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Interelectronic-interaction correction of first order i i$ studied for radiative recombination of an electron
with a heavy He-like ion in the ground state. A rigorous relativistic treatment is compared with two frequently
applied approximations. A calculation is carried out for radiative recombination of an electrorsinBp s,
and 2y, states of He-like uranium for impact energies between 10 and 700 MeV/u.

PACS numbd(s): 34.80.Lx, 31.30.Jv, 34.18x, 34.70+e€

I. INTRODUCTION in the ground state that is placed at the origin of the coordi-
nate frame. The final state of the system is a Li-like ion in
In energetic atomic collisions between highly chargedthe state (%)2v, wherev denotes a valence electron. This
high-Z ions and lowZ target atoms, radiative electron cap- picture corresponds to the projectile system, if we study the
ture (REC) is one of the most important reaction channels. Inradiative recombination of a free target electron with a heavy
the limit of a loosely bound target electron, REC is identicalHe-like projectile. The differential cross section of this pro-
with radiative recombination or its time-reversed analog, thecess is given by
photoionization process. Reactions of this type have been
extensively studied in recent years for heavy highly charged (2"
projectiles up to bare uranium. The relativistic theory of _\em 2 0 0
REC in the one-electron approximation is well established at do= v, |7I*(Es+ ki — Ei—pi)dky, 1)
present(see Ref[1] and references therginand results of
numerical calculation$2] are in excellent agreement with ) .
experiments. In particular, the spin-flip contribution to REC, WhereE; andE; are the energies of the initialif) and the
calculated in Ref[2], was recently identified in angular- final (|f)) states of the atom, respectivey’=p7+m? is
differential measuremeni$]. the energy of the incident electrohf:(k?,kf) where k?
While radiative recombination of an electron with a bareandk; are the photon energy and momentum, respectively;
nucleus is well understood theoretically, the process involvv; is the velocity of the incident electron in the projectile
ing an ion with several electrons is complicated by the interframe, andr is the amplitude of the process that is connected
electronic interaction. The REC process into the L-shell ofto the S'matrix element by
He-like uranium was studied both experimentally and theo-
retically in Ref.[4]. In that work, the interelectronic interac- P 0_pF_ 0
tion Wgs taken into account using a simple model employing (keer fISIpipsi i) =27l OBtk —Ei=pi) 7. (D
an effective nuclear charge @t4=90.3. On the level of the
experimental accuracy, this model provides a satisfactory deHere e;=(0,¢;) is the photon polarization angi=(p°,p;).
scription of the process. However, in view of the progress irTo zeroth order the amplitude of the process is givelideg,
experimental techniques that has been achieved during theg., Ref[6])
last few years, it is tempting to search for a rigorous theoret-
ical description of interelectronic-interaction effects in these
processes. A systematic QED theory of radiative recombina-
tion has been worked out in Ref&,6]. In the present work,
we apply this theory to a rigorous investigation of thewhere|v) denotes the wave function of the valence electron,
interelectronic-interaction corrections of first order iZ 16
radiative recombination of an electron with a helium-like

9= (v]ea-A}|p), )

ion. Our treatment is exact in this order, i.e., the full photon AX) € expliky-x) @
ropagator i ed, including the Coulomb, Breit, and re- fX)=
propagator is used, including u i 22

tarded parts.
Relativistic units f=c=1) are used in the article.
is the wave function of the photon, ad¢>:l/lpiﬂi(+)(X)
indicates the wave function of the incoming electron in the
We consider radiative recombination of an electron withcontinuum spectrum with a defined asymptotic momentum,
momentunp; and polarizationu; with a heavy He-like atom defined by

Il. BASIC FORMULAS
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Here Hy=a-p+ Bm is the free-electron HamiltoniarV/ NS S (L1)PS (clea: A¥[n)(vn[I(App,)|PPPO
indicates the nuclear potential, and=1. To zeroth order "4 ~ i ‘P =1 n ectkP—e,(1—i0) '
the process considered here is equivalent to the capture of an (10)
electron by a bare nucleus.

The derivation of expressions for interelectronic- Here |c)=|xyuc) and|v)=|x,u,) are the wave functions
interaction corrections can be simplified significantly be-of the core and the valence electrons, respectivelig the
cause we consider the radiative recombination of an electropjac angular-momentum quantum numbgrjndicates the
with an atom in a closed-shell configuration. As is known momentum projection, the-summation is performed over
(see, e.g., Ref7]), closed shells can be taken into accountihe whole spectrum of the Dirac equatidhis the permuta-
simply by a redefinition of the vacuum. In our case, we re-jgn operator[ PaPb=(ab) or (ba)], Asy=e.—ep, and

2 . .
gard the (Xk)“-shell as belonging to a new vacuum. This k?=p?—sv is the energy of the emitted photon. The other

redefinition of the vacuum corresponds to a replacement ; POAY —

the standard Feynman integration contéudicated byCg Yotations ard (A)=[di()/dw],-s.
in Fig. 1) by a new contour denoted byf in Fig. 1. The
one-electron corrections calculated with the new vacuum in-
clude the whole effect of an interaction with thesji-shell.
Therefore, the interelectronic-interaction correction can b
found as the difference of the one-electron corrections calcu-

[(@,X1,%2) = €@, D*"(@,X1,Xz) (12)

is the operator of the interelectronic interactier),= (1,a)
re the Dirac matrices,

lated with the new vacuum and with the standard one. The S

difference of integrals along the contouts and Cf is an D = expli Vo' +i 8%~ X,] 12
. . ,F . MV((J),X]_,Xz) g;LV 4 ( )
integral along the contout, i.e., the pole contribution at 7| X1~ Xo|

the pointw=¢45. This is illustrated in Fig. 1. QED correc- )

tions of first order ina for radiative recombination of an IS the photon propagator in the Feynman gauge, the branch

electron with a bare nucleus were recently derived in Refof the square root is fixed by the condition Igug?+i5)

[6]. A simple recipe can be given to obtain general expres=>0, andd is small and positive.

sions for the interelectronic-interaction corrections of first The corresponding Feynman diagrams are presented in

order in 1Z from the corresponding expressions for the QEDFig. 2. The diagrams Figs.(@ and Zc) correspond to the

corrections in Ref[6]. All energy integrations along the direct(PaPb=ab) and theexchanggPaPb=ba) parts of

standard Feynman conto@: should be replaced by a pole 71", and the diagrams Figs[(®),(d)], Figs. Z(e),(9)], and

contribution at the pointh=e,5. We note that, unlike the Figs. Z(f),(h)] correspond to the direct and the exchange

QED corrections, the pole contribution is free from ultravio- parts of the correctionss", 75", andy", respectively.

let and infrared divergences. Equations (7)—(10) represent the interelectronic-
The derivation as described above yields to first order irinteraction corrections to the amplitude of the process. The

1/Z, corresponding corrections to the differential cross section are
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The total interelectronic-interaction correction to the cross
section in first order in Z is given by

v Pi v Pi do_(l) dO’im 4 do_int
int _ en+2 | . (16)
40, d0; & d0;
[+ [+ [+ [ ) )
(a) (b) We note that the direct part of the correctiorf§ and 75"

[diagrams Figs. @ and 2b)] has a transparent physical
meaning. It can be shown that this part of the corrections
corresponds to a modification of the incoming and the out-
going electron wave functions by the screening potential

1 (x
vsm(x)=2a[; fo dyy’[giy(y) + f1s(y)]

" fdyy[gé(y)ﬂis(y)]], 17

whereg,s andf 5 are the upper and the lower components of

the radial wave function of the ground state, respectively.
¢ ¢ ¢ ¢ From physical reasons, one can expect that the effect of the

interelectronic interaction can be described with reasonable

v P v P accuracy by considering the capture of an electron by a bare
© () nucleu; with the nuclear potential modified by the screening
potential [Eq. (17)]. We refer to this approach as the
screening-potentiagpproximation. As we will show below,
this simple approximation yields the dominant part of the
interelectronic-interaction effect in a wide region of projec-
tile energies.
We note that a resonance arises in Et0) when the
energy argument of the Green function comes close to a
c pi v c discrete energy level

(8) (h)

FIG. 2. Feynman diagrams representing the interelectronic- ) )
interaction corrections of first order inZto radiative recombina-  This corresponds to the resonant process of dielectronic re-

tion of an electron with a He-like atonp; denotes the incoming combination. As it stands, E@10) is valid only in the non-
electron in the continuum spectrum, andand ¢ indicate the va- resonant case. Resonant processes can be rigorously treated

PP—(e,—8c)~en. (18)

lence and the core electrons, respectively. by the method developed in R¢E]. In this article we study
only the nonresonant process of radiative recombination and
da’im (2m)* , S exclude from the consideration energy intervals c!ose to the
d—sz 0 kZ2 R 70" 7M. (13 resonances$Eqg. (18)]. For the states under consideration,

these resonances occur in the region of projectile energies of

In addition to this, one should take into account a contribu—lls_190 MeV/u.

tion originating from a modification of the energy of the
emitted photon in the zeroth-order cross section due to the IIl. NUMERICAL DETAILS

interelectronic interaction, given by The interelectronic-interaction correction to the differen-

tial cross section of radiative recombination of an electron
. (14) with a He-like i(_)n in the ground state is given by HQB) _
KO pO_5(0) after a surr_]mat|on over the angular.mo'mentum prolec_t|ons
b u, of the final state, over the polarizations of the emitted
~ . hoton, and averaging over the polarizatiqusof the in-
Here,=e(”+Aefy is the energy of the valence electron Eoming electron. Bgecguse of thepsummati?)ﬂ over the mag-
mcludmg the first-order interelectronic-interaction correc-qtic substates of the initial and the final states, all physical
tion, polarizations of the emitted photon are equivalent. Below we
assume that the photon-polarization veceohas only one
Asi(nlt)zz 2 (—1)P(PuPc|l(Ap,,)lvc). (15 spherical componend. The_ summgtion over the magnetic _
g P substates and the angular integrations are carried out analyti-

do©
g, A

daigrﬁ_do((’)
dQ;  dQ;
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cally. As the resulting expressions are rather lengthy, only ag-axis and poles corresponding to the discrete Dirac energy
outline of the angular reduction technique used here is givetevels, as shown in Fig. 1. The behavior of the Green func-
in the appendix. tion on the reak axis is defined by the sign of the infinitesi-
The resulting formulas contain an infinite summation overmal additions in the energy denominator of E(@—(10). In
the Dirac angular-momentum quantum numkeof the in-  our case the addition is negative and, therefore, thescut
coming electron. In the actual calculations the sum was>Mm should be approached from the upper half of the
evaluated until convergence was achievgically, up to  &-plane. Considering the dependence of the Green functjon
| Kimax) = 10— 20). Another infinite summation is the sum over ON €, One can see that the cut structure of the Green function
the intermediate statesin Eqs.(7)—(10). The sum ovenfor  iS defined by the branch cuts of the square rgot’—&.
a fixed angular-momentum quantum numieris evaluated The square root is defined as positive in the gam<s
using the methods described below. The remaining summas ™M oOn the reals-axis. Outside of the gap, the sign of the
tion over «, is finite after the angular reduction is carried Square root is fixed by the condition Régm?—e%}>0. So,

out. The angular reduction yields,= «, for the correction  Starting from the gap—m<e<m and approaching the

7" andk,= « for the correctionrit. For the correctionsi bragch cute=n fro;n the upper half-plane, we have
Jym?—g?— —i\e?—m?. This prescription for the analytic

and 7", there are three values ef, for each value ofx, . . ! . ; .
. . ) . . continuation of the square root defines the sign of the imagi-
which contribute in the case of capture into a state jjth nary part of the Green function
=1/2, and five for_Jv:3/2' i , A numerical evaluation employing the analytical form of
~ For the numerical evaluation of the sum ovewith a 1o Green function is more time-consuming than a calcula-
fixed angular-momentum quantum numbey, we use dif- (o hased on the B-splines method. Thus, in actual calcula-
ferent numerical tools. In order to calculate the direct part otjons we used the last method whenever possible. Still, an
int int . . . . Ll
1 2 » We solve the Dirac equation with gyajyation of a correction using both methods was used as a

the corrections;” andr:
the Coulomb potential modified by the screening potentiaheck for our code.

[Eq (17)]. The difference between the zero-order cross sec-

tions evaluated with the modified wave functions and with

the Coulomb wave functions can be thought to be the first- IV. NUMERICAL RESULTS AND DISCUSSION

order correction induced by the screening potential, plus i ) o .
higher-order ladder contributions. Since the higher-order cor- The numerical results for the interelectronic-interaction
rections are suppressed by a factdt, the resulting correc- correction to the total cross section of radiative recombina-
tion can be considered as a good approximation to the cofion Of an electron with He-like uranium are presented in

rectionSTil"fdir and Tizn,hir for high-Z systems(we indicate the Table I. The calculations are carried out in the laboratory

direct and the exchange parts with labels “dir” and “exch,” Ean?_i for capture (ijn;o the £ 2_|p1,2, and me%/zlgta;%%ﬂ Vv
respectively. For the numerical solution of the Dirac equa- 1€-1Ike uranium and for projectile energies of 10— e

tion with a modified Coulomb potential we use the packageoer nuclgar mass unit. The various contributions to the cross
RADIAL from Ref. [8], with some minor modifications for S?f)t'on listed in Table I_correspor]d to Eds3) _an_d (14; .
continuum solutions. oy denotes the total first-order interelectronic-interaction
The numerical evaluation of all other corrections is car-cOrrection. We note that the correctioff s+ o7y, contains
ried out directly, without any additional approximations. The@lso some higher-order contributions, which are small com-
summation over the whole spectrum of the Dirac equation igared to the first-order contribution. In Table 1l we compare
performed using two different methods. When the energyhe results of the rigorous relativistic treatment for the total
argument of the Green function is less than the electron re§0ss section with the calculations based on the screening-
mass, we use the B-splines method for the Dirac equatior?otential approximation and on the effective-nuclear-charge
developed by Johnscet al. [9]. In this method, the infinite @Pproximation. A comparison of the corresponding results
summation in the spectral representation of the Green fundor the differential cross section is presented in Figs. 3—6.
tion with a fixed angular-momentum quantum number is re-The comparison shows a decreasing accuracy of the approxi-
placed by a finite sum over basis-set functions. This methofnate methods for increasing projectile energy. They also
is used for the numerical evaluation of the correctionsyield better results for capture into excited states than for
Tiljfaxch, 7 and the correction™ if &+ kP<m. capture into the ground state. In average, the screening-

If the energy argument of the Green function is real andPotential approximation is found to be more reliable than the
larger than the electron rest mass, the B-splines method %ffectlve-nu_clear-charge appro>_<|mat|0n. Its typical deviation
not applicable anymore, and we use analytical expressiorf&0mM the rigorous treatment is about 10%-20% of the
for the Green function for the potential of a h0mogeneouswntereIectronlc-lnteractlon correction, i.e., about 1%—-2% of
charged spherical sheflL0]. Numerical algorithms for the ~the cross section of the process. _
computation of the Green function with an extended nucleus "€ dominant contribution to the effect of f[he'l?terelec-
can be found in Refd.11,17. Special care should be taken troplc mtttaractlon originates from the correctiong, and

. f . n . . .
evaluating the Green function for real energies larger thawi gt o2.qir» Which are almost equivalent to the screening-
the electron rest magsee, e.g., Ref13]). The Green func- potential approximation. In addition to this, a significant con-
tion is an analytical function of the energyin the complex tribution arises from the correctiom;" in the region of pro-
e-plane with branch cuts{o,—m], [m,«) along the real jectile energiespi0<m+ e,—&c. The reason for this is the
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TABLE I. Various contributions to the interelectronic-interaction correction to the total cross section for
radiative recombination of an electron into lowest-lying states of He-like uranium in barns.

E [Mev/u] Uienr: ‘Ti:{],tdir+ o-izn,tdir a-i:{],texch o-izn,texch Ui?tn UL{“ O-i(riLt)
2s-state:
10 —16.162 —3.022 —2.063 1.615 —-0.404 —1.357 —21.392
50 —1.984 —-1.179 —0.235 0.245 —0.026 —0.548 —3.727
100 —0.664 —0.716 —0.072 0.081 0.005 —0.690 —2.055
200 —0.2009 —0.3738 —0.0206 0.0165 0.0083 —0.112 —0.683
300 —0.0975 —0.2358 —0.0110 0.0038 0.0063 —0.0413 —0.3755
500 —0.0392 -0.1219 —0.0057 —0.0003 0.0039 -0.0131 —0.1764
700 —0.0219 —0.0759 —0.0039 —0.0003 0.0025 —0.0056 —0.1051
2p, -State:
10 —31.946 —3.984 1.268 0.574 1.807 —3.115 —35.396
50 —3.465 —2.912 0.334 0.126 0.295 —-0.776 —6.398
100 —1.041 —1.560 0.164 0.0614 0.110 -0.821 —3.088
200 —0.2734 —0.6398 0.0683 0.0256 0.0304 0.003 -—0.786
300 —0.1208 —0.3435 0.0381 0.0137 0.0116 0.0145 —0.3864
500 —0.0431 —0.1466 0.0173 0.0054 0.0025 0.0083 —0.1562
700 —0.0223 —0.0821 0.0102 0.0027 0.0006 0.0049 —0.0861
2pg-State:
10 —35.002 —4.616 1.316 0.496 2.493 —4.695 —40.008
50 —3.061 —3.285 0.250 0.070 0.367 —1.062 —-6.721
100 —0.782 —1.523 0.096 0.023 0.126 —0.838 —2.896
200 —0.1679 —0.5238 0.0294 0.0060 0.0330 —0.031 —0.655
300 —0.0649 —0.2523 0.0132 0.0023 0.0130 0.0081 —0.2804
500 —0.0194 —0.0942 0.0045 0.0005 0.0035 0.0080 —0.0970
700 —0.0089 —0.0485 0.0022 0.0001 0.0014 0.0048 —0.0489

smallness of the energy denominator in EtD), which en-  (Grant No. 436 RUS 113/47%nd by the RFBRGrant No.
hances the contribution of the discrete energy states in th@8-02-0411}1 is gratefully acknowledged. Th. Beier ac-

sum over the Dirac spectrum. When the energy denominat&nowledges also support from the EU-TMR progréoon-
approaches zero, a resonance occurs that corresponds to thgct No. ERB FMRX CT 97-0144
resonance process of dielectronic recombination.

V. CONCLUSION APPENDIX: ANGULAR INTEGRATION

In this work we have carried out a systematic investiga- In this section we briefly describe a technique that was
tion of the effect of the interelectronic interaction on the y q

process of radiative recombination of an electron with He-US€d in this work for angular integrations and summations
like uranium. The applicability of frequently used approxi- ©V€r magnetic substates in E_qs'z?n—(lo). We illustrate this
mate methods was studied and compared with the rigorod§chnique, taking the correctiort” as an example. Let us
relativistic treatment. The screening-potential approximationconsider the expression

in which an interaction of an electron with a He-like ion is

replaced by an interaction with a modified potential, is

shown to be a reliaple tool for estimating both tqtal and K 6= 2 (vc|l(k?)|pn><n|a- e ke, (A1)
differential cross sections of the process for projectile ener- U dettn

gies far from resonance. Still, full relativistic calculations are

needed to obtain an accuracy better than a few percent of the .

cross section of the process. The results of the rigorous treadriginating from the direct part ofg“. We expand the wave
ment of the interelectronic-interaction correction are prefunction |p) of the incoming electron with a defined
sented for radiative recombination of an electron in® 2 asymptotic momentum over the wave functions with a de-
2p1s, and 2pg, states of He-like uranium for impact ener- fined angular momenturfsee Ref[1] for details)

gies between 10 and 700 MeV/u.
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TABLE II. Zeroth-order total cross section(® and the first-
order interelectronic-interaction correction in different evaluations
denotes the interelectronic-interaction correction cal-

in barns.o

(1
zeff

)

PHYSICAL REVIEW A62 042712

1 ) . -
— > ilelAKCfrlnLI (w2, i, (P1)

(X)) =
o) o,

culated in the effective-nuclear-charge approximation with param-

eterZy4=90.3, agg corresponds to the screening-potential approxi-
mation, ando{Y indicates the results of the rigorous relativistic

treatment.

E [Mev/u] a©® ol o) ol

2s-state:
10 504.65 —-17.390 —19.635 —21.392
50 93.23 —3.699 —3.207 —-3.727
100 41.203 —1.880 —1.393 —2.055
200 16.423 —0.8881 —0.5780 —0.6829
300 9.105 —0.5446 —0.3345 —0.3755
500 4.160 —0.2800 —0.1615 —0.1764
700 2.457 —0.1768 —0.0979 —0.1051

2pqo-State:
10 656.95 —38.523 —34.978 —35.396
50 92.10 —7.086 —6.204 —6.398
100 33.041 —2.975 —2.535 —3.088
200 10.405 —1.0842 —0.8915 —0.7861
300 5.042 —0.5650 —0.4538 —0.3864
500 1.973 —0.2382 —0.1857 —0.1562
700 1.065 —0.1336 —0.1022 —0.0861

2pgo-State:
10 854.82 —38.620 —39.671 —40.008
50 100.61 —6.158 —6.278 —-6.721
100 31.489 —2.259 —2.275 —2.896
200 8.376 —0.6908 —0.6826 —0.655
300 3.646 —-0.3213 —-0.3132 —0.2804
500 1.249 —-0.1172 —-0.1122 —0.0970
700 0.622 —0.0600 —0.0568 —0.0489

X( o) X e (X) ) | n2)

if o (X)X eu(X)

The overall factor in front of the sum corresponds to the

normalization of the wave functiog, , (+) fixed by Eq.(5).
Cfn’il sm,_ and Yim,(Pi) denote a Clebsch-Gordan coefficient

and a spherical harmonic, respectively.
We evaluate the matrix element of the interelectronic-
interaction operator by writing it in the form

(abll(g)|cd)= a}L‘, J.(abcdR,(e,abcd). (A3)

In this way we separate the part depending on angular mo-
mentum projections [J, (abcd)] from the remainder

R, (g,abcd), which does not depend on them. The function
J.(abcd) is given by

= 1)L7mL+jc7mc+jd7md

2L+1

Ji(abcd = 2 (
my

><C;_mL Lmp (A4)

aMade=Me " TgMg ip— My’

The apparent expressions for the functien(e,abcd) can
be found in Ref[14].

Now we consider the matrix element of the photon-
emission operatan|a- € e "*|c). All terms containing the
spherical bispinory,,, are expanded in terms of the spheri-
cal vectors according to

60 90

120 150

FIG. 3. Interelectronic-interaction correction
ol to the differential cross section of radiative
recombination into &, 2p4;, and 25, states of
He-like uranium is presented in the first three dia-
grams. The calculation is carried out in the labo-

Dif. cross section [barns/sr]

{1)

cint ( 2p3/2 )

180 "o 30

60 90

120 150 180

ratory system at a projectile energy of 10 MeV/u.
The full line refers to the rigorous relativistic

1004

80

60

40

204

60 90

120 150

2py,

treatment. It should be compared with the
screening-potential approximatiofdashed ling
and the effective-nuclear-charge approximation
with Z.4=90.3 (dashed-dot ling In order to dis-
play the relative magnitude of the effect, the
zeroth-order differential cross sectiofi®) is pre-
sented in the fourth diagram.

0

Angle [deg]

180 0 30

60 90

150 180
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cross section [barns/sr]

Dif.
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FIG. 4. Same as Fig. 3 but for a projectile
energy of 50 MeV/u.

and e, are the spherical coordinates of the unit vector. For

0.0
1)
-0.21~0 Gint (2p1/2)
-0.4
-0.6 /
N /
-0.8 ~—~
0 30 60 90 120 150 180 0 30 60 90 120 150 1
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the apparent expressions for the coefficie®ys we refer to
Ref.[14]. Next, we use the standard spherical-waves expan-

(A5) sion of the exponent in the photon-emission operator and
perform the integration over angular variables. It yields

whereo; are the Pauli matrice¥,;, \, are the spherical vec-
tors defined by

cross section [barns/sr]

Dif.
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YJLM(E) = % Cim,quLm( i)eq )

(n|a- e e *c)=2 i~tH(—1)lere\2L+1CTY
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xci P;.(k?,nc). (A7)
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a projectile energy of 300 MeV/u.
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As was explained above, the polarization veadnas only Finally, we have for ther'”t correction
one spherical componemf==*1 (nothing depends on its
sign). The radial integral$,,_ are given by a

int__

T3 T 2 i Cl (172, Y (PY)
V2(2m)%k?pp; «
x% i~17h(—1)i7#2L+1 cLOlqcf“fL i-n

P, (k?,ab)= J:dxxzjL<k?x>[gb<x)fa<x>SJL<Kb,—Ka>

—Fo(X)9a(X)SyL(— Kp, ka) ], (A8)
whereg(x) andf(x) are the upper and lower components of % 1)je=in*td Rlnt JL, k S _
the radial wave functions, respectivejy(z) is the spherical % = [Rsal )Saulke, )
Bessel function. Im 0
Substituting Eqs(A2), (A3), and (A7) into Eq. (A1) and p(J, LK) SyL(— ke kn)], (Al11)
performing the summation of the Clebsch-Gordan coeffi-
cients, we obtain where
1 . Int 0 1 Jc Jn J
Kaair=—== 2 i'e8ClR (112, Yin, (PY) Rai(JLkp)= 2J+1RJ(kf VCES) — E i, §oL
Pipi “
XRL/(p)—&¢.Cve&), (A12)
SN R G DIRTNCTINR Yoty e L '
L and the effective wave functiog(y) is given by
a(—1) Finle
———————Ry(k?,vcen)P; (k?,nc), (A9) |n>
22+1 * E)=2 J dx@j L (k{X) Fo(X)ge(X),
n g —ep(1-i0)Jo
where|e) denotes the radial wave function of the incoming (A13)
electron with a definite angular momentum ny
9..(X) |ép)= E e K0 (1— |0)f dx] L(KPX)gn(X) Fo(X).
= n
#) fou(X)) (A10) (A14)
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