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Entanglement transformation at absorbing and amplifying four-port devices
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Dielectric four-port devices play an important role in optical quantum information processing. Since for
causality reasons the permittivity is a complex function of frequency, dielectrics are typical examples of noisy
quantum channels, which cannot preserve quantum coherence. To study the effects of quantum decoherence,
we start from the quantized electromagnetic field in an arbitrary Kramers-Kronig dielectric of given complex
permittivity and construct the transformation relating the output quantum state to the input quantum state,
without placing restrictions on the frequency. We apply the formalism to some typical examples in quantum
communication. In particular we show that for Fock-entangled qubits the Bell-basis statesuC6& are more
robust against decoherence than the statesuF6&.

PACS number~s!: 42.50.Ct, 03.67.2a, 42.25.Bs, 42.79.2e
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I. INTRODUCTION

Quantum communication schemes widely use dielec
four-port devices as basic elements for constructing opt
quantum channels. A typical example of such a device
beam splitter as a basic element not only for classical in
ference experiments but also for implementing quantum
terferences. Another example is an optical fiber, which
be regarded as a dielectric four-port device that essent
realizes transmission of light over longer distances.

Dielectric matter is commonly described in terms of t
~spatially varying! permittivity as a complex function of fre
quency, whose real and imaginary parts are related to e
other by the Kramers-Kronig relations. Since the appeara
of the imaginary part~responsible for absorption and/or am
plification! is unavoidably associated with additional nois
dielectric devices are typical examples of noisy quant
channels. Using them for generating or processing entan
quantum states of light, e.g., in quantum teleportation
quantum cryptography, the question of quantum decohere
arises.

In order to study the problem, quantization of the elect
magnetic field in the presence of dielectric media is need
For absorbing bulk material, a consistent formalism is giv
in @1#, using the Hopfield model of a dielectric@2#. A method
of direct quantization of Maxwell’s equations with a ph
nomenologically introduced permittivity is given in@3#. It
replaces the familiar mode decomposition of the electrom
netic field with a source-quantity representation, express
the field in terms of the classical Green function and
fundamental variables of the composed system. The me
has the benefit of being independent of microscopic mod
of the medium and can be extended to arbitrary inhomo
neous dielectrics@4,5#. All relevant information about the
medium are contained in the permittivity~and the resulting
Green function!, and quantization is performed by the ass
ciation of bosonic quantum excitations with the fundamen
variables.

Quantization of the phenomenological Maxwell field
especially well suited for deriving the input-output relatio
of the field @6–9# on the basis of the really observed tran
1050-2947/2000/62~4!/043803~11!/$15.00 62 0438
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mission and absorption coefficients. In particular, there is
need to introduce artificial replacement schemes. Appli
tions to low-order correlations in two-photon interference
fects have been given@8,10,11#.

The formalism has also been extended to amplifying m
dia @5,12#. The resulting input-output relations for amplify
ing beam splitters have been used to compute first-
second-order moments of photo counts@13# and normally
ordered Poynting vectors@14#. Further, propagation o
squeezed radiation through amplifying or absorbing mu
port devices has been considered@15#.

For the study of entanglement, however, knowledge
some moments and correlations is not enough. In particu
to answer the question as to whether or not a bipartite qu
tum state is separable and to calculate the degree of enta
ment of a nonseparable state, the complete information
the state is required in general.

Recently we have presented closed formulas for calcu
ing the output quantum state from the input quantum s
@16#, using the input-output relations for the field at an a
sorbing four-port device of given complex refractive-ind
profile. In this paper we apply these results to study the
tanglement properties influenced by propagation in real
electrics and extend the theory also to amplifying four-p
devices. Enlarging the system by introducing appropriat
chosen auxiliary degrees of freedom, we first construct
unitary transformation in the enlarged Hilbert space. Tak
the trace with regard to the auxiliary variables, we then o
tain the sought formulas for the transformation of arbitra
input quantum states. Finally, we discuss some applicatio
with special emphasis on the dependence of entanglemen
absorption and amplification.

The paper is organized as follows. In Sec. II the ba
equations are reviewed and the general transformation
mulas are derived. Examples of possible applications are
cussed in Sec. III, and some conclusions are given in S
IV.

II. QUANTUM-STATE TRANSFORMATIONS

A. Basic equations

Let us briefly review some basic formulas needed for
following calculations. For simplicity, we restrict ourselve
©2000 The American Physical Society03-1
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to a quasi-one-dimensional scheme~Fig. 1!. The action of
the dielectric device on the incoming radiation is describ
by means of the characteristic 232 transformation and ab
sorption matricesT(v) and A(v), respectively, which are
derived in@8# on the basis of the quantization scheme in@3#.
They are given in terms of the complex refractive-index p
file n(x,v) of the device. Letâi(v) and b̂i(v), i 51,2, be
the amplitude operators of the incoming and outgo
damped waves at frequencyv. Taking their spatial argu-
ments at the boundary of the device, we may regard them
being effectively bosonic operators@8#. Further, letĝi(v) be
the bosonic operators of the device excitations, which p
the role of operator noise forces associated with absorp
or amplification. Introducing the two-vector notationâ(v),
b̂(v), and ĝ(v), for the field and device operators, respe
tively, we may write the input-output relation for radiation
an absorbing or amplifying device in the compact form

b̂~v!5T~v!â~v!1A~v!d̂~v!, ~1!

where the transformation and absorption matrices satisfy
relation

T~v!T1~v!1sA~v!A1~v!5I , ~2!

and s511, d̂(v)5ĝ(v) for absorbing devices ands5

21, d̂(v)5ĝ†(v) for amplifying devices. The above give
equations yield for any chosen frequency. Knowing the a
plitude operators as functions of frequency, the full-field o
erators can be constructed by appropriate integration ove
frequency in a straightforward way@8#.

B. Unitary operator transformations

The operator input-output relation~1! contains all the in-
formation necessary to transform an arbitrary function of
input-field operators into the corresponding function of t
output-field operators. In particular, it enables one to expr
arbitrary moments and correlations of the outgoing field
terms of those of the incoming field and the device exc
tions, and hence all knowable information about the quan
state of the outgoing field can be obtained. Commonly, qu
tum states are expressed in terms of density matrice
phase-space functions—representations that are more s
to study a quantum state as a whole.

In order to calculate the density operator of the outgo
field for both absorbing and amplifying devices, we follo

FIG. 1. Quasi-one-dimensional geometry of the device w
definition of field input and output operators.
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the line given in@16# for absorbing devices. We first defin
the four-vector operators

â~v!5S â~v!

d̂~v!
D , b̂~v!5S b̂~v!

f̂~v!
D , ~3!

where f̂(v)5ĥ(v) for an absorbing device, andf̂(v)
5ĥ†(v) for an amplifying device, withĥ(v) being some
auxiliary bosonic~two-vector! operator. The input-output re
lation ~1! can then be extended to the four-dimensional tra
formation

b̂~v!5L~v!â~v! ~4!

with

L~v!JL1~v!5J, J5S I 0

0 sI D . ~5!

Hence, L(v)PSU(4) for absorbing devices@16#, and
L(v)PSU(2,2) for amplifying devices~if an overall phase
factor is included in the input operators!. Note, that lossless
devices, whereA(v)[0, can be described by SU~2! group
transformations@17,18#. Since the group SU~4! is compact,
while SU~2,2! is noncompact, qualitatively different prope
ties of the state transformations are expected to occu
these two cases. Introducing the~commuting! positive Her-
mitian matrices

C~v!5AT~v!T1~v!, S~v!5AA~v!A1~v!, ~6!

which, by Eq.~2!, obey the relationC2(v)1sS2(v)5I , it is
not difficult to generalize the matrixL(v) in @16# to

L~v!5S T~v! A~v!

2sS~v!C21~v!T~v! C~v!S21~v!A~v!
D .

~7!

Both the SU~4! and SU~2,2! group elements can be writ
ten in exponential form

L~v!5e2 i F(v), F1~v!5JF~v!J, ~8!

and a unitary operator transformation

b̂~v!5Û†â~v!Û ~9!

can be constructed, where

Û5expH 2 i E
0

`

dv@â†~v!#TJF~v!â~v!J . ~10!

Note that the unitarity ofÛ follows directly from Eq.~8!.
Let the density operator of the input quantum state b

functional ofâ(v) andâ†(v), %̂ in5%̂ in@â(v),â†(v)#. The
density operator of the quantum state of the outgoing fie
can then be given by
3-2
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ENTANGLEMENT TRANSFORMATION AT ABSORBING . . . PHYSICAL REVIEW A62 043803
%̂out
(F)5Tr(D)$Û%̂ inÛ

†%

5Tr(D)$%̂ in@JL1~v!Jâ~v!,JLT~v!Jâ†~v!#%,

~11!

where Tr(D) means trace with respect to the device variab
It should be pointed out that%̂out

(F) in Eq. ~11! does not depend
on the auxiliary variables introduced in Eq.~4!. The SU~4!-
group transformation preserves operator ordering and
for absorbing devices, thes-parametrized phase-space fun
tions transform as

Pout@a~v!;s#5Pin@L1~v!a~v!;s#. ~12!

Since the SU~2,2!-group transformation mixes creation an
annihilation operators, an equation of the type~12! is not
valid for amplifying devices in general. An exception is th
Wigner function that corresponds to symmetrical order
(s50):

Wout@a~v!#5Win@JL1~v!Ja~v!#. ~13!

For amplifying devices, the calculation of the output state
rather involved in general. Formulas for Fock-state trans
mation are given in the Appendix.

III. APPLICATIONS

As already mentioned, the input-output relation~1! en-
ables one to calculate arbitrary moments and correlation
the outgoing field. It is worth noting that there is no need
introduce fictitious beam splitters for modeling the loss
The transmittance and absorption matrices in Eq.~1! auto-
matically take account of the losses, because they are ca
lated from Maxwell’s equations with complex permittivity
To give an example, we compute in Sec. III A the visibili
of interference fringes in photon-number detection in
Mach-Zehnder interferometer with lossy beam splitters.

The input-output relation~11! can advantageously be use
when knowledge of the transformed quantum state a
whole is required. This is typically the case in quantum co
munication, which is essentially based on entangled quan
states. For quantification of entanglement—a quantu
coherence property that sensitively responds to losse
information about the full quantum state is needed in g
eral. The entanglement measure we use is the quan
relative entropy ~the quantum analog of the classic
Kullback-Leibler entropy! defined by@19#

E~ ŝ !5min
r̂PS

Tr@ŝ~ ln ŝ2 ln r̂ !#, ~14!

with ŝ andS being, respectively, the bipartite quantum sta
under study and the set of all separable quantum states
stress here that the relative entropy is indeed a ‘‘good’’
tanglement measure, because it satisfies the necessary c
tions that should be required of such a measure@19–21#.
Note that any proper entanglement measure satisfying t
would do ~the Bures metric being another typical exampl!.
04380
s.

us

g

s
r-

of

.

u-

a
-
m
-

—
-
m

e
-
ndi-

m

In Sec. III B we study the entanglement produced a
realistic beam splitter by initially uncorrelated photons, a
in Sec. III C we analyze the degradation of entanglem
during propagation through lossy media, with special emp
sis on Bell-type states. Effects associated with amplificat
are addressed in Sec. III D.

A. Visibility of interference fringes

To give an example of application of the input-outp
relations~1!, we consider the visibility of interference fringe
in a Mach-Zehnder interferometer in Fig. 2. A single phot
is fed into one input port, the other input port being unus
The quantity we are interested in is the visibility

Vk5
^n̂k&max2^n̂k&min

^n̂k&max1^n̂k&min

, ~15!

where^n̂k&max (^n̂k&min) is the maximum~minimum! value of
the mean photon number in thekth output channel (k
51,2).

In order to model the losses in the interferometer ar
~e.g., nonperfect mirrors or dissipation processes in opt
fibers connecting the beam splitters BS1 and BS2!, in @22# a
fictitious ~nonabsorbing! beam splitter is inserted into eac
branch of the interferometer. In practice, however, the be
splitters BS1 and BS2 are also expected to give rise to s
losses. Whereas the losses arising from the beam splitter
may be thought of as being included in the replacem
scheme considered in@22#, inclusion in the calculation of the
losses arising from the beam splitter BS2 would require t
two additional fictitious beam splitters were inserted betwe
the beam splitter BS2 and the detectors. Altogether, a
placement scheme with four fictitious beam splitters at le
must be considered in order to model all the losses.

Application of the input-output relations~1! shows that
there is no need for such an involved replacement sche
Instead, the proper transmittance and reflection coefficie

FIG. 2. Mach-Zehnder interferometer with dispersive and
sorbing beam splitters BS1 and BS2 and a phase shiftQ. The mir-
rors M1 and M2 as well as the branches between BS1 and BS2
assumed to be lossy with transmittanceT3 ~upper branch! and T4

~lower branch!, respectively.
3-3
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of the beam splitters and mirrors~or fibers! can be used to
obtain the correct physics, including the losses. Applying
input-output relations~1! successively to the beam splitte
BS2, the lossy branches, and the beam splitter BS1 and
suming the devices are in the vacuum state, so that the o
all input state isuc in&5u1,0,0,0&, it is not difficult to show
that

^n̂1&5uR1u2uT3u2uR2u21uT1u2uT4u2uT2u2

12uR1uuR2uuT1uuT2uuT3uuT4ucosQ1 , ~16!

^n̂2&5uR1u2uT3u2uT2u21uR2u2uT4u2uT1u2

12uR1uuR2uuT1uuT2uuT3uuT4ucosQ2 , ~17!

where Q15Q1wR1
2wT1

1wR2
2wT2

1wT3
2wT4

and Q2

5Q1wR1
2wT1

2wR2
1wT2

1wT3
2wT4

. Here and in the fol-

lowing, the notation (Tl)115(Tl)22[Rl5uRl ueiwRl and
(Tl)125(Tl)21[Tl5uTl ueiwTl for the elements of the trans
mittance matrixTl of the l th four-port device is used@ l
51,2, beam splitters BS1 and BS2;l 53,4, upper~3! and
lower ~4! branch of the interferometer#. Note that for a lossy
device

argRl2argTlÞp/2 ~18!

in general. Combining Eqs.~15!–~17!, we easily derive

V152S uR1uuT3uuR2u
uT1uuT4uuT2u

1
uT1uuT4uuT2u
uR1uuT3uuR2u D

21

, ~19!

V252S uR1uuT3uuT2u
uR2uuT1uuT4u

1
uR2uuT1uuT4u
uR1uuT3uuT2u D

21

. ~20!

It is worth noting that Eqs.~19! and ~20! are valid for the
really observed reflection and transmission coefficientsRk
andTk , respectively, with

uRku21uTku2<1. ~21!

The equality sign would be realized for nonabsorbing
vices.

Comparing with the formulas for the visibilities derived
@22#, we observe that they look like Eqs.~19! and~20!. How-
ever, this resemblance is only formal. In fact, all the refle
tion and transmission coefficients~including the phases! in-
troduced in@22# satisfy the relations valid for nonabsorbin
devices and therefore differ from the measured reflection
transmission coefficients that in a real experiment determ
the fringe visibilities. Even if additional fictitious beam spli
ters were included in the model in@22#, there would be no
unique relation between auxiliary and actual parameter
general.

B. Photon entanglement at a beam splitter

Superimposing two nonclassically excited modes by
lossless beam splitter, one can generate entangled states
interesting properties@17#. Two of the simplest examples ar
as follows. Having a single-photon Fock state in one in
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channel of a 50%-50% beam splitter, i.e.,uTu25uRu251/2,
whereas the other input channel is unused, the output sta
a superposition of states with the photon in one of the out
channels. If each of the two incoming modes is prepared
single-photon Fock state, then the output state is a supe
sition of states with two photons in one output channel.
either case, the output state is a superposition of two st
and the maximum entanglement of ln 2~which corresponds
to 1 bit! is realized. Note that for pure states the entang
ment measure~14! reduces to the von Neumann entropy
one subsystem. WhenuTu2ÞuRu2 then the output state in th
latter case is a superposition of three states, because
outgoing mode can now contain either zero, one, or t
photons. The maximum entanglement of a three-state sys
is ln 3, which is realized ifuTu251/23(161/A3) ~see Fig.
3!. Hence, a non-50%-50% beam splitter can produce st
ger entanglement than a 50%-50% beam splitter which s
presses one possible outcome owing to interference. W
regard to entanglement, this interference effect is thus
structive.

Let us now raise the question of the amount of entang
ment achievable in case of a realistic beam splitter—a qu
tion that may be important for the quality of quantum com
munication by means of entangled photonic states obta
by available devices. The question can be answered by
plying the input-output relation~11! and calculating the out-
put state of the interfering modes obtained by an absorb
beam splitter. To give an example, let us study the entan
ment produced by a dielectric plate of permittivity

e~v!511
es21

12~v/v0!222igv/v0
2

~22!

(es51.5) and thicknessd52c/v0 for the case where eithe
one or each of the two incoming modes is prepared in
single-photon Fock state. The squares of the absolute va
of the calculated reflection, transmission, and absorption
efficients as functions of frequency@8# are shown in Fig. 4
for g50.001. When the device is not excited, then the ov

FIG. 3. Entanglement created at a lossless beam splitter
both input modes excited in an one-photon Fock state. The
tanglement is shown in exponential scaling vs transmittance. M
mal entanglement ln 3 is created at a 20%-80% beam spl
whereas for a symmetric device it drops to ln 2 due to destruc
interference.
3-4
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ENTANGLEMENT TRANSFORMATION AT ABSORBING . . . PHYSICAL REVIEW A62 043803
all input state is eitheru1,0,0,0& or u1,1,0,0& for the two cases
under consideration. The resulting mixed states of the ou
ing modes are calculated in@16#. Here, we have calculate
the amount of entanglement of the states using the defin
~14!.

Results are plotted in Figs. 5 and 6 forg50.001, and in
Fig. 7 forg50.01. For comparison, the figures also show
mutual informationI c5S11S22S12, whereS1 and S2 are
the von Neumann entropies of the outgoing modes 1 an
respectively, andS12 is the entropy of the composite two
mode system. Obviously, the mutual information may be
garded as a measure of the total amount of correlation c
tained in the states. In regions where the absorption
sufficiently weak, the output state is almost pure, and t
S12'0 andE(ŝ)'Si . Hence, the two curves in Figs. 5 an
6 differ there only by a factor approximately equal to tw
With increasing absorption the two curves cannot be rela
to each other by simple scaling, as it can be seen from Fig
In particular, the maximally achievable amount of entang
ment of about 0.4 is much less than ln 2 achievable wit
lossless device.

From Figs. 5 and 6 strong reduction of entanglemen
observed in the resonance region. Here reflection and abs
tion are strongest, so that the two modes are only wea
mixed and absorption prevents the device from crea

FIG. 4. The reflection coefficientuRu2 ~full line!, the transmis-
sion coefficientuTu2 ~dashed line!, and the absorption coefficien
(12uRu22uTu2) ~dotted line! of a dielectric plate are shown a
functions of frequencyv for es51.5 andg/v050.001 in Eq.~22!,
and the plate thickness 2c/v0.

FIG. 5. Frequency dependence of the entanglement mea

E(ŝ) ~dashed line! and the total correlationI c ~solid line! for a state
u1,0,0,0& impinging on a beam splitter withg/v050.001 in Eq.
~22! and the other parameters given in the text.
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quantum coherence. As expected, substantial entangleme
observed in regions where the absorption is weak anduTu2
and uRu2 nearly satisfy the condition of maximum entangl
ment. In Fig. 5 this is the case forv/v0'1.25 where the
value of entanglement becomes close to the maxim
achievable value of ln 2. In Fig. 6 the value of entanglem
becomes close to the maximally achievable value of ln 3
v/v0'1.18 andv/v0'1.33. The relative minimum in Fig
6 at v/v0'1.25 indicates the effect of destructive interfe
ence mentioned above.

The results show that entanglement sensitively depe
on the optical properties of the material used for manuf
turing the optical device. They demonstrate the importa
of optimizing the frequency regime of quantum communic
tion schemes with given devices.

C. Entangled-state transmission through a lossy channel

1. Bell-type basis stateszCn
Á
‹

Let us now turn to the question of entanglement degra
tion during the propagation through dielectric matter such
an optical fiber. For this purpose, we consider two mod
each of which propagates through a dielectric medium
complex permittivity. Assuming the incoming modes a
prepared in a maximally entangled Bell-type state

FIG. 6. Frequency dependence of the entanglement mea

E(ŝ) ~dashed line! and the total correlationI c ~solid line! for a state
u1,1,0,0& impinging on a beam splitter withg/v050.001 in Eq.
~22! and the other parameters given in the text.

FIG. 7. Frequency dependence of the entanglement mea

E(ŝ) ~dashed line! and the total correlationI c ~solid line! for a state
u1,0,0,0& impinging on a beam splitter withg/v050.01 in Eq.~22!
and the other parameters given in the text.

re
3-5
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uCn
6&5

1

A2
~ u0n&6un0&), ~23!

we apply Eq.~11! and calculate the quantum state of the tw
outgoing modes. After some algebra we derive

%̂out
(F)5

1

2 F (
k50

n21 S n
kD uT1u2k~12uT1u2!n2kuk0&^k0u

1 (
k50

n21 S n
kD uT2u2k~12uT2u2!n2ku0k&^0kuG

1 1
2 ~ uT1u2n1uT2u2n!uCn8

6&^Cn8
6u, ~24!

where

uCn8
6&5~ uT1u2n1uT2u2n!21/2~T1

nun0&6T2
nu0n&). ~25!

Note that when settingn51, the transformation of the ordi
nary Bell basis statesuC6&[uC1

6& are obtained. In wha
follows we assume that the transmission coefficientsTk (k
51,2) are given by

Tk5Tk~v!5eink(v)v l k /c, ~26!

with nk(v)5Aek(v)5hk(v)1 ikk(v) and l k being the
complex refractive indexes of the media and the propaga
lengths, respectively. According to the Lambert-Beer la
uTku decreases exponentially with the length of propagati
uTku5exp(2lk /Lk), Lk5c/(vkk). In special cases when on
mode propagates through vacuum,n(v)51, the correspond-
ing transmission coefficient, by Eq.~26!, is just a phase fac
tor.

For a first insight into the behavior of the transmitt
quantum state it may be instructive to look at the overlap
the output state with the input state, which is

^Cn
6u%̂out

(F)uCn
6&5 1

4 ~ uT1u2n1uT2u2n1T1*
nT2

n1T1
nT2*

n!.
~27!

We see that the characteristic length of degradation of
overlap~fidelity! is not given byLk but by the shorter length
Lk /(2n). Hence, the overlap rapidly approaches zero w
increasing number of photons even for weak damping of
intensity or related~classical! quantities.

As already mentioned, a proper measure of entanglem
is the quantum relative entropy defined by Eq.~14!. In order
to estimate an upper bound, we employ the convexity pr
erty @23#

E@lŝ11~12l!ŝ2#<lE~ ŝ1!1~12l!E~ ŝ2!. ~28!

From Eq.~24! it is seen that%̂out
(F) has the form

%̂out
(F)5lŝ11~12l!ŝ2 , ~29!

whereŝ1 is a separable state@E(ŝ1)50# and

ŝ25uCn8
6&^Cn8

6u ~30!
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is a pure state, the entanglement of which is simply given
the entropy of one of the two modes. We thus find

E~ %̂out
(F)!<B, ~31!

B5
1

2
@~ uT1u2n1uT2u2n!ln~ uT1u2n1uT2u2n!

2uT1u2n lnuT1u2n2uT2u2n lnuT2u2n#. ~32!

In particular whenT15T25T, then

E~ %̂out
(F)!<uTu2n ln 25e22nl/L ln 2, ~33!

i.e., the characteristic length of entanglement degradation
creases as 1/(2n) at least. The result~33! reveals that with an
increasing number of photons the quantum interference
evant for entanglement exponentially decreases at least. S
a behavior is typical of quantum decoherence phenom
and is not restricted to Fock states.

It should be mentioned that for a pair of spin-1
2 parties a

decomposition of the density matrix into a separable part
a single pure state is always possible@24#. Moreover, there
exists a unique maximall such that the inequality~28! re-
duces to an equality and thus (12l)E(ŝ2) becomes a mea
sure of entanglement. However, for larger dimensions of
Hilbert space we are left with the general inequality~28!.

Examples of entanglement degradation@calculated on the
basis of Eq.~14!# for singlet states with one photon,uC1

6&,
and two photons,uC2

6&, are shown in Fig. 8 for the cas
where the two modes propagate in equal media over e
distances. We observe that for the stateuC2

6& the upper
bound e24l /Lln 2 defined by the inequality~33! is a very
good approximation to the entanglement at propaga
length l. In contrast, for the stateuC1

6& the actual values of
entanglement are typically smaller than it might be expec
from the upper bounde22l /L ln 2. Since forn.2 the upper
bounde22nl/L ln 2 is always smaller than the entangleme
observed for the stateuC2

6& ~at least for 0, l<L), we leave
with the result that the two-photon singlet stateuC2

6& is the
most robust one within the class of statesuCn

6&.

FIG. 8. Entanglement degradation of a singlet stateuCn
2&^Cn

2u
@Eq. ~23!# with one photon (n51, full curve! and two photons (n
52, dashed curve! after transmission through absorbing chann
of equal transmittance.
3-6
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2. Bell-type basis stateszFn
Á
‹

The Bell-type states

uFn
6&5

1

A2
~ u00&6unn&) ~34!

can be obtained from the somewhat more general clas
states

uFn
q&5

1

A11uqu2
~ u00&1qunn&) ~35!

for q561. Obviously, forn51 and small values ofq the
stateuFn

q& approximates a two-mode squeezed vacuum

exp@z~ â1â22â1
†â2

†!#u00&5A12uqu2(
m

qmumm& ~36!

(q5tanhz, z real! used in quantum teleportation with con
tinuous variables@25#. It is not difficult to prove that the
entanglement ofuFn

q& is

E~ uFn
q&^Fn

qu!5 ln~11uqu2!2
uqu2

11uqu2
lnuqu2, ~37!

which for uqu51 attains the maximum value of ln 2.
Let us again consider two modes propagating through

electric matter and assume that the incoming modes are
prepared in a stateuFn

q&. We again apply Eq.~11! and cal-
culate the quantum state of two modes. The result reads

%̂out
(F)5

uqu2

11uqu2
F (

k1 ,k250

n S n
k1

D S n
k2

D uT1u2k1uT2u2k2

3(12uT1u2)n2k1(12uT2u2)n2k2uk1k2&^k1k2u

2uT1u2nuT2u2nunn&^nnuG1
1

11uqu2

3[ u00&1qT1
nT2

nunn&][ ^00u1~qT1
nT2

n!* ^nnu].

~38!

Again, from the convexity argument, Eq.~28!, an upper
bound of the entanglement can be derived

B5
1

11uqu2
@~11uq8u2!ln~11uq8u2!2uq8u2 lnuq8u2#

~39!

(q85qT1
nT2

n). In particular, for small values ofq8 we find by
expansion that

E~ %̂out
(F)!&

uq8u2

11uqu2
~12 lnuq8u2!1O~ uq8u4!, ~40!

which shows that the entanglement decreases asuq8u2
5uqu2uT1u2nuT2u2n.
04380
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It is also instructive to compare the entanglement deg
dation of the statesuFn

6& with that of the statesuCn
6&. Simi-

lar to the statesuCn
6&, within the class of statesuFn

6& the
stateuF2

6& is most robust against entanglement degradat
Obviously, the probability of findingn photons in one chan
nel decreases asuTi un for the statesuCn

6& but decreases a
uT1T2un for the statesuFn

6&. The entanglement degradatio
of the statesuCn

6& is therefore expected to be less than th
of the statesuFn

6&. From Eqs.~32! and ~39! it follows that
(uT1u5uT2u5uTu!1)

B~ uF6&)

B~ uC6&)
'

uTu2n~12 lnuTu4n!

2 ln 2
. ~41!

The numerical results~see Fig. 9! indeed show that the state
uCn

6& are more robust against entanglement degradation
the statesuFn

6&.

3. Medium with EIT characteristics

Media having electromagnetically induced transparen
dispersion characteristics have been of increasing inte
@26,27#. They may offer the possibility of realizing optica
quantum gates, because the group velocity reduction is
tremely large such that there will be plenty of time to m
nipulate a quantum state intermediately stored in the med
@28#. The susceptibility of such a medium can be given b

x~d!5
Ng1~ ig02d!

V21g'g02d~D2d!1 i @d~g'1g0!1Dg0#
,

~42!

with V being the Rabi frequency of the driving field,g' the
transverse relaxation rate of the probe transition,D the one-
photon detuning,g1 the radiation relaxation rate of the prob
transition,g0 the decay rate of the ground-state coheren
andd the two-photon detuning~for details, see@27,28#!.

We have calculated the degradation of entanglement
the case where two modes that are initially prepared i
Bell-type stateuCn

6&, Eq. ~23!, can propagate through med
of that type. Figure 10 shows results obtained for ordin
Bell statesuC6&. In the figure, the two-photon detuning
varied in a small frequency region around some optical f

FIG. 9. Comparison of entanglement degradation of one-pho
Bell basis statesuF6& ~full curve! and uC6& ~dashed curve!.
3-7
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quencyv0. The two-peak structure of the absorption coe
cient @imaginary part of the square root of the susceptibil
~42!# essentially determines the amount of entanglement
can be transmitted. It is seen that the initial entanglemen
ln 2 is ~approximately! preserved for zero two-photon detu
ing, and the degradation of entanglement is almost abrup
nonzero two-photon detuning. Hence, control of entang
ment requires fine tuning.

D. Entanglement transformation at amplifying devices

From Sec. II we know that quantum-state transformat
at amplifying four-port devices is connected with SU~2,2!
group transformations. For each frequency, the transfor
tion corresponds to the action of a four-mode squeezing
erator, where the destruction~creation! operators of the field
modes are mixed with the creation~destruction! operators of
the device excitations. Tracing with regard to the dev
variables then yields the~two-mode! output state of the field
as is shown in the Appendix for the case where the~two-
mode! input state of the field is a Fock state and the devic
in the ground state.

If the input field is prepared in an entangled state, am
fication is expected to destroy the entanglement. Although
necessary formulas are available, the calculation of the qu
tum relative entropy is an effort. The number of the~real!
parameters specifying an arbitrary separable density ma
increases dramatically with the dimension of the Hilb
space of the subsystems involved. In fact, it is easy to
that this number is@4N4(N21)1N421#, with N being the
Hilbert-space dimension of the subsystems~here, both sub-
systems are assumed to have equal dimensions!. Hence,
when there is notable amplification, then the number of F
states to be taken into account for sufficient numerical ac
racy drastically increases. In contrast to absorbing me
where the dimension of the Hilbert space of the relev
modes is bounded by the total number of input photons, s
a bound does not exist for amplifying media.

Nevertheless, for entangled Gaussian states an u
bound of the gain can be determined such that the ampl
system is still not separable. Let us consider, e.g., the t
mode squeezed vacuum~36! and assume that the two mod

FIG. 10. Entanglement degradation of a singlet stateuC2&^C2u
@Eq. ~23! with n51# after transmission of one subsystem~dashed
curve! or both subsystems~full curve! through a medium with sus
ceptibility ~42!.
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travel through amplifying devices at zero temperature. T
Wigner function of the two-mode squeezed vacuum is
Gaussian

W~j!5~4p2AdetV!21 exp$2 1
2 jTV21j%. ~43!

Here,j is a four-vector whose elements areq1 , p1 , q2, and
p2, andV is the 434 variance matrix

V5S X Z

ZT YD . ~44!

The variance matrix~44! can be written in the form

V5S c/2 0 2s/2 0

0 c/2 0 s/2

2s/2 0 c/2 0

0 s/2 0 c/2

D ~45!

@c5cosh 2z,s5sinh 2z#. Using the input-output relations~1!
for amplifying devices, we can easily transform the inpu
state variance matrix~45! to obtain the output-state varianc
matrix

V5S x 0 Z11 Z12

0 x Z21 Z22

Z11 Z21 y 0

Z12 Z22 0 y

D , ~46!

where

x5 1
2 cuT1u21 1

2 uR1u21 1
2 ~ uT1u21uR1u221!, ~47!

y5 1
2 cuT2u21 1

2 uR2u21 1
2 ~ uT2u21uR2u221!, ~48!

Z1152Z2252 1
2 s Re~T1T2!, ~49!

Z125Z2152 1
2 s Im~T1T2!. ~50!

Let us consider equal devices, so thatT15T25T and R1
5R25R. The Peres–Horodecki criterion@29#

detX detY1~ 1
4 2udetZu!22Tr~XJZJYJZ TJ!

> 1
4 ~detX1detY!, J5S 0 1

21 0D ~51!

then tells us that for

uTu25
2~12uRu2!

11e22uzu
~52!

the boundary between separability and nonseparability
reached. In particular, for zero reflection (R50), Eq. ~52!
reveals that the upper limit of the gaing5uTu221>0 for
which nonseparability changes to separability is sim
given by the squeezing parameteruqu,

g5uqu5tanhuzu. ~53!
3-8
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An obvious consequence of Eq.~53! is that entanglemen
cannot be produced from the vacuum by amplification. Si
for the vacuum the squeezing parameter has to be set e
to zero,q50, from Eq.~53! it follows that any nonvanishing
gain g must necessarily lead to a separable state.

IV. SUMMARY AND CONCLUSIONS

We have studied the problem of quantum-state trans
mation at absorbing and amplifying dielectric four-port d
vices, without making use of any replacement schemes.
instead express the input-output relations in terms of the
tually observed quantities as obtained from the quanti
Maxwell field in the presence of arbitrary causal~linear! me-
dia. After extending the basic formulas recently develop
for absorbing media to amplifying media, we have appl
the theory to some problems typically considered in quan
information processing.

In particular, we have considered both the amount of
tanglement that is realized when nonclassical light is co
bined through a lossy beam splitter and the entanglem
degradation when entangled light propagates through lo
media. We have based our analysis on the quantum rela
entropy as a measure of entanglement. The calculation o
entanglement of a mixed quantum state typically obser
for absorbing media needs comparing the state with all se
rable states in order to find that separable state whic
closest to the state under consideration. Since the effort d
tically increases with the dimension of the Hilbert space,
have restricted our attention to low-dimensional quant
states in the numerical calculation.

The numerical results show that the Bell-type sta
uCn

6&, Eq.~23!, are more robust against decoherence than
statesuFn

6&, Eq. ~34! (n51,2). The estimation of an uppe
bound of entanglement for arbitrary numbern of photons in
each of the two entangled modes shows that with increa
n the characteristic length of entanglement degradation
creases asL/n at least, whereL is the absorption length
according to the Lambert-Beer law.

So far we have considered either purely absorbing
purely amplifying media. In practice, the two effects c
occur simultaneously. Essentially, there are two ways to d
with this problem. One way is to treat amplifiers with a
sorption as cascading amplifying and absorbing devices.
other way is to go back to the underlying quantized Maxw
equations with the aim to develop a more specific appro
to the problem.
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APPENDIX: DENSITY MATRIX FOR GAUSSIAN
WIGNER FUNCTION

As mentioned in Sec. II B in the case of amplifying med
only symmetric operator ordering is preserved, and hence
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Wigner function~13! is suited to the state description. Fo
the sake of transparency we will restrict our attention to
single-frequency component@i.e., a ~quasi-!monochromatic
field in a sufficiently small frequency intervalDv @16#!. The
extension to a multi frequency field is straightforward. Wh
the input field is prepared in a Fock stateup,q& and the
device in the ground stateu0,0&, so that the overall input stat
is up,q,0,0&, then the input Wigner function reads as

Win~a,a* !5S 2

p D 4

~21!p1qe22(ug1u21ug2u2)

3Lp~4ua1u2!Lq~4ua2u2!e22(ua1u21ua2u2)

~A1!

with Ln(x) being the Laguerre polynomial

Ln~x!5 (
m50

n

~21!mS n
n2mD xm

m!
. ~A2!

We now apply Eq.~13!, making the substitutions accordin

a→T1a2T1C21Sg* , ~A3!

a* →TTa* 2TT@CT#21STg, ~A4!

g→2ATa* 1AT@ST#21CTg, ~A5!

g* →2A1a1A1S21Cg* . ~A6!

Finally, we integrate over the device variablesgi to obtain
the Wigner function of the outgoing field. Introducing th
matrix Kii 85d i i 8ki and employing the formula

4uau2e22uau25
]

]k
e22uau214kuau2uk50 , ~A7!

we derive

Wout
(F)~a,a* !

5S 2

p D 2

(
h50

p

(
l 50

q
~21!h1p

h! S p
hD ~21! l 1q

l ! S q
l D ]h

]k1
h

] l

]k2
l

3
exp$22~a* !T@N2BT~DT!21B* #a%

detD U
k15k250

,

~A8!

where the abbreviations

N52TT12I22TKT 1, ~A9!

B52STCT22S* C* 21TKT T, ~A10!

D52T* TT2I22S* C* 21T* KT TCT21ST ~A11!

have been used.
In order to calculate from the Wigner function the dens

operator, we make use of the relation@30#
3-9
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%̂out
(F)5p2E d2aWout

(F)~a,a* !d̂~a2â!, ~A12!

where

d̂~a2â!5
1

p4E d2b D̂~b!eaTb* 2bTa* , ~A13!

with D̂(b) being the two-mode coherent displacement ope
tor. For notational convenience we introduce the abbre
tion notation

D$•••%5 (
h50

p

(
l 50

q F ~21!h1p

h! S p
hD ~21! l 1q

l ! S q
l D

3
]h

]k1
h

] l

]k2
l $•••%GU

k15k250

. ~A14!

Substitution of Eq.~A8! into Eq. ~A12! yields

%̂out
(F)5DH 4

p4 detD
E @d2ad2 bD̂~b!

3exp~22a1Ma1aTb* 2bTa* !#J , ~A15!

whereM[N2BT(DT)21B* .
Using the Fock-state representation of the~single-mode!

coherent displacement operator@30#,

^muD̂~b!un&5An!

m!
bm2ne2ubu2/2Ln

(m2n)~ ubu2! ~A16!

@Ln
m(x), associated Laguerre polynomial#, we can calculate

the density matrix in the Fock basis. Performing thea inte-
grals in Eq.~A15!, we derive

^m1m2u%̂out
(F)un1n2&

5DH 1

p2 detDM
A n1!n2!

m1!m2! E r 1 dr1 r 2 dr2 dw1 dw2

3~r 1!m12n1~r 2!m22n2 expF2
1

2
r 1

2S 11
M22

detM D
2

1

2
r 2

2S 11
M11

detM D1
uM12u
detM

r 1r 2 cos~Q1w22w1!G
3eiw1(m12n1)1 iw2(m22n2)Ln1

(m12n1)
~r 1

2!Ln2

(m22n2)
~r 2

2!J ,

~A17!

where we have used the notationbi5r ie
iw i, and M12

5uM12ueiQ. Recalling the definition of the modified Bess
functions, we perform the angular integrals to obtain
04380
-
-

^m1,m2u%̂out
(F)un1n2&

5DH 1

detDM
A n1!n2!

m1!m2! 2e2 iQ(m22n2)dm12n11m22n2,0

3E
0

`

dx1 dx2 expF2
1

2
x1S 11

M22

detM D
2

1

2
x2S 11

M11

detM D G I m22n2S uM12u
detM

Ax1x2D
3x1

(m12n1)/2x2
(m22n2)/2Ln1

(m12n1)
~x1!Ln2

(m22n2)
~x2!J

~A18!

(xi5r i
2). The x2 integral is performed by means of the fo

mula ~2.19.12.6! in @31#, which gives~for m2>n2)

^m1,m2u%̂out
(F)un1,n2&

5DH 2

detD
A n1!n2!

m1!m2!
~M12* !m22n2

3dm12n11m22n2,0

~M112detM !n2

~M111detM !m211

3E
0

`

dx1 expF2
1

2
x1S 11

11M22

M111detM D G
3Ln1

(m12n1)
~x1!Ln2

(m22n2)S uM12u2

M11
2 2~detM !2

x1D J .

~A19!

Finally, thex1 integral is performed by expanding the ass
ciated Laguerre polynomials into power series@32#. The re-
sult is

^m1,m2u%̂out
(F)un1,n2&5DH 2

detD
A n1!n2!

m1!m2!

3dm12n11m22n2,0

~M112detM !n2

~M111detM !m211

3~M12* !m22n2S m1

n1
D (

k50

n2 ck

ak11 S m2

n22kD
3 2F1S k11,2n1 ,m12n111;

1

aD J ,

~A20!

where

a5
11M111M221detM

2~M111detM !
, ~A21!
3-10
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c5
uM12u2

~detM !22M11
2

. ~A22!

Integrating Eq.~A8! over the phase space of one mode
the outgoing field yields the Wigner function of the quantu
state of the other mode,

Wout
(F)~ai ,ai* !5

2

p (
h50

p

(
l 50

q
~21!h1p

h! S p
hD ~21! l 1q

l ! S q
l D

3
]h

]k1
h

] l

]k2
l

detE

Eii detD
e22uai u

2/EiiU
k15k250

~A23!
ys

s

. A

r-

.

04380
f

(E5M21). This Wigner function is equivalent to the densi
matrix in the Fock basis

%̂out i
(F) 5 (

n50

` F (
h50

p

(
l 50

q
~21!h1 l 1p1q

h! l ! S p
hD S q

l D
3

]h1 l

]k1
h ]k2

l

detE

detD

2

Eii 11 S Eii 21

Eii 11D nG
k15k250

un&^nu.

~A24!
.

v.

e

.
y,

tt.
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