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Interelectronic-interaction effect on the radiative recombination
of an electron with a heavy He-like ion
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Interelectronic-interaction correction of first order in 1/Z is studied for radiative recombination of an electron
with a heavy He-like ion in the ground state. A rigorous relativistic treatment is compared with two frequently
applied approximations. A calculation is carried out for radiative recombination of an electron into 2s, 2p1/2,
and 2p3/2 states of He-like uranium for impact energies between 10 and 700 MeV/u.
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I. INTRODUCTION

In energetic atomic collisions between highly charg
high-Z ions and low-Z target atoms, radiative electron ca
ture~REC! is one of the most important reaction channels.
the limit of a loosely bound target electron, REC is identic
with radiative recombination or its time-reversed analog,
photoionization process. Reactions of this type have b
extensively studied in recent years for heavy highly char
projectiles up to bare uranium. The relativistic theory
REC in the one-electron approximation is well established
present~see Ref.@1# and references therein!, and results of
numerical calculations@2# are in excellent agreement wit
experiments. In particular, the spin-flip contribution to RE
calculated in Ref.@2#, was recently identified in angular
differential measurements@3#.

While radiative recombination of an electron with a ba
nucleus is well understood theoretically, the process invo
ing an ion with several electrons is complicated by the int
electronic interaction. The REC process into the L-shell
He-like uranium was studied both experimentally and th
retically in Ref.@4#. In that work, the interelectronic interac
tion was taken into account using a simple model employ
an effective nuclear charge ofZeff590.3. On the level of the
experimental accuracy, this model provides a satisfactory
scription of the process. However, in view of the progress
experimental techniques that has been achieved during
last few years, it is tempting to search for a rigorous theo
ical description of interelectronic-interaction effects in the
processes. A systematic QED theory of radiative recomb
tion has been worked out in Refs.@5,6#. In the present work,
we apply this theory to a rigorous investigation of t
interelectronic-interaction corrections of first order in 1/Z to
radiative recombination of an electron with a helium-li
ion. Our treatment is exact in this order, i.e., the full phot
propagator is used, including the Coulomb, Breit, and
tarded parts.

Relativistic units (\5c51) are used in the article.

II. BASIC FORMULAS

We consider radiative recombination of an electron w
momentumpi and polarizationm i with a heavy He-like atom
1050-2947/2000/62~4!/042712~9!/$15.00 62 0427
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in the ground state that is placed at the origin of the coo
nate frame. The final state of the system is a Li-like ion
the state (1s)2v, wherev denotes a valence electron. Th
picture corresponds to the projectile system, if we study
radiative recombination of a free target electron with a hea
He-like projectile. The differential cross section of this pr
cess is given by

ds5
~2p!4

v i
utu2d~Ef1kf

02Ei2pi
0!dk f , ~1!

whereEi andEf are the energies of the initial (u i&) and the
final (uf &) states of the atom, respectively;pi

05Api
21m2 is

the energy of the incident electron,kf5(kf
0 ,k f) where kf

0

and k f are the photon energy and momentum, respectiv
v i is the velocity of the incident electron in the projecti
frame, andt is the amplitude of the process that is connec
to theS-matrix element by

^kfe f ,fuSupim i , i&52p id~Ef1kf
02Ei2pi

0!t. ~2!

Heree f5(0,ef) is the photon polarization andpi5(pi
0 ,pi).

To zeroth order the amplitude of the process is given by~see,
e.g., Ref.@6#!

t (0)5^vuea•A f* up&, ~3!

whereuv& denotes the wave function of the valence electr

A f~x!5
ef exp~ ik f•x!

A2kf
0~2p!3

~4!

is the wave function of the photon, andup&5cpim i (1)(x)
indicates the wave function of the incoming electron in t
continuum spectrum with a defined asymptotic momentu
defined by
©2000 The American Physical Society12-1
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cpim i (1)5
u~pi ,m i !exp~ ipi•x!

Api
0

m
~2p!3

1@pi
02H0~12 i0!#21VCcpim i (1) . ~5!

Here H05a•p1bm is the free-electron Hamiltonian,VC

indicates the nuclear potential, andūu51. To zeroth order
the process considered here is equivalent to the capture
electron by a bare nucleus.

The derivation of expressions for interelectron
interaction corrections can be simplified significantly b
cause we consider the radiative recombination of an elec
with an atom in a closed-shell configuration. As is know
~see, e.g., Ref.@7#!, closed shells can be taken into accou
simply by a redefinition of the vacuum. In our case, we
gard the (1s)2-shell as belonging to a new vacuum. Th
redefinition of the vacuum corresponds to a replacemen
the standard Feynman integration contour~indicated byCF

in Fig. 1! by a new contour denoted byCF8 in Fig. 1. The
one-electron corrections calculated with the new vacuum
clude the whole effect of an interaction with the (1s)2-shell.
Therefore, the interelectronic-interaction correction can
found as the difference of the one-electron corrections ca
lated with the new vacuum and with the standard one. T
difference of integrals along the contoursCF and CF8 is an
integral along the contourC1s , i.e., the pole contribution a
the pointv5«1s . This is illustrated in Fig. 1. QED correc
tions of first order ina for radiative recombination of an
electron with a bare nucleus were recently derived in R
@6#. A simple recipe can be given to obtain general expr
sions for the interelectronic-interaction corrections of fi
order in 1/Z from the corresponding expressions for the QE
corrections in Ref.@6#. All energy integrations along the
standard Feynman contourCF should be replaced by a pol
contribution at the pointv5«1s . We note that, unlike the
QED corrections, the pole contribution is free from ultravi
let and infrared divergences.

The derivation as described above yields to first orde
1/Z,

FIG. 1. The branch cuts and the poles of the Dirac-Coulo
Green function in the complex energy plane.CF indicates the Feyn-
man integration contour for the standard vacuum;CF8 denotes the
integration contour for the vacuum with the (1s)2-shell included.
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t int
(1)5(

l 51

4

t l
int , ~6!

where

t1
int5(

mc
(
P

~21!P

3 (
«nÞ«v

^PvPcuI ~DPcc!unc&^nuea•A f* up&
«v2«n

1(
mc

S 2
1

2D ^cvuI 8~Dvc!uvc&^vuea•A f* up&, ~7!

t2
int5(

mc
(
P

~21!P(
n

^vuea•A f* un&^ncuI ~DPcc!uPpPc&

pi
02«n~12 i0!

,

~8!

t3
int5(

mc
(
P

~21!P(
n

^PvPcuI ~DpPv!upn&^nuea•A f* uc&

«c2kf
02«n~12 i0!

,

~9!

t4
int5(

mc
(
P

~21!P(
n

^cuea•A f* un&^vnuI ~DPpv!uPpPc&

«c1kf
02«n~12 i0!

.

~10!

Here, uc&5ukcmc& and uv&5ukvmv& are the wave functions
of the core and the valence electrons, respectively;k is the
Dirac angular-momentum quantum number,m indicates the
momentum projection, then-summation is performed ove
the whole spectrum of the Dirac equation,P is the permuta-
tion operator@PaPb5(ab) or (ba)], Dab5«a2«b , and
kf

05pi
02«v is the energy of the emitted photon. The oth

notations areI 8(D)5@dI(v)/dv# v5D ,

I ~v,x1 ,x2!5e2amanDmn~v,x1 ,x2! ~11!

is the operator of the interelectronic interaction,am5(1,a)
are the Dirac matrices,

Dmn~v,x1 ,x2!5gmn

exp@ iAv21 idux12x2u#
4pux12x2u

~12!

is the photon propagator in the Feynman gauge, the bra
of the square root is fixed by the condition Im(Av21 id)
.0, andd is small and positive.

The corresponding Feynman diagrams are presente
Fig. 2. The diagrams Figs. 2~a! and 2~c! correspond to the
direct (PaPb5ab) and theexchange(PaPb5ba) parts of
t1

int , and the diagrams Figs. 2@~b!,~d!#, Figs. 2@~e!,~g!#, and
Figs. 2@~f!,~h!# correspond to the direct and the exchan
parts of the correctionst2

int , t3
int , andt4

int , respectively.
Equations ~7!–~10! represent the interelectronic

interaction corrections to the amplitude of the process. T
corresponding corrections to the differential cross section

b
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ds l
int

dV f
5

~2p!4

v i
k f

22 Re@t (0)* t l
int#. ~13!

In addition to this, one should take into account a contrib
tion originating from a modification of the energy of th
emitted photon in the zeroth-order cross section due to
interelectronic interaction, given by

dsen
int

dV f
5

ds (0)

dV f
U

k
f
05p

i
02 «̃v

2
ds (0)

dV f
U

k
f
05p

i
02«v

(0)
. ~14!

Here «̃v5«v
(0)1D« int

(1) is the energy of the valence electro
including the first-order interelectronic-interaction corre
tion,

D« int
(1)5(

mc
(
P

~21!P^PvPcuI ~DPvv!uvc&. ~15!

FIG. 2. Feynman diagrams representing the interelectro
interaction corrections of first order in 1/Z to radiative recombina-
tion of an electron with a He-like atom;pi denotes the incoming
electron in the continuum spectrum, andv and c indicate the va-
lence and the core electrons, respectively.
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The total interelectronic-interaction correction to the cro
section in first order in 1/Z is given by

ds int
(1)

dV f
5

dsen
int

dV f
1(

l 51

4 ds l
int

dV f
. ~16!

We note that the direct part of the correctionst1
int andt2

int

@diagrams Figs. 2~a! and 2~b!# has a transparent physica
meaning. It can be shown that this part of the correctio
corresponds to a modification of the incoming and the o
going electron wave functions by the screening potential

Vscr~x!52aH 1

xE0

x

dyy2@g1s
2 ~y!1 f 1s

2 ~y!#

1E
x

`

dyy@g1s
2 ~y!1 f 1s

2 ~y!#J , ~17!

whereg1s and f 1s are the upper and the lower components
the radial wave function of the ground state, respective
From physical reasons, one can expect that the effect of
interelectronic interaction can be described with reasona
accuracy by considering the capture of an electron by a b
nucleus with the nuclear potential modified by the screen
potential @Eq. ~17!#. We refer to this approach as th
screening-potentialapproximation. As we will show below
this simple approximation yields the dominant part of t
interelectronic-interaction effect in a wide region of proje
tile energies.

We note that a resonance arises in Eq.~10! when the
energy argument of the Green function comes close t
discrete energy level

pi
02~«v2«c!'«n . ~18!

This corresponds to the resonant process of dielectronic
combination. As it stands, Eq.~10! is valid only in the non-
resonant case. Resonant processes can be rigorously tr
by the method developed in Ref.@5#. In this article we study
only the nonresonant process of radiative recombination
exclude from the consideration energy intervals close to
resonances@Eq. ~18!#. For the states under consideratio
these resonances occur in the region of projectile energie
115–190 MeV/u.

III. NUMERICAL DETAILS

The interelectronic-interaction correction to the differe
tial cross section of radiative recombination of an electr
with a He-like ion in the ground state is given by Eq.~16!
after a summation over the angular momentum projecti
mv of the final state, over the polarizations of the emitt
photon, and averaging over the polarizationsm i of the in-
coming electron. Because of the summation over the m
netic substates of the initial and the final states, all phys
polarizations of the emitted photon are equivalent. Below
assume that the photon-polarization vectore has only one
spherical componentq. The summation over the magnet
substates and the angular integrations are carried out ana

c-
2-3
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cally. As the resulting expressions are rather lengthy, only
outline of the angular reduction technique used here is gi
in the appendix.

The resulting formulas contain an infinite summation ov
the Dirac angular-momentum quantum numberk of the in-
coming electron. In the actual calculations the sum w
evaluated until convergence was achieved~typically, up to
ukmaxu510220). Another infinite summation is the sum ov
the intermediate statesn in Eqs.~7!–~10!. The sum overn for
a fixed angular-momentum quantum numberkn is evaluated
using the methods described below. The remaining sum
tion over kn is finite after the angular reduction is carrie
out. The angular reduction yieldskn5kv for the correction
t1

int andkn5k for the correctiont2
int . For the correctionst3

int

and t4
int , there are three values ofkn for each value ofk,

which contribute in the case of capture into a state withj v
51/2, and five forj v53/2.

For the numerical evaluation of the sum overn with a
fixed angular-momentum quantum numberkn , we use dif-
ferent numerical tools. In order to calculate the direct par
the correctionst1

int andt2
int , we solve the Dirac equation with

the Coulomb potential modified by the screening poten
@Eq ~17!#. The difference between the zero-order cross s
tions evaluated with the modified wave functions and w
the Coulomb wave functions can be thought to be the fi
order correction induced by the screening potential, p
higher-order ladder contributions. Since the higher-order c
rections are suppressed by a factor 1/Z, the resulting correc-
tion can be considered as a good approximation to the
rectionst1,dir

int and t2,dir
int for high-Z systems~we indicate the

direct and the exchange parts with labels ‘‘dir’’ and ‘‘exch
respectively!. For the numerical solution of the Dirac equ
tion with a modified Coulomb potential we use the packa
RADIAL from Ref. @8#, with some minor modifications fo
continuum solutions.

The numerical evaluation of all other corrections is c
ried out directly, without any additional approximations. T
summation over the whole spectrum of the Dirac equatio
performed using two different methods. When the ene
argument of the Green function is less than the electron
mass, we use the B-splines method for the Dirac equat
developed by Johnsonet al. @9#. In this method, the infinite
summation in the spectral representation of the Green fu
tion with a fixed angular-momentum quantum number is
placed by a finite sum over basis-set functions. This met
is used for the numerical evaluation of the correctio
t1,exch

int , t3
int , and the correctiont4

int if «c1kf
0,m.

If the energy argument of the Green function is real a
larger than the electron rest mass, the B-splines metho
not applicable anymore, and we use analytical express
for the Green function for the potential of a homogeneou
charged spherical shell@10#. Numerical algorithms for the
computation of the Green function with an extended nucl
can be found in Refs.@11,12#. Special care should be take
evaluating the Green function for real energies larger t
the electron rest mass~see, e.g., Ref.@13#!. The Green func-
tion is an analytical function of the energy« in the complex
«-plane with branch cuts (2`,2m#, @m,`) along the real
04271
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«-axis and poles corresponding to the discrete Dirac ene
levels, as shown in Fig. 1. The behavior of the Green fu
tion on the real« axis is defined by the sign of the infinites
mal additions in the energy denominator of Eqs.~8!–~10!. In
our case the addition is negative and, therefore, the cu«
.m should be approached from the upper half of t
«-plane. Considering the dependence of the Green func
on «, one can see that the cut structure of the Green func
is defined by the branch cuts of the square rootAm22«2.
The square root is defined as positive in the gap2m,«
,m on the real«-axis. Outside of the gap, the sign of th
square root is fixed by the condition Re$Am22«2%.0. So,
starting from the gap2m,«,m and approaching the
branch cut «.m from the upper half-plane, we hav
Am22«2→2 iA«22m2. This prescription for the analytic
continuation of the square root defines the sign of the ima
nary part of the Green function.

A numerical evaluation employing the analytical form
the Green function is more time-consuming than a calcu
tion based on the B-splines method. Thus, in actual calc
tions we used the last method whenever possible. Still,
evaluation of a correction using both methods was used
check for our code.

IV. NUMERICAL RESULTS AND DISCUSSION

The numerical results for the interelectronic-interacti
correction to the total cross section of radiative recombi
tion of an electron with He-like uranium are presented
Table I. The calculations are carried out in the laborato
frame for capture into the 2s, 2p1/2, and 2p3/2 states of
He-like uranium and for projectile energies of 10–700 Me
per nuclear mass unit. The various contributions to the cr
section listed in Table I correspond to Eqs.~13! and ~14!;
s int

(1) denotes the total first-order interelectronic-interacti
correction. We note that the corrections1,dir

int 1s2,dir
int contains

also some higher-order contributions, which are small co
pared to the first-order contribution. In Table II we compa
the results of the rigorous relativistic treatment for the to
cross section with the calculations based on the screen
potential approximation and on the effective-nuclear-cha
approximation. A comparison of the corresponding resu
for the differential cross section is presented in Figs. 3
The comparison shows a decreasing accuracy of the app
mate methods for increasing projectile energy. They a
yield better results for capture into excited states than
capture into the ground state. In average, the screen
potential approximation is found to be more reliable than
effective-nuclear-charge approximation. Its typical deviati
from the rigorous treatment is about 10%–20% of t
interelectronic-interaction correction, i.e., about 1%–2%
the cross section of the process.

The dominant contribution to the effect of the interele
tronic interaction originates from the correctionssen

int and
s1,dir

int 1s2,dir
int , which are almost equivalent to the screenin

potential approximation. In addition to this, a significant co
tribution arises from the corrections4

int in the region of pro-
jectile energiespi

0,m1«v2«c . The reason for this is the
2-4
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TABLE I. Various contributions to the interelectronic-interaction correction to the total cross sectio
radiative recombination of an electron into lowest-lying states of He-like uranium in barns.

E @Mev/u# sen
int s1,dir

int 1 s2,dir
int s1,exch

int s2,exch
int s3

int s4
int s int

(1)

2s-state:
10 216.162 23.022 22.063 1.615 20.404 21.357 221.392
50 21.984 21.179 20.235 0.245 20.026 20.548 23.727
100 20.664 20.716 20.072 0.081 0.005 20.690 22.055
200 20.2009 20.3738 20.0206 0.0165 0.0083 20.112 20.683
300 20.0975 20.2358 20.0110 0.0038 0.0063 20.0413 20.3755
500 20.0392 20.1219 20.0057 20.0003 0.0039 20.0131 20.1764
700 20.0219 20.0759 20.0039 20.0003 0.0025 20.0056 20.1051

2p1/2-state:
10 231.946 23.984 1.268 0.574 1.807 23.115 235.396
50 23.465 22.912 0.334 0.126 0.295 20.776 26.398
100 21.041 21.560 0.164 0.0614 0.110 20.821 23.088
200 20.2734 20.6398 0.0683 0.0256 0.0304 0.003 20.786
300 20.1208 20.3435 0.0381 0.0137 0.0116 0.0145 20.3864
500 20.0431 20.1466 0.0173 0.0054 0.0025 0.0083 20.1562
700 20.0223 20.0821 0.0102 0.0027 0.0006 0.0049 20.0861

2p3/2-state:
10 235.002 24.616 1.316 0.496 2.493 24.695 240.008
50 23.061 23.285 0.250 0.070 0.367 21.062 26.721
100 20.782 21.523 0.096 0.023 0.126 20.838 22.896
200 20.1679 20.5238 0.0294 0.0060 0.0330 20.031 20.655
300 20.0649 20.2523 0.0132 0.0023 0.0130 0.0081 20.2804
500 20.0194 20.0942 0.0045 0.0005 0.0035 0.0080 20.0970
700 20.0089 20.0485 0.0022 0.0001 0.0014 0.0048 20.0489
t
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smallness of the energy denominator in Eq.~10!, which en-
hances the contribution of the discrete energy states in
sum over the Dirac spectrum. When the energy denomin
approaches zero, a resonance occurs that corresponds
resonance process of dielectronic recombination.

V. CONCLUSION

In this work we have carried out a systematic investig
tion of the effect of the interelectronic interaction on th
process of radiative recombination of an electron with H
like uranium. The applicability of frequently used approx
mate methods was studied and compared with the rigor
relativistic treatment. The screening-potential approximati
in which an interaction of an electron with a He-like ion
replaced by an interaction with a modified potential,
shown to be a reliable tool for estimating both total a
differential cross sections of the process for projectile en
gies far from resonance. Still, full relativistic calculations a
needed to obtain an accuracy better than a few percent o
cross section of the process. The results of the rigorous tr
ment of the interelectronic-interaction correction are p
sented for radiative recombination of an electron into 2s,
2p1/2, and 2p3/2 states of He-like uranium for impact ene
gies between 10 and 700 MeV/u.
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APPENDIX: ANGULAR INTEGRATION

In this section we briefly describe a technique that w
used in this work for angular integrations and summatio
over magnetic substates in Eqs.~7!–~10!. We illustrate this
technique, taking the correctiont3

int as an example. Let u
consider the expression

K3,dir[ (
mcmn

^vcuI ~kf
0!upn&^nua•e* e2 ik fxuc&, ~A1!

originating from the direct part oft3
int . We expand the wave

function up& of the incoming electron with a define
asymptotic momentum over the wave functions with a
fined angular momentum~see Ref.@1# for details1!

1Equations~4.120! and ~9.39! of Ref. @1# contain a misprint. An
expression (l 11)p/2 should be added to the phase shiftDk in these
equations.
2-5
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TABLE II. Zeroth-order total cross sections (0) and the first-
order interelectronic-interaction correction in different evaluatio
in barns.szeff

(1) denotes the interelectronic-interaction correction c
culated in the effective-nuclear-charge approximation with para
eterZeff590.3,sscr

(1) corresponds to the screening-potential appro
mation, ands int

(1) indicates the results of the rigorous relativist
treatment.

E @Mev/u# s (0) szeff
(1) sscr

(1) s int
(1)

2s-state:
10 504.65 217.390 219.635 221.392
50 93.23 23.699 23.207 23.727
100 41.203 21.880 21.393 22.055
200 16.423 20.8881 20.5780 20.6829
300 9.105 20.5446 20.3345 20.3755
500 4.160 20.2800 20.1615 20.1764
700 2.457 20.1768 20.0979 20.1051

2p1/2-state:
10 656.95 238.523 234.978 235.396
50 92.10 27.086 26.204 26.398
100 33.041 22.975 22.535 23.088
200 10.405 21.0842 20.8915 20.7861
300 5.042 20.5650 20.4538 20.3864
500 1.973 20.2382 20.1857 20.1562
700 1.065 20.1336 20.1022 20.0861

2p3/2-state:
10 854.82 238.620 239.671 240.008
50 100.61 26.158 26.278 26.721
100 31.489 22.259 22.275 22.896
200 8.376 20.6908 20.6826 20.655
300 3.646 20.3213 20.3132 20.2804
500 1.249 20.1172 20.1122 20.0970
700 0.622 20.0600 20.0568 20.0489
ri-

04271
cpim i (1)~x!5
1

Api
0pi

(
km

i leiDkClml ,~1/2!m i

j m Ylml
* ~ p̂i !

3S g«k~x!xkm~ x̂!

i f «k~x!x2km~ x̂!
D . ~A2!

The overall factor in front of the sum corresponds to
normalization of the wave functioncpim i (1) fixed by Eq.~5!.

Clml ,sms

j m and Ylml
(p̂i) denote a Clebsch-Gordan coefficie

and a spherical harmonic, respectively.
We evaluate the matrix element of the interelectron

interaction operator by writing it in the form

^abuI ~«!ucd&5a(
L

JL~abcd!RL~«,abcd!. ~A3!

In this way we separate the part depending on angular
mentum projections @JL(abcd)# from the remainde
RL(«,abcd), which does not depend on them. The funct
JL(abcd) is given by

JL~abcd!5(
mL

~21!L2mL1 j c2mc1 j d2md

2L11

3Cj ama , j c2mc

LmL Cj dmd , j b2mb

LmL . ~A4!

The apparent expressions for the functionRL(«,abcd) can
be found in Ref.@14#.

Now we consider the matrix element of the photo
emission operator̂nua•e* e2 ikxuc&. All terms containing the
spherical bispinorsxkm are expanded in terms of the sphe
cal vectors according to

s
-
-

-

n
e

a-
o-
u.

e

on

e

FIG. 3. Interelectronic-interaction correctio
s int

(1) to the differential cross section of radiativ
recombination into 2s, 2p1/2, and 2p3/2 states of
He-like uranium is presented in the first three di
grams. The calculation is carried out in the lab
ratory system at a projectile energy of 10 MeV/
The full line refers to the rigorous relativistic
treatment. It should be compared with th
screening-potential approximation~dashed line!
and the effective-nuclear-charge approximati
with Zeff590.3 ~dashed-dot line!. In order to dis-
play the relative magnitude of the effect, th
zeroth-order differential cross sections (0) is pre-
sented in the fourth diagram.
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FIG. 4. Same as Fig. 3 but for a projectil
energy of 50 MeV/u.
-

or

an-
and
xkbmb

† ~ ẑ!sxkama
~ ẑ!5 (

JLM

~21! j b2mb

A4p
Cj ama , j b2mb

LM

3SJL~kb ,ka!YJLM~ ẑ!, ~A5!

wheres i are the Pauli matrices,YJLM are the spherical vec
tors defined by

YJLM~ ẑ!5(
mq

CLm,1q
JM YLm~ ẑ!eq , ~A6!
04271
and eq are the spherical coordinates of the unit vector. F
the apparent expressions for the coefficientsSJL we refer to
Ref. @14#. Next, we use the standard spherical-waves exp
sion of the exponent in the photon-emission operator
perform the integration over angular variables. It yields

^nua•e* e2 ik fxuc&5(
JL

i 212L~21! j c2mcA2L11CL0,1q
JM

3Cj nmn , j c2mc

JM PJL~kf
0 ,nc!. ~A7!
r
.

FIG. 5. Same as Fig. 3 but fo
a projectile energy of 300 MeV/u
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FIG. 6. Same as Fig. 3 but fo
a projectile energy of 700 MeV/u
o

ffi

ng
As was explained above, the polarization vectore has only
one spherical componentq561 ~nothing depends on its
sign!. The radial integralsPJL are given by

PJL~kf
0 ,ab!5E

0

`

dxx2 j L~kf
0x!@gb~x! f a~x!SJL~kb ,2ka!

2 f b~x!ga~x!SJL~2kb ,ka!#, ~A8!

whereg(x) and f (x) are the upper and lower components
the radial wave functions, respectively;j L(z) is the spherical
Bessel function.

Substituting Eqs.~A2!, ~A3!, and~A7! into Eq. ~A1! and
performing the summation of the Clebsch-Gordan coe
cients, we obtain

K3,dir5
1

Api
0pi

(
k

i leiDkClml ,~1/2!m i

j m Ylml
* ~ p̂i !

3(
JL

i 212L~21! j 2mA2L11CL0,1q
JM Cj vmv , j 2m

JM

3
a~21!J1 j n2 j c

2J11
RJ~kf

0 ,vc«n!PJL~kf
0 ,nc!, ~A9!

whereu«& denotes the radial wave function of the incomi
electron with a definite angular momentum

u«&5S g«k~x!

f «k~x!
D . ~A10!
04271
f

-

Finally, we have for thet3
int correction

t3
int5

a

A2~2p!3kf
0pi

0pi

(
k

i leiDkClml ,
j m

~1/2!m i
Ylml

* ~ p̂i !

3(
JL

i 212L~21! j 2mA2L11CL0,1q
JM Cj vmv , j 2m

JM

3(
kn

~21! j c2 j n1J@R3,a
int ~J,L,kf

0!SJL~kc ,2kn!

2R3,b
int ~J,L,kf

0!SJL~2kc ,kn!#, ~A11!

where

R3,i
int~J,L,kf

0!5
1

2J11
RJ~kf

0 ,vc«j i !2(
L8

H j c j n J

j v j L 8J
3RL8~pi

02«c ,cv«j i !, ~A12!

and the effective wave functionj i(y) is given by

uja&5(
n

un&

«c2kf
02«n~12 i0!

E
0

`

dxx2 j L~kf
0x! f n~x!gc~x!,

~A13!

ujb&5(
n

un&

«c2kf
02«n~12 i0!

E
0

`

dxx2 j L~kf
0x!gn~x! f c~x!.

~A14!
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@3# Th. Stöhlker, T. Ludziejewski, F. Bosch, R.W. Dunford, C
Kozhuharov, P.H. Mokler, H.F. Beyer, O. Brinzanescu,
Franzke, J. Eichler, A. Griegal, S. Hagmann, A. Ichihara,
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