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Two-state model for top-of-barrier processes
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A two-state model applicable to top-of-barrier processes in ion-atom collisions at low velocityv is inves-
tigated. An expression for the Massey parameter of the transitionn→n11 is derived and is used to compute
ionization, capture, and excitation from states of high principal quantum number in H11H collisions. The
Wannier law is obtained at the ionization threshold. The dependence of ionization on the initialn is computed.
Total capture cross sections are in good agreement with other calculations, but an unreasonably large fraction
goes to resonant capture. It is concluded that multicrossing models, which do not incorporate interference
between different paths to the resonant state, overestimate resonant capture.

PACS number~s!: 34.80.2i
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I. INTRODUCTION

Ionization of atoms in low-velocity, heavy-ion ion colli
sions has been investigated by several groups@1–5#. Tech-
niques that are sensitive to electrons with energies of
order of 1 eV show that a surprisingly large number eme
in that energy range. These slow electrons have been a
uted to a mechanism@6# similar to the one that gives rise t
Wannier’s threshold law for electron impact ionization
atoms@7–11#, even though, for ion impact, the total energ
is far above the ionization threshold. In this picture, ioniz
tion is possible when the electron is asymptotically at
saddle point of the potential as the nuclei slowly separate
essence electrons become stranded at the top of a pote
barrier between target and projectile and end up ionized w
low velocity in the center-of-mass frame. This mechani
will be called the saddle-point or top-of-barrier mechanis
Classical calculations are often employed to describe
process, beginning with the original work of Wannier@7#.
Recentab initio quantal calculations based upon direct so
tion of the time-dependent Schro¨dinger equation@12,13# are
at an early stage and have not provided total cross-sec
values. The hidden crossing theory@6# gave the first results
for top-of-barrier ionization, but none of the quantum calc
lations have been applied to ionization of states with h
principal quantum numbern. For ion-atom collisions, classi
cal trajectory Monte Carlo~CTMC! calculations@14# are one
of the few methods that give absolute cross sections for h
n and at relative velocities that are comparable to the elec
velocity in the initial sate.

The firstab initio quantum calculations of ionization vi
the top-of-barrier mechanism in ion-atom collisions e
ployed adiabatic molecular states where a series of br
avoid level crossings were identified. These level crossi
are associated with energy levels of Rydberg states that
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touch the top-of-barrier at a distance where the potential
ergy of an electron equals the separated atom energy, up
factor of the order of unity@11,15#. Absolute cross section
were computed using the hidden-crossing theory@16–18# to
treat the multiple crossings, shown schematically in Fig.
In this figure a diabatic state with energy equal to2C0 /R,
where R is the internuclear distance andC054Z21 with
Z51 for H11H, crosses a series of Rydberg statesn with
energy«n5Z2/(2n2). At some distance it is supposed th
transitions to the continuum take place. The nature of t
transition is obscure. One objective of this investigation is
elucidate the transition to the continuum state.

An important feature of the multicrossing model@19# is
that the diabatic curve actually enters the positive ene
continuum while the top-of-barrier diabatic curve never a
tually does so. In effect, transitions to the continuum le
are underbarrier transitions. The first section of our ma
script formulates a two-state model to compute direct tran
tions to positive energy states. We find that the probabilit
for such transitions are vanishingly small for high Rydbe
states.

rs-
FIG. 1. Schematic plot of adiabatic potential curves showin

series of avoided crossings between Rydberg states and a dia
energy curve2C0 /R.
©2000 The American Physical Society10-1
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This suggests another interpretation of the diabatic st
namely that it becomes a zero-energy bound state mod
by Solov’ev’s translation factor exp@ir2/2R(t)#, asymptoti-
cally, wherer is the center-of-mass electron coordinate anR
is the internuclear distance@20#. Then ionization is computed
by evaluating the probability that the diabatic state, deno
here byu0&, survives the multiple crossings of the infinitud
of Rydberg states. The hidden crossing computations of
@6# employ the probability to survive only a finite number
Rydberg states, i.e., the number of crossings leading to
ization was cut off as some value ofn. The closely related
theory of Ref.@18# does not employ a cutoff inn, but em-
ploys integration of an asymptotic«(R) in the complex
plane. We show that the survival probability agrees with t
later, indirect approach.

The survival probability depends upon the Massey para
eterDn for a transition from a Rydberg state to the diaba
state. This quantity is computed in Sec. III where the sim
result Dn58/(pn2) is found for the states of low magnet
quantum number in H11H collisions. That this expressio
gives the Wannier threshold law is also demonstrated.
earlier computation using the same method obtained a di
ent law involving powers of lnE. We trace the lnE terms to
an inaccurate expression for the energy differenceD«
5«n11(R)2«n(R) at the crossing radius, thus confirmin
the surmise of Ref.@18#, namely, that the simple estima
D«}n23 is incorrect.

The Demkov-Osherov@19# multicrossing model employs
a projection operator representation of the diabatic poten
that varies linearly with timet. The possibility of solving a
similar model that varies as 1/R, with R5vt, was also rec-
ognized in Ref.@19#. Such a model describes the top-o
barrier diabatic potential curve, however the solution has
been worked out in detail. In this manuscript we report
the solution of a two-state model with a 1/t diabatic potential
Hdi5u0&(b/t)^0u. Here b is a constant to be determine
later, andu0& represents a diabatic state whose explicit fo
need not be specified.

The model is illustrated schematically in Fig. 2~a!. A di-
abatic potential curvej 50 with a 1/R dependence crosses
constant energy curvej 51 representing an excited stat
The interaction between the states is modeled by a cons
matrix element. Transitions between these states, typic
represented by the Landau-Zener model, occur in the vici
of the crossing of the diabatic curves. We will see that
computed transition matrix elements differ somewhat fr
those given by the Landau-Zener model. Aside from a fac
that is exponentially small for largen, our result agrees with
the hidden crossing prescription. If we consider thatj 51 is
a Rydberg state, then this model, with appropriate values
the model parameters, can be used to compute excitatio
high Rydberg states.

As the principal quantum number of the Rydberg sta
becomes infinite, thej 51 level approaches the zero-ener
continuum. Continuum levels are modeled by taking co
stant positive energy eigenvalues for the excited diab
state. Transitions to the continuum in this model are rep
sented schematically in Fig. 2~b!. Since there is no actua
crossing of levels, such transitions are called ‘‘underbarrie
04271
e,
ed

d

f.

n-

s

-

e

n
r-

al

ot
n

nt
lly
ty
e

r

or
to

s

-
ic
-

’’

transitions. In essence the system must tunnel through a
bidden region to pass between asymptotic eigenstates
two-state model with a 1/t diabatic potential can model un
derbarrier transitions. We will obtain closed-form expre
sions for such transitions in a two-state model.

II. FORMULATION OF THE TWO-STATE MODEL

Our model Schro¨dinger equation is

F i
]

]t
2H0~q!2u0&

b

t
^0uG uw(q,t)&50, b5b0 /v,

~2.1!

where q is the electron coordinate in the center of char
frame,H0(q) is the Hamiltonian for an electron in a time
independent potential,b0 is a constant whose exact valu
depends upon the physical system to be modeled, andu0& is
the diabatic state. Neither the time-independent potential
the diabatic stateu0& need be specified at this point. In ord
to connect with real diatomic systems, the variablet will be
replaced byR5vt in some parts of the discussion.

The solution of the time-dependent equation for gene
initial conditions is given in terms of the time evolution op
eratorU(t,t8). The matrix elements of this operator taken
the limit ast→` andt8→2` are just the transition ampli

FIG. 2. Schematic plot of adiabatic potential curves for the tw
state model with~a! two negative energy states and~b! one negative
energy state and a positive energy state.
0-2
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TWO-STATE MODEL FOR TOP-OF-BARRIER PROCESSES PHYSICAL REVIEW A62 042710
tudes in a basis of asymptotic states. The appropr
asymptotic states diagonalize the Hamiltonian

H5H01u0&
b0

R
^0u ~2.2!

at large values ofutu.
Equation ~2.1! can be solved generally following th

methods of Macek and Cavagnero@21#. It turns out that the
asymptotic conditions are not easily represented for the g
eral case; thus, we solve the special two-state model defi
by

^0uH0u0&50, ^0uH0u1&5^1uH0u0&5h, ^1uH0u1&5«
~2.3!

by direct solution of the time-dependent equations. T
statesj 50,1 are the diabatic states of the model. The ma
corresponding to the complete Hamiltonian of Eq.~2.2! in
this basis is

H5S b0

R
h

h «
D . ~2.4!

For negativeb0 the eigenvalues of this Hamiltonian a
shown schematically in Fig. 1~a! for negative« and in Fig.
1~b! for positive«.

The solution of the time-dependent Schro¨dinger equation,
Eq. ~2.3! together with Eqs.~2.3! and ~2.2!, is given quite
generally in terms of the time evolution operatorU(t,t),

uw~t!&5U~t,t8!uw~t8!&. ~2.5!

For the two-state model theU(t,t8) is a 232 matrix.
The U matrix is obtained in the diabatic basis of states

Appendix A. Fort→0 the Hamiltonian is diagonal in diaba
tic basis, but is not diagonal ast→`. In order to obtain
transition matrix elements it is necessary to use a basis
which the Hamiltonian is diagonal ast→`. Since the
asymptotic Hamiltonian is diagonal in the adiabatic basis,
transition amplitudes are defined both att50 andt→` in
that representation. The transformation to the adiabatic b
is affected by an orthogonal transformation matrixD(t)
where

D~t!5S cos@u~t!# sin@u~t!#

2sin@u~t!# cos@u~t!#
D , ~2.6!

and where

tan 2@u~t!#52
2h

b/t2«
. ~2.7!

The matrix that describes the evolution of the system
tween the timest5t0, wheret0'0 andt→`, is formally
similar to the Jost matrix of time-independent scatter
theory@22#. In the time-dependent theory this matrix will b
called the ‘‘one-pass’’ transition matrixJ. It is defined in the
basis of adiabatic states as
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Jnm5 lim
t→`,t8→t0

expF i E
t0

t

En~t9!dt9G
3@D~t!21U~t,t8!D~t8!#nm expF i E

t0

t8
Em~t9!dt9G .

~2.8!

Defining the quantities

l5A«214h2,
~2.9!

n05
b

2 S 11
«

l D , n15
b

2 S 12
«

l D ,

and using Eq.~A32! of Appendix A givesJ,

J0052J11* 52Ab

n1

G~2 ib!

G~2 in1!
l in0 exp@pn0/2#,

~2.10!

J015J10* 5Ab

n0

G~2 ib!

G~2 in0!
l in1 exp@2pn1/2#.

The corresponding transition probabilities are

uJ 00u25
12exp~22pn1!

12exp~22pb!
,

~2.11!

uJ 01u25
exp~22pn1!2exp~22pb!

12exp~22pb!
.

Equations~2.10! and ~2.11! hold independently of the
signs ofb and«. One must recognize, however, that owin
to our definition ofD(0), it is necessary to interchangeJ00
andJ01 whenb is negative. For our applicationsb52ubu
and « can be either negative, as illustrated in Fig. 2~a!, or
positive, as in Fig. 2~b!. In either case we have

uJ 01u25
exp~22pun0u!2exp~22pubu!

12exp~22pubu!
. ~2.12!

If h!« and«,0 we have

uJ 01u2'p, ~2.13!

where

p5expF22pub0u
v

h2

«2G . ~2.14!

In this case, Eq.~2.14! is the usual two-state Landau-Zen
probability. We expect to recover the Landau-Zener resul
this limit since the branch point of the adiabatic energy fun
tion E(R), i.e., the complex value ofR where E0(R)
5E1(R), is close to the real axis. In this case any two-st
model should agree with the Landau-Zener result.

For this model the energyE(R) has branch points at

b0 /R52~«62ih !. ~2.15!
0-3
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According to the hidden crossing theory the probability fo
transition is given by exp@22D/v#, whereD is the Massey
parameter given by

D52ImE
c
E~R!dR, ~2.16!

where the contourc starts on the real axis on the first sheet
E(R), goes around the branch point, and returns to the
axis on the second sheet. This integral is readily compu
for «,0 and one finds that

D5pun0u, ~2.17!

where n0 is given by Eq.~2.9!. This result exactly agree
with our solution of the two-state model provided the te
exp@22pb0 /v# is neglected. For the applications consider
here, this term is always negligible.

For positive « the transition probability is always les
than exp@2pC0 /v#. We are interested in processes for whi
the reduced velocityv rd5vn is of the order of unity. In that
case the direct ionization probability is always less th
exp@2pC0n/vrd#, which is vanishingly small even for mod
erate values ofn. Thus, direct ionization to the continuum
from a state of highn is negligible and the diabatic stateu0&
itself should be interpreted as a zero energy bound stat
R→`. With this latter interpretation, ionization is compute
by calculating the probability that the stateu0& survives mul-
tiple crossings of Rydberg states with some nonzero am
tude asR→`. Because direct ionization is negligible, an
because the present model recovers the hidden crossing
sition probability, a multicrossing model treating each tra
sition as independent can be used to compute top-of-ba
processes. Such computations are reported in Sec. III.

III. APPLICATION TO TOP-OF-BARRIER TRANSITIONS

A. Multicrossing theory and model parameters

We wish to apply this model to excitation and ionizatio
of Rydberg states via the top-of-barrier mechanism for1

1H collisions. Our first task is to obtain parameters th
relate the top-of-barrier branch point to the two-state mod
Three parameters—b0 , «n , andhn—for each Rydberg state
n are required. An alternative set, namely the Massey par
eterDn , the crossing radiusRn , and the asymptotic energ
«n , relates more closely to the hidden crossing theory, an
cross sections. These latter three parameters are used h
the primary inputs for applications to real physical system

For the two-state model we haveub0u5C054Z21,
while the top-of-barrier crossing radius has been compu
in Ref. @18#. They obtainRn5p2n2/2Z for states of even
symmetry and zero angular momentum in the separated a
limit. Because«1C0 /R must vanish at the crossing, w
have

«n52
2C0Z

p2n2 52
Zeff

2

2n2
, ~3.1!
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which definesZeff . One sees thatZeffÞZ, since we have
chosen the model energy at the crossing radius rather tha
the separated atom limit. The difference is slight withZeff
'1.1Z, and is of no consequence except near the thresh
for excitation or capture to a particular final statenf .

In accord with common practice, the velocityv will be
taken to be the radial velocity at the crossing radius. Th
one has

v~Rn!5Av21
2C0

~MRn!
2

b2v2

Rn
2 , ~3.2!

where M is the reduced mass of the two nuclei,b is the
impact parameter, andv now denotes the initial relative ve
locity.

The remaining parameter of the model is the Massey
rameter Dn . Approximate expressions for this paramet
have been given in the literature, however the available
pressions are not sufficiently accurate for our purposes.
that reason, we derive an expression in Appendix B follo
ing the analysis of Ref.@18#. There the simple result

Dn5
8

pn2 ~3.3!

for the H2
1 system is obtained.

All cross sections for the multicrossing model, illustrat
schematically in Fig. 1, can be computed from elements
the time evolution operatorU(2`,`). Constructing this op-
erator directly in the multicrossing model involves tracing
possible transitions or ‘‘paths’’ from the initial stateni to the
final statenf . This is a formidable task@23#, even for the
simple model given here. Fortunately, this task can
greatly simplified@22# by using the identity

U~2`,`!5U~2`,0!U~0,̀ !. ~3.4!

For the operatorU(0,̀ ), only one path connects a ‘‘unite
atom’’ statena nearR50 with a separated atom statenb . It
is thus fairly simple to construct the half-collision matr
U(0,̀ ). Since time reversal implies the relation

uU~2`,`!u25U(
na

Una ,ni
~0,̀ !Una ,nf

~0,̀ !U2

, ~3.5!

transition probabilities for the physicalU matrix are com-
puted simply by matrix multiplication onceU(0,̀ ) is
known.

The sum over intermediate statesna in Eq. ~3.5! is taken
coherently. In keeping with the assumptions of the hidd
crossing theory, it is supposed that all cross terms aver
out in the integration over impact parameter so that the
herent sum can be replaced by the incoherent sum

uU~2`,`!u25(
na

uUna ,ni
~0,̀ !u2uUna ,nf

~0,̀ !u2.

~3.6!

Again, the incoherent sum is readily computed from the ha
collision matrix.
0-4
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TWO-STATE MODEL FOR TOP-OF-BARRIER PROCESSES PHYSICAL REVIEW A62 042710
The matrix elementuUna ,nb
(0,̀ )u2 is constructed from

the two-state transition probabilitiespn where

pn5exp@22Dn /v~Rn!# ~3.7!

if v(Rn) is real, and

pn50 ~3.8!

if v(Rn) is imaginary. Letnx be the smallest value ofn for
which v(Rn) is real. Ifna is greater thannx , the system is in
a Rydberg state att50, while if na5nx it is in the diabatic
state. From Fig. 1 we easily see that ifna.nx , then

uUna ,nb
~0,̀ !u25~12pna21!pna

•••pnb21~12pnb
!,

nb.na ,

uUna ,nb
~0,̀ !u25~12pna21!~12pnb

!, nb5na ,
~3.9!

uUna ,nb
~0,̀ !u25pnb

, nb5na21,

while if na5nx one has

uUna ,nb
~0,̀ !u25pna

•••pnb21~12pnb
!, nb.na ,

uUna ,nb
~0,̀ !u25~12pnb

!, nb5na . ~3.10!

Since we interpret the diabatic state as an unbound z
energy state asR→`, the probability for a transition from an
initial statena to the continuumk is given by

uUna ,k~0,̀ !u25 lim
nb→`

~12pna21!pna
•••pnb

. ~3.11!

All other elements ofU(0,̀ ) vanish. This completely de
fines the matrixuUna ,nb

(0,̀ )u2. It should be noted that only
total ionzation cross sections can be computed in this mo

Collisions of atoms in high Rydberg states with ions a
the main focus of this manuscript. As we have seen, th
processes depend critically upon the Massey parameterDn .
For most ion-atom collisions, the potential term can be
glected in the expression forv(Rn), however as a check o
our asymptotic expression for the Massey parameter, we
compute the Wannier threshold law for which the poten
term is critical, but the centrifugal termb2v2/Rn

2 is ne-
glected.

The probability for the system to stay on the diabatic st
after passing thenf th crossing is

P5pni
pni11•••pnf

5exp@22S~ni ,nf !#, ~3.12!

where

S~ni ,nf !5 (
n5ni

nf Dn

v~Rn!
~3.13!

and where
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v~Rn!5A2M ~E1C0 /Rn!. ~3.14!

Substituting our expressions forRn and Dn into the sum,
approximating the sum by an integral overn, and writing the
results in terms of« i5C0 /Rni

and« f5C0 /Rnf
gives

S528AM

C0
lnFA« f1A« f1E

A« i1A« i1E
G . ~3.15!

In the limit asnf→` or equivalently,Ef→0, we obtain

S52zW lnAE1zW ln@A« i1A« i1E#. ~3.16!

Substituting Eq.~3.16! into Eq. ~3.12! gives the well-known
Wannier threshold laws}EzW with

zW5A16M

C0
. ~3.17!

Had we employed hyperspherical coordinates or incor
rated a small harmonic-oscillator potentialVS5C0r 2/2M
that originates with Solov’ev’s transformation@20#, we
would obtain

zWA16M

C0
1

1

2
. ~3.18!

In order to obtain the correct Wannier exponent, namely

zw5A16M

C0
1

9

16
2

1

4
, ~3.19!

it is necessary to take account of nonadiabatic coupling
is neglected in the present theory. Because the nonadia
effects are seen to be of order 1/M , we conclude that the
Massey parameterDn that we compute in Appendix B is
accurate for largen. It should be noted that, because atom
units with the mass of the electronme51 are used, the mas
M in Eq. ~3.19! actually stands for the ratio of the reduce
massM of the like charges to the reduced mass of the unl
charge relative to the total mass. These masses are den
by m12 andm12,3 in Ref. @9#.

It is not our intention to apply this model forE,0, since
in this region several inconsistencies emerge that can onl
corrected by a complete wave treatment. Even so, a b
consideration of this region is useful, if only to demonstra
the limitations of the present theory. For negativeE, the
diabatic state is populated even after the last energetic
allowed channel is passed. One must consider that, in a w
treatment, the outgoing wave in the diabatic channel reac
a turning point, reflects, and return towards the origin@24#.
Multiple reflections set up standing waves which have be
postulated to give ‘‘ridge’’ resonance states@25#. If it is as-
sumed that these states decay mainly to the closest ene
cally allowed channelnf , then the probability for the statenf
at an energy just slightly above the asymptotic binding
ergy 2Z2/2nf

2 is given by Eq.~3.15! with E52Z2/2nf
2 .

Recalling the definition of« f , we have
0-5
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u« f u52
4C0

Zp2 E. ~3.20!

This relationship, and Eq.~3.15!, gives a ratio of the ioniza-
tion probabilityP1 at energyE above threshold to the prob
ability P2 for populatingnf at an energyuEu below thresh-
old. The ratio is found to be

P2 /P15SA4C0

Zp21A4C0

Zp2 21D 2zW

. ~3.21!

Equation~3.21! shows that there is a step discontinuity
threshold, with the cross section below threshold being lar
than that above, as found earlier@26# and as seen in exper
ments @28#. The magnitude of the step forZ52 and M
51/4, however, isP2 /P152.65, which is considerably
larger than found experimentally@27#. Decay of ‘‘ridge’’
resonances to channels lower thannf would reduce the ratio
but quantitative computation of this effect is beyond t
scope of the present theory.

The remaining applications consider ion-atom interactio
at velocities whereE@C0 /R so that the potential term in
v(Rn) is negligible. Extensive computations of ionizatio
excitation, and charge transfer for these systems are a
able, however quantitative treatments of the top-of-bar
mechanisms have been restricted to relatively lown. This
mechanism is implicitly included in the CTMC theory, b
the theory is not applicable when the relative velocity
much lower than the mean electron velocity in the init
state. It is just in this velocity range where the hidden cro
ing theory should be most reliable.

A truly comprehensive treatment of excitation and ioniz
tion for H11H collisions in this framework has been give
by Janev and Krstic@23#. To fit our computations into this
general framework, we note that the theory of Ref.@23# iden-
tifies three types of transitions between adiabatic sta
namely united atom rotational coupling, superpromotion, a
the top-of-barrier mechanism of interest here. The latter
processes are identified by branch points indicating ‘‘h
den’’ crossings of potential curves. One feature that emer
in this theory is that for any adiabatic state, united at
rotational coupling occurs at the smallest values ofR, super-
promotion next, and finally the top-of-barrier transition at t
largestR. This means that theU(0,̀ ) matrix can be factored
as

U~0,̀ !'U (Rot)~0,̀ !U (S)~0,̀ !U (T)~0,̀ !, ~3.22!

where the superscripts Rot,S, andT refer to rotational cou-
pling, superpromotion, and top-of-barrier, respectively. T
factorization is implicit in Ref.@23# and emerges automat
cally from asymptotic treatments in 1/v. This complete ma-
trix is substituted into Eqs.~3.6!, where it is important to use

U (Rot)~2`,`!5U (Rot)~2`,0!U (Rot)~0,̀ ! ~3.23!

before replacing coherent sums by incoherent sums. W
this replacement one then has
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uUni ,nf
~2`,`!u25 (

na ,nb

uUna ,ni

(T) ~0,̀ !u2uUnu ,na

(S) u2

3uUnu ,ns

(Rot) ~2`,`!u2uUns ,nb

(S) ~0,̀ !u2

3uUnb ,nf

(T) ~0,̀ !u2. ~3.24!

The squaredU matrix for S processes can be written i
exactly the same manner as Eqs.~3.9! except that now the
transitions always lead to lower states in the half-spac
,t,`. The rotational coupling matrix, however, can on
be computed reliably by solving the appropriate couple
channel equations. We expect that transitions between R
berg states will be dominated by the top-of-barrier transitio
since they occur at the largest crossing radii. For that rea
only Eq.~3.5! rather than the more general Eq.~3.24! will be
employed in this paper. The error incurred should be l
than the ratio of the square of crossing radii of theS andT
crossings. The largest crossing radii for theS process is of
the order of 2un2u while it is p2n2/2 for theT process, thus
the error in the cross section is of the order of 8/pi4'0.16. A
16% error is not entirely negligible, but is acceptable.

Conservation rules also emerge in the hidden cross
theory, since at each crossing only certain quantum num
change. The selection rules for each of the three types
transitions are implicit in the computations of Ref.@23#. For
example, united-atom rotational coupling changes the va
of umu while this quantum number is conserved in theS and
T transitions. In terms of the parabolic quantum numb
nj ,nh ,m one has thatU (T) conservesnj and m, U (S) con-
servesnh andm, while U (Rot) conservesnj andnh/21umu.
The neglect of rotation and superpromotion therefore imp
selection rules that are not exact and may affect the distr
tion of excited states even though the error in total cr
sections is of the order of 16%.

B. Excitation and capture

Excitation cross sectionssni ,nf
are computed by integrat

ing the squared matrix in element Eq.~3.6! over all impact
parameters less than the crossing radiusRi5Rni

for the ini-

tial state. The incoherent sum approximation implies that
of theni→nf cross section corresponds to excitation or el
tic scattering and 1/2 to capture. Thus we have

sni ,nf
5pE

0

Ri
uUni ,nf

~2`,`!u2bdb ~3.25!

for both excitation and capture.
We have used this equation to compute electron cap

and excitation cross sections for a reduced velocityv rd
5niv51 andni55,10. The electron distributions for cap
ture are compared with the loss cross sections from CT
calculations of Olson@14# in Fig. 3. Loss due to ionization is
negligible for purposes of computing total loss, so th
equivalent quantities are compared. We see that far m
capture occurs to the resonant statenf5ni in our model than
0-6
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in the CTMC calculations. The large resonant capture cr
section that we find is easily understood, since the proba
ity for the resonant process is

Pres5pni ,ni

2 1~12pni ,ni
!2 ~3.26!

in the approximation that transitions to lower states are
glected. Because 0,pni ,nf

,1, we must have 0.5,Pres,1,
in agreement with the numerical calculations shown in F
3. For ni55 andv(r )5v, it follows that pni ,nf

50.36 and

Pres50.54 in modest agreement with Fig. 3. That we find
slightly smaller probability numerically is mainly due to th
variation of v(r ) with impact parameter. Similarlypni ,ni

50.6 for ni510 so thatPres50.52 in qualitative agreemen
with the numerical calculations.

The large resonant capture fraction clearly disagrees w
the CTMC theory. It also disagrees with the experiments
MacAdam et al. @28#, suggesting that the hidden crossin
theory as presently formulated is inaccurate for highn states.
While it is possible that processes neglected in Eq.~3.6! may
play some role, they cannot bring our computation of
resonant cross section into accord with the CTMC theory
the data of Ref.@28#.

FIG. 3. Comparison of the top-of-barrier and CTMCn distribu-
tions for electron capture at a reduced velocityv rd51 ~a! for ni

55 and~b! for ni510.
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Replacement of the coherent sum by the incoherent s
is probably the main source of error in the present theo
This assumption is usually reliable for processes involv
low-lying states, but the present results suggest that it d
not apply to states of moderate and highn. Formally, inter-
ferences between different terms in Eq.~3.6! are readily
taken into account. It is only necessary to keep the ph
associated with each channelna . It is difficult to do this
directly for theU(2`,`) matrix. The half-collision formu-
lation used here, together with the conservation laws, h
ever, makes such a computation feasible. Even so, it is n
essary to have good estimates of all of the potential ene
curves in order to compute the phases accurately. Such
culations are beyond the scope of this work.

While the excessively large resonant cross section po
to a major flaw in replacing coherent sums by incoher
sums, the other features of the CTMC calculations are rep
duced by the top-of-barrier theory. Both distributions show
propensity for populating states withnf.ni and both show
approximately the same fall-off with increasingn. The slight
shoulder seen in the CTMC distributions atnf'3ni /2 could
be due to processes such as rotational coupling, which h
been neglected in our calculations, or they could indicat
genuine difference between classical and quantum calc
tions atv rd51. In any event, it is necessary to improve t
present model in order to investigate this possibility furth

While distributions over final states using the incohere
sum are incorrect, the total capture cross section may no
The total cross section in the present model is just1

2 pRni

2 .

The estimateRn5p2n2/2 gives a cross section that appea
to be too large. This can be accounted for by employing
more accurate estimate of the crossing radius,

Rn5
1

2
p2n@n2nj1~ umu11!/2#, ~3.27!

and averagingRn
2 over all states. We do this by replacin

sums by integrals to find an average squared radius,

^Rn
2&5

29

92
Rn

2 , ~3.28!

which gives

scap54.9pni
4 ~3.29!

in remarkably good agreement with the result 5.5pni
4 found

in Ref. @14#.

C. Ionization

We have already computed ionization cross sections
the threshold region to verify our asymptotic expression
the Massey parameter. It was seen that the multicros
calculation agreed exactly with the theory of Ref.@18#. That
work also computed the ionization probability for velocitie
where an exponentialP5exp@25.11/v# was obtained. In the
present multicrossing calculation we have forn51 the result
P5exp@216/pv#5exp@25.09/v#. The close agreement o
0-7
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the Massey parameter in the two theories shows that they
indeed equivalent for total cross sections.

At higher velocities, ionization cross sections as a fu
tion of ni are often fit to a power laws}na for fixed reduced
velocity, since this form emerges in most calculations
sufficiently largen and v. The exponenta can be obtained
by equatings to Ana, whereA is the multiplicative factor in
the limit asn→`. In this limit

sni

(ion)→pRni

2 $12exp@216/~pv rdni !#%exp@216/~pv rd!#

→ 4p4

v rd
ni

3 exp@216/~pv rd!#. ~3.30!

The exponent obtained by fitting the computedsn
(ion) with

A from Eq. ~3.30! is shown in Fig. 4~a! as a function of the
reduced velocity. It is seen that thea53 exponent is ap-
proached fairly quickly for reduced velocities of the order
unity, but forv rd50.1 rather high values ofn are needed. In
addition, the exponent is actually negative, but rapidly va
ing, for low values ofn. In this region, the exponential law
with the asymptotic coefficientA is not very informative due
to the rapid variation ofa with n. Indeed a constant negativ
value would imply a decreasing cross section, but the ra
increase ofa actually gives a cross section that increas
with n.

If we consider the limit asv rd→0, then one finds

FIG. 4. Plot of the exponenta in the fit s ion5Ana of the ion-
ization cross section vsn. The upper plot~a! usesA taken from the
value in the limit asn→` with fixed v rd and~b! usesA taken from
the limit asv rd→0 with n fixed.
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sni

(ion)→ p5

4
ni

4 exp@216/pv rd#. ~3.31!

With A5(p5/4)ni
4 exp@216/pv rd#, a plot @see Fig. 4~b!# of

the fitteda starts out ata54 for low values ofn and de-
creases slowly with increasingn. The decrease towardsa
53 is more rapid for largerv rd but never actually equals 3 in
the range ofn values shown. This shows that the expone
and the coefficient in the power lawAna are not indepen-
dent. For moderate values of bothv rd andn, the power law is
useful but it must be understood that empirically compu
power laws may not be valid for infiniten, since the constan
in that limit is generally not known.

IV. CONCLUSIONS

We have solved a two-state model for ionization and
citation to Rydberg states, applicable when one of the dia
tic potential curves approaches the continuum manifold
infinite distances as«(R)52C0 /R. When two potential
curves actually cross, the transition probabilities agree w
the Landau-Zener and the hidden crossing models in
weak-coupling limit. Direct transitions to positive energ
states are also computed in this model and are found to
vanishingly small for fixed reduced velocity and largeni .
Ionization is therefore computed in terms of the probabil
that the diabatic state survives to infiniteR. To apply the
theory, an asymptotic expression for the Massey param
was computed. We find a remarkably simple expressionDn
58/pn2, which corrects an earlier result. This expressi
gives the accepted form for the Wannier threshold law.

Ionization cross sections were computed for a variety
initial principal quantum numbersni and were fit to a power
law Ani

a at fixed reduced velocity. Asymptotic values ofA
and a for large ni were extracted and compared with o
numerical calculations. It is found that the asymptotic exp
nenta53 is approached very slowly. Over most of the v
locity range where the model is applicable, an exponena
54 gives a better fit. This power law emerges in the lim
v rd→0 with ni large but fixed.

Electron capture cross sections for H11H collisions were
computed forni55 andni510. The distribution overn val-
ues showed an unrealistically large fraction for reson
charge transfer. This large fraction suggests that the use o
incoherent sum over paths, well accepted for processes
volving low n states, is incorrect for highn. Total cross sec-
tions which are sensitive only to the crossing radius in t
model agree within 10% with CTMC results. We conclu
that the dynamics of high Rydberg states are indeed g
erned mainly by the top-of-barrier mechanism, but that
present formulation of the hidden crossing theory must
extended to include phase information normally omitted
that theory.
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APPENDIX A: THE U MATRIX

To evaluateU(t,t8) we project Eq.~2.1! onto u0&,u1&
and use Eq.~2.3! to obtain the system of differential equa
tions,

S i
]

]t
2

b

t Da0~t!2ha1~t!50, ~A1!

S i
]

]t
2« Da1~t!2ha0~t!50. ~A2!

The adiabatic energy levels are given by

E0,1~t!5
1

2
@«1b/t6A~b/t2«!214h2#. ~A3!

As t→` we get

E0;v02
v1

l

b

t
, E1;v11

v0

l

b

t
, ~A4!

wherev05(«1l)/2, v15(«2l)/2, andl5A«214h2.
To solve Eq.~A1! and Eq.~A2!, let

a0,1~t!5d0,1~t!expF2 i
b

2E
t dt8

t8
G , ~A5!

thend0,1(t) satisfy

S i
]

]t
2

b

2t Dd0~t!5hd1~t! ~A6!

and

S i
]

]t
1

b

2t Dd1~t!5hd0~t!1«d1~t!. ~A7!

Operating on Eq.~A7! by @ i (]/]t)2(b/2t)# and replacing
d0(t) from Eq. ~A6!, and then takingd1(t)5e2 i («/2)ty(t)
in the new equation gives

]2y~t!

]t2 1S h21
«2

4
2

«b

2t
1

b2

4
1

ib

2

t2
D y~t!50. ~A8!

Letting t5ax, the above equation gives
04271
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]2y~x!

]x2 1S a2Fh21
«2

4 G2
a«b

2x
1

b2

4
1

ib

2

x2
D y~x!50.

~A9!

Upon setting a2@h21(«2/4)#52 1
4 @i.e., a52( i /l)#, k

5 i«b/(2l), and m5 ib/221/2, the above equation take
the form

]2y~x!

]x2 1S 2
1

4
1

k

x
1

1
4 2m2

x2 D y~x!50, ~A10!

which is Whittaker’s equation@29# with solutionsMk,6m(x).
It follows that Eqs.~A1! and ~A2! have the solution array

f 00~t!5
1

h S i
]

]t
2« D f 10~t!, ~A11!

f 01~t!5
1

h S i
]

]t
2« D f 11~t!, ~A12!

f 10~t!5e(2 i«/2)te(2 ib/2)*t(dt8/t8)M ( i«b/2l),(ib/2)2(1/2)~ ilt!,
~A13!

f 11~t!5e(2 i«/2)te(2 ib/2)*t(dt8/t8)M ( i«b/2l),(2 ib/2)1(1/2)~ ilt!.
~A14!

Now using the definition to the time evolution matr
U(t,t8), namely

f ~t!5U~t,t8! f ~t8!, ~A15!

we find, usingU(t,t8)5 f (t) f (t8)21, the result

Uii 5@ f i i ~t! f j j ~t8!2 f i j ~t! f j i ~t8!#/d~t8!, i 50,1; j 51,0,

Ui j 5@2 f i i ~t! f i j ~t8!1 f i j ~t! f i i ~t8!#/d~t8!, ~A16!

where

d~t8!5 f 00~t8! f 11~t8!2 f 01~t8! f 01~t8!

5
~ i 1b!l

h
exp~2 ib ln t81 iv0t8!. ~A17!

To evaluate Whittaker’s functions we use

Mk,m~z!5zm11/2e2z/2
1F1~m2k11/2,2m11,z!

~A18!

and

d

dz1F1~a,b,z!5
a

b 1F1~a11,b11,z!, ~A19!

where 1F1(a,b,z) is the confluent hypergeometric function
to obtain the expressions
0-9
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f 00~t!5v1h21~ il! ib/2e2 iv0t@ 1F1~12 ibv1 /l,11 ib,ilt!

2 1F1~2 ibv1 /l,ib,ilt!#, ~A20!

f 01~t!5~ il!12 ib/2h21expF2 iv0t2 ibE t t8

t8
G

3F ~ i 1b2v1t! 1F1~12 ibv0 /l,22 ib,ilt!

2t
l2 ibv0

22 ib 1F1~22 ibv0 /l,32 ib,ilt!G ,
~A21!

f 10~t!5~ il! ib/2e2 iv0t
1F1~2 ibv1 /l,ib,ilt!,

~A22!

and

f 11~t!5~ il!12 ib/2texpF2 iv0t2 ibE t dt8

t8
G

3 1F1~12 ibv0 /l,22 ib,ilt!. ~A23!

Since 1F1(a,b,0)51, then ast8→0 we have

f 00~t8!5 f 11~t8!50,

f 01~t8!5
i 1b

h
~ il!12 ib/2~t8!2 ib exp@2 iv0t8#,

~A24!

f 10~t8!5~ il! ib/2 exp@2 iv0t8#,

therefore, ast8→0 we obtain

U00~t,t8!5
f 01~t!

f 01~t8!
, U01~t,t8!5

f 00~t!

f 10~t8!
,

~A25!

U10~t,t8!5
f 11~t!

f 01~t8!
, U11~t,t8!5

f 10~t!

f 10~t8!
.

Since, asz→`,

1F1~a,b,z!→G~b!S e6 i [ uzu2(p/2)(b2a)]

G~a!
uzua2b

1
e6( ip/2)a

G~b2a!
uzu2aD , ~A26!

wherez56 i uzu, then, ast→`, we obtain
04271
f 00~t!52
G~ ib!

h
~ il! ib/2Fv0

e2 iv1t1(pbv0 /2l)

GS 2 i
bv1

l D ~lt!2 ibv0 /l

1v1

e2 iv0t1(pbv1/2l)

GS i
bv0

l D ~lt! ibv1 /lG , ~A27!

f 01~t!5 i
G~22 ib!

lh
~ il!12 i (b/2)

3F2v1

e2 iv0t1(pbv0/2l)

GS 11 i
bv1

l D l ibv0 /lt ibv1 /l

1v0

e2 iv1t1(pbv1 /2l)

GS 12 i
bv0

l D l2 ibv1 /lt2 ibv0 /lG ,

~A28!

f 10~t!5G~ ib!~ il! ib/2F e2 iv1t1(pbv0 /2l)

GS 2 i
bv1

l D ~lt!2 ibv0 /l

1
e2 iv0t1(pbv1 /2l)

GS i
bv0

l D ~lt! ibv2/lG , ~A29!

f 11~t!52 i
G~22 ib!

l
~ il!12 i (b/2)

3F e2 iv1t1(pbv1/2l)

GS 12 i
bv0

l D l2 ibv1 /lt2 ibv0 /l

2
e2 iv0t1(pbv0 /2l)

GS 11 i
bv1

l D l ibv0 /lt ibv1 /lG . ~A30!

We therefore obtain

Ui j ~`,0!5 lim
t→`

lim
t8→0

S Ai j expF2 i E t

dt8E0~t8!G
1Bi j expF2 i E t

dt8E2~t8!G D
3exp~ iv0t81 id j 0b ln t8!, ~A31!

which shows that the matrix elementsUnm(`,0) are linear
combinations of adiabatic amplitudes, where

A005cot~u!A105
G~2 ib!

G~2 in1!
l in0 exp~pn0/2!,
0-10
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A115tan~u!A015
G~ ib!

G~ in0!
l2 in1 exp~2pn1/2!,

B0052tan~u!B105A11* , ~A32!

B1152cot~u!B015A00* ,

and wheren j5v j /(bl) andu is given by Eq.~2.9! of Sec.
II.

APPENDIX B: THE MASSEY PARAMETER FOR TOP-OF-
BARRIER TRANSITIONS

The Massey parameter for transitions at crossings of
tential curves is defined in terms of the probability for tra
sition p according to

p5exp@22D/v#. ~B1!

The exponential transition probability follows from Landa
Zener and other multicrossing models, however the hid
crossing theory is the most general context for this repres
tation. In that theory transitions are computed by integrat
the phase integral

D

v
5ImE «~R!

v~R!
dR ~B2!

along a path in the complex plane such that the adiab
energy functionE(R) starts with the value« i on the real axis
at smallR and ends up with the value« f on the real axis in
the R→` limit. This can only happen if the path goe
around a branch point connecting two sheets,i and f, of the
Riemann surface of«(R). The position of the branch poin
Rc and the phase integral are critical quantities that we w
compute in this appendix for the top-of-barrier hidden cro
ings.

The energy eigenvalues«(R) near the top of a potentia
barrier have been treated semiclassically by Macek
Ovchinnikov @18#. Their Eq. ~B14! for symmetric systems
such as H2

1 is used as the starting point for the computati
of Dn . They give

f~R!1argG$@2611 i2a~R!#/4%2 iQ~R!a~R!

5p~n11/271/8!, ~B3!

wheref(R) is a WKB phase integral,

f~R!5E
0

1/2
A2R2@C0 /R2V~R,x!#dx,

~B4!

V~R,x!5
1

R S 2
Z

u1/22xu
2

Z

u1/21xu
11D ,

anda(R) andQ(R) are given by

a~R!5AR3/32Z~2C0 /R2«!,
04271
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Q~R!5
1

4
ln@32ZR#21. ~B5!

For the specific potential of interest here,

f~R!532Z/R, a~R!5
R3/2

A32Z
~C0 /R2«!. ~B6!

The position of the branch pointRn corresponding to a
given n was found in Ref.@18# from the quantization condi-
tion Eq. ~B3!. They obtain

ReRn5p2n2/2Z,

Im Rn5
361

2
A2 ReRn

Z F1

4
lnS 29Z ReRn

p2 D
1 lnS 1

2
ln~27ReRn!221g D G , ~B7!

whereg is Euler’s constant and6 refers to gerade and un
gerade states, respectively.

The Massey parameter is found by integrating«(R),
given implicitly by Eq.~B3!, around a path on the real ax
that starts atR5ReRn , goes around the branch point, an
ends atR5ReRn11. This integral is approximated by th
product of 2 ImRn andD«5«n11(R)2«n(R). A simple es-
timate of the energy difference, namelyD«52C0(1/Rn
21/Rn11), was used in Ref.@10#, but this estimate is no
sufficiently accurate for large values ofn. A more accurate
value is derived here.

Since a'0 at the top-of-barrier, an estimate ofD« for
large n is found by expanding the quantization conditio
about the pointa50 to obtain

f~R!1@c„~261!/4…/21Q~R!#a5p~n11/261/8!.
~B8!

The differenceD« is readily found to be

D«5A32Z

R3

p

Q~R!1c„~271!/4…/2
. ~B9!

The Massey parameter is then

D~Rn!5
4p

Rn
F ~271!1OS 1

ln Rn
D G . ~B10!

SubstitutingRn5p2n2/2Z into Eq.~B10! and specializing to
even symmetry gives the expression

Dn5
8Z

pn2 ~B11!

used in Sec. III.
0-11
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