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Atom loss and the formation of a molecular Bose-Einstein condensate by Feshbach resonance
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In experiments conducted recently at MIT on Na Bose-Einstein condensates@S. Inouyeet al., Nature~Lon-
don! 392, 151~1998!; J. Stengeret al., Phys. Rev. Lett.82, 2422~1999!#, large loss rates were observed when
a time-varying magnetic field was used to tune a molecular Feshbach resonance state near the state of a pair of
atoms in the condensate. A collisional deactivation mechanism affecting a temporarily formed molecular
condensate@see V. A. Yurovsky, A. Ben-Reuven, P. S. Julienne and C. J. Williams, Phys. Rev. A60, R765
~1999!#, studied here in more detail, accounts for the results of the slow-sweep experiments. A best fit to the
MIT data yields a rate coefficient for deactivating atom-molecule collisions of 1.6310210 cm3/s. In the case
of the fast-sweep experiment, a study is carried out of the combined effect of two competing mechanisms, the
three-atom~atom-molecule! or four-atom ~molecule-molecule! collisional deactivation versus a process of
two-atom trap-state excitation by curve crossing@F. H. Mies, P. S. Julienne, and E. Tiesinga, Phys. Rev. A61,
022721~2000!#. It is shown that both mechanisms contribute to the loss comparably and nonadditively.

PACS number~s!: 03.75.Fi, 32.80.Pj, 32.60.1i, 34.50.Ez
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I. INTRODUCTION

Most properties of a Bose-Einstein condensate~BEC! are
determined by interatomic interactions~see Refs.@1,2#!.
These interactions are responsible for the characteristic
linear term in the equations of motion of the condensa
whose magnitude depends on the collisional elas
scattering length. Recent experiments@3,4# on optically
trapped BECs drew attention to the effects of Feshbach r
nances on the properties of the condensate, as scatt
lengths are strongly modified by the presence of a resona
More particularly, these experiments sought to modify th
effects by application of a magnetic field~see Refs.@5,6#!.
One of the rather astonishing results observed was a dram
loss of condensate population as the magnetic field was
ied so that the ensuing Zeeman shift made the system
through a resonance, or approach it closely.

A Feshbach resonance may exist when the energy
pair of atoms in the condensate is close to that of a m
stable molecular state Na2(m). Then, the scattering lengt
varies strongly as a function of the energy mismatch betw
the two states. This mismatch can be controlled by apply
a varying magnetic field. The energies of the two states
be brought closer to each other, as the two states have
ferent Zeeman shifts. The MIT experiment@3,4# strived to
study the effect of the Zeeman shift by applying a tim
varying magnetic field in two distinct procedures:~a! a fast
sweep through the resonance, using a fast ramp speed o
magnetic field, and~b! a slow sweep, using much lowe
speeds, in which the ramp is stopped short of crossing
resonance. The latter procedure is then repeated by u
different values of the stopping value of the magnetic fie
and is carried out on both sides of the resonance. Both ty
of experiment resulted in a large condensate population l

This work is devoted to the study of possible mechanis
leading to this loss. Preliminary results were presented
1050-2947/2000/62~4!/043605~12!/$15.00 62 0436
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Refs. @7,8#, suggesting the mechanism of collisional deac
vation. Another mechanism, involving trap excitation by
two-step curve-crossing process, was suggested in R
@9,10#. We study below in more detail the combined effect
both mechanisms. As the MIT experiments@3,4# were con-
ducted with Na atoms, we shall refer here for definitenes
Na only, though this study may be extended to similar s
tems.

Given a stationary Zeeman shift, a population of m
ecules can be formed as a temporary stage in the ela
process

Na~BEC!1Na~BEC!→Na2~m!→Na~BEC!1Na~BEC!.
~1!

However, in the absence of other intervening interactions
of a time-varying field, this molecular population cannot pe
sist, and no loss would occur.

The first loss mechanism considered here involves the
activation of the resonance state, which is usually a hig
excited vibrational level in a given spin state of the pair,
an exoergic collision with a third atom of the condensa
@6,8,9#,

Na2~m!1Na~BEC!→Na2~d!1Na~hot!, ~2!

bringing the molecule down to a stable stated, and releasing
kinetic energy to the relative motion of the reaction produc
Here ‘‘hot’’ denotes a noncondensate atom. Although
collision occurs with a vanishingly small kinetic energ
rates of such inelastic processes remain finite at near-
energies@11#. This process naturally depends on the init
density in the condensate. A variant of this process, invo
ing deactivation by collisions with another molecule~rather
than an atom!, of the type

Na2~m!1Na2~m!→Na2~d!1Na2~u!. ~3!
©2000 The American Physical Society05-1
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would require a significant molecular density. The two m
ecules emerge in two statesd andu, whereu can be a stable
molecular state aboved, or a continuum state of a dissocia
ing molecule. The reaction can take place as long as
corresponding internal energies obey the inequalityEd1Eu
<0, where the internal energy ofm serves as the zero refe
ence point on the energy scale. A particularly effective re
tion of type ~3! would occur in the near-resonant case,
which 0,Eu,uEdu. A typical example, common in VV re
laxation, is that ofv1v→(v11)1(v21) ~wherev is the
vibrational quantum number of the statem). In this example,
the kinetic energy is provided by the vibrational anharmon
ity.

Both reactions~2! and ~3! are thus exoergic, providing
products with sufficient kinetic energy to escape the trap
the characteristic transition energies exceed the trap de
The kinetic energy may even be sufficient to produce
additional loss mechanism—secondary collisions of the
action products with condensate atoms~see Ref.@8#!. The
loss mechanism described here can be enhanced by brin
close to each other the energies of the two states involve
reaction~1!—the BEC state of an atom pair and the reson
molecular statem—by the application of a time-varying Zee
man shift. It is not necessary that the energies of these s
should cross. An actual crossing of the two states can ca
an irreversible transfer of population from the condensate
the molecular states~see Refs.@8–10#!. This crossing is also
necessary, as the first step, in the other mechanism refe
to earlier—that of excitation of the trap states by a two-s
crossing. The first crossing between the condensate and
lecular states can occur in two directions, either by letting
molecular state move upward in its energy, with respec
the condensate atom-pair state, or by letting it move do
ward. In both cases the loss of the molecules can procee
the deactivation mechanism. But only the upward mo
alone can initiate the excitation mechanism. The sec
crossing, at a higher energy, then causes transfer of pop
tion to higher atomic states—bound and continuum t
states in a condensate imbedded in an optical trap@10#, or
continuum states in a free condensate@9#. This process is
accompanied by an increase in energy

Na~BEC!1Na~BEC!→Na2~m!→Na~hot!1Na~hot!.
~4!

~To be more precise, two-step excitation can in princi
occur also in a downward move by the so-called ‘‘count
intuitive’’ process in which the second crossing precedes
first one along the time axis in aZ-shaped formation@12#.
However, this effect is negligibly small in the present cas!

It should be made clear that both crossing directions h
been taken into account in Ref.@10#. However, that work
does not specify what happens to the molecular populatio
the downward move. In principle, once the Zeeman s
undergoes the first crossing, the formation of a molecu
population in the resonant state can be considered as a
loss channel, no matter whether there are deactivating c
sions or not. In that case, the loss rate should be indepen
of the deactivation rate. Our analysis here shows that th
04360
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generally not the case. In the case of the fast-sweep exp
ment, the loss would become independent of the deactiva
rate only under certain conditions~referred to in Sec. II C 2
below as the ‘‘asymptotic’’ conditions!.

It is now understood@8,9# that in the slow-sweep experi
ment the loss is produced almost exclusively by deactiva
collisions, such as the atom-molecular collisions describ
by Eq.~2!. We study here also the added effect of molecu
molecule collisions described by Eq.~3!. In the case of the
fast-sweep experiment, it has been claimed@9,10# that the
main cause of loss is due to the excitation processes of
kind described by Eq.~4!, but it was shown@8# that deacti-
vating collisions cannot be discounted as a contribut
mechanism.

This paper therefore aims to study the effect of combin
the two kinds of mechanisms~condensate excitation vs. de
activating collisions! together. One of the major conclusion
~discussed in Sec. IV below! is that the two processes ma
actually compete nonadditively with each other, rather th
contribute additively to the loss process.

The paper begins, in Sec. II, by an expansion of the t
oretical analysis used in@8# to describe the effect of deact
vating collisions. We show, among other things, how t
coupled equations of the Gross-Pitaevskii type for the ato
and molecular condensates, introduced and studied earlie
Timmermanset al. @6#, can be derived by an elimination o
the product states of the deactivation process~the so-called
‘‘dump’’ states!. The equations are then extended to inclu
molecule-molecule collisions of type~3!. In Sec. III, we add
to the deactivation model an effect representing the outco
of the excitation process. The results are presented and
cussed in Sec. IV, in comparison with the MIT experimen

II. DEACTIVATION MODEL

A. Hamiltonian and variational procedure

Let us consider an optically trapped BEC exposed to
external homogeneous time-dependent magnetic fieldB(t)
used to tune a vibrationally excited molecular statem to a
Feshbach resonance with the state of a pair of unbound
densate atoms. In order to write down an Hamiltonian
such a system, including the molecular dump states, we m
introduce field annihilation operators of the atomsĉ(r ), of
the molecular resonant stateĉm(rm), and of the lower and
upper dump statesĉd(rm) andĉu(rm), respectively@see dis-
cussion following Eq.~3!#. The Hamiltonian can then be
written as

Ĥ5E d3r ĉ†~r !Ĥaĉ~r !1V̂el

1E d3r m (
a5m,u,d

ĉa
†~rm!Ĥaĉa~rm!1V̂h1V̂h

†

1(
d

~V̂d1V̂d
†!1(

ud
~V̂ud1V̂ud

† !. ~5!

The terms
5-2
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Ĥa5
1

2m
p̂21Va~r !2maB~ t !,

~6!

Ĥa5
1

4m
p̂m

2 1Va~rm!2maB~ t !

~where a5m, u, or d, includes the resonant state! are the
Hamiltonians for the noninteracting atoms and molecu
Here Va(r ) and Va(rm) are the corresponding atomic an
molecular energies as functions of the positionr of the
atomic~or rm of the molecular! center of mass, whose value
include the optical trap potentials and the positio
independent differences of internal energies in the absenc
the trap. Also,ma and ma are the corresponding magnet
moments.

Since the atoms and molecules are treated here as
pendent particles, the interaction responsible for the at
molecule coupling@reaction~1!# can be written in the genera
form

V̂h5E d3rd3r 8Vh~r2r 8!ĉm
† S r1r 8

2 D ĉ~r !ĉ~r 8!, ~7a!

in which the molecule, created as an independent part
preserves the position of the center of mass. However, c
sidering that the interaction is localized within a range
atomic size, negligibly small compared to the condens
size and the relevant de Broglie wavelengths, one can us
approximation of zero-range interactionVh(r2r 8)5gd(r
2r 8), and represent the interaction in the simpler form

V̂h5gE d3r ĉm
† ~r !ĉ~r !ĉ~r !. ~7b!

The same arguments are applicable to the terms in Eq~5!

representing the deactivating collisionsV̂d and V̂ud @reac-
tions ~2! and ~3!, respectively#. However, the use of a zero
range interaction would lead to a divergence in the ensu
calculations @see discussion following Eq.~20! below#.
Therefore we keep these interactions as finite-range fu
tions of the distance between the reaction products, writ

V̂d5E d3rd3r mdd~ ur2rmu!ĉ†~r !ĉd
†~rm!

3ĉS r12rm

3 D ĉmS r12rm

3 D ~8!

V̂ud5E d3r 1d3r 2dud~ ur12r2u!ĉu
†~r1!ĉd

†~r2!

3ĉmS r11r2

2 D ĉmS r11r2

2 D . ~9!

Here, as in Eq.~7a! the position of the center of mass
preserved, but the finite-range nature of the interaction
retained in the functionsdd(r) and dud(r), whose actual
shape will be discussed further below.
04360
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Finally, the part of the Hamiltonian associated with elas
collisions ~see Ref.@6#!,

V̂el5E d3r FUa

2
ĉ†~r !ĉ1~r !ĉ~r !ĉ~r !

1
Um

2 (
a,a8

ĉa
†~r !ĉa8

†
~r !ĉa8~r !ĉa~r !

1Uam(
a

ĉ†~r !ĉa
†~r !ĉa~r !ĉ~r !G , ~10!

includes terms proportional to the zero-momentum ato
atom, molecule-molecule, and atom-molecule interaction

Ua5
4p\2

m
aa , Um5

2p\2

m
am , Uam5

3p\2

m
aam,

~11!

where aa , am , and aam are the corresponding elastic
scattering lengths, and the different numerical factors in
numerators reflect the different reduced masses.

We outline here the derivation of mean-field equatio
involving c-number fields, that represent all the actively pa
ticipating states listed above. This is accomplished by
extension of a well-known variational method~see Refs.
@13,14#!. Let us introduce the trial wave function

uF&5F11E d3rd3r m(
d

wd~r ,rm ,t !ĉ†~r !ĉd
†~rm!

1E d3r 1d3r 2(
ud

wud~r1 ,r2 ,t !ĉu
†~r1!ĉd

†~r2!G
3uw0 ,wm&. ~12!

The factor

uw0 ,wm&5expH E d3r @w0~r ,t !ĉ†~r !1wm~r ,t !ĉm
† ~r !#J u0&

~13!

is a coherent state, formed by a product of exponential
erators, involving atomic (w0) and molecular (wm) conden-
sate states, and operating on the vacuum stateu0&. The linear
factor preceding it in Eq.~12! includes the fieldswd(r ,r2 ,t)
andwud(r1 ,r2 ,t), which are the correlated states of the pro
ucts in reactions~2! and ~3!, respectively.

The linear form of the latter factor forces the trial wav
function ~12! to take into account only one-particle occup
tion of the nonresonant molecular statesu and d, as a con-
straint. This approximation is based on the assumption
fast removal of ‘‘hot’’ particles from the trap. In contrast, th
occupation of the resonant state~m! is allowed to reach the
order of magnitude of the condensate-state occupation~as
our calculations verify!. Thereforewm describes a coheren
molecular condensate.

Another constraint, that follows from the large energy d
ference between the dump states and the resonant state,
condition
5-3
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E d3rw0* ~r ,t !wd~r ,rm ,t !50 ~14!

@see discussion following Eq.~20! for justification#. The trial
wave function~12! can now be substituted into a variation
functional ~see Refs.@13,14#!

E
2`

`

dt

^Fu i\
]

]t
2ĤuF&

^FuF&
. ~15!

Neglecting terms of the order ofwd
3 andwu

3 , and taking Eq.
~14! into account, the use of a standard variational proced
~see Ref.@14#! then leads to a set of coupled equations
the atomic (w0) and molecular (wm) condensate fields~or
‘‘wavefunctions’’!, as well as for the dump states (wd and
wud):

i\ẇ0~r ,t !5~Ĥa1Uauw0~r ,t !u21Uamuwm~r ,t !u2!w0~r ,t !

12g* w0* ~r ,t !wm~r ,t !1Q~r ,t !wm* ~r ,t ! ~16a!

i\ẇm~r ,t !5~Ĥm1Uamuw0~r ,t !u21Umuwm~r ,t !u2!wm~r ,t !

1gw0
2~r ,t !1Q~r ,t !w0* ~r ,t !1Qm~r ,t !wm* ~r ,t !

~16b!

i\ẇd~r1 ,r2 ,t !5S 1

2m
p̂1

21
1

4m
p̂2

22EdDwd~r1 ,r2 ,t !

1dd~ ur12r2u!w0S r112r2

3
,t D

3wmS r112r2

3
,t D ~16c!

i\ẇud~r1 ,r2 ,t !5S 1

4m
p̂1

21
1

4m
p̂2

22Eu2EdDwud~r1 ,r2 ,t !

1dud~ ur12r2u!wm
2 S r11r2

2
,t D , ~16d!

where

Q~r ,t !5E d3r 1d3r 2(
d

dd* ~ ur12r2u!wd~r1 ,r2 ,t !

3dS r2
r112r2

3 D ~17!

Qm~r ,t !52E d3r 1d3r 2(
ud

dud* ~ ur12r2u!

3wud~r1 ,r2 ,t !dS r2
r11r2

2 D . ~18!
04360
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r

The terms corresponding to elastic collisions, dependen
uwdu2 and uwudu2, which should appear in Eqs.~16a! and
~16b!, are omitted since they are negligible compared to
terms includingw0 and wm . In Eqs. ~16c! and ~16d!, the
terms corresponding to elastic collisions, Zeeman shifts,
trap potentials are neglected compared to the posit
independent internal energies, denoted here asEd andEu .

B. Dump state elimination

The procedure used to eliminate the dump states is sim
to the Weisskopf-Wigner method of the theory of sponta
ous emission~see Ref.@15#!. Equation~16c! is of the form of
a Schro¨dinger equation for two free particles with a sour
~the last term in the right-hand side!. Such an equation can
be solved by applying the Green’s function method for fr
particles, with the result

wd~r1 ,r2 ,t !52
i

~2p!6\
E

2`

t

dt8E d3Kd3k

3expF2 i S \K2

6m
1

3\k2

4m
2

Ed

\
2 i0D ~ t2t8!G

3expF iK•

r112r2

3
1 ik•~r12r2!G

3E d3rdd~r!e2 ik"r
• E d3Re2 iK•R

3wm~R,t8!w0~R,t8!. ~19!

HereR is the center-of-mass position of the three-atom s
tem,r is the radius vector of the reaction products, andK ,k
are the corresponding wave vectors. Sincewm(R,t) and
w0(R,t) are condensate wave functions, the Fourier tra
form of their product@the integral overR in Eq. ~19!# van-
ishes if K.1/b, where b is a characteristic size of th
condensate. Therefore,\2K2/(6m),\v trap is negligible
compared toEd@\v trap, wherev trap is the trap frequency.
This fact allows us also to neglect the time dependence
wm(R,t) and w0(R,t) in the integration overt8, and thus
obtain the simplified expression

wd~r1 ,r2 ,t !52
1

~2p!3
w0S r112r2

3
,t DwmS r112r2

3
,t D

3E d3kd3r
dd~r!exp@ ik•~r22r12r!#

3\2k2/~4m!2Ed2 i0
.

~20!

The atom-molecule pair is thus formed with a momentu
\kd5A4mEd/3 of relative motion. The functionwd(r1 ,r2 ,t)
is a rapidly oscillating function of the coordinates, and the
fore condition~14! is justified.

Substituting Eq.~20! into Eqs.~17! and~18! and introduc-
ing a Fourier transform of the functiondd(r)
5-4
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d̃d~k!5E d3rdd~r!exp~2 ikr!, ~21!

one obtains

Q~r ,t !52~d1 i\g!w0~r ,t !wm~r ,t !, ~22!

where

d1 i\g5
1

~2p!3 (
d
E d3k

ud̃d~k!u2

3\2k2/~4m!2Ed2 i0
.

~23!

Using the well-known identity (x2 i0)215Px211 ipd(x),
where P denotes the Cauchy principal part of the integ
allows us to obtain explicit expressions forg andd:

g5
m

3p\3 (
d

kdud̃d~kd!u2, ~24!

d5
2m

3p2\2 (
d

PE
0

`

dk
k2ud̃d~k!u2

k22kd
2

. ~25!

A similar analysis, starting from Eq.~16d!, gives

Qm~r ,t !52~dm1 i\gm!wm
2 ~r ,t !, ~26!

where

gm5
m

p\3 (
u,d

kudud̃ud~kud!u2, ~27!

dm5
2m

p2\2 (
u,d

PE
0

`

dk
k2ud̃ud~k!u2

k22kud
2

, ~28!

and kud5A2m(Eu1Ed)/\. Substituting Eqs.~22! and ~26!
into Eqs. ~16a! and ~16b!, one finally obtains a pair o
coupled Gross-Pitaevskii equations~see Ref.@16#!:

i\ẇ05~Ĥa1Uauw0u21Uamuwmu2!w012g* w0* wm

2~d1 i\g!uwmu2w0 , ~29a!

i\ẇm5~Ĥm1Uamuw0u21Umuwmu2!wm1gw0
2

2@~d1 i\g!uw0u21~dm1 i\gm!uwmu2#wm .

~29b!

The parametersd, g, dm , andgm , which are expressed in
terms ofdd anddud @see Eqs.~24! and ~25!, ~27! and ~28!#,
describe the shift and the width of the resonance due to
deactivating collisions with atoms and molecules, resp
tively. The parametersg and gm are one half of the corre
sponding rate constants. Since the strengths of the deac
ing interactions are unknown, the parameterg will be
extracted below from the experimental data, andgm will be
04360
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used below as an adjustable parameter. The shiftsd anddm
can be incorporated in the interactionsUam andUm , respec-
tively.

Equations~29! are similar to those presented recently
Timmermanset al. @6#. Among other things, Ref.@6# shows
that in the case of a time-independent magnetic field
large resonant detuning, neglecting the decay described
the imaginary terms, Eqs.~29! can be reduced to a singl
Gross-Pitaevskii equation with an effective scattering len
aa@12D/(B2B0)#, where the parameterD is related to the
atom-molecule coupling constantg of Eq. ~7b! as

ugu252p\2uaaumD/m, m52ma2mm . ~30!

Values ofD for Na were calculated in Refs.@9,10#, or ex-
tracted from the experimental data in Refs.@3,4#.

C. Density equations and approximate solutions

Let us introduce the new real variables

n~r ,t !5uw0~r ,t !u2, nm~r ,t !5uwm~r ,t !u2,

u~r ,t !52Re@gw0
2~r ,t !wm* ~r ,t !#/\, ~31!

v~r ,t !522Im@gw0
2~r ,t !wm* ~r ,t !#/\.

The time evolution of these variables can be described b
set of real equations, similar to the optical Bloch equatio
where n and nm act like ‘‘populations’’ andu and v like
‘‘coherences.’’ When the kinetic-energy terms are neglect
in accordance with the Thomas-Fermi approximation~see
Refs.@1,2#!, one obtains from Eqs.~29!

ṅ52v22Gan, ~32a!

ṅm52v22Gmnm , ~32b!

v̇5Du2~2Ga1Gm!v12ugu2n~4nm2n!/\2, ~32c!

u̇52Dv2~2Ga1Gm!u. ~32d!

Here

D~r ,t !5$V~r !2mB~ t !12@Uan~r ,t !1~Uam2d!nm~r ,t !#

2@~Uam2d!n~r ,t !1~Um2dm!nm~r ,t !#%/\, ~33!

V~r !52Va~r !2Vm~r !,

and

Ga~r ,t !5gnm~r ,t !,
~34!

Gm~r ,t !5gn~r ,t !1gmnm~r ,t !.

In the Thomas-Fermi approximation the functio
n(r ,t), nm(r ,t), v(r ,t), andu(r ,t) depend onr only para-
metrically. The set of four real equations~32! can then be
solved numerically using as initial conditions either
r -dependent~for example, a steady-state Thomas-Fermi! dis-
5-5
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tribution, or an r -independent~homogeneous! distribution
equal to the mean trap density.

Nevertheless, certain properties of the solutions can
derived analytically from Eqs.~32!, without recourse to nu-
merical solutions, whenever the following ‘‘fast decay’’ co
ditions hold:

mḂ!\Gm~D1Gm
2 /D !, Gm@Ga, ~35a!

D21Gm
2 @6ugu2n/\2. ~35b!

These conditions mean that the relaxation ofnm , v, andu is
much faster compared to that ofn and to the rate of chang
of the energy, caused by the magnetic field with a sweep
Ḃ. Therefore the values of the fast variables can be relate
a givenn value, using a quasistationary approximation, b

u;2
D

Gm
v, v;2

2ugu2n2Gm

\2~D21Gm
2 !

,

~36!

nm;
ugu2n2

\2~D21Gm
2 !

,

and the condition~35b! leads tonm!n. As a result, a single
nonlinear rate equation for the atomic density can be
tracted. When terms proportional to the atomic and mole
lar densities inD @see Eq.~33!# are neglected, the resultin
rate equation is

ṅ~r ,t !52
6ugu2gn3~r ,t !

@V~r !2mB~ t !#21@\gn~r ,t !#2
. ~37!

~The neglected terms inD effectively add an extra shift to
the resonance, but its contribution is hardly noticed in
present problem.!

Equation~37! has a form analogous to the Breit-Wign
expression for resonant scattering in the limit of ze
momentum collisions~see Ref.@10#!. In the Breit-Wigner
sense one can interpret 2\gn as the width of the decay chan
nel, while the width of the input channel is proportional
ugu2. This observation establishes a link between the ma
scopic approach used here and microscopic approaches
treat the loss rate as a collision process. However, Eq.~37!
differs from the usual Breit-Wigner expression by a factor3

2 ,
associated with the loss of a third condensate atom in
reaction~2!.

1. Approaching the resonance

Very close to resonance@e.g., for conditions prevailing in
the experiment@4#, where B(t) is within 1 mT of reso-
nance# the behavior of Eq.~37! effectively attains a one-bod
form linear in n. But as long as we stay out of this narro
region, by obeying the ‘‘off-resonance’’ condition ~which
holds in the slow-sweep experiment@3,4#!

\gn~r ,t !!uV~r !2mB~ t !u, ~38!
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we can write Eq.~37! ~to a very good approximation! in the
three-body formṅ52K3(r ,t)n3, where

K35
12p\2uaaugD

mm@B~ t !2V~r !/m#2
. ~39!

The dependence of Eq.~39! on the scattering lengthaa fol-
lows from Eq.~30!. A similar expression has been obtaine
in Ref. @6#, but the loss of the third condensate atom in t
deactivating reaction~2!, described by the term proportiona
to Ga in Eq. ~32a!, was neglected. In the fast-decay appro
mation, in whichṅm is diminishingly small, this neglected
term is equal to2v. Added to the22v, this makesK3 of
Eq. ~39! larger by a factor of32 than the corresponding ex
pression in Ref.@6#. This omission has been corrected
Refs.@8,9#.

When the magnetic-field ramp is assumed to vary linea
in time, starting att0 and ending att, and Eq.~38! applies
throughout the ramp motion~i.e., by avoiding passage
through the resonance!, the rate equation can be solved an
lytically. Using Eq.~39! one then gets

n~r ,t !5n~r ,t0!@1124p\2uaauDgn2~r ,t0!

3~ t2t0!/~mmḂ2tt0!#21/2, ~40!

where Ḃ is the magnetic-field ramp speed and the extra
lated time of reaching exact resonance is chosen to bet50,
so that botht andt0 have the same sign. We shall refer to t
combination of Eqs.~35! and ~38!, that leads to conditions
~39!, as the ‘‘three-body’’ approximation.

2. Passing through the resonance

The three-body approximation of Eqs.~38! and~39! does
not hold very close to resonance, and is therefore inap
cable to the description of the fast-sweep experiment,
which the Zeeman shift is swept rapidlythrough the reso-
nance, causing dramatic losses~see Refs.@3,4#!. Neverthe-
less, the fast-decay approximation~35! may still be valid. A
simple analytical expression can then be derived for the c
densate loss on passage though the resonance if, in add
the magnetic-field variation lasts long enough to reach
asymptoticcondition

mdB@\gn, ~41!

where dB is the total change inB accumulated over the
sweep. This condition allows the extension of the ramp st
ing and stopping times to7`.

The asymptotic behavior ofn(t) andṅ(t) in the complex
t plane, asutu→`, is constrained by consistency requir
ments. Consider the four possible asymptotic relations
tweenn andt shown in the first column of Table I. Equatio
~37! forcesṅ to attain the form in the second column, fro
which it follows that n should attain the form in the third
column. Obviously, cases~c! ~for Ret.0) and ~d! ~at all t
values! are not self-consistent. Therefore, the asymptotic
5-6
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lution may attain only one of the forms complying with cas
~a!, ~b!, or ~c! ~the latter for Ret,0 only!.

One can now evaluate the variation ofn(r ,t) in the infi-
nite time interval (2`,`). Let us rewrite Eq.~37! in the
form

dn

n2
52

6gnugu2

~mḂt !21~\gn!2
dt, ~42!

whereV(r ) is removed by our choice of the origin on th
time scale. We then integrate the left-hand side with resp
to n from n(r ,2`) to n(r ,`) and the right-hand side with
respect tot from 2` to `, consideringn as a well-defined
function of t. The latter integral may be evaluated by usi
the residue theorem, closing the integration contour by an
of infinite radius in the upper half-plane. The integral alo
this arc vanishes according to the asymptotic behavior on
considered in all self-consistent cases of Table I.

The final result does not depend ong, and on the self-
consistent case studied, and has the form~valid for all posi-
tions r )

n~r ,`!5
n~r ,2`!

11sn~r ,2`!
,

~43!

s5
6pugu2

\muḂu
5

12p2\uaau
m

D

uḂu
.

The productsn in Eq. ~43! would be proportional to the
Landau-Zener exponent for the transition between the c
densate and the resonant molecular states whose ene
cross due to the time variation of the magnetic field, if o
could keep the coupling strengthgw0 constant. However, for
the nonlinear curve-crossing problem represented by
~29!, the Landau-Zener formula is replaced by Eq.~43!,
which predicts a lower crossing probability, since the co
pling strengthgw0 decreases, along with the decrease of
condensate density during the process.

The asymptotic result~43! describes the decay of the co
densatedensity. Assuming a homogeneous initial densi
within the trap, Eq.~43! applies also to the loss of the tot
population N(t)5*n(r ,t)d3r .

An asymptotic expression for the total population can a
be found when the homogeneous distribution is replaced
the Thomas-Fermi one~see Ref.@17#!. In this case, givenn0
is the maximum initial density in the center of the trap, o
obtains

TABLE I. Asymptotic conditions as consistency tests on so
tions of Eq.~37!

Case ṅ n

a n→const ṅ→0 n→const

b n/t→0 ṅ;26ugu2gn3/(mḂt)2 n→const

c n/t→` ṅ;26ugu2n/(\2g) n;exp@26ugu2t/(\2g)#

d n/t→const ṅ;t n;t2
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N~2`!
5

15

2sn0
H 1

3
1

1

sn0
2

1

2sn0
A11

1

sn0

3 lnF SA11
1

sn0
11D Y SA11

1

sn0
21D G J .

~44!

III. INCLUSION OF LOSS BY EXCITATION

The other mechanism of molecular condensate loss, c
sidered in Ref.@10#, involves the decay of the resonant m
lecular state by transferring atoms to excited~discrete! trap
states or to higher-lying nontrapped~continuum! states. This
decay is possible when the potential energy of the reson
state Vm2mmB(t) exceeds the energy of the atom pa
formed. A simpler version of this mechanism has been st
ied in Ref.@9#.

Let us consider, for a moment, the decay of the molec
as a ‘‘half collision,’’ ignoring the finite size of the trap. Th
excess energyE of the released pair, whereE5E(t)
5mB(t)2V at the time of release, determines a ‘‘ha
width’’ of the Feshbach resonance. According to Eq.~27! of
Ref. @10#, this energy-dependent half-width is given by

Gcr~E!5
uaaumD

\2
AmE. ~45!

It should be recalled that here alwaysE.0. The coupling of
the resonant molecular state with an excited statev of an
atom pair in the trap can be described by a coefficientgv .
This coefficient can be related toGcr through~see Ref.@10#!

gv
25

\

p
Gcr~ev!

]ev

]v
, ~46!

whereev is the pair excited-state energy measured from
ground trap state and]ev /]v measures the distance betwe
the trap states in the vicinity ofv ~i.e., the inverse density o
states!.

As the magnetic fieldB(t)5B01Ḃt rises above the reso
nant valueB0, a crossing starts to occur between the reson
molecular state and the excited trap levels. Neglecting m
lecular collisions and motion, the resonant-state wave fu
tion wm(t) is propagated fromwm(t0), according to the rule
~see Ref.@18#!

wm~ t !5wm~ t0!expS 2
p

\mḂ
(

v
ugvu2D . ~47!

Although gv , for a givenv state, is time-independent, th
sum taken over allv states, bounded by the intervalmḂt0

,ev,mḂt, is time-dependent. Whenever the amplitude
each crossing is small, i.e., when

ugvu2/~\mḂ!!1, ~48!

the sum in Eq.~47! can be replaced by an integral, giving

-

5-7
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wm~ t !5wm~ t0!expS 2
p

\mḂ
E

t0

t

ugvu2
mḂ

]ev /]v
dtD , ~49!

where (]ev /]v)/mḂ measures the time interval between s
quential crossings. Differentiation of Eq.~49! with respect to
t gives the following expression:

]wm

]t
52

p

\
ugvu2

]v
]ev

wm[2Gcr~ev!wm . ~50!

It should be kept in mind that this result is valid only in cas
in which the energy gap between the atomic and molec
states increases rather fast; i.e., whenmḂ.0 and the condi-
tion ~48! is obeyed. In the case ofmḂ,0, transitions from
the ground trap state to excited ones are counterintuitive~see
Ref. @12#!, and become negligible when

dB@
gAngv

\mv trap
, ~51!

wheredB is the range of variation ofB extended over both
sides of the resonance.

Thus, whenever the energy gap between the resonant
lecular and condensate states is positive, it increases ra
fast @following Eq. ~48!#, and Eq.~51! is obeyed, one can
account for the decay of the resonant molecular state
excited trap states by adding a term2 i\Gcr(mḂt)wm to the
right-hand side of Eq.~29b! or by substitutingGm5gn

1gmnm1Gcr(mḂt) in Eqs.~32!. In this way, the two mecha
nisms can be combined in a single formalism. Calculatio
made using this formalism are discussed in the follow
section.

IV. RESULTS AND DISCUSSION

Calculations have been carried out on the loss of ato
for the case of the Na BEC experiments@3,4# using both
analytical results@Eqs.~39!, ~40!, ~43! and~44!# and numeri-
cal solutions of Eq.~32!. The parameters used to describe t
system, reported previously@10,9#, are aa 5 3.4 nm, m
52ma2mm53.65mB ~where mB59.27310224 J/T is the
Bohr magneton!, andD50.95 mT and 98 mT, respectively,
for the two resonances observed at 85.3 mT~853G! and 90.7
mT ~907G! @3,4#. These values ofD agree with the measure
value for the 90.7 mT resonance@4#, and with the indirectly
inferred order of magnitude for the 85.3 mT resonance@4#.
The scattering lengthsam and aam for molecule-molecule
and atom-molecule collisions, respectively, are not know
but calculations show that the results of our analysis
practically insensitive to the variation of their values as lo
as they stay within the order of magnitude ofaa .

In the calculations one should make a clear distinct
between the two types of experiments conducted at MIT
the slow-sweep and the fast-sweep experiments. In the
case, the values of the magnetic field at which the ramp s
short of resonance are such that the conditions needed fo
excitation mechanism to occur do not exist, and only
collisional deactivation applies.
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The graphs shown in Figs. 1 and 2 pertain to the slo
sweep MIT experiment for the strong 90.7 mT resonan
This resonance has been approached from below with
ramp speeds, and from above with one. Figure 1 shows
surviving atomic densityn, and Fig. 2 showsK3, both vs the
stopping value of the magnetic fieldB. The difference be-
tween Eqs.~39! and~40! and the results of a direct numeric
solution of Eqs.~32! for all ramp speeds is so small that th
corresponding plots are indistinguishable. The calcula
plots were obtained using homogeneous-density initial c
ditions, starting from aB value of 89.4 mT on approach from
below and 91.6 mT from above. The corresponding init
mean densities were extracted from the experimental d
@4#. A best fit of the parameterg, using Eq.~40!, to the MIT
data givesg50.8310210 cm3/s ~see Fig. 1!. But owing to
the large scattering of the experimental data, and the ass

FIG. 1. The surviving mean density vs. the stopping value of
magnetic field, calculated with the optimal value of the deactivat
parameterg50.8310211 cm3/s. The resonance was approach
from below with two ramp speeds, 13 mT/s and 31 mT/s, or fr
above, with the ramp speed26 mT/s. These are compared wit
the experimental results@4# ~squares, triangles and circles! for sev-
eral values of the ramp speeddB/dt ~in mT/s!.

FIG. 2. The three-body rate coefficient (K3) vs the stopping
value of the magnetic field, calculated with the optimal and ot
values of the deactivation parameterg ~in units of cm3/s), on ap-
proaching the resonance from below or above. The calculated v
of K3 is independent of the ramp speed value. Other notations a
Fig. 1.
5-8
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ATOM LOSS AND THE FORMATION OF A MOLECULAR . . . PHYSICAL REVIEW A62 043605
ated uncertainty in the value ofg, we proceeded using th
value of 10210 cm3/s in our calculations, following Ref.@8#.
Given a density of about 1015 cm23, this value ofg implies
a deactivation time of;1025 s. The molecule-molecule de
activating collisions are negligible compared to the ato
molecule collisions due to the small molecular density@see
Eq. ~36!# whenever the fast-decay condition~35! holds.

The rate of condensate loss due to atom-molecule de
vating collisions was also studied in Ref.@6#. As noted in the
previous section, the expression forK3 obtained there is
smaller by a factor of 1.5 from that of Eq.~39! ~see discus-
sion after this equation!. Without this factor one would no
obtain the almost perfect match between the analytical
the numerical results mentioned in the discussion of Fig
and 2 above. This omission has been corrected in Ref.@9#
and the value they obtain for theirGstab~corresponding to our
2g), of 4310210 cm3/s, was estimated by best agreeme
with the experimental data@4#. This value is 2.5 times bigge
than our estimate. This discrepancy may be due to the la
scatter in the experimental data. The estimate of Ref.@9# is
based only on the experimentalK3 plot ~see Fig. 2! that is
obtained by a differentiation of the experimental dens
data, and therefore shows a scatter of the data of up to
order of magnitude~see Fig. 2, as well as the correspondi
figure in Ref.@4#, that use a logarithmic scale!. Equation~40!
~presented in Ref.@8#! allows us to estimate the value ofg
directly from the experimental plot for the atomic dens
~see Fig. 1!, that shows a much smaller ('20%) scatter of
the data points. Anyhow, in both cases, the error bar sho
be comparable to the value ofg itself.

An inelastic rate coefficient 2g with a magnitude of the
order of 10210 cm3/s appears to be reasonable. First, t
value is two orders of magnitude smaller than the up
bound set by the unitarity constraint on theSmatrix @19#. In
the limit of small momentum, unitarity provides 2g
<\l/m, wherel ~the de Broglie wavelength! in the current
situation is limited by the experimental trap dimensions. T
constraint sets an upper bound of 2.531028 cm3/s to 2g.
Second, our estimate of 10210 cm3/s for g is consistent with
the order of magnitude of recently calculated@11# vibrational
deactivation rate coefficients due to ultracold collisions
He with H2 in highly excited vibrational levels.

The remaining figures~3–7! pertain to the fast-swee
MIT experiment. Figures 3 and 4 present the surviving p
of the trap population after passing through each of the
resonances. Following the experimental conditions, the va
of 1015 cm23 is used for the initial density, and the magne
field starting and stopping values are shifted from resona
by 3 mT for the strong~90.7 mT! resonance and by 2 mT fo
the weak~85.3 mT! one.

The analytical results of Eq.~43!, together with the direct
numerical solutions of Eqs.~32! for the homogeneous initia
distribution, considering only the deactivating mechanis
are compared in Fig. 3 with the results of the fast-swe
experiment@3,4#. Although Fig. 3 does not specify the dire
tion of the Zeeman shiftmḂ, one should recall~see Secs. I
and II C 2 above! that the excitation mechanism can be i
nored whenmḂ,0. The asymptotic result~43! reproduces a
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characteristic dependence on the ramp speed, although
independent ofg. The numerical solutions clearly show
dependence ong, as assumptions~35! and ~41! underlying
the asymptotic result~43! do not hold in this case. The los
reaches a maximum at a value ofg dependent on the variou
parameters~e.g.,g'10210 cm3/s for the 90.7 mT resonanc
whensn0'2), as a result of the conflicting asymptotic an
fast-decay conditions~35! and ~41!. The calculated drop in
the condensate loss on increase of the molecular dum
rategm , which may seem paradoxical, can have the follo
ing explanation. Reaction~2! leads to the loss of three con
densate atoms per each resonant molecule formed, whil
action~3! leads to the loss of only two condensate atoms
the present case, the loss rate is limited by resonant mole
formation@reaction~1!#. Therefore, the increase ofgm trans-
fers flow from channel~2! to channel~3!, thus reducing the
number of condensate atoms lost per each resonant mole
formed.

The results of the calculations, in which the effect
crossing to excited trap states is incorporated, are plotte

FIG. 3. Ratio of surviving trap populationN to the initial oneN0

for the 85.3 mT~853G! and 90.7 mT~907G! resonances@parts~a!
and~b!, respectively# in the homogeneous-density approximation
sn0 @where the parameters is defined by Eq.~43! and n0 is the
initial density#. The curves show results of calculations carried o
for different magnitudes of the parametersg and gm ~in units of
cm3/s), without accounting for the excitation mechanism. T
asymptotic analytical result Eq.~43! is given by the dotted line. The
results of the MIT fast-sweep experiment~Ref. @4#! are shown for
comparison.
5-9
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Fig. 4. The crossing rate was calculated with Eq.~45!, using
the values ofD, aa , andm given at the beginning of this
section. The results clearly show that the two mechanism
not augment each other. Adding the two-body excitat
mechanism to the more efficient three-body deactivat
mechanism actually reduces the loss. A possible explana
of this paradoxical result is similar to the one used in e
plaining Fig. 3.

Our predicted losses are somewhat higher than the o
obtained in the experiments for the 85.3 mT resonance,
significantly lower for the 90.7 mT resonance. Actually, t
closest we can get to the experimental results is by con
ering only the two-body excitation mechanism for the 85
mT resonance, and the three-body deactivation mechan
for the 90.7 mT resonance.

The results of Ref.@9#, considering only the two-body
mechanism, also show a better agreement for the 85.3
resonance. There are, however, significant differences
tween the theory used there and the one presented here
in Ref. @10#. In Ref. @9# the parameterg0 ~analogous to our
Gcr) is considered as a constant, independent of the rele
energyE or time t, and prevailing all along the sweep, belo
and above the resonance. The time integral in their Eq.~4!
should be smaller by a factor of 2 if the correct energy

FIG. 4. Same as Fig. 3 but accounting for the excitation mec
nism. The results of calculations without accounting for the exc
tion mechanism are given for comparison by the dotted line. In
part ~b! the plot calculated forg510210 cm3/s and different mag-
nitudes ofgm are practically indistinguishable.
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pendence ofg0 is used. In our version, following Ref.@10#,
Gcr is t-dependent, exists only forE.0, and attains the cor
rect Wigner limit whenE→0. The final result of Ref.@9# is
an expression similar to our Eq.~43!, with the exception that
our parameters is larger by a factor of 3/2 than the corre
sponding parameter in Ref.@9#. This difference reflects the
fact that Eq.~43! was derived for the three-body deactivatio
process, while Ref.@9# deals exclusively with a two-body
excitation process. As a matter of fact, their coefficie
should be further reduced by a factor of 2 associated with
energy dependence discussed above. Therefore the me
nism of Ref.@9# requires a factors three times smaller than
the one used in Eq.~43! for the deactivation mechanism.

Our results also differ from those of Ref.@10#. The
present calculations take into account the decrease of
condensate density during the crossing@see discussion afte
Eq. ~43!# and therefore produce a lower condensate loss t
the one obtained in Ref.@10#, in which the loss is described
by a Landau-Zener formula. In the limit of a small loss, E
~43! may resemble a Landau-Zener expression in whichsn is

-
-
e

FIG. 5. Time-dependence of the molecular condensate den
in cm23 during fast passage through the 85.3 mT~853G! and 90.7
mT ~907G! resonances@parts~a! and ~b!, respectively#, calculated
using the value ofg510210 cm3/s. The dashed and solid lines a
calculated accounting for the combined effect of the two mec
nisms~deactivation and excitation! for sn051 and 5, respectively,
and gm51029 cm3/s. The dotted and dashed-dotted lines re
only to the deactivation mechanisms forgm50 and 1029 cm3/s,
respectively, andsn051. The oscillations of the molecular densit
are faster for the lower value ofsn0.
5-10
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ATOM LOSS AND THE FORMATION OF A MOLECULAR . . . PHYSICAL REVIEW A62 043605
substituted for the exponent. However, a study of the as
ciated free-atom problem shows that, even when we re
the initial densityn(r ,2`) in the exponent, the latter woul
still be smaller thansn by a factor of 3. This factor is directly
related to the many-body character of the Gross-Pitaev
equations.

At the first stage of the atomic condensate loss~1! a con-
densate of molecules in the resonant state is formed.
molecular condensate is unstable, due to the deactivatio
the molecules by reactions~2! and~3!, as well as their decay
through the excitation mechanism. Figure 5 presents the
culated time dependence of the molecular condensate
sity, for various magnetic-field ramp speeds, taking into
count the various loss mechanisms. The oscillations of
molecular condensate density are connected to the inter
densate tunneling considered in Ref.@6#. Figure 5 shows tha
the excitation loss enhances the damping of the oscillat
and the decay of the molecular density. Nevertheless,
molecular condensate persists at least a few tenths of a
crosecond before decaying. This time is long enough to
low converting the population of the vibrationally excite
statem to the ground molecular state by methods of coher
control @20,21#. Various techniques exist today for transfe
ing populations coherently to a preselected state@22#. The

FIG. 6. Peak values of the molecular condensate densit
cm23 attained during fast passage through the 85.3 mT~853G! and
90.7 mT~907G! resonances@parts~a! and~b!, respectively# vs sn0

for various magnitudes of the parametersg and gm ~see Fig. 3!,
calculated without accounting for the excitation mechanism.
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choice of technique would be dictated by properties of
process and of the target state~such as selection rules an
stability!.

The calculated peak values of the resonant molecular s
density are presented in Figs. 6 and 7 for various rates of
deactivating collisions. Figure 6 refers only to the deactiv
tion mechanism involving atom-molecule and molecu
molecule collisions, which take place formḂ,0, whereas
Fig. 7 takes into consideration the combined effect of the t
mechanisms~deactivation and excitation! that may take
place for mḂ,0. These figures show that from abo
10–90% of the atomic density can be converted tempora
to a molecular condensate in the resonant state, in spit
losses due to the excitation mechanism and the molec
molecule deactivation collisions. The calculated molecu
condensate density is higher for the 90.7 mT resonance
when the magnetic-field ramp speed is not too large.

V. CONCLUSIONS

This paper discusses the two types of loss experime
@3,4# conducted at MIT on sodium BEC, using a tim
varying magnetic field in the proximity of a Feshbach res

in FIG. 7. Same as Fig. 6 but accounting for the excitation mec
nism. The results of calculations without accounting for the exc
tion mechanism are given for comparison by the dotted line. In
part ~b! the plot calculated forg510210 cm3/s with gm50 and
10210 cm3/s are practically indistinguishable.
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nance. The various processes discussed here involve a
porary formation of a molecular condensate. In the slo
sweep experiment the dominant loss mechanism is th
body deactivation by atom-molecule inelastic collisions.
best fit of an analytical expression for the atomic dens
obtained here@Eq. ~40!# to the MIT data yields a rate coef
ficient for deactivating atom-molecule collisions of 2g5
1.6310210 cm3/s. For the fast-sweep experiment an an
lytical expression, generalizing the Landau-Zener formula
a case of coupled nonlinear equations, is obtained. A dif
ent two-body mechanism, involving an excitation of the co
v.

M

M

d

an

ill-
s

ill-

al-

04360
m-
-
e-

y

-
o
r-
-

densate by curve crossing, has been proposed previo
@10#. The combined effect of the two mechanisms is stud
here, including also molecule-molecule deactivating co
sions. The analysis shows that both processes should
taken into account, that they do not contribute additively
the loss, and that the outcome of the competition betw
them varies from one Feshbach resonance to another.
numerical results show that, under favorable conditions
substantial fraction of the trap population is converted to
unstable molecular condensate. This condensate persists
enough to allow its coherent transfer to a more stable st
d,

s

es.
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