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Bound mode of an atom laser
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We use a Fano diagonalization technique to find the eigenmodes of an atom laser consisting of a single-
mode atomic cavity that is coherently coupled to the continuum of free space modes. Under very general
conditions the system exhibits a single, stationary bound mode. We discuss the properties of this bound mode
depending on the system parameters and investigate its effect on the output beam of the atom laser.

PACS numbd(s): 03.75.Fi, 03.70tk

[. INTRODUCTION with wave vectok, k; is the cavity wave vector, and(k) is
the wave-vector-dependent coupling.

Following the first experimental demonstrations of Bose- We diagonalize this Hamiltonian by using a Fano tech-
Einstein condensation in dilute atomic gases, the study ofique [25] and obtain a complete set of orthogonal atom
guantum degenerate bosonic systems has become a majaser eigenmodes characterized by creation and annihilation
subject in atomic physics. For recent experimental and theasperators that satisfy the usual boson commutation relations.
retical overviews of the field of Bose-Einstein condensationOur main finding is that under very general conditions this
see, for examplg,1-3]. set of eigenmodes comprises a continuum(pdsitive en-

Attention has now shifted toward the investigation of pos-ergy) modes as well as a single bound mo@é negative
sible applications. One of the most promising of these is thenergy [21].
possibility of using a condensate as the source for an atom The paper is organized as follows. In Sec. Il we outline
laser, a device producing a well collimated beam of coherenthe Fano diagonalization and give the main results and math-
atoms with a large spectral density analogous to an opticamatical properties of the system eigenmodes, while the
laser. Both pulsed4—6] and continuoug7,8] atom lasers technical details are deferred to Appendix A. In Sec. IIl we
have recently been demonstrated experimentally. discuss the dependence of the energy and occupation of the

A large number of theoretical models for atom lasers havdoound mode on the various system parameters such as cavity
been proposed using various different mathematical framenode energy, coupling strength, and coupling width. The
works such as Lindblad master equati¢@s-12 or nonlin-  following sections deal with the effect that the existence of
ear Gross-Pitaevskii equatiof$3—17. In either case, the the bound mode has on the output spectrum of the atom
models hold only under certain operating conditions. As araser, Sec. IV, and on the dynamics of the cavity state, Sec.
example, it has been pointed out recently that for experimenV. Finally, we summarize the analytical formulas for some
tally achievable parameters atom lasers exhibit nonspecific types of the coupling(k) in Appendix B.

Markovian dynamic§18-21], which limits the validity of

most master equation models to the case of weak output

coupling strength. The aim of this paper is to provide a better!l. FANO DIAGONALIZATION OF THE ATOM OUTPUT
understanding of the effects that lead to this non-Markovian COUPLER

behavior by calculating the exact eigenmodes of the atom
laser.

Our calculations are based on the simple model discuss«%

b_y Savage and co-workel{§2_—24| which consists of a model and will only briefly outline the generalization to three
single mode of an atom cavity coherently coupled to thedimensions afterward

;:ontllnuu.m oftf)ree space modes. The Hamiltonian of this sys- The first step in our diagonalization process is done solely
em IS given by for convenience of calculation. We begin by writing the

R (e o o Hamiltonian in terms of operators defined solely for positive
H=k3a'a+ f k?bT(k)b(k)dk+ f V(k)[aTb(k) k. It then takes the form

The first step of our discussion is to diagonalize the
amiltonian(1) using a Fano techniqge5]. For simplicity
e will restrict the calculations here to a one-dimensional

+b'(k)aldk, 1) i [P Al
) H=k0aTa+f k2[cT(k)c(k)+dT(k)d(k)]dk
where a is the boson annihilation operator for the cavity 0

mode,B k) is the annihilation operator for the free mode * A - -
(k) | hilation op +f N(K)[ATE(k) +&T(k)aldk, @)
0

*Present address: Institut rfilheoretische Physik, Universita
Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria. where
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. 1 . . densate output coupler. It also explains the unusual evolution
c(k)= W[V(k)b(kHV(— K)b(—k)], (3)  of the cavity boson number previously found by othe8].
The existence of bound modes in coupled systems is not
. 1 . A an unusual occurrence in physics. In quantum optics a single
d(k)=—=[—-V(—k)b(k)+V(K)b(—Kk)], (4)  mode of a field coupled to a continuum with a lower energy
A(K) bound gives rise to a dressed state with an energy below that
DN 2 ) A of the continuum[26]. Also, in superconductivity a con-
and \*(k)=V=(k)+V*(—k). The operatorsd(k) do not i ,ym of phonon states coupled to electron states leads to a

couple to the cavity, so any bosons in the cavity will notpong mode of electron pairs at negative energy, the so-
excite these modes. We therefore drop them from considegs;eq Cooper pairf27].

ation in the rest of this paper, but it should be noted that the \y/e should also note here that the existence of the bound
fact that these superpositions are unexcited will have an efy, 4o may be affected by other factors such as geometry,
fect in interference experiments performed with the atom lagayity, and the atom-atom interaction within the condensate.
seroutput. , In particular, the theory presented here is one dimensional. In
Diagonalization in this case amounts to reexpressing thg,ree dimensions the density of atomic states will be propor-

Hamiltonian in the form tional to k2. This factor will appear in the numerator of Eq.
" (9), and so the existence or otherwise of the bound mode will
A :f K2AT(K)A(k)dK, (5)  depend upon the solid angle of the output coupling. For the
0 ideal case of a unidirectional output beam, however, the

. mode exists and full account must be taken of it.

where A(k) is a diagonal operator which, when written in  The inverse transformations between the original opera-

terms of the initial operators, is tors and the new diagonal and bound mode operators are
Ak)= a(k)a+ fo y(k,k)c(k)dK'. (6) a= fxa(k)A(k)dknL @A, (12
0
The functionsa(k) and y(k,k’) are determined by imposing A w . A
the commutators c(k)zf (K", K)AK")dK' + v, (KA, . (13
0
[A(k),H]=K?A(K), (7)

Evaluation of the commutators of these operators amounts to
a consistency check on the diagonalization process. We find
that, as required,

The mathematical details of the process are confined to Ap- "

pendix A, where the forms oft(k) and y(k,k’) are given [a,a’f]:f a?(k)dk+ “izl’ (14)

and where it is shown that such a diagonalization is complete 0

only if the coupling satisfies

*\2(k
k2= fo k(2 )dk. 9)

[Ak),AT(k'")]=8(k—K"). (8)

[6<k>,6f<k'>]=f:wk",k)y*(k”,k'>dk"+mkw;(k')

= 8(k—k'). (15)

This criterion is not satisfied by any coupling that hasW
A2(0)#0. This means that there exists a negative energy
bound mode of the coupled system. The Hamiltonian there-
fore requires an extra term, and can be written

e will verify the first of these in Appendix A.

IIl. DISCUSSION OF THE BOUND MODE

. In this section we will discuss some properties of the
ﬂ:f K2AT(K)A(K)dk— #ZALAW (10  bound mode found as a consequence of the coupling of the
0 cavity mode of the atom cavity with the free space modes, as
R discussed in the previous section. For the sake of simplicity,
where — u? is the energy of the bound mode aAg is its  and also in order to allow graphical presentations, we will
annihilation operator, mainly focus on the specific example of a Gaussian coupling

A,=a,a+ fom ¥, (E(K)dk. (1) N (k)=hge ", (16)

A physical motivation for this choice of coupling has been
Again the coefficientsr, andy,(k) are given in Appendix given by Moy, Hope, and Savag20,24 for an atom laser
A. We shall see in the next sections that it is the existence dbased on a harmonic trap. In Appendix B we summarize the
this bound mode that gives rise to the non-Markovian couanalytical results for the relevant quantiti@und mode en-
pling between the cavity and the external modes for the conergy, populationfor this model. Note, however, that most of
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FIG. 1. Energyu? of the bound mode versus coupling strength  FIG. 2. Overlapai of the cavity mode with the bound mode for
)\, for Gaussian coupling fok3'=0 (solid line), k3T =1 (dotted, ~ Gaussian coupling fok2I'=0 (solid line), k2I'=0.1 (dash-dotte}

k3I'=10 (dashed k3I'=1 (dotted, k3I'=10 (dashedl
our findings also hold for other forms of coupling or can becavity out of resonance, thus decreasing the effective cou-
proven generally for arbitrary forms. pling strength and thereby the binding energy.

Let us first discuss the binding energy of the bound Next we turn to the overlapzi of the cavity mode with

mode as a function of the other system parameters, as dére bound mode, the fraction of atoms found in the bound
picted in Fig. 1. We found in the previous section that themode if initially only the cavity mode is populated. Figure 2
bound mode always exists in the one-dimensional modeshows the dependence of this quantity on the coupling
even for arbitrarily small coupling strengthg. However, in  strength\ for different values of the cavity mode enerl@/.

this limit (Aq—0) the energy of the bound mode tends to  For very weak coupling wherg?<k2,I'~* we find that
zero and the bound mode thus approaches the continuum of

free modes. A small thermal excitation can then couple any \em 2
atoms out of this mode. Additionally, as we will show later, afﬁz — (20
the overlap between the bound and cavity modes tends to 2kp

zero with\ . Thus the bound mode population also vanishes. ) i
From the defining equatiofB2), in the limit \y— 0, we see and hence the bound mode population tends to zero with the

that coupling strength. This again is related to the difference in
energy of the two modes fd{§>0. If, on the other hand,
N2 2 ko=0, then the cavity mode and the bound mode energies
w2~ LZ) (17) approach each other ag—0 and the overlap is given by
2k
’ a’~3(1-\§*%\T /7 ml2. (21)
for u?<k3,I' "%, while
Clearly in this case the limit o’ as\o—0 is 2/3.
, Aem) 2R In the limit of very strong coupling wherg?s>k3, T~ 1,
M “(T) (18)  or equivalently, by using Eq(19), AoI'~*4=>k3,I' "%, the

overlap tends to 1/2. This is the same result as is found in
near-threshold ionizatiof26].

Some of the above features occur for more general cou-
plings. In particular, we always find the largest fraction of
atoms in the bound mode f&p=0, with the value 2/3 in the
limit Ag—0.

for k=0 andu?<I"" 1,

With increasing coupling strengtty, the binding energy
increases monotonically and in the limit wherg?
>k3,T "t we find

wi~N\oi/ml(4T). (19

This linear dependence on the coupling strength is in close The spectrum of the cavity output is essentially given by
analogy with cavity quantum electrodynamics, where thehe form of the functionx?(k), which is the contribution of
coupling of a two-level atom to esingle mode of an optical the continuous eigenmodes of the Hamiltonian to the cavity
cavity shifts the eigenstate energies by the coupling strengtfhode a. In this section we investigate the behavior and
(Rabi frequency Q. physical consequences of the form of this function. In par-
Finally, we note from Fig. 1 that the binding energy de-ticular, we are interested in the way in which the existence of
creases with increasing cavity mode enekéyThis can be the bound mode effects the properties of the output beam. In
understood from the fact that the Gaussian coupling chosefig. 3 we plot the output spectrur?(k) for the model with
here connects the cavity mode more strongly to the low enGaussian coupling for fixed cavity mode energy and Gauss-
ergy modes wittkk~0, whereas energy conservation requiresian width with various different coupling strengths.
that an atom leaving a high energy cavity mode has a high Let us first concentrate on the case of small coupling
kinetic energy outside the cavity. Increasiké shifts the  strengthi,I"**<1 (solid curve in the figure Here we see

IV. OUTPUT SPECTRUM
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150 ‘ This explains why the width of the Lorentzian decreasesl

the maximum increasgdor larger values ofn,, after the

f ) initial increase discussed above. Note, however, that an ap-
| proximation of the spectrum by a Lorentzian is not always

! accurate. It depends upon the form of the coupling and hence
the actual behavior of the functida(k). As a final remark
N on Fig. 3 we should mention that the areas below the spectra
el are not the same for the different curves, since for the nor-
3 malization we also have to take into account the contribution

of the bound mode.

10+

kl—-1 2

FIG. 3. Spectrumx?(k) (units of I'Y/2) against dimensionless

wave number fok3I'= 1 and\I"¥*=0.3(solid line), 1 (dotted, 2 V. DYNAMICS OF THE CAVITY MODE
(dashet], 4 (dash-dottef ) . o ) ]
In this section we will discuss the time evolution of the

that the Spectrum is centered arodﬂﬁ and SymmetriC. In atom number in the CaVity if |n|t|a”y Only the CaVity mode is

fact, the analytic solution can be approximated by populated. This time evolution is easily obtained from our
decomposition of the cavity mode into the eigenstates of the
N2(Ko) Hamiltonian,
a?(k)~= (22)

k2—K2)2 2(Ko)/(2Ko) 1%’ - (KA i I
( 0) +[7T)\ ( O) ( O)] a(t):f a(k)A(k)e—lkztdk+ a,U,el’uztA,U«' (27)
0

that is, the energy spectrum is a Lorentzian arok@mi/ith a

width of W)\Z(ko)/(zko). This coincides with the limit in If at time t=0 only the cavity mode is populated, we find

which the Born and Markov approximations are vil#0],  ihat the fraction of atoms left in the cavity at any timés
and hence this width also determines the time scale of thSiven by

exponential decay of the cavity mode.

For increasing coupling strengily we see that the center <éf(t)a(t)> - 2
of the spectrum is shifted to higher momeifiéad therefore N e j az(k)e*i"ztd K+ aiemzt . (29
higher energigs This is due to the increasing role of the (a'(0)a(0)) 0

function F(k) in the general expressioAll) for a(Kk).

Physically, this shift of the mean output energy can be unlt can be shown that fdr—co the integral vanishes, and thus
derstood in terms of energy conservation. Consider a systethe fraction of atoms left in the cavity in the long time limit
that initially hasN atoms in the cavity mode. The energy is given bya?, . Note thatai is the fraction of atoms in the

expectation value is then bound mode&#, which itself comprises a fractiomi of the
- ) cavity modea. The difference is accounted for by the non-
(H)=Nkj. (23)  zero overlap between the bound mode and the free modes.

The fact that atoms remain inside the cavity forever is thus a

On the other hand, we have seen in the previous section thapnsequence of the existence of the bound mode due to the
for increasing coupling strength both the bound mode energyoypling of the cavity mode to the continuum of free modes.

and population increase simultaneously. This part of therpeoretical descriptions of the atom output coupler that ne-

Hamiltonian thus contains megativeamount of energy glect coherences between the cavity mode and the free
» 2 modes artificially remove this bound mode and hence must
—Nufa,. (24 fail whenever this mode is significantly populated.

, . In Fig. 4 we show the time evolution of the cavity popu-
Hence the mean energy of the continudiiee) eigenmodes  |ation for different values of the coupling strength. For very

must be increased by this value. If the energy spectrum i§eak coupling the time evolution becomes Markovian and
approximately symmetric, we can then estimate the positiojence we find an exponential decay. The decay rate of this is
of the spectral maximum to be given by the width of the Lorentzian as discussed in the
previous section. The steady-state population in the cavity is
essentially zero in accordance with our results of Sec. Il in
the weak coupling limit.

For slightly larger coupling small oscillations are super-
which agrees well with the curves of Fig. 3. imposed on th_is exponential decay. These oscillgtions arise

The width of the spectrum is altered in accordance withT0m the beating of the two terms corresponding to the

this change in its central energy since we can now write Pound mode andzthe free modes in E2f) and therefore are
of the order ofa;,. For even stronger coupling the bound

kg-i— Mzaz
kﬁmx: <k2>~ 2 £ ’ (25)
w

N2(Kpa) mode population increases and hence the amplitude of the
a?(k)~ SRR ;”a 5. (20 oscillations grows. Simultaneously the oscillations become
(k"= kKina) “+ [T (Kmax)/ (2Kmax) ] faster since the binding energy and the mean enerdg, .,
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] posed by Moyet al.[20]. This consists of a cavity mode of a

1 particular wave vectotand hence energya set of external

modes with a continuum of energies, and a coupling between

the two. We have found a complete set of eigenmodes for the

Hamiltonian. There are a set of positive energy free modes
J and a single negative energy bound mode. This bound mode,
L the binding energy of which increases with the coupling

e strength, gives rise to the dynamics described in this paper,

<N(t)>

0 50 1319 150 200 none of which can be explained if the Born-Markov approxi-

mation is made. An illustration of this is given by the fact
that the number of atoms in the cavity does not decay to
(b) zero. The overlap of the cavity mode and the bound mode is
nonzero, so some fraction of atoms in the cavity must also be
bound. There are also oscillations in the cavity atom number
due to interference between the free modes and the bound
mode.

: In addition to the cavity dynamics we have also calculated
AN ceed] the output spectrum. For low coupling strength it was found
10 20 40 to be symmetric and centered on the cavity wave vector. For
vr higher coupling strength the spectral maximum is shifted to
higher energies to offset the increased binding energy of the
(aT(H)a(t)) (normalized to the initial number of atoméor k2T _bound mode. Th(_a oscillation frequenc_y of the decaying cav-
=1. (a) Weak coupling\,I'®=0.125(dashed lingand 0.2(solid). ity atom number is found to be approximately the sum of the

(b) Stronger couplingoI'¥*= 0.6 (dashegi and 1.5(solid). spectral energy maximum and the binding energy of the
bound mode.

of the output beam increase as discussed before. Energy con- There are two sources of influence to which atom lasers

servation allows us to estimate the frequency of these osci® subjected which do not exist for their optical counter-
parts: interparticle interactions and gravity. Both of these al-

<N(t)>

FIG. 4. Time evolution of the cavity mode population

lations,
ter the atomic states. In particular, for some geometries,
k3+ u? gravity may cause atoms to drop out of the bound mode after
Wos~ K2 0t 12~ > (290  a short time[21]. Also, in more realistic three-dimensional
1-ay, analyses of the atom laser, the bound mode may not exist at

) ) ) all if the coupling strength is low compared with the cavity
Finally, we see that the steady-state cavity populatign energy. For an ideal one-dimensional laser, however, the
increases with increasing coupling. In the limit of very large hound mode will always occur. In practice, the bound mode
coupling the steady-state bound mode population tends t@j|| have a finite lifetime. Its existence, however, will affect

1/4 of the initial population of the cavity mode. _ the output characteristics of the atom laser.
Although we have dealt only with the time evolution of
the atom number operatar'a in this section, it is straight- ACKNOWLEDGMENT

forward to generalize our results to any product of the cavity

mode annihilation and creation operators. By using the This work was supported by the United Kingdom Engi-
normal-ordered characteristic function we have been able tBeering and Physical Sciences Research Council.

show that at any time the state of the cavity mode is the

attenuated version of the initial state with amplitude attenu- APPENDIX A: DERIVATION OF THE DIAGONALIZED

ated by the factor HAMILTONIAN

=, ik 2 it The Hamiltonian that we will diagonalize is written
L(t)zfO a“(k)e dk+ag e (30

: : o H=k3&*é+f k%*(k)&(k)dmj Mk)[aTe(k)
For example, if the cavity mode is initially in a coherent state 0 0
with (a(0))=p, then the state at time satisfies(a(t))

Ap i
=L(t) 8. More generally, for any initial state, +ci(kaldk, (A1)

(AMHAT(1)) = L*(OLM(1)(AM(0)am(0)). (31  With ¢ andd given by Eqs(3) and (4). Let

s}

VI. CONCLUSIONS A(k)=a(k)a+ fo y(k,k")c(k)dk'. (A2)

In this paper we have applied a Fano technique to diago-
nalize the Hamiltonian for the atomic output coupler pro-We impose the commutator

043602-5
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[A(k),ﬂ]=E(k)A(k):kga(k)am(k)f NKke(k’)dk!
0

+f y(k, k' )k 2c(k")dk'
0

+f:y(k,k')x(k')édk':E(k)a(k)a

+E(k)J:y(k,k’)8(k’)dk’, (A3)

whereE(K) is a function ofk. If we take the commutator of

this equation witha® and c™ we obtain the following two
equations:

kga(k)-l-fowy(k,k’)k(k’)dk’=E(k)a(k), (A4)

a(K)N(K") +k Zy(k,k")=E(K) y(k,k'). (A5)

Equation(A5) givesy in terms ofa,

1
———+2(k") S(E(k)—k'?)
E(k)—k'2

y(k,k")=a(k)A(k")P

(AB)

where P denotes the principal value arid some function to
be determined. Next substitute this into E&44) and cancel
a,

k§+f°°x2(k')P S +2(k") S(E(k)—k'?) [dK’
° E(k)—k'2

=E(K). (A7)

If E(K)>0 (positive energythis equation gives us the func-

tion z(k). For negative energy thé function contribution
does not exist. These cases are treated separately below.

1. Positive energy
If E(k)>0 we putE(k)=k? and solve to find

_ 2k[K?—k3—F (k)]

z(k) TR (A8)
where
“N2(k")dk’
F(k)=Pf L (A9)
0 k2_k’2

We now knowy in terms of @, so in order to finda we
impose the commutator

[Ak),AT(k")]=8(k—K'). (A10)

PHYSICAL REVIEW /&2 043602

We use Eqs(A2), (A6), (A8), and(A9) to find after some
algebra that the commutator is satisfied if
2k\ (k)

K) =
N e RO R

2k

TN V(R L2

(A11)

2. Negative energy

For E(k)<0 the § function contribution to Eq(A7) van-
ishes and the equation becomes

) = N2(k')
ko—E(k):j ———dk'. (A12)
O K'2ZE(k)
We putE(k) = — u?, so the equation fop is
=\2(k)dk
ko+ sz —— A13
0T M o k2+,u,2 ( )

If N?(0)#0 the right hand side tends to infinity far—0,
and decreases monotonically as—«. Since the left-hand
side is a monotonically increasing function pf this equa-
tion has exactly one solution fqe. We can now use Eqg.
(A6) to write vy, in terms ofa, as

—a,NKk)
Yu(K)= T,uz (A14)
and so from Eq(A2)
. ~ (=x(k)c(k)dk
AMIa#( a— fo TMZ . (A15)

As was the case for the positive energy solutions, we can find
a,, from this equation by imposing the unit commutator on

A, , to obtain

-1/2

o )2
f N(k)dk (A16)

0 (k2+M2)2

If we now write our original operators in terms of the new
operators,

a= f " a(AK) dk+ a,A,, (A17)

0

c(k)= f: y(k' KAk )AK +y,(KA,, (A18)

and substitute these into the original Hamiltonian it is rela-
tively easy to verify that the expression obtained is that of
Eqg. (10).
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3. Consistency check

PHYSICAL REVIEW A62 043602

This is the same equation as that for[Eq. (A13)] and so

The full diagonalization scheme including the negativeY=# IS its solution. The second term in the integrand there-
energy mode is consistent only if it preserves the commutafor® has one pole dt=ix and its residue is

tors. As a check on this we verify that the unit commutator
for a, the original annihilation operator of the cavity, is pre-

served,
[é,éT]zf a?(K)dk+a’=1+a2=1.  (A19)
0

Consider the integral, extend the range of integration to
—oo, and decompose into partial fractions,

B 1fw 4k>\2(k)dk
2] kK- K= F(K) 2+ 72\ 4(K)
1 k2

i) o\ 2k[k2— k3~ F(k)]—imA2(k)

k2
2K K2—K2—F (K)]+imA2(K)

)dk. (A20)
Sincer?(Kk) is an even functionE (k) can be written

Now consider the functio® (k) defined forcomplex kin the
upper half plandUHP) by

.

so thatF (k) = G(k) + miA?(k)/(2k). The integrand of ana-
lytically continued into the UHP can then be written

|

1 (= A(K')dK’
1o M)k

Fk=5

(A21)
k2—K'2

1

2

%K)

)\Z(k’)dk’_F )
=Rt

(A22)
k2 _ k' 2

k? k
2k[k?—k&—G(k)]—2miN2(k) N [k~ k2-G(k)]/
(A23)

1

i

We will consider the second term. In order to find the poles;

we take the denominator and set it equal to zero. RRuxk
+iy with y>0 and take real and imaginary parts,

1 (= N2(K)(x2—y2—k?)dk

x2— Z—kzz—J , (A24

y 0o (2= y2— K2) 2+ 4x%y2 (A24)

) 1f°° —2xyN?(k)dk (A25)
Xy= = :
y=3 (2= y2— K2)2+ Ax2y?

Equation(A25) has no solution for nonzemandy, and so
asy>0 the only solution has=0. Then Eq(A24) becomes

1jw \2(K)dk
— Y24+ k2

yA kg =5

(A26)

iJm — 2k\2(K')dK’ -t
44— | SR
M)~ 2 72)2
(k K k=ip
1 »N2(kdk |1,
_Z +f0 —(k2+’u2)2 _Zaﬂl (A27)

Now we add tol the integral of Eq(A23) around a semi-
circle of radiusR. This term tends to zero &— o so it does
not affectl. Then a simple rearrangement of terms means
that we can use EqA27) to write

1 2
I=5(1+1-a), (A28)

so | +ai=l, the commutatofA19) is preserved, and the

scheme is consistent.
APPENDIX B: RESULTS FOR SPECIFIC COUPLINGS

In this Appendix we list the analytic results for some spe-
cific examples of the coupliny (k).

1. Gaussian coupling

For a Gaussian coupling
A2(k)=\2e T (B1)

the energy— u? of the bound mode is given by the solution
of the equation

N\mr
Ko+ u2=— p(u\T), (B2)
o
where we have defined the function
B(x)=exp(x?)[1—erf(x)], (B3)

Jwith erf(x) the usual error function. The overlap of the cav-
ity mode with the bound mode is then given by

2 2u°

o, = .
K 2uP4 (1-2uT) (K3+ u?) + N3\=T

(B4)

The functionF(k) used in Egs.(All) and (A21) can be
evaluated in terms of Dawson’s integf2i],

D(x) = exp(—x?) f “exply?)dy, (B5)
0
as
)\2
F(k)= OI:/;D(WF). (B6)

043602-7
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2. Lorentzian coupling 2

)\077
i i F(k)=—————. B11)
For Lorentzian coupling (k) 2b(K21 b?) (
2
2 Ao
N(k)= szbz (B7) 3. Broadband coupling
The results for broadband coupling
the bound mode energy w2 is obtained as the solution of 5
N2(k)=\3 (B12
N
(k§+ w)u(p+b)= zo_b' (B8) can be obtained either by taking the limit of a very large
width for the Gaussian or Lorentzian coupling or by direct
The population in the bound mode is evaluation of the general formulas. The defining equation for
MiS
1
2 2
al=— (B9) N5
“1+A2) w(kK2+ p2)= % (B13)
where The bound mode population is
m(b+2
" ap ; b+M) 2 (B10 e (LY
p(b+p) “OL N2l (4uB) 3+ K u?
and the_ functionz:(k), obztaineé:i from Eq(21) by calculating_ Finally, we find that
the residues ok“(k")/(k“—k’<) on and above the real axis,
is found to be F(k)=0. (B15)
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