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Classically forbidden recurrences in the photoabsorption spectrum of lithium
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We present data on the photoabsorption spectrum of lithium atoms in an electric field at energies between
the saddle point of the Stark potential and below the field-free ionization threshold. The spectrum displays a
sequence of sharp resonances and a sequence of broad ones. We find that the broad resonances arise from the
classically forbidden reflection of waves above a dynamical potential barrier. The recurrence spectrum is also
observed and it is dramatically affected by above-barrier reflections. We have developed a semiclassical theory
that interprets the spectra using quasiclassical trajectories that undergo above-barrier reflection.

PACS numbg(s): 32.60:+i, 03.65.Sq, 32.36-r, 32.80-t

In this paper, we identify resonances in an atomic absorp- For an atom in an electric field below the field-free ion-
tion spectrum that are associated with a classically forbiddeization threshold, the situation is more complex. Let us re-
process: reflection of a quantum wave when the effectivestrict ourselves to the hydrogen atom in an electric field.

energy is above the top of a potential-energy barfegs. The potential energy of the electron
1-3 [1]. In this circumstance, a classical particle would di-
rectly escape from the atom. The corresponding quantum V(r)=-1Ir+Fz 1.7

_ _opFl2 ; ; _
broad resonances associated with this “above-barrier refled\2> & saddle at enerdﬁ_/s 2F~*. Classically, if an elec
ron leaves the atom with an energy bel&y, then no mat-

ter what direction it goes, it is reflected from a potential-
gnergy hill, and it remains bound to the atom forever. In
guantum theory, such an electron escapes from the atom only
by tunneling. Accordingly, the absorption spectrum consists
of a set of narrow resonances, with a lifetime governed by
the rate of tunneling through the barri@r the rate of spon-
taneous emission of a photon, whichever is larger

If the electron is ejected from the atom with an energy
between the saddle energy and the zero-field ionization en-

ergy Es<E<O0, then its fate is determined by its initial di-

Several phenomena in atomic spectroscopy manifeSketion of motion. The electron has enough energy to escape,
themselves as broad structures in the absorption spectrug,: uniess it has sufficient momentum in the “downhill”
and these can easily be confused with above-barrier reflegyraction, it will still remain bound to the atom. There is a
tion. (A) If a negative ion is placed in an electric field, a part

of the wave function of the photodetached electron travels, _ ,_ escape quickly, but those leaving the atom with
Cc = l

gphlllhal?a_lrnhst thf electric force, aTd th?hn |streflect%d. btadf)s 6< 6., are bound foreveXThose leaving a#, approach a
fown I'fh the re ltJrn!ng wave overdap_s € a'ﬁn:' an .'ntﬁr'periodic orbit that lies on a parabola not far from the
eres with the outgoing wave, producing oscillations in they e vtia| energy saddle.

absor_pti(_)n spectruii8]. (B) If a neutral atom is placed in an The critical angled, depends on the energy as
electric field, and the absorption spectrum is measured above
the field-free threshold, waves that travel uphill are also re- cosf.=1—E?/2F (1.2
flected back to the atom, again giving interference modula-
tions or resonancdgl]. Similar phenomena occur in a mag- so as the energy is raised frofy to zero, the critical angle
netic field[5]. These phenomena involve classically allowedvaries betweenr and 0: the bound sector shrinks and the
reflection(i.e., classicallyrequiredreflection: the wave fol-  escape sector grows.
lows the path that would be followed by a classical particle What are the consequences for the quantum spectrum in
of the same initial momentum, and the reflection coefficienthis energy range? Trajectories in the bound sector again
iS unity. correspond to long-lived quantum states; their lifetimes are
governed not by tunneling through the real potential-energy
barrier (Fig. 1) but by tunneling through the effective
*Present address: MIT Lincoln Laboratory, Lexington, MA potential-energy barrigfFig. 2). These long-lived states ap-
02420. pear in the absorption spectrum as narrow resonances. In

wave, however, has a reflection coefficient. We identify heré1

tion.”

In our analysis, we provide a quantitative description of
the spectrum by a new method. Also we extend closed-orb
theory[2] by introducing quasiclassical closed orbits under-
going above-barrier reflection.

|. CLASSICALLY ALLOWED AND CLASSICALLY
FORBIDDEN REFLECTIONS IN A HYDROGEN ATOM
IN AN ELECTRIC FIELD

critical angled., such that electrons leaving the atom with
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FIG. 1. The Stark potential enerd¥eq. (1.1)] has a potential
energy barrier, below which electrons can escape only by tunneling.
Above the saddle-enerdy,, electrons have enough energy to es-
cape, but they may still be classically bound forever by a dynamical

barrier (Fig. 2). Above the dynamical barrier they may still be
bound temporarily by classically-forbidden above-barrier reflection.  FiG. 3. Bound trajectorysolid line) and escaping trajectories
(dashed linesin Coulomb field combined with electric field along
contrast, quantum states associated with the classical escaipez axis. The scaled energy=—1.9, is slightly above the saddle
sector are essentially free states, and they give continuumpint energyesaqaie= — 2. All trajectories have enough energy to
absorption. It follows that the absorption spectrum as a funcescape, but those having ejection angke 6, are bound by the
tion of energy consists of narrow lines superposed on glynamical barrier in the coordinate. The energetically forbidden
smoothly rising continuuntsee Fig. 4 of Ref[6]). region is shaded.
Interesting phenomena occur if the initial direction of the
electron is close to the critical angle. While the trajectoriescontribution to the absorption spectrum would change from a
change discontinuously from bound to free if the ejectionnarrow line to a smooth contribution to the continuum.
angled is increased through. , the corresponding quantum  When the ejection angle is just on the free sid&of the
states must be continuously connected. States having elelifetime of the state is governed by the classically forbidden
tron ejection angles slightly on the bound side @fhave  process of above-barrier reflection. In this paper, we identify
relatively short tunneling lifetimegécompared to other qua- in the Stark absorption spectrum of Li a set of broad reso-
sibound statésand therefore they appear as relatively broadnances that correspond to classically forbidden above-barrier
resonances. States having electron ejection angles slightly dgflection. The same region of the spectrum has been exam-
the free side ofg, have relatively long lifetimegscompared ined in a number of studiels’], but none have previously
to other continuum statgsand therefore they appear as noted this particular phenomenon. It is of special interest to
“structure in the continuum.” If we were to vary the electric US because this phenomenon forces us to give a new exten-
field such that the ejection angle associated with a particula$ion of closed-orbit theory, introducing quasiclassical closed
quasibound resonance were to increase throdgh we  Orbits undergoing above-barrier reflection.
would see the width of the resonance increase rapidly, so its

1. HYDROGENIC STARK PROBLEM

W The Schrdinger equation and the classical Hamilton-
above-barrier reflection Jacobi equation are separable in parabolic coordinates
| = ____ — =4r+z, v=4r—z, with effective Hamiltonians

1-B
-——’wnm h,=p2/2—Eu*+Fu*/2=1+8,
| ! 2.2)
: : h,=pZ/2— Ev?—Fv*2=1-B.
V0 V1 \I
Everything we said in Sec. | is easily proved by analysis of

FIG. 2. Effective potentials for motion along andv coordi- these equations. The separation gonsﬁir(t— 1§ﬁS1) IS
nates. The quantities 13 and 1- 3 play the role of effective 'elated to the polar anglé at which a classical electron
energies. Thes motion is always bound; the motion can show |€aves the atom by

tunneling or above-barrier reflections, both of which are classically
forbidden. B=cosf. (2.2
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Also 1= B plays the role of the effective energy associated 2}
with the u or v motions, respectivelyFig. 2).
The motion along the coordinate is always boun@igs.

2 and 3. However, in thev coordinate, there is an “effec- 5

tive” or “dynamical” potential-energy barrier. If an electron 5

with energy aboveEs leaves the atom in a “downhill” di- €| & s s s
rection, then coé~—1, h,=1— B is large, and the electron ¢S | _ = I o | gl _
can escape over the barrier. If the electron leaves the atom ig | = | =] = 1S it
an uphill direction, then cog~1, h,=1-p is small, and & = = < =
the electron is trapped by the dynamical barrier. It has < | | |

. ) I
enough energy to escafieig. 1), but it is trapped below the ,,J )
dynamical barriefFig. 2), i.e., it never finds the escape route 1 WM
(Fig. 3. 134 135 136 137

It also follows easily from Eqs(2.1) that the boundary W
between bound and free motions is #.=cosf.=1
_EZ/ZF.' If th_e_‘ electron leaves the atom just Slightly_ d‘?W”h”' =—0.125, experiment and theofgotted ling. The parabolic quan-
from th'$ critical angle then t_he valut_e of, = 1_'6_ IS just . tum numbers i, ,n,) are indicated. All peaks correspond to reso-
barely higher than the dynamical barrier. A classical particle,ances that are far above the potential-energy saddle. States with
moves slowly over the barrier and escapes, but the quantug) — g are below the dynamical barrier: escape is classically forbid-

wave is partia.lly reflected and_ partially'transmitted. Thisgen and they decay by tunneling. Those with-1 are above the
classically forbidden above-barrier reflection produces broadynamical barrier and escape is classically allowed; they have a

resonances in the absorption spectrum. lifetime because of quantum reflection above the dynamical barrier.
The shadowed strips show the position and widths of these states.

FIG. 4. Scaled absorption spectrum of Li ve=F ¥ at ¢

lll. OBSERVATIONS AND INTERPRETATION BY WKB
Yo
APPROXIMATION JuW(E,B)= J Pu du=2f J2(1+ B)+ 2EWP—Fu? du,
osc 0

Scaled energy spectroscop®(a)] is invaluable for ob-
serving these states experimentally. In this method the exci- )
tation energyE and electric field= are simultaneously varied 5 (g g)= J p, dv= Zf 0J2(1—,8) F2Ev2+ Foldu,
so that the scaled energy=E/F'? is constant. The spec- osc 0
trum is recorded as the scaling variale= F ~¥* is varied. (3.2
Scaled energy spectroscopy maintains constant the shapes_of

classical orbits as it generates the absorption spectrudy describes the imaginary addend to action due to tunneling

Df(E,F)|,—cons=Df(W). or above-barrier reflection

The experimental setup is similar to that described in 1
[8(b)]. Lithium is excited to the 8 state by two-step resonant A, ==In(1+e 2¢), (3.3
excitation Z— 2p—3s, and then to am=0 Rydberg state 2
by a tunable laser. The absorption spectrum, Fig. 4, was , ) .
taken for scaled energy=E/\F=—0.125. This is far andK is an underbarrier action integral
above the Stark saddle energy,qqic=—2 and the critical o1
angle is about 7° from the uphill electric field axis. K:J p, dv. (3.9
We see in the absorption spectrum a reasonably flat con- vo
tinuum, a sequence of four narrow resonances, and a se- i )
quence of four less intense and broader resonangesy).  'he cuts on the complex plane are defined such thitis
These are associated, respectively, with escaping classicaPsitive below the barrier and negative above the barofer.
orbits, bound classical orbits, and quasiclassical orbits thdf @ parabolic-barrier phase correction
undergo quantum above-barrier reflection.
To make this connection, we extend semiclassical quanti- l +i £ —iln(m) n £ (3.5
zation conditions above the dynamical potential barrier by 2 2@ 27w \2@w) 27’ '
using a uniform-WKB approximatio(see, for examplg9]).

This leads to complex quantization conditions The quantization condition€3.1) are associated with com-
plex turning points, and they lead to complex quantized val-

I(E.B)=(n+12)2m, (319 uesofEandf. y .
Using these quantization conditions, we identify the nar-
) row peaks in the experimental spectriifig. 4) as the levels
J(E,B)=(n,+1/2)2m—iN,— 6, B.1b Wit parabolic quantum numberg,=100-103 andn,=0.
These are ordinary above-saddle-energy Stark states. Each of
whereJ, and J, are action variables associated with the these states has an energy above the saddirip but its
andv motion effective energy in the coordinate t B is below the bar-

o=argl'
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rier in the effective potential energy, (Fig. 2), so reflection  as the reflection coefficient for each cycleromotion.[K is

is classically mandated, and the state has a long lifetime. the underbarrier integral defined in E@.4).] The analysis
By the same calculation we identify the broad peaks in(which we will present elsewhershows that the exponential

Fig. 4 as above-barrier levels with,=1. These arise from factor exp(M,J,) in Eq. (4.4) should be multiplied by the

classically forbidden reflection above the effective potentialreflection coefficientR, once per cycle, to give a factor

energy barrier. R'UM”‘ :

IV. SEMIQUANTAL CALCULATION OF THE

_ 3E_E iM(J— pmi2) o IMy |
ABSORPTION SPECTRUM Df(E)=32m"(E EI)% fdﬁe' FTOR,

We have computed the absorption spectrum including X | V(O(E, B))|?. (4.6
continuum, quasidiscrete states and above-barrier reflection
using a new semiclassical method. Details of the theory will  Thijs formula can be summed analytically over,, to
be given in a later paper; here we give only a sketch of thgjive the formula
essential results.

If we have only a discrete spectrum, then the oscillator

E)2
strength for the transition from a given initial stat® a final Df(E)=2"7%E—E;) >, OB ED)
n,=0

staten is defined as 3d,1aB

fl =2(E,—Ep|(i|D|n)|2, (4.1) XA, (E,B(ny;E))— 7N, (E,B(ny;E))).

4,
whereD is the relevant component of the dipole operator. @7
The oscillator-strength-densiy f(E) is defined as We call this the semiquantal formula for the oscillator-
strength density. It has the following meaning.
Df(E)=>, fl S(E—E,). (4.2) (1) A(x,\) is a sum of broadened delta functions
n
; . . 1 coth\
In a previous papef[10], we presented a semiclassical A(x,)\)zz—ﬁ. (4.8

formula for the oscillator strength of discrete high-Rydberg ™ 1+(S”.](X ))
states, sinh\

5 When A —0, the function A(x,\) tends to = ”__&(x
[ V(O] (4.3 —24rn). The width of these functions is the natural In of the
reflection coefficieniR,, :
V(6) is the angular distribution of electron waves going out B B
from the atom as a result of excitation by light. A=\,=—InR,=—In(1+e *EM)~12 (49

In another papelrl1], following the method of Berry and i
Tabor[12], we used the Poisson sum formula to transform!T We take into account the total dependence of the argument

the oscillator-strength densi®f(E) (4.2) and (4.3 to the X=Ju(E,B(ny;E))—m on the energy, we come to the fol-
lowing formula for the absorption peak width:

J(E.B)

i 3 _E
fl =3273(E,—E) RN

form
AR
Df(E)=327%(E~E) 2, J dp eMO=ETR| N(0(E, B))I. B e
(4.4) F=mln(1+e ). (4.10
J(E,B)

Here the integral over the conserved quangtys an in-

tegral over all possible tori that exist at the given enelfgy \yhen the reflection coefficient is close to(far below the

The sum over all integers! is a sum over all possible 100pS harrier, wherk is large and positive then theA function is
on those tori.M J,+M,J, is the action integral around 510w and the width is exponentially small:

those loops, and we include in the sum$<M,,M,

<w). um is the vector of Maslov indices for single loops on ady
the tori; in our casqu=(2,2). %
As stated above, Ed4.4) applies to a discrete spectrum, I=——— 2K (4.1
when there is no tunneling. In the present case, we have 9(Ju,Jdv)
tunneling in thev coordinate, and Eq4.4) must be modi- d(E,B)

fied. A lengthy analysis shows that a very similar represen-

tation holds when tunneling is present and the semiclassicdihis formula was initially reported ifiL3]. When the reflec-
quantization conditions are complex. Let us define tion coefficient is close to zendar above the barrier, whef

is large and negativethe width is large and proportional to
R,(E,B)=e No=(1+e 2K(EA))~102 45 K
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ad,
*B

~ (3,3,
J(E,B)

(2) B(ny;E) is obtained from the quantization condition
for u motion, (3.19:

r [K|. (4.12

Ju(E,B(ny;E))=(ny+1/2) 2, (4.13

and 6(B(n,;E))=cos ! B(n,;E) represents the correspond-
ing polar angle, or initial direction of motion of the electron.
(3) For eachE, since—1<pg=<1, there is a range of in-
tegersn,, satisfying theu-quantization conditiort4.13. This
gives the limits of summation€n,<n]** with n]** equal
to the integer part of J,(E,1)/2m—1/2]. Associated with
each such integer is a peak of widith weighted by the
angular distribution of outgoing waves at the corresponding
angle, timeg ¢J,/9] 1. The peaks are positioned at ener-
gies given by the -quantization conditiori3.1b

J,[E,B(ny;E)]+ 8= (n,+1/2)27 (4.14)

(in good approximation, we may neglect the imaginary ad-
dendi\, when finding the eigenenergjes

This semiquantal formuld4.7)—(4.13 is easily imple-
mented. It gives the result shown as a dotted curve in Fig. 4 .
[14]. We see that this formula includes the nearly constant FIG: 5. Two examples of above-barrier-reflected orbi@.

continuum. the narrow below-barrier resonances. and thE€avy line: a below-barrier closed orbit which makes one cycle of
broad abO\’/e-barrier resonances ' u motion and 5 cycles of motion (1/5 orbif. Light line: above-

barrier-reflected orbit with the same ratio of periods. Classically, an
electron would follow the dashed line and escaf¥he critical

V. CLOSED-ORBIT SEMICLASSICAL CALCULATION OF angle 6, lies between the heavy and light line©n the below-
THE ABSORPTION SPECTRUM AND THE barrier orbit, the electron makes a full stop and then retraces itself.
RECURRENCE SPECTRUM Near the stop-point the trajectory is rectilinear and parallel to the

We call the above approach “semiguantal” because itstopping force(the sum of the Coulomb force and the force from
PP q the external field The above-barrier closed orbit also retraces it-

uses the WKB approximation, but everything in the theory If. However, at the endpoint, the trajectory does not have a stop-

. . S
involves quantum concepts: individual resonance states arﬁng point—the reflection occurs with nonzero velocity, The 1:6

lifetimes. Now we present a semiclassical calcullauon, whichyy ove-barrier closed trajectory shows an example of a “ray split-
uses closed-orbit theory to compute the absorption and recuf g que to above-barrier reflection. The heavy line is the outgoing
rence spectra. We shall show that an important feature of th@ajectory; on its third passage through the axis, a ray splitiing
spectrum is associated with classical orbits that undergo noRycuyrs, and the transmittédlassical trajectory continues to infin-
classical above-barrier reflection. ity (dashed linpwhile the above-barrier-reflected trajectory returns
The propagation of a quantum wave from the atom to-o the atom, but not retracing itsethin line). In the blowupgright)
ward the dynamical barrier is described in semiclassical apwe have indicated the top of the-barrier by the dotted-dashed
proximation by a system of rays—classical orbits obeyingcurve.
Newton’s laws. Near the top of the dynamical barrier the
semiclassical approximation breaks down and the ray deciated with above-barrier reflection are shown. These new
scription is no longer valid. The quantum solution near thenonclassical orbits that arise from above-barrier reflection
barrier top yields a transmitted wave and a reflected wavemust be included in closed-orbit theor§f-his conclusion is
The transmitted wave corresponds to ordinary Newtoniatomplementary to conclusions reached by Maitra and Heller
trajectories that are launched in the escape sector and go [to5]. They examined the quantum propagator in time- and
infinity (Fig. 3). The reflected wave can also be correlatedenergy-domains for one-dimensional motion with a potential
with Newtonian trajectories, but the reflection itself is abarrier. One might anticipate that the Green function in the
guantum process that cannot be described by Newtonian menergy domain is a Fourier transform of the time propagator
chanics. calculated using classical trajectories joining two given
For the Stark system, E¢L.1), the dynamical barrier lies points in space. Maitra and Heller show that classically al-
on a parabolic curve = |E|/F, which is indicated as the lowed trajectories are not enough; tunneling trajectories must
dotted-dashed line in Fig. 5. Examples of closed orbits assalso be considered for energies below the barrier top. Our
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result shows that above the top, nonclassically reflected tra 4

jectories make their contribution. 3 @)
A quantitative description can be obtained starting again Theory without reflections

from Eq. (4.6). First let us set the reflection coefficieRt,

=1, so Eq(4.6) is equivalent to Eq(4.4). In that case, it can 14

be shown[11] that if the integral oveiB is evaluated using

the stationary-phase approximation, the result is the closedg 5 10 15 20

orbit formula for the oscillator-strength-density. Each closed § (®)

orbit for this regular system is labeled by a pair of integersé 21 ¢ ,' }

M=(M,,M,) representing the number of cycleswandv /

motion before closure. The closed orbit lies on a rational §

torus characterized by conserved quantitiesdy,), and the

action integral around the closed orbit is

Theory with reflections

ce

Recurre|

5 10 15 20

Su=MyJu(E,Bu) +M,J,(E,Bw). (5.1) MR , ()
oA Experiment

The contribution of each closed orbit to the oscillator-
strength-density is 14

5 10 15 20
S

5 12 ‘
DfM<E>=(2—”2) [ JO(E, Byy))|2im el (S0~
d°Sw1dp FIG. 6. Recurrence spectra vs the scaled aaidrhe nth peak
(5.2 represents the effect of tmeh return of the parallel orbit combined
with all other orbits which have oscillations ofu motion. Dashed
Now let us incorporate the effects of tunneling or escapaine is the theoretical envelope of the modulations, induced by the
in the v coordinate. Not surprisingly, the effect is that the interference of quasiclassical closed orbits undergoing above-
RHS of Eq.(5.2) is multiplied by the reflection coefficient barrier reflections with the ordinary closed orbits.
Ri"” whereM, is the number of cycles af motion before
closure. If the reflection coefficient is dmpenetrable bar-
rier), we get the standard closed-orbit formula. For a real

barrier, R,<1, so the contribution of each closed-orbit is _
reduced.(The minimal value ofR, for bound motion is Closed-orbit theory[2] shows that a recurrence spectrum

reached at the top of the effective potential barrier, wher&0nsists of peaks positioned at the scaled actiofsclosed
R,=2"12) Above the barrierR, decreases exponentially. _orbl_ts. The recurrence spectrum of the da'ta in Fig. 4 is shown
The resulting formula in Figs. 6b) and Gc¢). Large-scale modulations are conspicu-
ous. We shall show that they arise from above-barrier reflec-
12 tions.
—pM, 2 i(Sy— m4) For scaled energy=—0.125, the action of every orbit is
Piu(E)=R, ((9251\4/!9,32) IVCO(E.Au))ime close to a multiple of the action of the parallel orlsjt.
(5.3  Therefore individual orbits are not resolved in Fig. 6: each
peak corresponds to all orbits having the same number of
also applies to nonclassical orbits associated with abovedscillations ofu motion. If we neglect above-barrier reflec-
barrier reflection. In that case the quasiclassical orbit goetions, we get a smoothly decaying sequence of péBig
out to a complex turning point, and the associated wave i§(@]. The decay rate is determined by the width of the sharp
partially reflected. In the present case, we find reflection cobelow-barrier peakssee Fig. 4 this width is governed by

efficients of about 0.57 for the above-barrier 1/5 orbit, andthe energy resolution in the experiment.
about 0.67 for the above-barrier 1/6 orbit. When above-barrier reflections are taken into account,

More generally, Eq(5.3) is accurate if the closed orbit is modulations occur in the recurrence spectrum. The effect is
well-separated from the endpoing==1, and from the surprisingly large—the modulations are comparable to the
critical point 8., where the reflection coefficient changes peak heights in Fig. 6. We may contrast this with the ratio of
rapidly as a function of3. (Refinements of a familiar type the peak heights in the photoexcitation spectrum, Fig. 4,
are necessary otherwi$&2].) Such calculations have been Where peak heights associated with above-barrier resonances

carried out, and they give good agreement with semiquantaire only 10% of the heights of the below-barrier resonances.
calculations. The enhanced effect of above-barrier reflections in the recur-

The effect of the classically forbidden above-barrier-rence spectrum arises because the latter is sensitive to the
reflected orbits is dramatically revealed in a recurrence spedntegrated oscillator-strength, , which is still considerable
trum. The recurrence spectrum is given ¥(s)|?> where  for the above-barrier resonances.

R(s) is the Fourier transform dd f (w) over a selected range In the scaled spectrum, the narrow resonances wjth
of w (133.2<w=138.5 in our casg =0 are nearly equally spaced byr2s) [16], s being the

R(s)= f e 2mSWDf(w)dw. (5.4
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distance between peaks in the recurrence spectrum. Thiecay in the modulation amplitude arises because the recur-
broad levels are displaced from these yy/ T, fraction of  rence strengths of above-barrier orbits decrease as a power of
their spacingT, and T, are the periods of classical motion the reflection coefficient.

taken at the values d& and 8 corresponding to the above-

barrier resonance. Taking also into account the resonance

widths T, , we can make the Fourier transform analytically VI. CONCLUSION

and find the envelope of recurrence peaks: .
We have measured the scaled photoabsorption spectrum
f(s)=fae 2o+ f2g=2ml1s of the Li atom in an external electric field. It shows a peri-
odic sequence of sharp peaks associated with quasibound
+2ff,e "ot TS cos(ZWE i)_ (5.5) states, and it shows broad peaks, identified as classically_ for-
Ty 8 bidden above-barrier resonances. These broad low-amplitude
peaks have a dramatic effect on the recurrence spectrum,
This envelope is in good agreement with more detailed caliytroducing about 100% modulation. We developed a semi-
culations[Fig. 6(b)]. There is also good agreement in the cjassical theory of the oscillator-strength-density that is in
depth and perlod' of modulation with the experimental recurygreement with experimental data. We have shown that the
rence spectrurfiFig. 6(c)]. ~ modulation carries important information about above-
The closed-orbit sum reveals that the large modulations iyayrier resonances: the depth of modulation is related with
the recurrence spectrum result from the interference of clage integrated oscillator-strength of the resonances, and the
sical, below-barrier orbits and nonclassical, above—barrieaecay rate is determined by the width of resonances. The

closed-orbits. The major closed-orbit contributions comeg|osed-orbit interpretation of the effect involves nonNew-
from T,/T,=1/4 and 1/5 below-barrier orbits and from 1/5 {gnjan orbits that undergo above-barrier reflection.

and 1/6 above-barrier orbits. The period of modulation of the
recurrence spectrum is, according to Eg5), T,/T,. At E
and g qf the broad resonancé,,/T,=1/4.7, or 4.7 peaks ACKNOWLEDGMENTS
per period.
The peaks at greater scaled actions correspond to longer This research was supported by the National Science
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