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Bound mode of an atom laser
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We use a Fano diagonalization technique to find the eigenmodes of an atom laser consisting of a single-
mode atomic cavity that is coherently coupled to the continuum of free space modes. Under very general
conditions the system exhibits a single, stationary bound mode. We discuss the properties of this bound mode
depending on the system parameters and investigate its effect on the output beam of the atom laser.

PACS number~s!: 03.75.Fi, 03.70.1k
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I. INTRODUCTION

Following the first experimental demonstrations of Bos
Einstein condensation in dilute atomic gases, the study
quantum degenerate bosonic systems has become a m
subject in atomic physics. For recent experimental and th
retical overviews of the field of Bose-Einstein condensat
see, for example,@1–3#.

Attention has now shifted toward the investigation of po
sible applications. One of the most promising of these is
possibility of using a condensate as the source for an a
laser, a device producing a well collimated beam of coher
atoms with a large spectral density analogous to an op
laser. Both pulsed@4–6# and continuous@7,8# atom lasers
have recently been demonstrated experimentally.

A large number of theoretical models for atom lasers h
been proposed using various different mathematical fra
works such as Lindblad master equations@9–12# or nonlin-
ear Gross-Pitaevskii equations@13–17#. In either case, the
models hold only under certain operating conditions. As
example, it has been pointed out recently that for experim
tally achievable parameters atom lasers exhibit n
Markovian dynamics@18–21#, which limits the validity of
most master equation models to the case of weak ou
coupling strength. The aim of this paper is to provide a be
understanding of the effects that lead to this non-Markov
behavior by calculating the exact eigenmodes of the a
laser.

Our calculations are based on the simple model discus
by Savage and co-workers@22–24# which consists of a
single mode of an atom cavity coherently coupled to
continuum of free space modes. The Hamiltonian of this s
tem is given by

Ĥ5k0
2â†â1E

2`

`

k2b̂†~k!b̂~k!dk1E
2`

`

V~k!@ â†b̂~k!

1b̂†~k!â#dk, ~1!

where â is the boson annihilation operator for the cav
mode, b̂(k) is the annihilation operator for the free mod
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with wave vectork, k0 is the cavity wave vector, andV(k) is
the wave-vector-dependent coupling.

We diagonalize this Hamiltonian by using a Fano tec
nique @25# and obtain a complete set of orthogonal ato
laser eigenmodes characterized by creation and annihila
operators that satisfy the usual boson commutation relati
Our main finding is that under very general conditions t
set of eigenmodes comprises a continuum of~positive en-
ergy! modes as well as a single bound mode~of negative
energy! @21#.

The paper is organized as follows. In Sec. II we outli
the Fano diagonalization and give the main results and m
ematical properties of the system eigenmodes, while
technical details are deferred to Appendix A. In Sec. III w
discuss the dependence of the energy and occupation o
bound mode on the various system parameters such as c
mode energy, coupling strength, and coupling width. T
following sections deal with the effect that the existence
the bound mode has on the output spectrum of the a
laser, Sec. IV, and on the dynamics of the cavity state, S
V. Finally, we summarize the analytical formulas for som
specific types of the couplingV(k) in Appendix B.

II. FANO DIAGONALIZATION OF THE ATOM OUTPUT
COUPLER

The first step of our discussion is to diagonalize t
Hamiltonian~1! using a Fano technique@25#. For simplicity
we will restrict the calculations here to a one-dimensio
model and will only briefly outline the generalization to thre
dimensions afterward.

The first step in our diagonalization process is done so
for convenience of calculation. We begin by writing th
Hamiltonian in terms of operators defined solely for positi
k. It then takes the form

Ĥ5k0
2â†â1E

0

`

k2@ ĉ†~k!ĉ~k!1d̂†~k!d̂~k!#dk

1E
0

`

l~k!@ â†ĉ~k!1 ĉ†~k!â#dk, ~2!

where
©2000 The American Physical Society02-1
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ĉ~k!5
1

l~k!
@V~k!b̂~k!1V~2k!b̂~2k!#, ~3!

d̂~k!5
1

l~k!
@2V~2k!b̂~k!1V~k!b̂~2k!#, ~4!

and l2(k)5V2(k)1V2(2k). The operatorsd̂(k) do not
couple to the cavity, so any bosons in the cavity will n
excite these modes. We therefore drop them from consi
ation in the rest of this paper, but it should be noted that
fact that these superpositions are unexcited will have an
fect in interference experiments performed with the atom
ser output.

Diagonalization in this case amounts to reexpressing
Hamiltonian in the form

Ĥ5E
0

`

k2Â†~k!Â~k!dk, ~5!

where Â(k) is a diagonal operator which, when written
terms of the initial operators, is

Â~k!5a~k!â1E
0

`

g~k,k8!ĉ~k8!dk8. ~6!

The functionsa(k) andg(k,k8) are determined by imposin
the commutators

@Â~k!,Ĥ#5k2Â~k!, ~7!

@Â~k!,Â†~k8!#5d~k2k8!. ~8!

The mathematical details of the process are confined to
pendix A, where the forms ofa(k) and g(k,k8) are given
and where it is shown that such a diagonalization is comp
only if the coupling satisfies

k0
2>E

0

`l2~k!

k2
dk. ~9!

This criterion is not satisfied by any coupling that h
l2(0)Þ0. This means that there exists a negative ene
bound mode of the coupled system. The Hamiltonian the
fore requires an extra term, and can be written

Ĥ5E
0

`

k2Â†~k!Â~k!dk2m2Âm
† Âm , ~10!

where2m2 is the energy of the bound mode andÂm is its
annihilation operator,

Âm5amâ1E
0

`

gm~k!ĉ~k!dk. ~11!

Again the coefficientsam andgm(k) are given in Appendix
A. We shall see in the next sections that it is the existenc
this bound mode that gives rise to the non-Markovian c
pling between the cavity and the external modes for the c
04360
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densate output coupler. It also explains the unusual evolu
of the cavity boson number previously found by others@20#.

The existence of bound modes in coupled systems is
an unusual occurrence in physics. In quantum optics a sin
mode of a field coupled to a continuum with a lower ener
bound gives rise to a dressed state with an energy below
of the continuum@26#. Also, in superconductivity a con
tinuum of phonon states coupled to electron states leads
bound mode of electron pairs at negative energy, the
called Cooper pairs@27#.

We should also note here that the existence of the bo
mode may be affected by other factors such as geome
gravity, and the atom-atom interaction within the condens
In particular, the theory presented here is one dimensiona
three dimensions the density of atomic states will be prop
tional to k2. This factor will appear in the numerator of Eq
~9!, and so the existence or otherwise of the bound mode
depend upon the solid angle of the output coupling. For
ideal case of a unidirectional output beam, however,
mode exists and full account must be taken of it.

The inverse transformations between the original ope
tors and the new diagonal and bound mode operators ar

â5E
0

`

a~k!Â~k!dk1amÂm , ~12!

ĉ~k!5E
0

`

g~k8,k!Â~k8!dk81gm~k!Âm . ~13!

Evaluation of the commutators of these operators amoun
a consistency check on the diagonalization process. We
that, as required,

@ â,â†#5E
0

`

a2~k!dk1am
2 51, ~14!

@ ĉ~k!,ĉ†~k8!#5E
0

`

g~k9,k!g* ~k9,k8!dk91gm~k!gm* ~k8!

5d~k2k8!. ~15!

We will verify the first of these in Appendix A.

III. DISCUSSION OF THE BOUND MODE

In this section we will discuss some properties of t
bound mode found as a consequence of the coupling of
cavity mode of the atom cavity with the free space modes
discussed in the previous section. For the sake of simplic
and also in order to allow graphical presentations, we w
mainly focus on the specific example of a Gaussian coup

l2~k!5l0
2e2Gk2

. ~16!

A physical motivation for this choice of coupling has be
given by Moy, Hope, and Savage@20,24# for an atom laser
based on a harmonic trap. In Appendix B we summarize
analytical results for the relevant quantities~bound mode en-
ergy, population! for this model. Note, however, that most o
2-2
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BOUND MODE OF AN ATOM LASER PHYSICAL REVIEW A62 043602
our findings also hold for other forms of coupling or can
proven generally for arbitrary forms.

Let us first discuss the binding energym2 of the bound
mode as a function of the other system parameters, as
picted in Fig. 1. We found in the previous section that t
bound mode always exists in the one-dimensional mo
even for arbitrarily small coupling strengthsl0. However, in
this limit (l0→0) the energy of the bound mode tends
zero and the bound mode thus approaches the continuu
free modes. A small thermal excitation can then couple
atoms out of this mode. Additionally, as we will show late
the overlap between the bound and cavity modes tend
zero withl0. Thus the bound mode population also vanish
From the defining equation~B2!, in the limit l0→0, we see
that

m2'S l0
2p

2k0
2 D 2

~17!

for m2!k0
2 ,G21, while

m2'S l0
2p

2 D 2/3

~18!

for k050 andm2!G21.
With increasing coupling strengthl0, the binding energy

increases monotonically and in the limit wherem2

@k0
2 ,G21 we find

m2'l0A4 p/~4G!. ~19!

This linear dependence on the coupling strength is in cl
analogy with cavity quantum electrodynamics, where
coupling of a two-level atom to a~single! mode of an optical
cavity shifts the eigenstate energies by the coupling stren
~Rabi frequency! V.

Finally, we note from Fig. 1 that the binding energy d
creases with increasing cavity mode energyk0

2. This can be
understood from the fact that the Gaussian coupling cho
here connects the cavity mode more strongly to the low
ergy modes withk'0, whereas energy conservation requir
that an atom leaving a high energy cavity mode has a h
kinetic energy outside the cavity. Increasingk0

2 shifts the

FIG. 1. Energym2 of the bound mode versus coupling streng
l0 for Gaussian coupling fork0

2G50 ~solid line!, k0
2G51 ~dotted!,

k0
2G510 ~dashed!.
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cavity out of resonance, thus decreasing the effective c
pling strength and thereby the binding energy.

Next we turn to the overlapam
2 of the cavity mode with

the bound mode, the fraction of atoms found in the bou
mode if initially only the cavity mode is populated. Figure
shows the dependence of this quantity on the coup
strengthl0 for different values of the cavity mode energyk0

2.
For very weak coupling wherem2!k0

2 ,G21 we find that

am
2 '2S l0

2p

2k0
3 D 2

, ~20!

and hence the bound mode population tends to zero with
coupling strength. This again is related to the difference
energy of the two modes fork0

2.0. If, on the other hand,
k050, then the cavity mode and the bound mode energ
approach each other asl0→0 and the overlap is given by

am
2 ' 2

3 ~12l0
2/32

3 AG/p A3 p/2. ~21!

Clearly in this case the limit ofam
2 asl0→0 is 2/3.

In the limit of very strong coupling wherem2@k0
2 ,G21,

or equivalently, by using Eq.~19!, l0G21/4@k0
2 ,G21, the

overlap tends to 1/2. This is the same result as is found
near-threshold ionization@26#.

Some of the above features occur for more general c
plings. In particular, we always find the largest fraction
atoms in the bound mode fork050, with the value 2/3 in the
limit l0→0.

IV. OUTPUT SPECTRUM

The spectrum of the cavity output is essentially given
the form of the functiona2(k), which is the contribution of
the continuous eigenmodes of the Hamiltonian to the ca
mode a. In this section we investigate the behavior a
physical consequences of the form of this function. In p
ticular, we are interested in the way in which the existence
the bound mode effects the properties of the output beam
Fig. 3 we plot the output spectruma2(k) for the model with
Gaussian coupling for fixed cavity mode energy and Gau
ian width with various different coupling strengthsl0.

Let us first concentrate on the case of small coupl
strengthl0G3/4!1 ~solid curve in the figure!. Here we see

FIG. 2. Overlapam
2 of the cavity mode with the bound mode fo

Gaussian coupling fork0
2G50 ~solid line!, k0

2G50.1 ~dash-dotted!,
k0

2G51 ~dotted!, k0
2G510 ~dashed!.
2-3
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that the spectrum is centered aroundk0 and symmetric. In
fact, the analytic solution can be approximated by

a2~k!'
l2~k0!

~k22k0
2!21@pl2~k0!/~2k0!#2

, ~22!

that is, the energy spectrum is a Lorentzian aroundk0
2 with a

width of pl2(k0)/(2k0). This coincides with the limit in
which the Born and Markov approximations are valid@20#,
and hence this width also determines the time scale of
exponential decay of the cavity mode.

For increasing coupling strengthl0 we see that the cente
of the spectrum is shifted to higher momenta~and therefore
higher energies!. This is due to the increasing role of th
function F(k) in the general expression~A11! for a(k).
Physically, this shift of the mean output energy can be
derstood in terms of energy conservation. Consider a sys
that initially hasN atoms in the cavity modea. The energy
expectation value is then

^Ĥ&5Nk0
2 . ~23!

On the other hand, we have seen in the previous section
for increasing coupling strength both the bound mode ene
and population increase simultaneously. This part of
Hamiltonian thus contains anegativeamount of energy

2Nm2am
2 . ~24!

Hence the mean energy of the continuous~free! eigenmodes
must be increased by this value. If the energy spectrum
approximately symmetric, we can then estimate the posi
of the spectral maximum to be

kmax
2 5^k2&'

k0
21m2am

2

12am
2

, ~25!

which agrees well with the curves of Fig. 3.
The width of the spectrum is altered in accordance w

this change in its central energy since we can now write

a2~k!'
l2~kmax!

~k22kmax
2 !21@pl2~kmax!/~2kmax!#

2
. ~26!

FIG. 3. Spectruma2(k) ~units of G1/2) against dimensionles
wave number fork0

2G51 andl0G3/450.3 ~solid line!, 1 ~dotted!, 2
~dashed!, 4 ~dash-dotted!.
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This explains why the width of the Lorentzian decreases~and
the maximum increases! for larger values ofl0, after the
initial increase discussed above. Note, however, that an
proximation of the spectrum by a Lorentzian is not alwa
accurate. It depends upon the form of the coupling and he
the actual behavior of the functionF(k). As a final remark
on Fig. 3 we should mention that the areas below the spe
are not the same for the different curves, since for the n
malization we also have to take into account the contribut
of the bound mode.

V. DYNAMICS OF THE CAVITY MODE

In this section we will discuss the time evolution of th
atom number in the cavity if initially only the cavity mode
populated. This time evolution is easily obtained from o
decomposition of the cavity mode into the eigenstates of
Hamiltonian,

â~ t !5E
0

`

a~k!Â~k!e2 ik2tdk1ameim2tÂm . ~27!

If at time t50 only the cavity mode is populated, we fin
that the fraction of atoms left in the cavity at any timet is
given by

^â†~ t !â~ t !&

^â†~0!â~0!&
5U E

0

`

a2~k!e2 ik2tdk1am
2 eim2tU2

. ~28!

It can be shown that fort→` the integral vanishes, and thu
the fraction of atoms left in the cavity in the long time lim
is given byam

4 . Note thatam
2 is the fraction of atoms in the

bound modeÂm , which itself comprises a fractionam
2 of the

cavity modeâ. The difference is accounted for by the no
zero overlap between the bound mode and the free mo
The fact that atoms remain inside the cavity forever is thu
consequence of the existence of the bound mode due to
coupling of the cavity mode to the continuum of free mod
Theoretical descriptions of the atom output coupler that
glect coherences between the cavity mode and the
modes artificially remove this bound mode and hence m
fail whenever this mode is significantly populated.

In Fig. 4 we show the time evolution of the cavity pop
lation for different values of the coupling strength. For ve
weak coupling the time evolution becomes Markovian a
hence we find an exponential decay. The decay rate of th
given by the width of the Lorentzian as discussed in
previous section. The steady-state population in the cavit
essentially zero in accordance with our results of Sec. III
the weak coupling limit.

For slightly larger coupling small oscillations are supe
imposed on this exponential decay. These oscillations a
from the beating of the two terms corresponding to t
bound mode and the free modes in Eq.~28! and therefore are
of the order ofam

2 . For even stronger coupling the boun
mode population increases and hence the amplitude of
oscillations grows. Simultaneously the oscillations beco
faster since the binding energym2 and the mean energykmax

2

2-4
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BOUND MODE OF AN ATOM LASER PHYSICAL REVIEW A62 043602
of the output beam increase as discussed before. Energy
servation allows us to estimate the frequency of these o
lations,

vosc'kmax
2 1m2'

k0
21m2

12am
2

. ~29!

Finally, we see that the steady-state cavity populationam
4

increases with increasing coupling. In the limit of very lar
coupling the steady-state bound mode population tend
1/4 of the initial population of the cavity mode.

Although we have dealt only with the time evolution
the atom number operatorâ†â in this section, it is straight-
forward to generalize our results to any product of the cav
mode annihilation and creation operators. By using
normal-ordered characteristic function we have been abl
show that at any time the state of the cavity mode is
attenuated version of the initial state with amplitude atte
ated by the factor

L~ t !5E
0

`

a2~k!e2 ik2tdk1am
2 eim2t. ~30!

For example, if the cavity mode is initially in a coherent sta
with ^â(0)&5b, then the state at timet satisfies^â(t)&
5L(t)b. More generally, for any initial state,

^â†n~ t !âm~ t !&5L* n~ t !Lm~ t !^â†n~0!âm~0!&. ~31!

VI. CONCLUSIONS

In this paper we have applied a Fano technique to dia
nalize the Hamiltonian for the atomic output coupler pr

FIG. 4. Time evolution of the cavity mode populatio

^â†(t)â(t)& ~normalized to the initial number of atoms! for k0
2G

51. ~a! Weak couplingl0G3/450.125~dashed line! and 0.2~solid!.
~b! Stronger couplingl0G3/450.6 ~dashed! and 1.5~solid!.
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posed by Moyet al. @20#. This consists of a cavity mode of
particular wave vector~and hence energy!, a set of external
modes with a continuum of energies, and a coupling betw
the two. We have found a complete set of eigenmodes for
Hamiltonian. There are a set of positive energy free mo
and a single negative energy bound mode. This bound m
the binding energy of which increases with the coupli
strength, gives rise to the dynamics described in this pa
none of which can be explained if the Born-Markov appro
mation is made. An illustration of this is given by the fa
that the number of atoms in the cavity does not decay
zero. The overlap of the cavity mode and the bound mod
nonzero, so some fraction of atoms in the cavity must also
bound. There are also oscillations in the cavity atom num
due to interference between the free modes and the bo
mode.

In addition to the cavity dynamics we have also calcula
the output spectrum. For low coupling strength it was fou
to be symmetric and centered on the cavity wave vector.
higher coupling strength the spectral maximum is shifted
higher energies to offset the increased binding energy of
bound mode. The oscillation frequency of the decaying c
ity atom number is found to be approximately the sum of
spectral energy maximum and the binding energy of
bound mode.

There are two sources of influence to which atom las
are subjected which do not exist for their optical count
parts: interparticle interactions and gravity. Both of these
ter the atomic states. In particular, for some geometr
gravity may cause atoms to drop out of the bound mode a
a short time@21#. Also, in more realistic three-dimensiona
analyses of the atom laser, the bound mode may not exi
all if the coupling strength is low compared with the cavi
energy. For an ideal one-dimensional laser, however,
bound mode will always occur. In practice, the bound mo
will have a finite lifetime. Its existence, however, will affec
the output characteristics of the atom laser.
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APPENDIX A: DERIVATION OF THE DIAGONALIZED
HAMILTONIAN

The Hamiltonian that we will diagonalize is written

Ĥ5k0
2â†â1E

0

`

k2ĉ†~k!ĉ~k!dk1E
0

`

l~k!@ â†ĉ~k!

1 ĉ†~k!â#dk, ~A1!

with ĉ and d̂ given by Eqs.~3! and ~4!. Let

Â~k!5a~k!â1E
0

`

g~k,k8!ĉ~k8!dk8. ~A2!

We impose the commutator
2-5
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@Â~k!,Ĥ#5E~k!Â~k!5k0
2a~k!â1a~k!E

0

`

l~k8!ĉ~k8!dk8

1E
0

`

g~k,k8!k82ĉ~k8!dk8

1E
0

`

g~k,k8!l~k8!âdk85E~k!a~k!â

1E~k!E
0

`

g~k,k8!ĉ~k8!dk8, ~A3!

whereE(k) is a function ofk. If we take the commutator o
this equation withâ† and ĉ† we obtain the following two
equations:

k0
2a~k!1E

0

`

g~k,k8!l~k8!dk85E~k!a~k!, ~A4!

a~k!l~k8!1k82g~k,k8!5E~k!g~k,k8!. ~A5!

Equation~A5! givesg in terms ofa,

g~k,k8!5a~k!l~k8!PF 1

E~k!2k82
1z~k8!d~E~k!2k82!G ,

~A6!

where P denotes the principal value andz is some function to
be determined. Next substitute this into Eq.~A4! and cancel
a,

k0
21E

0

`

l2~k8!PF 1

E~k!2k82
1z~k8!d~E~k!2k82!Gdk8

5E~k!. ~A7!

If E(k).0 ~positive energy! this equation gives us the func
tion z(k). For negative energy thed function contribution
does not exist. These cases are treated separately below

1. Positive energy

If E(k).0 we putE(k)5k2 and solve to find

z~k!5
2k@k22k0

22F~k!#

l2~k!
, ~A8!

where

F~k!5PE
0

`l2~k8!dk8

k22k82
. ~A9!

We now knowg in terms of a, so in order to finda we
impose the commutator

@Â~k!,Â†~k8!#5d~k2k8!. ~A10!
04360
We use Eqs.~A2!, ~A6!, ~A8!, and ~A9! to find after some
algebra that the commutator is satisfied if

a~k!5
2kl~k!

A4k2@k22k0
22F~k!#21p2l4~k!

5
2k

l~k!Az2~k!1p2
. ~A11!

2. Negative energy

For E(k),0 thed function contribution to Eq.~A7! van-
ishes and the equation becomes

k0
22E~k!5E

0

` l2~k8!

k822E~k!

dk8. ~A12!

We putE(k)52m2, so the equation form is

k0
21m25E

0

`l2~k!dk

k21m2
. ~A13!

If l2(0)Þ0 the right hand side tends to infinity form→0,
and decreases monotonically asm→`. Since the left-hand
side is a monotonically increasing function ofm, this equa-
tion has exactly one solution form. We can now use Eq
~A6! to write gm in terms ofam as

gm~k!5
2aml~k!

k21m2
, ~A14!

and so from Eq.~A2!

Âm5amS â2E
0

`l~k!ĉ~k!dk

k21m2 D . ~A15!

As was the case for the positive energy solutions, we can
am from this equation by imposing the unit commutator
Âm , to obtain

am5S 11E
0

` l2~k!dk

~k21m2!2D 21/2

. ~A16!

If we now write our original operators in terms of the ne
operators,

â5E
0

`

a~k!Â~k!dk1amÂm , ~A17!

ĉ~k!5E
0

`

g~k8,k!Â~k8!dk81gm~k!Âm , ~A18!

and substitute these into the original Hamiltonian it is re
tively easy to verify that the expression obtained is that
Eq. ~10!.
2-6
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3. Consistency check

The full diagonalization scheme including the negat
energy mode is consistent only if it preserves the comm
tors. As a check on this we verify that the unit commuta
for â, the original annihilation operator of the cavity, is pr
served,

@ â,â†#5E
0

`

a2~k!dk1am
2 5I 1am

2 51. ~A19!

Consider the integralI, extend the range of integration to
2`, and decompose into partial fractions,

I 5
1

2E2`

` 4k2l2~k!dk

4k2@k22k0
22F~k!#21p2l4~k!

5
1

p i E2`

` S k2

2k@k22k0
22F~k!#2 ipl2~k!

2
k2

2k@k22k0
22F~k!#1 ipl2~k!

D dk. ~A20!

Sincel2(k) is an even function,F(k) can be written

F~k!5
1

2
PE

2`

` l2~k8!dk8

k22k82
. ~A21!

Now consider the functionG(k) defined forcomplex kin the
upper half plane~UHP! by

G~k!5
1

2E2`

` l2~k8!dk8

k22k82
5F~k!1p i

l2~k!

22k
, ~A22!

so thatF(k)5G(k)1p il2(k)/(2k). The integrand ofI ana-
lytically continued into the UHP can then be written

1

p i S k2

2k@k22k0
22G~k!#22p il2~k!

2
k

2@k22k0
22G~k!#

D .

~A23!

We will consider the second term. In order to find the po
we take the denominator and set it equal to zero. Putk5x
1 iy with y.0 and take real and imaginary parts,

x22y22k0
25

1

2E2`

` l2~k!~x22y22k2!dk

~x22y22k2!214x2y2
, ~A24!

2xy5
1

2E2`

` 22xyl2~k!dk

~x22y22k2!214x2y2
. ~A25!

Equation~A25! has no solution for nonzerox andy, and so
asy.0 the only solution hasx50. Then Eq.~A24! becomes

y21k0
25

1

2E2`

` l2~k!dk

y21k2
. ~A26!
04360
a-
r

s

This is the same equation as that form @Eq. ~A13!# and so
y5m is its solution. The second term in the integrand the
fore has one pole atk5 im and its residue is

S 41
i

mE2`

` 22kl2~k8!dk8

S k22k82)2
U

k5 im

D 21

5
1

4 S 11E
0

` l2~k!dk

~k21m2!2D 21

5
1

4
am

2 . ~A27!

Now we add toI the integral of Eq.~A23! around a semi-
circle of radiusR. This term tends to zero asR→` so it does
not affect I. Then a simple rearrangement of terms mea
that we can use Eq.~A27! to write

I 5
1

2
~ I 112am

2 !, ~A28!

so I 1am
2 51, the commutator~A19! is preserved, and the

scheme is consistent.

APPENDIX B: RESULTS FOR SPECIFIC COUPLINGS

In this Appendix we list the analytic results for some sp
cific examples of the couplingl(k).

1. Gaussian coupling

For a Gaussian coupling

l2~k!5l0
2e2Gk2

~B1!

the energy2m2 of the bound mode is given by the solutio
of the equation

k0
21m25

l0
2p

2m
f~mAG!, ~B2!

where we have defined the function

f~x!5exp~x2!@12erf~x!#, ~B3!

with erf(x) the usual error function. The overlap of the ca
ity mode with the bound mode is then given by

am
2 5

2m2

2m21~122m2G!~k0
21m2!1l0

2ApG
. ~B4!

The functionF(k) used in Eqs.~A11! and ~A21! can be
evaluated in terms of Dawson’s integral@28#,

D~x!5exp~2x2!E
0

x

exp~y2!dy, ~B5!

as

F~k!5
l0

2Ap

k
D~kAG!. ~B6!
2-7
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2. Lorentzian coupling

For Lorentzian coupling

l2~k!5
l0

2

k21b2
~B7!

the bound mode energy2m2 is obtained as the solution of

~k0
21m2!m~m1b!5

l0
2p

2b
. ~B8!

The population in the bound mode is

am
2 5

1

11l0
2I

, ~B9!

where

I 5
p~b12m!

4bm3~b1m!2
~B10!

and the functionF(k), obtained from Eq.~21! by calculating
the residues ofl2(k8)/(k22k82) on and above the real axis
is found to be
co
io,

v.

.

D
n

S

r,

s

04360
F~k!5
l0

2p

2b~k21b2!
. ~B11!

3. Broadband coupling

The results for broadband coupling

l2~k!5l0
2 ~B12!

can be obtained either by taking the limit of a very lar
width for the Gaussian or Lorentzian coupling or by dire
evaluation of the general formulas. The defining equation
m is

m~k0
21m2!5

l0
2p

2
. ~B13!

The bound mode population is

am
2 5

1

11l0
2p/~4m3!

5
2

31k0
2/m2

. ~B14!

Finally, we find that

F~k!50. ~B15!
A

tt.

ls,

.
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ls,
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