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Entanglement transformation at absorbing and amplifying four-port devices
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Dielectric four-port devices play an important role in optical quantum information processing. Since for
causality reasons the permittivity is a complex function of frequency, dielectrics are typical examples of noisy
guantum channels, which cannot preserve quantum coherence. To study the effects of quantum decoherence,
we start from the quantized electromagnetic field in an arbitrary Kramers-Kronig dielectric of given complex
permittivity and construct the transformation relating the output quantum state to the input quantum state,
without placing restrictions on the frequency. We apply the formalism to some typical examples in quantum
communication. In particular we show that for Fock-entangled qubits the Bell-basis giatésare more
robust against decoherence than the stakes).

PACS numbd(s): 42.50.Ct, 03.6%a, 42.25.Bs, 42.7%.e

I. INTRODUCTION mission and absorption coefficients. In particular, there is no

need to introduce artificial replacement schemes. Applica-

Quantum communication schemes widely use dielectridions to low-order correlations in two-photon interference ef-
four-port devices as basic elements for constructing opticdiécts have been givef8,10,11. o

quantum channels. A typical example of such a device is a The formalism has also been extended to amplifying me-

beam splitter as a basic element not only for classical inter: a[5,12). The resulting input-output relations for amplify-

; . ' —ing beam splitters have been used to compute first- and
ference experiments but also for implementing quantum N ccond-order moments of photo coufts] and normally

terferences. A”OtheF exa”f‘p'e IS an °pt'c‘.3| fiber, which cal, dered Poynting vector$14]. Further, propagation of
be regarded as a dielectric four-port device that essentiallyy ,eezeq radiation through amplifying or absorbing multi-
reah;es transmission of light over Iongt_ar dls.tances. port devices has been considefas.

Dielectric matter is commonly described in terms of the' oy the study of entanglement, however, knowledge of
(spatially varying permittivity as a complex function of fre-  some moments and correlations is not enough. In particular,
quency, whose real and imaginary parts are related to €ag§ answer the question as to whether or not a bipartite quan-
other by the Kramers-Kronig relations. Since the appearancgm state is separable and to calculate the degree of entangle-
of the imaginary partresponsible for absorption and/or am- ment of a nonseparable state, the complete information on
plification) is unavoidably associated with additional noise,the state is required in general.
dielectric devices are typical examples of noisy quantum Recently we have presented closed formulas for calculat-
channels. Using them for generating or processing entanglddg the output quantum state from the input quantum state
guantum states of light, e.g., in quantum teleportation of16], using the input-output relations for the field at an ab-
quantum cryptography, the question of quantum decoherens®rbing four-port device of given complex refractive-index
arises. profile. In this paper we apply these results to study the en-

In order to study the problem, quantization of the electro-tanglement properties influenced by propagation in real di-
magnetic field in the presence of dielectric media is needecelectrics and extend the theory also to amplifying four-port
For absorbing bulk material, a consistent formalism is giverflévices. Enlarging the system by introducing appropriately

in [1], using the Hopfield model of a dielectfiz]. A method chosen auxiliary degrees of freedom, we first construct the
of direct quantization of Maxwell's equations with a phe- unitary transformation in the enlarged Hilbert space. Taking

nomenologically introduced permittivity is given §i8]. It the trace with regard to the auxiliary variables, we then ob-

replaces the familiar mode decomposition of the electromagj[-""In the sought formula_s for the tra_msformann of afb'"_afy
put quantum states. Finally, we discuss some applications,

. . . . . . 71N
netic field with a source-quantity representation, expressm(alith special emphasis on the dependence of entanglement on

}hedﬁeld |? Iterm.sbcl)f th? t(r:llassmal Gr%en fltmctlo_ll_"nhand mee(\})sorption and amplification.
undamental variables of theé composed system. The method 1, o paper is organized as follows. In Sec. Il the basic
uations are reviewed and the general transformation for-

has the benefit of being independent of microscopic modelgq

of the medium and can be extended to arbitrary inhomogepjas are derived. Examples of possible applications are dis-
medium are contained in the permittivitgrnd the resulting |v.

Green functioyn, and quantization is performed by the asso-
ciation of bosonic quantum excitations with the fundamental Il. QUANTUM-STATE TRANSFORMATIONS
variables.

Quantization of the phenomenological Maxwell field is
especially well suited for deriving the input-output relations Let us briefly review some basic formulas needed for the
of the field[6—9] on the basis of the really observed trans-following calculations. For simplicity, we restrict ourselves

A. Basic equations
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the line given in[16] for absorbing devices. We first define
the four-vector operators

) (é(w)) Blo) (B(w)) 3
alw)=\| . y w)=\| . y
d(w) f(w)

where f(w)=h(w) for an absorbing device, and(w)
_ "T . . . . n .

FIG. 1. Quasi-one-dimensional geometry of the device with_h_(_w) for an_ampllfylng device, Wltm(w.) being some
definition of field input and output operators. au_X|I|ary bosonidtwo-vectoy operator. The |_nput-o_utput re-
lation (1) can then be extended to the four-dimensional trans-

to a quasi-one-dimensional scherftég. 1). The action of formation

the dielectric device on the incoming radiation is described . -

by means of the characteristicx2 transformation and ab- Blo)=A(w)(w) 4
sorption matricesl (w) and A(w), respectively, which are
derived in[8] on the basis of the quantization schem¢3h
They are given in terms of the complex refractive-index pro- |0
file n(x,w) of the device. Let(w) andb;(w), i=1,2, be A(w)IAT (w)=17, J:( ) (5)
the amplitude operators of the incoming and outgoing 0 ol

damped waves at frequenay. Taking their spatial argu- _ _

ments at the boundary of the device, we may regard them ddeénce, A(w) e SU(4) for absorbing device$16], and

: : . - A(w) e SU(2,2) for amplifying devicesif an overall phase
being effectively bosonic operatdi8]. Further, letg;(w) be - ) :
the bosonic operators of the device excitations, which plafjalCtor is included in the input operatdrlote, that lossless

. : . —devices, wheré(w)=0, can be described by $B) group
the role'cl>f o.perator n0|s§ forces associated Wlth' ?bsorptloﬁransformation{l?,18}. Since the group SU) is compact,
or amphﬂci';\tlon. Introduc_mg the two-_vector notatiaw), while SU(2,2) is noncompact, qualitatively different proper-
b(w), andg(w), for the field and device operators, respec-ties of the state transformations are expected to occur in

tively, we may write the input-output relation for radiation at these two cases. Introducing tteommuting positive Her-
an absorbing or amplifying device in the compact form mitian matrices

with

b(w)=T(w)a(w)+A(w)d(w), 1 C(0)=\T(0)T (@), S(w)=VA(0)A (), (6)
where the transformation and absorption matrices satisfy th@hich, by Eq.(2), obey the relatiol€?(w) + 0 (w) =1, itis
relation not difficult to generalize the matriA(w) in [16] to

T(0)T (0)+oA(0)A" (0) =1, 2 T(w) A(w)

L M@= 5w)C Y w0)T(0) C(0)S Hw)Aw))"
and o=+1, d(w)=9g(w) for absorbing devices and= 7

—1, d(w)=g'(w) for amplifying devices. The above given

equations yield for any chosen frequency. Knowing the am- Both the SW4) and SU2,2) group elements can be writ-
plitude operators as functions of frequency, the full-field op-ten in exponential form

erators can be constructed by appropriate integration over the _

frequency in a straightforward wég]. Alw)=e?) T (w)=IP(w)J, (8)

B. Unitary operator transformations and a unitary operator transformation
The. operator input-output relatidi) cqntains all t_he in- Blw)=0Ta(w)0 9
formation necessary to transform an arbitrary function of the
input-field operators into the corresponding function of thecan pe constructed, where
output-field operators. In particular, it enables one to express
arbitrary moments and correlations of the outgoing field in R o R ~
terms of those of the incoming field and the device excita- U=ex;ﬂ’ —if do[a'(0)]TIP(w)a(w)}. (10
tions, and hence all knowable information about the quantum 0
state of the outgoing field can be obtained. Commonly, quan- .
tum states are expressed in terms of density matrices d¥ote that the unitarity otJ follows directly from Eq.(8).
phase-space functions—representations that are more suitedLet the density operator of the input quantum state be a
to study a quantum state as a whole. functional ofa(w) anda'(w), @iy= 0 a(w),a'(w)]. The
In order to calculate the density operator of the outgoingdensity operator of the quantum state of the outgoing fields
field for both absorbing and amplifying devices, we follow can then be given by
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51~ TEOH03,01) P
—TO(@[IA* (0)Ié( @), IAT() I ()]}, 0 BS2
(11) M1 T3

<

where TfP) means trace with respect to the device variables.

It should be pointed out that'{) in Eq.(11) does not depend
on the auxiliary variables introduced in E@). The SUA4)- BS1
group transformation preserves operator ordering and thus a;
for absorbing devices, theparametrized phase-space func- 11>

tions transform as a, p M2

Poul @(®);8]=Pi[ A" (w)a(w);s]. (12
10>
Since the SI(2,2)-group transformation mixes creation and
annihilation operators, an equation of the ty{®) is not FIG. 2. Mach-Zehnder interferometer with dispersive and ab-
valid for amplifying devices in general. An exception is the Sorbing beam splitters BS1 and BS2 and a phase @hifthe mir-

Wigner function that corresponds to symmetrical ordering™'s M1 and M2 as well_as the brqnches between BS1 and BS2 are
(s=0): assumed to be lossy with transmittante (upper branchand T,

(lower branch, respectively.
Wl a(0)]=W, [IAY (0)Ja(w)]. (13
oul " In Sec. Il B we study the entanglement produced at a
For amplifying devices, the calculation of the output state igealistic beam splitter by initially uncorrelated photons, and
rather involved in general. Formulas for Fock-state transforin Sec. IllC we analyze the degradation of entanglement
mation are given in the Appendix. during propagation through lossy media, with special empha-
sis on Bell-type states. Effects associated with amplification
Il APPLICATIONS are addressed in Sec. Il D.
As already mentioned, the input-output relatigh) en- A. Visibility of interference fringes
ables one to calculate arbitrary moments and correlations of . N :
To give an example of application of the input-output

the outgoing field. It is worth noting that there is no need to ; . I . ;
introduce fictitious beam splitters for modeling the Iosses.relat'ons(l)’ we consider the visibility of interference fringes

The transmittance and absorption matrices in E¢.auto- In ? (I;/Igch—Zehnder mterferr(])metke‘:r n Fig. 2. AS'r.‘g'e photog
matically take account of the losses, because they are calc —he Into one input port, the gt. er mrr])ut po_lr)t_l_ €ing unused.
lated from Maxwell’'s equations with complex permittivity. € quantity we are interested in Is the visibility
To give an example, we compute in Sec. Il A the visibility (A ma (A
of interference fringes in photon-number detection in a V= max A omin (15)
Mach-Zehnder interferometer with lossy beam splitters. (N max™ (N min

The input-output relatiofil1) can advantageously be used
when knowledge of the transformed quantum state as where(ny)max({N)min) is the maximumminimum) value of
whole is required. This is typically the case in quantum comthe mean photon number in thith output channel K
munication, which is essentially based on entangled quantura 1,2).
states. For quantification of entanglement—a quantum- |n order to model the losses in the interferometer arms
coherence property that sensitively responds to losses—e.g., nonperfect mirrors or dissipation processes in optical
information about the full quantum state is needed in genfibers connecting the beam splitters BS1 and B82[22] a
eral. The entanglement measure we use is the quantufittitious (nonabsorbingbeam splitter is inserted into each
relative entropy (the quantum analog of the classical branch of the interferometer. In practice, however, the beam

Kullback-Leibler entropy defined by[19] splitters BS1 and BS2 are also expected to give rise to some
. o . losses. Whereas the losses arising from the beam splitter BS1
E(o)=minTrla(Ino—Inp)], (14  may be thought of as being included in the replacement
pes scheme considered [22], inclusion in the calculation of the

. losses arising from the beam splitter BS2 would require that
with o andS being, respectively, the bipartite quantum statetwo additional fictitious beam splitters were inserted between
under study and the set of all separable quantum states. \Wee beam splitter BS2 and the detectors. Altogether, a re-
stress here that the relative entropy is indeed a “good” enplacement scheme with four fictitious beam splitters at least
tanglement measure, because it satisfies the necessary conmuidst be considered in order to model all the losses.
tions that should be required of such a meadur@-21. Application of the input-output relation€l) shows that
Note that any proper entanglement measure satisfying thethere is no need for such an involved replacement scheme.
would do (the Bures metric being another typical example Instead, the proper transmittance and reflection coefficients
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of the beam splitters and mirrofer fiberg can be used to eB®)
obtain the correct physics, including the losses. Applying the 3
input-output relationg1) successively to the beam splitter

BS2, the lossy branches, and the beam splitter BS1 and as- ,
suming the devices are in the vacuum state, so that the over-

all input state i #i,)=|1,0,0,0, it is not difficult to show

that 2

(N1)=|Ry % T3l?| Rl 2+ T4 |2 T4l?| To|?
+ 2|Ry||Ry| [ T4||T2|| T5[ T4l cos®, (16)

|72
()= Ry|?Taf2| Tol2+ |Rof2 Tl T 2 cro v e 2t
FIG. 3. Entanglement created at a lossless beam splitter with
+2|Rq||Ra| [ T4 | T2l T4l T4 cos® s, (17 both input modes excited in an one-photon Fock state. The en-
tanglement is shown in exponential scaling vs transmittance. Maxi-
where ©,=0+ ¢ — 1, *er,m¢r,tor,mer, and O, entanglement In3 is created at a 20%-80% beam splitter
=0+ @r,~ 1,7 ¢r,T @1, @1, @1,. Here and in the fol-  whereas for a symmetric device it drops to In 2 due to destructive
lowing, the notation T))11=(T))»=R=|R|e'*" and interference.
(T)12=(T))=T,=|T,|€'¢T for the elements of the trans-
mittance matrixT, of the Ith four-port device is usedll  channel of a 50%-50% beam splitter, i.fT}?=|R|?=1/2,
=1,2, beam splitters BS1 and BSP=3,4, upper(3) and  Whereas the other input channel is unused, the output state is
lower (4) branch of the interferometprNote that for a lossy @ superposition of states with the photon in one of the output
device channels. If each of the two incoming modes is prepared in a
single-photon Fock state, then the output state is a superpo-
argR,—argT,# m/2 (18 sition of states with two photons in one output channel. In
either case, the output state is a superposition of two states
and the maximum entanglement of If\&hich corresponds
-1 to 1 bit) is realized. Note that for pure states the entangle-
, (19 ment measuré¢l4) reduces to the von Neumann entropy of
one subsystem. Wheif|?#|R|? then the output state in the
)_1 latter case is a superposition of three states, because each

in general. Combining Eq$15)—(17), we easily derive

V. (|R1||T3||R2| MLEULILY
FOTTAIT  IRITSR,

Voo (|R1IIT3IIT2|+|Rz||T1||T4|
2 VRAITl[Tal - [RAITSII T

(20) outgoing mode can now contain either zero, one, or two

photons. The maximum entanglement of a three-state system
is In 3, which is realized if T|?=1/2x (1+1/{/3) (see Fig.

3). Hence, a non-50%-50% beam splitter can produce stron-
ger entanglement than a 50%-50% beam splitter which sup-
presses one possible outcome owing to interference. With

It is worth noting that Eqs(19) and (20) are valid for the
really observed reflection and transmission coefficidRts
andT,, respectively, with

IR(%+|T?<1. (21)  regard to entanglement, this interference effect is thus de-

structive.
The equality sign would be realized for nonabsorbing de- Let us now raise the question of the amount of entangle-
vices. ment achievable in case of a realistic beam splitter—a ques-

Comparing with the formulas for the visibilities derived in tion that may be important for the quality of quantum com-
[22], we observe that they look like Eq4.9) and(20). How-  munication by means of entangled photonic states obtained
ever, this resemblance is only formal. In fact, all the reflec-by available devices. The question can be answered by ap-
tion and transmission coefficienfscluding the phasesn- plying the input-output relatiofll) and calculating the out-
troduced in[22] satisfy the relations valid for nonabsorbing put state of the interfering modes obtained by an absorbing
devices and therefore differ from the measured reflection antieam splitter. To give an example, let us study the entangle-
transmission coefficients that in a real experiment determineient produced by a dielectric plate of permittivity
the fringe visibilities. Even if additional fictitious beam split-
ters were included in the model [22], there would be no e—1

;gir?grzlrelation between auxiliary and actual parameters in €(w)=1+ 1_(w/wo)2_2iyw/wg (22)

(es=1.5) and thicknesd=2c/w, for the case where either

one or each of the two incoming modes is prepared in a
Superimposing two nonclassically excited modes by asingle-photon Fock state. The squares of the absolute values

lossless beam splitter, one can generate entangled states withthe calculated reflection, transmission, and absorption co-

interesting propertiel 7]. Two of the simplest examples are efficients as functions of frequen¢g] are shown in Fig. 4

as follows. Having a single-photon Fock state in one inputfor y=0.001. When the device is not excited, then the over-

B. Photon entanglement at a beam splitter
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|R[?, |T?1 — |R® - |T|* E(®), I
11—~ —_————
T~ -~ .//\ 2
0.8 \
, 1.5
0.6 |
1 o
0.4 | - 5 -:
) X At
0.2 O 0.5 P H
L :
oot ~ e,
0.5 1 5 5 w/w G T > wlw
FIG. 4. The reflection coefficiedR|2 (fLI” Iine), the transmis- FIG. 6. Frequency dependence of the entang|ement measure

sion cozeff|(:|e2nt|T|2 (dashed ling and the absorption coefficient g5y (dashed lineand the total correlatioh, (solid line) for a state
(1f|_R| —|T|%) (dotted ling of a dielectric plate are shown as 1,1,0,0 impinging on a beam splitter withy/wo="0.001 in Eq.
functions of frequency for es=1.5 andy/ wy=0.001 in Eq.(22), (22) and the other parameters given in the text.

and the plate thicknessc2w,,.

quantum coherence. As expected, substantial entanglement is

all input state is eithe1,0,0,9 or|1,1,0,0 for the two cases observed in regions where the absorption is weak |ditl

under consideration. The resulting mixed states of the OUthénd|R|2 nearly satisfy the condition of maximum entangle-
ing modes are calculated [16]. Here, we have calculated ment. In Fig. 5 this is the case fas/wy~1.25 where the
the amount of entanglement of the states using the definitiooalue' of enianglement becomes clo(;e t.o the maximally
(14).

Results are plotted in Figs. 5 and 6 fpe=0.001, and in achievable value of In 2. In Fig. 6 the value of entanglement

Fig. 7 for y=0.01. For comparison, the figures also show thebecomes close to the maximally achievable value of In3 at

. : o = wlwg~1.18 andw/ wy~1.33. The relative minimum in Fig.
mutual informationl =S, + S, S;p, whereS, andS, are &' ol wy~1.25 indicates the effect of destructive interfer-
the von Neumann entropies of the outgoing modes 1 and 26nce mentioned above
respectively, amsl? is the entropy Of. the composite two- The results show that entanglement sensitively depends
mode system. Obviously, the mutual information may be re-

ded £ the total t of lati on the optical properties of the material used for manufac-
garded as a measure of e total amount ot correfation Co.thing the optical device. They demonstrate the importance

talngq in the states. In regions \_/vhere the absorption 13 optimizing the frequency regime of quantum communica-
sufficiently weak, the output state is almost pure, and thu ion schemes with given devices

Si,~0 andE(fr)~Si . Hence, the two curves in Figs. 5 and

6 differ there only by a factor approximately equal to two. o

With increasing absorption the two curves cannot be related C- Entangled-state transmission through a lossy channel

to each other by simple scaling, as it can be seen from Fig. 7. 1. Bell-type basis statelal =)

In particular, the maximally achievable amount of entangle- .

ment of about 0.4 is much less than In2 achievable with -t US now turn to the guestion of gntanglement degrada-

lossless device tion during the propagation through dielectric matter such as
From Figs. 5 and 6 strong reduction of entanglement N optical f[ber. For this purpose, we c_onsidgr two modes

observed in the resonance region. Here reflection and absor ach of Wh'Ch. propagates through a d|eleptr|c medium of

tion are strongest, so that the two modes are only weakl omplex permltt|V|_ty. Assuming the incoming modes are

mixed and absorption prevents the device from creatin repared in a maximally entangled Bell-type state

E(@), 1, E(5), L
1

1.2

1 0.8
0.8 0.6
0.6 -
0.4 =N
0.2 0.2 // N

—5 w/w = 0.5 — w/wo

FIG. 5. Frequency dependence of the entanglement measure FIG. 7. Frequency dependence of the entanglement measure
E(o) (dashed lingand the total correlatioh. (solid line) for a state  E(o) (dashed lingand the total correlatioh. (solid line) for a state
|1,0,0,0 impinging on a beam splitter with/w,=0.001 in Eq.  |1,0,0,0 impinging on a beam splitter with/w,=0.01 in Eq.(22)

(22) and the other parameters given in the text. and the other parameters given in the text.
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N 1
|W5):E(|On>i|n0>), (23 0
0.
we apply Eq(11) and calculate the quantum state of the two 0
outgoing modes. After some algebra we derive o.
R 1S /n - 0.
26=3 3. [Pyl .
n—-1 n 0.
+ 3, (1) T T ok oK
1 on P L FIG. 8. Entanglement degradation of a singlet stdtg (V|
([ Ta "+ [T ") [W =) (W], (24 [Eq. (23)] with one photon =1, full curve) and two photonsr(
where =2, dashed curveafter transmission through absorbing channels

of equal transmittance.

W)= (| T2+ T2 VAT n0) = T5lon)). (25) L ,
o) =(ITdl IT2l™) A (T2n0) = T2/0m)). (29 is a pure state, the entanglement of which is simply given by
Note that when setting= 1, the transformation of the ordi- the entropy of one of the two modes. We thus find

nary Bell basis stategfV=)=|W¥;) are obtained. In what .

follows we assume that the transmission coefficientgk E(Qou) =B, (31)
=1,2) are given by

1
Ti= Ti(w) =e"@elle, (26) B:5[(|T1|2n+|T2|2n)|n(|T1|2n+|T2|2n)
with n(w)=Ve(w)=n(w)+ik(w) and |, being the — T4 In| T4 |2"—| T2 In| T, 2"]. (32

complex refractive indexes of the media and the propagation
lengths, respectively. According to the Lambert-Beer law,In particular wherT;=T,=T, then
|T,| decreases exponentially with the length of propagation:
[T |=expI /L), Ly=c/(wk,). In special cases when one E(ef)=<|T|?"In2=e 2"t |n2, (33
mode propagates through vacuumiw) =1, the correspond-
ing transmission coefficient, by E(6), is just a phase fac- j e the characteristic length of entanglement degradation de-
tor. o ) ) . creases as 1/(9) at least. The resu(B83) reveals that with an
For a first insight into the behavior of the transmitted jncreasing number of photons the quantum interference rel-
quantum state it may be instructive to look at the overlap okyant for entanglement exponentially decreases at least. Such

the output state with the input state, which is a behavior is typical of quantum decoherence phenomena
| A(F)N’t (T P T2 T T TOTE and is not restricted to Fock states. _ _ _
(Yrleowd¥a)=2(T, 2 1 Tt TaT50). It should be mentioned that for a pair of spinparties a

(27) decomposition of the density matrix into a separable part and

We see that the characteristic length of degradation of th@ §|ngle pure state Is always poss@M].'Moreoyer, there
overlap(fidelity) is not given byl but by the shorter length exists a unique m_aX|mal such that tbe inequality2g) re-
L,/(2n). Hence, the overlap rapidly approaches zero withduces to an equality and thus{A)E(o,) becomes a mea-
increasing number of photons even for weak damping of th&ure of entanglement. However, for larger _dlmenS|ons of the
intensity or relatedclassical quantities. Hilbert space we are left with the general inequalg).
As already mentioned, a proper measure of entanglement Examples of entanglement degradatjoalculated on+the
is the quantum relative entropy defined by Etd). In order ~ basis of Eq.(14)] for singlet states with one photof¥ ),
to estimate an upper bound, we employ the convexity propand two photons|¥;), are shown in Fig. 8 for the case
erty [23] where the two modes propagate in equal media over equal
R . . . distances. We observe that for the stide,) the upper
E[Ao1+(1—N)o,]<NE(oy)+(1—N)E(oy). (280  bounde *'!In2 defined by the inequality33) is a very
good approximation to the entanglement at propagation

From Eq.(24) it is seen thap (") has the form lengthl. In contrast, for the stateV;) the actual values of
R R R entanglement are typically smaller than it might be expected
eSI= a1+ (1-N)oy, (290 from the upper boun@~?""“In2. Since forn>2 the upper
R ) bounde 2"t In2 is always smaller than the entanglement
whereo; is a separable stajé(o;)=0] and observed for the stafeV, ) (at least for G<I<L), we leave
R with the result that the two-photon singlet stie, ) is the
o= (WL (300 most robust one within the class of stafdls).
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2. Bell-type basis statdsp>)
The Bell-type states

L1
[@5)=—=(|00)=|nn))

n>:\/§

(34

can be obtained from the somewhat more general class of

states

| @)= ——==5(|00)+q|nn)) (35

e

for q==1. Obviously, forn=1 and small values off the
state|®7) approximates a two-mode squeezed vacuum

exqaéléz—éié;)]m@:Jl—lqlzg qmmm) (36)

(g=tanh{, ¢ rea) used in quantum teleportation with con-
tinuous variableg25]. It is not difficult to prove that the
entanglement of®]) is

|al?

E(|eR(@R)=In(L+ el ~ 7

Injql?, (3D

which for |g|=1 attains the maximum value of In 2.

Let us again consider two modes propagating through di-
electric matter and assume that the incoming modes are now

prepared in a statgbl). We again apply Eq(11) and cal-
culate the quantum state of two modes. The result reads

|al? n)(ﬂ)
T 2k1T 2ky
e PR OB DAL

X (1= |To[H" k(1= | ToA)" *2lky ko) (Kykol

é(F):

out

ki k=0 (

—|T4*"[To*"nn)(nn] | +

1+]q|?
X[|00) +qT{T5nn)][(00 + (qTETH)*(nn|].
(38

Again, from the convexity argument, E§28), an upper
bound of the entanglement can be derived

1
B=——[(1+ /2|n1+ 12y _ 12|n 12
Pl ' [HIn(1+[a’|%) —[a’|*In|q"["]
(39

(9’ =qTiT3). In particular, for small values af’ we find by
expansion that

Iq |2
+lql?

E(ef)= (1-Inlg' | +0O(q'[%, (40

which shows that the entanglement decreases|@F
=|al [Ty 2T,
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E(%)

o O O o © O ©
N Wb oy

FIG. 9. Comparison of entanglement degradation of one-photon
Bell basis stategd ™) (full curve) and| ¥ =) (dashed curve

It is also instructive to compare the entanglement degra-
dation of the statelgb ) with that of the stateg¥ ;). Simi-
lar to the stategW¥, ), within the class of stateghb,) the
state|®, ) is most robust against entanglement degradation.
Obviously, the probability of findingy photons in one chan-
nel decreases 43;|" for the state§W¥, ) but decreases as
|T,T,|" for the stated® ). The entanglement degradation
of the stategW ;) is therefore expected to be less than that
of the stated®, ). From Egs.(32) and (39) it follows that

(1T =[T2|=[T|<1)
B(|®=)) _[TI*"(A-In|T|*")
B(W™) 2In2 “

The numerical result&see Fig. 9indeed show that the states
|W, ) are more robust against entanglement degradation that
the stateg® ).

3. Medium with EIT characteristics

Media having electromagnetically induced transparency
dispersion characteristics have been of increasing interest
[26,27. They may offer the possibility of realizing optical
quantum gates, because the group velocity reduction is ex-
tremely large such that there will be plenty of time to ma-
nipulate a quantum state intermediately stored in the medium
[28]. The susceptibility of such a medium can be given by

Ny1(iyo—9)

O%+ 5, yo— 8(A— &) +i[ 8(y, + o) + Ayo] ’(42)

x(9)=

with Q being the Rabi frequency of the driving fielg, the
transverse relaxation rate of the probe transitidrthe one-
photon detuningy; the radiation relaxation rate of the probe
transition, vy the decay rate of the ground-state coherence,
and § the two-photon detunin¢for details, se¢27,28)).

We have calculated the degradation of entanglement for
the case where two modes that are initially prepared in a
Bell-type statg ¥, ), Eq.(23), can propagate through media
of that type. Figure 10 shows results obtained for ordinary
Bell states| ¥ ). In the figure, the two-photon detuning is
varied in a small frequency region around some optical fre-
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E(6) travel through amplifying devices at zero temperature. The
0.8 Wigner function of the two-mode squeezed vacuum is a
0.7 Gaussian
0.6
os W(&=(4m?JdetV) texp—-3£V g, (43
0.4 Here, £ is a four-vector whose elements ayg, p4, d,, and
0.3 p,, andV is the 4X4 variance matrix
0.2
0.1 Y, ( X e (44
§/wo \ZT y/)
-0.00001 0 0.00001 0.00002
FIG. 10. Entanglement degradation of a singlet sitdte)(¥ ~| The variance matrix44) can be written in the form
[Eg. (23) with n=1] after transmission of one subsystédashed c/2 0 —-s2 0
curve or both subsystem@ull curve) through a medium with sus-
ceptibility (42). Ve 0 c/2 0 s/2 45
| =-s2 0 c¢2 o0
guencywg. The two-peak structure of the absorption coeffi- 0 s/2 0 c/2

cient[imaginary part of the square root of the susceptibility

(42)] essentially determines the amount of entanglement thgic= cosh Z,s=sinh 2]. Using the input-output relationd)
can be transmitted. It is seen that the initial entanglement ofor amplifying devices, we can easily transform the input-
In 2 is (approximately preserved for zero two-photon detun- state variance matrigd5) to obtain the output-state variance
ing, and the degradation of entanglement is almost abrupt fanatrix

nonzero two-photon detuning. Hence, control of entangle-

ment requires fine tuning. X 0 Zy Zp
0 X Zy Zy
. L . V= : (46)
D. Entanglement transformation at amplifying devices Zyy 2y Y 0
From Sec. Il we know that quantum-state transformation Ziy Zyn 0 Yy

at amplifying four-port devices is connected with @\2)
group transformations. For each frequency, the transforma¥here
tion corresponds to the action of a four-mode squeezing op-

_1 2 1 2 1 2 2
. . ! = 10| 4|2+ 3[Ry [+ 5(| Ta|?+ Ry |2 1 4
erator, where the destructidareation operators of the field x=2¢|Tal*+ 3[Rl*+ 3 (ITo*+ |Ry[*~ 1), (a7

modes are mixed with the creatigdestruction operators of =1c|T.124 2 RI2+ L(IT- 12+ R, 12— 1 48
the device excitations. Tracing with regard to the device y=zelTol* Z[Rel+ 2 (| Tl "+ [Re~ 1), (49)
variables then yields thiwo-modsg output state of the field, Z11= —Zp= — 3SRET,T,), (49)
as is shown in the Appendix for the case where (tveo-

mode input state of the field is a Fock state and the device is Z15=25=— 2sIm(T,T,). (50)

in the ground state.

If the input field is prepared in an entangled state, ampliLet us consider equal devices, so tiat=T,=T and R;
fication is expected to destroy the entanglement. Although al=R,=R. The Peres—Horodecki criterig29]
necessary formulas are available, the calculation of the quan-
tum relative entropy is an effort. The number of tfreal detX detY + (3 —|detz|)?—Tr(XJzJYJIZ "J)
parameters specifying an arbitrary separable density matrix
increases dramatically with the dimension of the Hilbert
space of the subsystems involved. In fact, it is easy to see
that this number i$4N*(N— 1)+ N*—1], with N being the
Hilbert-space dimension of the subsystethere, both sub- then tells us that for
systems are assumed to have equal dimenpiddence,
when there is notable amplification, then the number of Fock , 2(1-|RP®)
states to be taken into account for sufficient numerical accu- 7| :m
racy drastically increases. In contrast to absorbing media,
where the dimension of the Hilbert space of the relevanthe houndary between separability and nonseparability is
modes is bounded by the total number of input phOtOﬂS, SUC,‘bached_ In particu|ar' for zero reﬂectioR:é 0), Eq (52)
a bound does not exist for amplifying media. reveals that the upper limit of the gag—|T|?>—1=0 for

Nevertheless, for entangled Gaussian states an upp@hich nonseparability changes to separability is simply
bound of the gain can be determined such that the amplifiegiven by the squeezing parametqt

system is still not separable. Let us consider, e.g., the two-
mode squeezed vacuu(®6) and assume that the two modes g=|q|=tanH{|. (53

0 1
= 1(detX +detY), J=<_1 0) (51

(52
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An obvious consequence of E¢p3) is that entanglement Wigner function(13) is suited to the state description. For
cannot be produced from the vacuum by amplification. Sincehe sake of transparency we will restrict our attention to a
for the vacuum the squeezing parameter has to be set equsihgle-frequency componefite., a (quasiymonochromatic

to zero,q=0, from Eq.(53) it follows that any nonvanishing field in a sufficiently small frequency intervalw [16]). The
gaing must necessarily lead to a separable state. extension to a multi frequency field is straightforward. When
the input field is prepared in a Fock stdte,q) and the
device in the ground stat8,0), so that the overall input state

We have studied the problem of quantum-state transforiS |P.0,0,0), then the input Wigner function reads as
mation at absorbing and amplifying dielectric four-port de-
vices, without making use of any replacement schemes. We . (g, a*)=
instead express the input-output relations in terms of the ac-
tually observed quantities as obtained from the quantized 2 2y - 2(ay 2+ |ayl?)
Maxwell field in the presence of arbitrary caugiean me- X Lp(4]ay®)Lq(4|ay|?) e =Ha %
dia. After extending the basic formulas recently developed (A1)
for absorbing media to amplifying media, we have applied
the theory to some problems typically considered in quantunwith L,(x) being the Laguerre polynomial
information processing. N .

In particular, we have considered both the amount of en- L= (_1)m( n ) x" (A2)
tanglement that is realized when nonclassical light is com- n = n—-m/m!"
bined through a lossy beam splitter and the entanglement
degradation when entangled light propagates through lossywe now apply Eq(13), making the substitutions according
media. We have based our analysis on the quantum relative

IV. SUMMARY AND CONCLUSIONS

2 4
_) (— 1)P+qe*2(|91|2+|92|2)
ar

entropy as a measure of entanglement. The calculation of the a—T a—T"C'sg, (A3)
entanglement of a mixed quantum state typically observed

for absorbing media needs comparing the state with all sepa- a*—TTa*—T'[C']"'STg, (A4)
rable states in order to find that separable state which is Tk A TEeTA— 1T

closest to the state under consideration. Since the effort dras- g——A @ +A[S] "Clg, (A5)
tically increases with the dimension of the Hilbert space, we . N e T

have restricted our attention to low-dimensional quantum g——AatA'S "Cg". (A6)

states in the numerical calculation. . : . . .
Finally, we integrate over the device variablgsto obtain

The numerical results show that the Bell-type state . . . X .
W), Eq.(23), are more robust against decohere:fe than ths[ehe Wigner function of the outgoing field. Introducing the
n/’» . ’

states|®; ), Eq. (34) (n=1,2). The estimation of an upper Matrix Kii, = 9k and employing the formula
bound of entanglement for arbitrary numbeof photons in ) ) 5
each of the two entangled modes shows that with increasing 4|t’i|2<9_2|a| = ﬁe—aa\ +akial k=0, (A7)
n the characteristic length of entanglement degradation de-
creases as./n at least, wherel is the absorption length \ye derive
according to the Lambert-Beer law.

So far we have considered either purely absorbing or ngz(a,a*)
purely amplifying media. In practice, the two effects can
occur simultaneously. Essentially, there are two ways to deal 2\22
with this problem. One way is to treat amplifiers with ab- ;) hZO
sorption as cascading amplifying and absorbing devices. An-
other way is to go back to the underlying quantized Maxwell exp{—2(a*)"[N—B"(D") "'B*]a}
equations with the aim to develop a more specific approach X

Mn

<—1>“+"(p><—1>'+q

q) M g
5% ht\h/ 1

ok oK,

to the problem. detD kl:kzzo,
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WIGNER FUNCTION
have been used.

As mentioned in Sec. Il B in the case of amplifying media In order to calculate from the Wigner function the density
only symmetric operator ordering is preserved, and hence theperator, we make use of the relatiB0]
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5(F)
Qou)_W JdZ W(ut(aa )(a—a), (A12) (mq,m,|@gulniny)
1 ny!ny! o
- \/ ~i6(m,—ny)
where _D[ detDM ¥V m;Imy! 28 T2 Om,; ~n; +m,—ny0
1 2 alp* —pTa* Dod d 1 M22
S(a—a)= — d2b D(b)e? , (A13) X , PadXeexp = 5% 1+ et

with D(b) being the two-mode coherent displacement opera-
tor. For notational convenience we introduce the abbrevia-
tion notation

1 1 M1
2% 1T Gem

Mad -—-
s ”2( detM

(my—nq)/2_(my—ny)/2) (My—nq) (my—ny)
Xlel ny X2m2 ny Lnr:l ny (Xl)an‘z 2(X2)]

P q h+ I+
~ (—=1)"P(p\(-1)'"%q
D{---}—EO.ZO[ h b L (A18)
LN (X=r;j 2). Thex, integral is performed by means of the for-
PR } (A14)  mula(2.19.12.6 in [31], which gives(for m,=n,)
1 2

5 (F)
my,m,| 04| N1,N
Substitution of Eq(A8) into Eq.(A12) yields (my.m;[@ou[n1.nz)

D{ 2 [ny!n,! (M)me- 12
~ | | \Vh12
Qg;%_ | ad? bD (b) detD mqyimsy!
s (M1,—detM)"2
m;—n;+my,—n,,0 mo+1
X exp—2atMa+a'b* —bTa*)]}, (A15) (Mg +detM)™
1+My,
dx exr{ (1+ H
whereM=N—-BT(D")~!B*. J ! M+ detM
Using the Fock-state representation of feengle-mode 5
coherent displacement operaf80], (my—ny) (Mp—ny) M1
xL! (xp)L! x|
A~ . _ _ 2 _
<m|D(b)|n>=\/Wbm ne=IbI%2 (M=M(|p|2) (A16) (A19)

Finally, thex, integral is performed by expanding the asso-

LM(x), associated Laguerre polynonjialve can calculate o
[Ln(X) 9 polynori ciated Laguerre polynomials into power seri8g]. The re-

the density matrix in the Fock basis. Performing thinte-

grals in Eq.(A15), we derive sult is
0 !
mym,|e{)nin ~(F) . 2 [nyiny!
(MaMzl@auNanz) (Mg, ma|@ [N, n) =D detD Myl m,!
1 [nyin,!
=P m2detbM ¥ my!my! ridryrzdrode; dep Ko L (M;—detM)"2
. " My =Nyt My=Ny, (M11+detM)m2+1
% m;—nq my—ny _ .2 22
(ra)™ (rz) exp{ 2" 1 Getm e MG [ m,
L T Dt P
—=r2l 1+ Mas +|M12|r r,cog 0O+ ¢@,— @q) B
227" detM) " detm 12 $2m %1 1
X2Fl k+l,—n1,m1—n1+l;5)
io1(My—ng)+iga(my—ny) (My=Ng) 2y, (My—np) 2
Xe Lnl (rl)an (rz)], (A20)
(AL7) where
where we have used the notatidn=r;e'¥, and M,
=|M,/€®. Recalling the definition of the modified Bessel ae 1+ Mg+ Mo+ detM (AZD)
functions, we perform the angular integrals to obtain 2(M;+detMm)
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(E=M 1. This Wigner function is equivalent to the density

IM 152 v .
(A22)  matrix in the Fock basis

(detM)2—M2,’

Integrating Eq(A8) over the phase space of one mode of
the outgoing field yields the Wigner function of the quantum
state of the other mode, w p (—1)h+1+p+a

oD=3 |3 3 (]
_1)h+p(p>(_1)|+q<q) Qoutl h |

2 &3 h=0 =0 h!I!
F) —
wWa.an-2 3 3

" M detE 2
&k? &klz detD Eii +1

" M 9 detE
k! ok, EjjdetD

In)(nl.

ky=k,=0

Ei—1)"
E,+1

e 2lail’/E;

ky=k,=0
(A23) (A24)
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