from the Maxwell wave, b) which, by definition, is given by:

equation of this system lead to two distinct equatifiig]
(a) (b)
2_002 —H:&‘aE” da+ SbE” db, (6)
k =gz el (4) d,+d,

with the bar denoting the average value. For long-
wavelength fields, where the wavelengthis much greater
» thand, andd,(\>d,,d}), the variations of the electric field
kfz—zsu (5) over the crystal period may be neglected, and the electric
¢ field may be approximated by its average value over the

for extraordinary or TM waves that propagate in the me-Crystal period. Thus we may write
dium. For extraordinary waves the magnitude of the wave — —
vector is a function of its direction of propagation, whereas Di=¢E, Y
for the ordinary wave it is independent of direction of propa-
gation. These two waves are the two permissible normal’
modes of the system. ea0+ £pdy
We shall now present the effective-medium approach to g =22
the dielectric slab between two photonic crystals. As shown da+dy
schematically in Fig. 1, our system consists of a dielectri
slab occupying the region<0z<L, and the photonic crys-
tals occupy the regiorns>L andz<0. Each photonic crystal

for ordinary or TE waves, and

g
k24 —
€z

here

®

CSimiIarIy the average value of the normal component of the
electric field may be written as

consists of a one-dimensionally periodic array of alternating _ [p@ D 1
layers of materials. The thickness&ésandd, and dielectric EZ:( L dyt+ ——d, ) 9)
functionse, ande, characterize one photonic crystal, while €a €b da+dyp

the corresponding parameters for the second photonic cryst
are d; and d, for the thicknesses and; and ¢, for the
dielectric functions. c

In the effective-medium approach each photonic crystal is
described by a dielectric tensor of the form given in E3). D.
In this approach the photonic crystal has the optical charac- EZ:_Z, (10)
teristic of a uniaxial medium, as described above. The com- €

ﬁ% the long-wavelength approximation the electric displace-
ment may be approximated by its average value over the
rystal period, and we write
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where we now have

d,+d,

e dpt+e,dy’ (11

€7=€afp
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are related to each other by the transversality condiWon
-D=V-(eE)=0. Application of electromagnetic boundary
conditions at the interfaces=0 andz=L (Fig. 1), and using
the transversality condition, leads to the set of equations

Equations(8) and (11) are the dielectric tensor components
in the effective-medium description. Applying this approach
to the pair of photonic crystals at hand, we immediately write

A—B,—C,;f=0,

A” + BHZ]__ C”Zlf = 0,

the dielectric tensor components for the two semi-infinite (19)
crystals as B,f+C,—D;=0,
e1d;+exd; _
gp=———, 12 B)Z>f-C;Z,—D;=0,
11 d1+ d2 ( )
where
d,+d, 13
En=e&180 4 T e ki )
s10+ €20 z=2—1, (i=1,2 and f=ek- (19
) . Ks &
for the first photonic crystal, and
This set of equations admits a nontrivial solution if the de-
c :"33d3+84d4 (14) terminant vanishes. Setting the determinant equal to zero
2= dy+d, leads, after simple algebra, to the well-known dispersion re-
lation for the slab between asymmetric structure of two dif-
d;+d, ferent photonic crystals systerfis8—20Q:
822= 8384 4 - (15
3UgT 403

for the second photonic crystal, where the subscripts 1 and 2

(ks/es) = (Ka/lg)2) :(ks/ss)—(kllsul)
(ks/es)+(Kalen)  (ksles)+(Kyleyq)

=1 (20)

on the left-hand sides refer to the first and second photonic

crystals, respectively. The dielectric functions of the photo-The dispersion relation in Eq20) is for the TM modes. It
nic crystal will be taken to be frequency independent, but theean be shown that the corresponding relation for the TE
slab dielectric function is assumed to be frequency depenmodes are obtainable from this by replacingk; /e k) (i

dent, and is represented by(w).

=1 and 3 by (ks/k;). In this paper we are concerned with

Having determined the forms of the dielectric tensor com-the interface polaritons which are characteriz&8,19 by
ponents we can now investigate the normal modes of th@maginary wave vectors normal to the interfaces such that the
system of the slab between two semi-infinite photonic cryswaves are decaying with distance from the interfaceg at
tals. The electric fields in the different regions of the slab-=0 andz=L into the outer regions and are hyperbolic in the
crystal structure are determined by applying electromagnetigiab. These modes are purely extraordin@yTM) modes.
boundary conditions at=0 andL to the solutions of the Thus we ignore the TE modes here as they do not contribute

wave equation. We write
E(z<0)=(A,0A e aztilkimimen,
E(z>0)=(D,,0D,)e/k=z*ilkin=et) (16)

E(0<2<L)=[(B,,0B,)€"%+(C,0C, e 1]

Xei(kH-rH—wt)’

where theA's, B's, C's, andD’s are the field amplitudeg;

to the surface polariton modes. Moreover to see the salient
features of the effective medium description we shall ignore
retardation effects, which amounts to ignoring throughout
(w/c) terms such as in Ed5). In this case dispersion rela-
tion (20) for the surface polaritons takes the form

Bs  (Bile)+(Bale2)
es (Bsled)?+ (BiBalejien)’

tanh( Bl )= — (21)

where we have made the replacemght=ik; (j=1,253).

is the in-plane wave vector parallel to the interface, apd ~ This is the general form of the dispersion relation of the
andk,; are the wave vectors normal to the interfaces and ar8ystem of interest. For illustration purposes we shall consider

given as

C!)2

Kis= oz s Kf, (173

2

Elji
Ke=—5g—
zZit ¢ Ili

k2 (i=1,2), (17b

Ezi

which, for notational convenience, we write dg (i

a specific system in which the slab is GaAs, with a
frequency-dependent dielectric function given by

2_ 2
w (UL

=g, 22
€s=¢€ wz—w$ (22

where ¢,=10.89, %o =36.25meV, and ‘7wt
=33.29 meV. The photonic crystals parameters are given by

the arbitrary setl;=600A, d,=400A, £,=8.89,¢,=1.3,

=1,2s). The various components of each field amplituded;=500A, d;=300A, £3=10, ande,=1.5.
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k”d FIG. 3. Dispersion curves for the symmetric structure to be

compared with Fig. 2. Note the disappearance of the frequency gap

FIG. 2. Dispersion curves of the interface modes in an asym-between the horizontal lines in Fig. 2.

metric structure. Different pairs of curves correspond to different . ) .
slab thicknessels=0.5d, d, and 1.5, whered=d;+d,. See main two d'St'”Gt branches; one Comme_nces just beloy; and
text for other parameters. the other just abovevw; and there is no gap. For larde

these two branches approach a single asymptotic value, one
The dispersion curves corresponding to Eg1l) are from above and the other from below.
evaluated numerically for this set of parameters and the re-
sults are given in Fig. 2 for different slab thickneskegasw [ll. DIPOLE RELAXATION RATE

versus the in-plane wave vec arallel to interface, with . . . . .
b torp Having determined the dielectric tensor components in

d=d; +dp. It is clear that the dispersion curves depend, e effective-medium approach, our next task is the evalua-

among other things, on the photonic crystal parameters. | L pproacn, .

fact by changing the periodicity of one of the crystals, ion _of the emission rate by dipole emltters.whose frequency

which is equivalent to changing its dielectric tensor compo-IIes in the frequency range spanned by the interface modes as

nents, the curves are found to shift up or down. The gap tha§hown in Figs. 2 and 3. First we have to normalize the modes

occurs arounds = 1.064 is the reststrahl region of GaAs using standard quantization methods. The quantized electric

a common feature of band-gap systems which makes thegﬁeld is written as sum over the modgsin the form

special when one considers the interaction of dipole emitters ,

with these modes, as we shall see in the next sections. E(r,t)=f d2k, >, [Eo(k; . Ma(k, \)elkim—et+H.el,
The case of a symmetric structure where the uniaxial me- A

dia are identical follows immediately from the above discus- (25

sion by puttings|;=gj,=¢, ex=en=¢;, and B1=B2  where the field functiof, is determined as follows: first we

= . The dispersion relations in this case follow from Eq.yite the field Hamiltonian of the slab-crystal system as
(20), and leads to the well knowf18,20] even and odd

modes: H=H,+Hs, (26)
s B 1 whereH ,, is the field Hamiltonian in the anisotropic medium
8—” B —tanl‘(i,@SL) (even modes (23 and is given by
1 1
? BE = —cot?-(z,BsL) (odd modes, (24) Hm=§f d°r[D-E+&,c°B], (27)
I Ps

These modes are shown in Fig. 3 for different slab thicknes®ndHj is the field Hamiltonian in the slab which, in disper-
The difference between these two modes and the modes &fve media, is given as32]

the asymmetric structure is evident; in the asymmetric struc-

ture there is only one mode, and this Iez_ids to the interesting HSZESOJ dSrJ dzknz {i(wss)Ef-l-CzBi . (28
feature of the band gap. In the symmetric structure there are 2 X o
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where the summation is over all modes, and the dielectric r(n=r+T,

slab can have a frequency-dependent dielectric function. The

total Hamiltonain in 26 is now required to reduce to the _(ZWM>2 k| C(ky)[? E(MOZ
canonical form ) (dwldk)] |2 pf

<Mz>2
Fi+ 2 Gy,

1 ) : (39
HZEE f d k”hw(ku,)\)[a(k”,)\)a (kH,)\)
A wherek, is the value ofk; at which a horizontal line ab
+a'(k,,Ma(k, )1, (299 =, crosses the dispersion curve labeled
The final step in the derivation of the spontaneous-

where the annihilation and creation operators obey the usu&mission rate is to incorporate the local-field corrections

commutation relation, namely which account for the fact that the dipole interacts with its
own local field, rather than the macroscopic field which we
[a(K, ,A),ajT(k‘f A)]= 88,8k =K/ ). (30)  have derived here assuming locally continuous media. This

matter received attention in the recent literafl#@—25, and
This procedure culminates in the description of the field vec!t IS generally accepted that such effects lead to modifications
tor amplitude in terms of some structure functighandG:  ©f the spontaneous rate, which can be written as

Eo(k;,N)=C(ky , \)(FF\+2G,), (31) F\(r)—T\(r)R(es), (36)
where the normalization facta®(k, ,\) is given by whereR(eg) is the local-field correction factor. This factor
is, in general, model dependent, relying on a consideration of
N small virtual free-space cavity surrounding the point dipole,
C(k;,\)= > (32)  and is embedded in the continuous medium where the dipole

is situated 26]. However, there has been a number of experi-
ments[26—-28 to investigate the model dependence of the
) local fields. These experiments favor the virtual cavity model
The form of the structure functiofsandG and the normal-  due to Glauber and Lewenste[23]. We shall therefore

ization factorC(k;,\) depend on the particular geometrical adopt the Glauber-Lewenstein scheme according to which
structure, and they are given in Sec. |V for Symmetrlc anqhe local field correction factor is given as

asymmetric structures separately.
The surface polaritons described by this field will now be

coupled to a point oscillating dipole of frequenay, that is RGL[ss(wo)]=(

situated in the slab. The dipole emitter is modeled as a two-

level system with the ground) state and the excitgd) state . . . .

separated by transition frequenay=(E.—Eg)/%. An ex- with eg4(w,) the local dlg]ectrlc function of the slap calcu-

cited dipole discharges its energy by spontaneously emittinb”‘ted at the dipole trqn5|t|on frequency. An alternatlvg to the

a surface polariton. For a dipole emitter situated rat 2POVe procedure for incorporating local-field effects into the

=(0,2) within the slab, the relaxation rate is given by Fer- theory is to use an interaction Hamllto_naln_ in which the _d|—

mi's golden rule as pole couples to the local microscopic displacement field
rather than the macroscopic oh29,30. Expressiong35)
and (37) will be calculated numerically in Sec. IV, in the

w
(27)%o| S+ 7 S5

eg(wo) |

2e4(wy)+1

(37

2
I'(r)= —772 f d?k|(e,{0}|Hind 9.1k, A} |? nonretarded limit, subject to the condition thaeandk; sat-
A X isfy the dispersion relatiof21) for asymmetric structures or
X 8(Fi (wg— (K \)), 33) Egs.(23) and (24) for symmetric ones.
where H;; is the electric dipole interaction Hamiltonian IV. NUMERICAL RESULTS
[21,22

The spontaneous emission rate is now given by Egs.
u-D(1) (35—(37), with local-field effects included. To perform the
Hip=— ———, (34)  numerical calculation of the decay rate we need to specify
&(r) the field amplitude and the functioffsandG. These depend
on the structure geometry, and we in Secs. IVA and IVB

with D(r) =«(r) E(r) is the electric displacement field at the consider both asymmetric and symmetric structures.
position of the point dipole inside the dielectric slab where

the permittivity ise(r)=e,e5, andu is the dipole moment

vector, which we write agt= u,f+ n,2. Expressiong25), A. Asymmetric structure

(33), and(34) lead, after carrying out thk, integration, to For the asymmetric structure case in which the slab is
the following expression for the atomic dipole relaxation sandwiched between two different photonic crystals, the field
rate: function of mode\ is given by Eqgs(25), (31), and(32), with
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X| (M2+N?) —— +2MN —— i !
Bs BSL Bs L‘m “\ 1:
i |
—Bsk ~ i i
xXe PstL, (39 [, ooz !‘1 H ,
and ) p‘ ‘\\
! i
2 2 2 . 0.001 L i i i
g1 €2  &s| ., ., SiNA(BsL) } h i
Ss==—3+t=—3+—>3|(M“+N%) ————2MN i KN
*~26 " 283" B2 B I
e N A T
- Bk N USSR
xXe 7 L' (39) 01.06 1.062 1.064 1.066 1.068 1.07
11y, o) ®,/ 0,
2y’ FIG. 4. Dipole relaxation rate in units &f;= w, as a function
1 of dipole transition frequency for a dipole emitter positioned at
N=—M —Y2 f) (41) =d/4 and forL=d/2 with d=d;+d,. The solid curve is the par-
1+y, allel rate, and the dashed one is the perpendicular rate. See the main
text for the other parameters used here.
R=2M 1312 f, (42 reststrahl region. Near the band edges the group velocity
Y2 approaches zero, and the rate peaks at the edge sides of the
ee B gap. In Figs. ga) and 8b) we display the rate as a function
yi:_s = (i=1,2), (43 of the slab thicknes&/d for dipole located az=d/4 with
Bs eii transition frequency () w,=1.066o and (b) w,
B =1.062v7. The solid curve is the parallel rate, while the
f=exp(—Bsb). (44 dotted curve is the normal rate. For a small slab thickness the

The structure functions that appear in E8) can be speci-

fied in all three regions. However, since we are only inter-
ested here in the region within the slab where this approacf;
is valid, we need only display the structure functions for a

dipole positioned at=(0,z), where 06<z<L.:

rate diverges, consistent with the interaction with interface
modes. For large slab thickness the dipole rates diminish to
ero, since the interface modes themselves vanish in this
imit. For certain values of slab thickness the dipole rate is
totally suppressed in a manner that depends on the dipole
orientation and frequency. For frequencies above the band

Fy=[Me P+ Nefs(z L], | (45 9ap the parallel rate for a dipole at the given fixed position
vanishes at a certain slab width while the normal rate
Kk - - shows no such behavior. At frequencies below the gap the
G\=|i 5 (Me Fs—Nes? ">)} : situation is reversed, and it is the normal rate that vanishes at
s (46) a certainL. For frequencies within the gap, both rates vanish.

This is an interesting result, since it suggests that by appro-
priate choice of geometrical arrangement it is possible to

It should be noted here that Eq88)—(46) are given for the . et ’ .
general case where retardation effects are included, but hef@ntrol the atomic radiation rate in the cavity and may use
we are only interested in the nonretarded limit, and the nuth® cavity as filter to suppress or enhance the desired com-
merical calculations will be done for this case. Having speci;Ponent of the relaxation rate. Figure@6and @b) show the
fied the various field amplitude parameters, we now preser€laxation rate as a function of dipole positiafd for slab
the results of our numerical analysis and the results of th&hicknessL=d/2, for dipole transition frequencie®) w,
calculations are given Figs. 4—7 as the dipole relaxation rat& 1-06G»t and(b) w,=1.06207. The solid lines correspond
T, in units of ;= wy=5.057x 10135 L. to the parallel rate, and the_dashed lines to t_he normgl rate.
Figure 4 displays the relaxation rate as a function of theClearly, since the geometrlcal str_uctu_re of interest is not
dipole transition frequency, /w1 in the reststrahl region of symmetric, the rate is not symmetric with respect to the slab
GaAs for a dipole oriented paralléolid curve and normal ~ CENter.
(dashed curveto the interfaces. A characteristic feature of
the frequency dependence is the divergence of the rate as the
frequency approaches one of the asymptotic values noted in The field functions for the symmetric case are easily ob-
Figs. 2 and 3. This can be traced to the fact that the grouptained from the asymmetric case by puttiag=¢,,=¢,,
velocity approaches zero in this limit. This behavior is welle,;=¢,,=¢,, d;=d;, d,=d,, and B8;=8,=8. In this
known in the literaturd 31,32 where the rate suffers sup- case expressiori88)—(44) reduce to the following equations
pression when the dipole transition frequency is within theappropriate for the symmetric structure:

B. Symmetric structure
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FIG. 6. Dipole relaxation rate$’, and I',, in units of I'g

FIG. 5. Dinole relaxation rates, and T.. in units of I =w7, in the case of the asymmetric structure against the dipole
. - 2. DIp . ez N positionz/d for a slab thicknes& =d/2 and transition frequencies
= wr, against the slab thickness for a dipole emittez-ad/4, (a)

0,=1.066w and (b) w,=1.0620. See the main text for other (&) ©6=1.06607 and(b) ©,=1.0627.

parameters.
N=as Y (50)
—— ,
sE—8(1+8”kz)+’9<ws )(2M2L) °
B e, B Jw ° es B
. =——, 51
Bl sinnpl) Bk V" Bes &0
g e g W
° ) ® f=exp(—Bl), (52)
2 2 H
SB:i”s + S—SZ(ZM 2] ) M +ale B, wherea=1 for the even mode and 1 for odd mode, which
B> Bs BsL have been given in Eq$23) and (24). The structure func-
(48 tionsF andG are still given by Eqs(45) and(46) but with M
andN as in Egs(49) and(50).
where As in asymmetric geometry, the even and odd modes of
this structure constitute relaxation channels for the atomic
M= — 11—y (49) dipole and the relaxation rate in this case can be calculated
2y’ from expressiong35)—(37). The results are given in Figs.
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emission in a nanoscale dielectric cavity QED situation. The
effective medium approach permits a system of one-
dimensionally periodic layered structuighotonic crystglto

be represented as a uniaxial medium with well-defined di-
electric tensor components. We have shown how this leads
to a determination of the electromagnetic fields localized
within a slab which is sandwiched between two such photo-
nic crystals, and hence to the evaluation of the decay rate of
the dipole emitter situated in the slab region. We have illus-
trated the theory for dipole emitters with frequencies in the
reststrahl band of GaAs, with the dipole situated within a
GaAs slab which is sandwiched between two sets of photo-
nic crystals of given layer widths and compositions. When
compared with typically numerically intensive methods that
would normally be needed to solve such a problem, the
effective-medium approach is considerably more convenient
for the evaluation of spontaneous emission in this and other
complicated dielectric cavity QED contexts involving one or
more sets of one-dimensionally periodic layers.

The results point to a number of interesting features,
which arise from the variation of the adjustable parameters
of the system, namely, the dipole oscillation frequency, di-
pole vector orientation, dipole position within the slab, the
slab width, and finally, the photonic crystal parameters: layer
widths and dielectric functions. We have shown that the di-
pole rate spans a wide range of values for dipole relaxation
into the interfacelike modes of the structure. These modes
propagate along the interfaces, but are localized within the
slab region, and decay exponentially into the photonic crystal
regions. We have seen that these modes and their coupling to
dipole emitters positioned within the slab are sensitive to the
values of the parameters mentioned above, constituting po-
tential flexibility for tailoring such a structure as, for ex-
ample, for the purpose of achieving a desired suppression of
the spontaneous rate. One feature that should be highlighted
in this context is the appearance of a frequency gap between
the pair of interface dispersion curves. This gap is present
only when the two photonic crystal regions are different, and
disappears when they are identical. A second feature of the
asymmetric case is that for a given emitter position there
exists a slab width in which the point dipole would not decay

rate. The curves were calculated for the same in-plane wave vectGPontaneously.

k,d=3.5, which corresponds to
=1.0764v7)
=1.0672v07) in the odd branchidashed curve

7(@ and 7b) as the ratel', in units of I's= w=5.057
x10%s™ . Figures 7a) and 7b) showI as a function of
dipole position forL=d/2. The decay rate is symmetric wit
respect to the slab midpoiat2. This is to be contrasted with

the asymmetric case. At the slab midpoint both the paralle

transition frequencyw, (
in the even branch(full curve) and to (w,

The effective-medium approach can in fact be applied to
situations in which all three regions of the structure possess
frequency-dependent dielectric functions. A particular case is
that in which one or both photonic crystals has a metallic
component. This situation is likely to be considerably more
involved algebraically than the case considered here, but

h should still benefit from the simplifications afforded by the

effective-medium picture. This problem will not be pursued
any further here.

decay rate that couples to the even mode and the normal

decay rate that couples to the odd mode are zero, while other

rates are finite.

V. DISCUSSION AND CONCLUSIONS
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