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Two-state model for top-of-barrier processes
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A two-state model applicable to top-of-barrier processes in ion-atom collisions at low velowtinves-
tigated. An expression for the Massey parameter of the transitien+ 1 is derived and is used to compute
ionization, capture, and excitation from states of high principal quantum numbet #aHHcollisions. The
Wannier law is obtained at the ionization threshold. The dependence of ionization on thenisit@mputed.
Total capture cross sections are in good agreement with other calculations, but an unreasonably large fraction
goes to resonant capture. It is concluded that multicrossing models, which do not incorporate interference
between different paths to the resonant state, overestimate resonant capture.

PACS numbe(s): 34.80—i

[. INTRODUCTION touch the top-of-barrier at a distance where the potential en-
ergy of an electron equals the separated atom energy, up to a
lonization of atoms in low-velocity, heavy-ion ion colli- factor of the order of unity11,15. Absolute cross sections
sions has been investigated by several grdupss]. Tech- ~ Were computed using the hidden-crossing th¢d6-18 to
niques that are sensitive to electrons with energies of th&€at the multiple crossings, shown schematically in Fig. 1.
order of 1 eV show that a surprisingly large number emergdn this figure a diabatic state with energy equal+&o/R,
in that energy range. These slow electrons have been attrithere R is the internuclear distance ar@y=4Z—1 with
uted to a mechanisii6] similar to the one that gives rise to Z=1 for H" +H, crosses a series of Rydberg statesith
Wannier's threshold law for electron impact ionization of €nergye,=Z2/(2n?). At some distance it is supposed that
atoms[7—11], even though, for ion impact, the total energy transitions to the continuum take place. The nature of this
is far above the ionization threshold. In this picture, ioniza-transition is obscure. One objective of this investigation is to
tion is possible when the electron is asymptotically at theelucidate the transition to the continuum state.
saddle point of the potential as the nuclei slowly separate. In An important feature of the multicrossing moda®] is
essence electrons become stranded at the top of a potentiift the diabatic curve actually enters the positive energy
barrier between target and projectile and end up ionized wit§ontinuum while the top-of-barrier diabatic curve never ac-
low velocity in the center-of-mass frame. This mechanismtua”y does so. In effect, transitions to the continuum level
will be called the Sadd]e_point or top-of-barrier mechanism.are underbarrier transitions. The first section of our manu-
Classical calculations are often employed to describe thi§Cript formulates a two-state model to compute direct transi-
process, beginning with the original work of Wannjgi.  tions to positive energy states. We find that the probabilities
Recentab initio quantal calculations based upon direct solu-for such transitions are vanishingly small for high Rydberg
tion of the time-dependent Schfinger equatiorf12,13 are  States.
at an early stage and have not provided total cross-sectior T T T T T
values. The hidden crossing thed] gave the first results ok i
for top-of-barrier ionization, but none of the quantum calcu- fs 4
lations have been applied to ionization of states with high o022 b 2 i
principal quantum number. For ion-atom collisions, classi- —~
cal trajectory Monte Carl¢CTMC) calculationd14] are one ;
of the few methods that give absolute cross sections for higtz -0-44 | ]
nand at relative velocities that are comparable to the electront
velocity in the initial sate. .0.66 I i
The firstab initio quantum calculations of ionization via
the top-of-barrier mechanism in ion-atom collisions em-

. . ) -0.88 | n=1
ployed adiabatic molecular states where a series of broar /
avoid level crossings were identified. These level crossings ! : : : '

are associated with energy levels of Rydberg states that jus

112
R

FIG. 1. Schematic plot of adiabatic potential curves showing a
*Permanent address: loffe Physical Technical Institute, St. Peterseries of avoided crossings between Rydberg states and a diabatic
burg, Russia. energy curve—Cy/R.
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This suggests another interpretation of the diabatic state, 2 T
namely that it becomes a zero-energy bound state modified
by Solov'ev’s translation factor efjp?/2R(t)], asymptoti-
cally, wherer is the center-of-mass electron coordinate Rnd =~
is the internuclear distan¢20]. Then ionization is computed = 0
by evaluating the probability that the diabatic state, denoted % -1
here by|0), survives the multiple crossings of the infinitude @€ 1
of Rydberg states. The hidden crossing computations of Ref. W .2 (a)
[6] employ the probability to survive only a finite number of 0
Rydberg states, i.e., the number of crossings leading to ion- -3
ization was cut off as some value of The closely related
theory of Ref.[18] does not employ a cutoff im, but em- -4 1
ploys integration of an asymptotie(R) in the complex 0 5 10
plane. We show that the survival probability agrees with this R(au)
later, indirect approach. o
The survival probability depends upon the Massey param- '
eterA,, for a transition from a Rydberg state to the diabatic 1
state. This quantity is computed in Sec. lll where the simple 1 A
result A,=8/(mn?) is found for the states of low magnetic =~ 0
quantum number in H+H collisions. That this expression ;;
gives the Wannier threshold law is also demonstrated. An —~ -1
earlier computation using the same method obtained a differ- 5:\1 (b)
ent law involving powers of IiE. We trace the It terms to -2
an inaccurate expression for the energy differente
=en+1(R)—¢e,(R) at the crossing radius, thus confirming -3 0
the surmise of Ref[18], namely, that the simple estimate .4 I
Aeon~? is incorrect. 0 5 10
The Demkov-Oshero{19] multicrossing model employs R(au)
a projection operator representation of the diabatic potential
that varies linearly with timer. The possibility of solving a FIG. 2. Schematic plot of adiabatic potential curves for the two-

similar model that varies asR/ with R=v 7, was also rec-  state model witf{a) two negative energy states afiil one negative
ognized in Ref.[19]. Such a model describes the top-of- energy state and a positive energy state.

barrier diabatic potential curve, however the solution has not

been worked out in detail. In this manuscript we report ontransitions. In essence the system must tunnel through a for-
the solution of a two-state model with arldiabatic potential bidden region to pass between asymptotic eigenstates. A
Hgqi=|0)(B/7)(0|. Here B is a constant to be determined two-state model with a */diabatic potential can model un-
later, and|0) represents a diabatic state whose explicit formderbarrier transitions. We will obtain closed-form expres-

need not be specified. sions for such transitions in a two-state model.
The model is illustrated schematically in FigaR A di-
abatic potential CUrVqE:O with a 1R dependence Crosses a II. EORMULATION OF THE TWO-STATE MODEL

constant energy curvg=1 representing an excited state. )

The interaction between the states is modeled by a constant Our model Schrdinger equation is

matrix element. Transitions between these states, typically P

represented by the Landau-Zener model, occur in the vicinity _ _

of the crossing of the diabatic curves. We will see that the 'a_r_HO(Q)_|O>?<O| l¢(a.7))=0. B=PBolv,

computed transition matrix elements differ somewhat from (2.1

those given by the Landau-Zener model. Aside from a factor

that is exponentially small for large our result agrees with whereq is the electron coordinate in the center of charge

the hidden crossing prescription. If we consider tivatl is  frame, Hy(q) is the Hamiltonian for an electron in a time-

a Rydberg state, then this model, with appropriate values foindependent potential3, is a constant whose exact value

the model parameters, can be used to compute excitation ttepends upon the physical system to be modeled)@nib

high Rydberg states. the diabatic state. Neither the time-independent potential nor
As the principal quantum number of the Rydberg statesghe diabatic statg0) need be specified at this point. In order

becomes infinite, th¢=1 level approaches the zero-energy to connect with real diatomic systems, the variablill be

continuum. Continuum levels are modeled by taking con+eplaced byR=uv 7 in some parts of the discussion.

stant positive energy eigenvalues for the excited diabatic The solution of the time-dependent equation for general

state. Transitions to the continuum in this model are reprekitial conditions is given in terms of the time evolution op-

sented schematically in Fig.(l9. Since there is no actual eratorU(r,7"). The matrix elements of this operator taken in

crossing of levels, such transitions are called “underbarrier’the limit ast— o and 7’ — — oo are just the transition ampli-
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T

i f Eq(7)d7"

70

asymptotic states diagonalize the Hamiltonian Jam= lim

’
T—%, 7 —T1)

tudes in a basis of asymptotic states. The appropriate F{
ex

><[D(T)—1U(T,T')D(T')]nmexp[i f Em(7)d7"
70

at large values ofr|. 2.9
Equation (2.1) can be solved generally following the '

methods of Macek and Cavagndi]. It turns out that the  Defining the quantities

asymptotic conditions are not easily represented for the gen-

eral case; thus, we solve the special two-state model defined N=+/e?+4h?

by (2.9
2l1+2). m=t1-1),

(O[Ho|0)=0, (O[Ho|1)=(1[Ho|0)=h, (1|Ho[1)=¢ vo=7%
(2.3
by direct solution of the time-dependent equations. Thetnd using Eq(A32) of Appendix A givesJ,

H=HO+|O>%(O| (2.2

2

statesj =0,1 are the diabatic states of the model. The matrix B T(—ip)
corresponding to the complete Hamiltonian of Eg.2) in ok \ﬁ — N /2
this basis is Joo= =T (=i S Tre/2],
(2.10
£ o= o=\ B i et — )
H=| R . (2.4 017 V107 N 3 T(—i ) el
h
¢ The corresponding transition probabilities are
For negativeB, the eigenvalues of this Hamiltonian are
shown schematically in Fig.(d) for negativee and in Fig. 7 |2:1—exq—2m}1)
1(b) for positivee. O T 1—exp—2mB) "’
The solution of the time-dependent Sctfirmger equation, (2.1
Eq. (2.3 together with Eqs(2.3) and (2.2), is given quite 2_exp(—27-rv1)—exp(—277,8)
generally in terms of the time evolution operato(r, 7), | Todl*= 1—exp —27P)
le(7)=U(7,7")|e(1")). (2.9 Equations(2.10 and (2.11) hold independently of the

signs of 8 ande. One must recognize, however, that owing
to our definition ofD(0), it is necessary to interchangg
and J,; when 8 is negative. For our application=—|g|
and e can be either negative, as illustrated in Figa)2 or
Rositive, as in Fig. ). In either case we have

For the two-state model thd(7,7') is a 2X2 matrix.

The U matrix is obtained in the diabatic basis of states in
Appendix A. Forr— 0 the Hamiltonian is diagonal in diaba-
tic basis, but is not diagonal as—c. In order to obtain
transition matrix elements it is necessary to use a basis, i

which the Hamiltonian is diagonal as—c. Since the exp( — 2| vo|) — exp( — 2| B])
asymptotic Hamiltonian is diagonal in the adiabatic basis, the | T o1 ?= 1—exp—278) (2.12
transition amplitudes are defined both7at0 and r—o° in (=27
that representation. The transformation to the adiabatic basﬁ; h<e ande<0 we have
is affected by an orthogonal transformation matbX 7)
where | Tol®~p, (213

cogd(r)] sino(7)]

D(7)= ) ' 2.6 where
—sin6(7)] cod6(7)] 271 84| 2
- 0
and where p=exp{ Sa—— (2.14
tanq 6(r)]= 2h 2.7 In this case, Eq(2.149) is the usual two-state Landau-Zener

a Blr—e’ probability. We expect to recover the Landau-Zener result in

this limit since the branch point of the adiabatic energy func-
The matrix that describes the evolution of the system betion E(R), i.e., the complex value oR where Ey(R)
tween the times = 7o, where7o~0 and7—, is formally =g (R), is close to the real axis. In this case any two-state
similar to the Jost matrix of time-independent scatteringmodel should agree with the Landau-Zener resuilt.

theory[22]. In the time-dependent theory this matrix will be  For this model the energi(R) has branch points at
called the “one-pass” transition matrif. It is defined in the

basis of adiabatic states as Bo/R=—(eg=x2ih). (2.15
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According to the hidden crossing theory the probability for awhich definesZ.¢. One sees thaZ.s# Z, since we have
transition is given by eXp-2A/v], whereA is the Massey chosen the model energy at the crossing radius rather than at
parameter given by the separated atom limit. The difference is slight wtfy
~1.1Z, and is of no consequence except near the threshold
for excitation or capture to a particular final state
A:—Imf E(R)dR, (2.16 In accord with common practice, the velocitywill be
¢ taken to be the radial velocity at the crossing radius. Then

. . one has
where the contout starts on the real axis on the first sheet of

E(R), goes around the branch point, and returns to the real ,. 2Co b2y?2
axis on the second sheet. This integral is readily computed v(Ry)=\/v°+ MR RZ
for e<0 and one finds that " n

(3.2

where M is the reduced mass of the two nuclbi,is the
A=y, (2.17 impact parameter, angd now denotes the initial relative ve-
locity.

where v, is given by Eq.(2.9). This result exactly agrees  The remaining parameter of the model is the Massey pa-
with our solution of the two-state model provided the termrameterA,. Approximate expressions for this parameter
exf —2mB,/v] is neglected. For the applications consideredhave been given in the literature, however the available ex-
here, this term is always negligible. pressions are not sufficiently accurate for our purposes. For

For positives the transition probability is always less that reason, we derive an expression in Appendix B follow-
than exfp—wCy/v]. We are interested in processes for whiching the analysis of Ref.18]. There the simple result
the reduced velocity q=vn is of the order of unity. In that 3
case the direct ionization probability is always less than Ap=—s (3.3
exd —mCynlv,4], which is vanishingly small even for mod- ™n
erate values ofi. Thus, direct ionization to the continuum " . :
from a state of highn is negligible and the diabatic state) for the H, system Is obtained. . . .
itself should be interpreted as a zero energy bound state as All cross sections for the multicrossing model, illustrated
R— o0, With this latter interpretation, ionization is computed schgmaucally In Fig. 1, can be computed from e'e'.“e"“s of
by calculating the probability that the std® survives mul- the time evolut_lon operat_(jﬂ(—CfO,oc). Constructlng th'S.Op'
tiple crossings of Rydberg states with some nonzero ampli(—arato.r d'reCtIy.”.] the mHI'ucros”smg modell nv olves tracing all
tude asR—. Because direct ionization is negligible, and pOSS|bIe transmo_ns_or paths_ from the initial statg to the
because the present model recovers the hidden crossing tre{H]-al staten; . Th!s is a formidable task23) even for the
sition probability, a multicrossing model treating each tran-Slmple r.nodgll given here: Fortur)ately, this task can be
sition as independent can be used to compute top—of-barri(greatly simplified[22] by using the identity

processes. Such computations are reported in Sec. Ill. U(—o0,50)=U(—2,00U(0). (3.4)
lIl. APPLICATION TO TOP-OF-BARRIER TRANSITIONS For the operatot)(0), only one path connects a “united
_ _ atom” staten, nearR=0 with a separated atom statg. It
A. Multicrossing theory and model parameters is thus fairly simple to construct the half-collision matrix
We wish to apply this model to excitation and ionization U(0*). Since time reversal implies the relation
of Rydberg states via the top-of-barrier mechanism for H 2
+H collisions. Our first task is to obtain parameters that |U(—%,%)]2=|> U, n(02)U, o (02)] , (3.5
relate the top-of-barrier branch point to the two-state model. a2 ant

Three parameters$y, €,, andh,—for each Rydberg state » _ : .

n are required. An alternative set, namely the Massey paranifansition probabilities for the physic&) matrix are com-
eterA,,, the crossing radiu,, and the asymptotic energy PUtéd simply by matrix multiplication onceJ(0s<) is

¢, relates more closely to the hidden crossing theory, and t§"OWn- _ _ , .

cross sections. These latter three parameters are used here ad N€ SUM over intermediate statesin Eq. (3.5) is taken

the primary inputs for applications to real physical systemsCoherently. In keeping with the assumptions of the hidden

For the two-state model we havig,|=Co=4Z—1 crossing theory, it is supposed that all cross terms average
while the top-of-barrier crossing radius has been compute@Ut in the integration over impact parameter so that the co-
in Ref. [18]. They obtainR,=72n2/2Z for states of even erent sum can be replaced by the incoherent sum

symmetry and zero angular momentum in the separated atom

limit. Becausee+Cy/R must vanish at the crossing, we [U(—o,2)[2=> Uy 1 (02)]2U, 5 (02)]2
have Na a'li a''f
(3.6)
2CoZ _ Zen Again, the incoherent sum is readil ted from the half
= — = e (3.1) gain, the incoherent sum is readily computed from the half-
7N 2n? collision matrix.
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The matrix elementuna,nb(o,oc)|2 is constructed from
the two-state transition probabilitigs, where
pr=exd —2A,/v(R,)] (3.7

if v(R,) is real, and
pPn=0 (3.8

if v(R,) is imaginary. Letn, be the smallest value of for
whichv(R,) is real. Ifn, is greater tham, , the system is in
a Rydberg state at=0, while if n,=n, it is in the diabatic
state. From Fig. 1 we easily see thanif>n,, then

|Una'nb(0,00)|2=(1— pna—l)pna' s pnb—l(l_ pnb):

nb>na,
[Un, n,(022)[?=(1=pp,-1)(1=Ppn), Np=ng,
(3.9
Un, n,(02)[2=pp,.  Mp=na—1,
while if na=n, one has
[Un, 0, (02)[*=pn_---Pn,-1(1=Pp),  Np>n,,
[Un, n,(02)[?=(1=Py), Np=na.  (3.10

PHYSICAL REVIEWGA 042710

v(R,)=V2M(E+Co/Ry). (3.14

Substituting our expressions f&, and A, into the sum,
approximating the sum by an integral overand writing the
results in terms ofsi=Coani andgfzcoanf gives

- IM [ JVer+ e+ E
S=-8 COIn \/8—|+\/8|TE (3.1

In the limit asn;—o0 or equivalently,E;— 0, we obtain

S=—{wINVE+¢wIn[ Ve + Ve, +E].  (3.16

Substituting Eq(3.16) into Eq.(3.12 gives the well-known
Wannier threshold lawreE‘W with

B 16M
w="\ <,

Had we employed hyperspherical coordinates or incorpo-
rated a small harmonic-oscillator potentislis= Cor2/2M
that originates with Solov'ev's transformatiof20], we
would obtain

(3.17

16M N
dw o

N| =

. (3.18

In order to obtain the correct Wannier exponent, namely

Since we interpret the diabatic state as an unbound zero-

energy state aR— «, the probability for a transition from an
initial staten, to the continuunk is given by

|Una,k(or°°)|2: lim (1_pnafl)pna' : 'pnb- (3.1

Np—

All other elements ofU(0,°) vanish. This completely de-
fines the matriAUna,nb(O,w)F. It should be noted that only

M 9 1
L=\ tig

Cy 16 4’ (3.19

it is necessary to take account of nonadiabatic coupling that
is neglected in the present theory. Because the nonadiabatic
effects are seen to be of ordeMl/ we conclude that the
Massey parameted, that we compute in Appendix B is
accurate for large. It should be noted that, because atomic

total ionzation cross sections can be computed in this mode|,its with the mass of the electron,= 1 are used, the mass
Collisions of atoms in high Rydberg states with ions arey; in gq. (3.19 actually stands for the ratio of the reduced
the main focus of this manuscript. As we have seen, thesg,asq\ of the like charges to the reduced mass of the unlike

processes depend critically upon the Massey paramgter

For most ion-atom collisions, the potential term can be ney,
glected in the expression fer(R,), however as a check on

charge relative to the total mass. These masses are denoted
y my; andmy, zin Ref. [9].
It is not our intention to apply this model f&<0, since

our asymptotic expression for the Massey parameter, we firgf, this region several inconsistencies emerge that can only be
compute the Wannier threshold law for which the potentialygrrected by a complete wave treatment. Even so, a brief

term is critical, but the centrifugal terrb?v?/R2 is ne-
glected.

consideration of this region is useful, if only to demonstrate
the limitations of the present theory. For negatiZe the

The probability for the system to stay on the diabatic statgjjapatic state is populated even after the last energetically

after passing tha;th crossing is

P=pn Pn+17" Pn,=€Xd—2S(n;,np)],  (3.12
where
oA,
=2 TR (313
and where

allowed channel is passed. One must consider that, in a wave
treatment, the outgoing wave in the diabatic channel reaches
a turning point, reflects, and return towards the ori#].
Multiple reflections set up standing waves which have been
postulated to give “ridge” resonance stafeb|. If it is as-
sumed that these states decay mainly to the closest energeti-
cally allowed channeh;, then the probability for the statg

at an energy just slightly above the asymptotic binding en-
ergy —Z%/2n? is given by Eq.(3.15 with E=—Z?/2n?.
Recalling the definition ot;, we have

042710-5
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4C,
e == 5 2E. (3.20 [Un n(=o=2)= 2 U0, (02)FUD |2
a''b
Rot S
This relationship, and Eq3.15), gives a ratio of the ioniza- X|Uﬁu?n)s(—°°,°°)|2|U§15),nb(0,°°)|2
tion probability P . at energyE above threshold to the prob- @ 5
ability P_ for populatingn; at an energyE| below thresh- ><|Unb,nf(0’°°)| : 3.24

old. The ratio is found to be

2w The squaredJ matrix for S processes can be written in
1) (3.21) exactly the same manner as E¢R.9) except that now the
transitions always lead to lower states in the half-space 0
<t<o. The rotational coupling matrix, however, can only
Equation(3.21) shows that there is a step discontinuity atbe computed reliably by solving the appropriate coupled-
threshold, with the cross section below threshold being largechannel equations. We expect that transitions between Ryd-
than that above, as found earl{@6] and as seen in experi- berg states will be dominated by the top-of-barrier transitions
ments[28]. The magnitude of the step fd=2 and M since they occur at the largest crossing radii. For that reason
=1/4, however, isP_/P,=2.65, which is considerably only Eq.(3.5 rather than the more general £§.24) will be
larger than found experimentallj27]. Decay of “ridge”  employed in this paper. The error incurred should be less
resonances to channels lower thenwould reduce the ratio, than the ratio of the square of crossing radii of tiand T
but quantitative computation of this effect is beyond thecrossings. The largest crossing radii for tB@rocess is of
scope of the present theory. the order of 2n?| while it is w2n?/2 for the T process, thus

The remaining applications consider ion-atom interactionghe error in the cross section is of the order qfi8~0.16. A
at velocities whereE>C,/R so that the potential term in  16% error is not entirely negligible, but is acceptable.
v(Ry) is negligible. Extensive computations of ionization, Conservation rules also emerge in the hidden crossing
excitation, and charge transfer for these systems are avaiheory, since at each crossing only certain quantum numbers
able, however quantitative treatments of the top-of-barriechange. The selection rules for each of the three types of
mechanisms have been restricted to relatively lmwrhis  transitions are implicit in the computations of RE23]. For
mechanism is implicitly included in the CTMC theory, but example, united-atom rotational coupling changes the value
the theory is not applicable when the relative velocity isof |[m| while this quantum number is conserved in iand
much lower than the mean electron velocity in the initial T transitions. In terms of the parabolic quantum numbers
state. It is just in this velocity range where the hidden crossn,,n,,,m one has that)(" conservesi, andm, U con-
ing theory should be most reliable. servesn, andm, while U (Roy conservesi; andn,/2+|m|.

A truly comprehensive treatment of excitation and ioniza-The neglect of rotation and superpromotion therefore implies
tion for H* +H collisions in this framework has been given selection rules that are not exact and may affect the distribu-
by Janev and Krsti¢23]. To fit our computations into this tion of excited states even though the error in total cross
general framework, we note that the theory of R28] iden-  sections is of the order of 16%.
tifies three types of transitions between adiabatic states,
namely united atom rotational coupling, superpromotion, and
the top-of-barrier mechanism of interest here. The latter two
processes are identified by branch points indicating “hid- Excitation cross sectionsni,nf are computed by integrat-

Qen”.crossings. of potential curves. Ong feature thqt emergesq the squared matrix in element EG.6) over all impact
in this theory is that for any adiabatic state, united atomparameters less than the crossing radius R, for the ini-
|

rotanan coupling oceurs at the smallest'value§e,<.)§.;uper- tial state. The incoherent sum approximation implies that 1/2
promotion next, and finally the top-of-barrier transition at the . o
of then;—n; cross section corresponds to excitation or elas-

:SrgestR. This means that thg (0,.0) matrix can be factored fic scattering and 1/2 to capture. Thus we have

4C, 4C,

P/P+:< Z772+ Zm?

B. Excitation and capture

Ri
U(O’oo)%U(ROt)(O’oo)U(S)(O,oo)U(T)(Oyoo)' (3.22 U“i'”fzwfo |Uni,nf(—°°,0°)|2bdb (3.25

where the superscripts R&, andT refer to rotational cou-

pling, superpromotion, and top-of-barrier, respectively. Thisfor both excitation and capture.

factorization is implicit in Ref[23] and emerges automati- We have used this equation to compute electron capture

cally from asymptotic treatments inul/This complete ma- and excitation cross sections for a reduced velocity

trix is substituted into Eq¥3.6), where it is important to use =n,y=1 andn;=5,10. The electron distributions for cap-
ture are compared with the loss cross sections from CTMC

URN(—o0,00) =URY(—o0,0)URM(0) (3.23  calculations of Olsofi14] in Fig. 3. Loss due to ionization is

negligible for purposes of computing total loss, so that

before replacing coherent sums by incoherent sums. Witkequivalent quantities are compared. We see that far more

this replacement one then has capture occurs to the resonant stae n; in our model than
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0.7 T T T T T T T Replacement of the coherent sum by the incoherent sum
is probably the main source of error in the present theory.
0.6 I B This calculation 7 This assumption is usually reliable for processes involving
os L [] c™me i low-lying states, but the present results suggest that it does
' nes not apply to states of moderate and highFormally, inter-
04l Y o1 i ferences between different terms in E®.6) are readily
S «d taken into account. It is only necessary to keep the phase
"§ 0.3 F i associated with each channe]. It is difficult to do this
@ directly for theU(—o0,o0) matrix. The half-collision formu-
2 o2} . lation used here, together with the conservation laws, how-
S ever, makes such a computation feasible. Even so, it is nec-
g 01fF . essary to have good estimates of all of the potential energy
E . curves in order to compute the phases accurately. Such cal-
% 3 4 5 P 7 8 9 10 culathns are beyonq the scope of this work. _ _
o (@ Final state quantum number n While the excessively large resonant cross section points
g to a major flaw in replacing coherent sums by incoherent
5 05 T T T T T T sums, the other features of the CTMC calculations are repro-
5 W s cloulation duced by the top-of-bgrrier theory. .Both distributions show a
s o4l J propensity for populating states witiy>n; and both show
B [1 cme approximately the same fall-off with increasingThe slight
L‘I_E shoulder seen in the CTMC distributionsrgt=3n;/2 could

be due to processes such as rotational coupling, which have
been neglected in our calculations, or they could indicate a
genuine difference between classical and quantum calcula-
tions atv,q=1. In any event, it is necessary to improve the
present model in order to investigate this possibility further.

While distributions over final states using the incoherent
sum are incorrect, the total capture cross section may not be.
The total cross section in the present model is érsRﬁi.

The estimateR,= m2n?/2 gives a cross section that appears

to be too large. This can be accounted for by employing the
FIG. 3. Comparison of the top-of-barrier and CTMQlistribu-  more accurate estimate of the crossing radius,

tions for electron capture at a reduced veloaity=1 (a) for n;

=5 and(b) for n;=10.

8 10 12 14 16 18 20
(b) Final state quantum number n

1
Rn=§w2n[n—n§+(|m|+1)/2], (3.2

in the CTMC calculations. The large resonant capture cross
section that we find is easily understood, since the probabiland averagingR? over all states. We do this by replacing

ity for the resonant process is sums by integrals to find an average squared radius,
Po=p2 - +(1—p, )2 (3.26 29
res pnI N pnI N <Rﬁ>: g_ZRﬁ , (3.2&

in the approximation that transitions to lower states are ne-
glected. Because0p,, <1, we must have 05P,<1, which gives

in agreement with the numerical calculations shown in Fig.
3. Forn;=5 anduv(r)=v, it follows thatpni n,=0.36 and

PfeS: 0.54 in modest agreement \.N'th F.'g' 3..That we find 4n remarkably good agreement with the resulhﬁné found
slightly smaller probability numerically is mainly due to the

variation of v(r) with impact parameter. Similarhp, in Ref. [14].

=0.6 forn;=10 so thatP .= 0.52 in qualitative agreement
with the numerical calculations.

The large resonant capture fraction clearly disagrees with We have already computed ionization cross sections in
the CTMC theory. It also disagrees with the experiments othe threshold region to verify our asymptotic expression for
MacAdam et al. [28], suggesting that the hidden crossingthe Massey parameter. It was seen that the multicrossing
theory as presently formulated is inaccurate for hightates.  calculation agreed exactly with the theory of Ref8]. That
While it is possible that processes neglected in@Bd) may  work also computed the ionization probability for velocities
play some role, they cannot bring our computation of thewhere an exponentid=exd —5.116 ] was obtained. In the
resonant cross section into accord with the CTMC theory angrresent multicrossing calculation we have figr 1 the result
the data of Ref[28]. P=exd —16/mv]=exd —5.090]. The close agreement of

0%=4 .9} (3.29

C. lonization
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4 T T T T T

5
. ar
olom_, = n* exd — 16/mv q]. (3.30)

With A= (7%/4)n} exd —16/mv 4], a plot[see Fig. 4b)] of

the fitted o starts out atw=4 for low values ofn and de-

] creases slowly with increasing The decrease towards
=3 is more rapid for larges 4 but never actually equals 3 in
the range ofn values shown. This shows that the exponent
and the coefficient in the power laAn® are not indepen-

[m]
8 dent. For moderate values of bath andn, the power law is
ol § useful but it must be understood that empirically computed
o’ , , , , , power laws may not be valid for infinite, since the constant

in that limit is generally not known.

Exponent

IV. CONCLUSIONS

We have solved a two-state model for ionization and ex-
citation to Rydberg states, applicable when one of the diaba-

., % tic potential curves approaches the continuum manifold at
o, M infinite distances a%(R)=—Cy/R. When two potential
0.5 curves actually cross, the transition probabilities agree with

the Landau-Zener and the hidden crossing models in the
weak-coupling limit. Direct transitions to positive energy
1.0 states are also computed in this model and are found to be
vanishingly small for fixed reduced velocity and large
lonization is therefore computed in terms of the probability
that the diabatic state survives to infinie To apply the

FIG. 4. Plot of the exponent in the fit o;o,=An® of the ion-  theory, an asymptotic expression for the Massey parameter
ization cross section vs. The upper plota) usesA taken from the ~ was computed. We find a remarkably simple expresaign
value in the limit a;— o with fixed v,q and(b) usesA taken from  =8/7n?, which corrects an earlier result. This expression
the limit asv,q— 0 with n fixed. gives the accepted form for the Wannier threshold law.

lonization cross sections were computed for a variety of

the Massey parameter in the two theories shows that they aiitial principal quantum numbens; and were fit to a power
indeed equivalent for total cross sections. law An? at fixed reduced velocity. Asymptotic values Af

At hlgher velocities, ionization cross sections as a funC-and a for |arge n; were extracted and Compared with our
tion of n; are often fit to a power lawrecn for fixed reduced  numerical calculations. It is found that the asymptotic expo-
velocity, since this form emerges in most calculations fornenta:3 is approached very S|OW|y. Over most of the ve-
sufficiently Iargen andv. The exponenty can be obtained locity range where the model is applicable, an exponent
by equatings to An®, whereA is the multiplicative factorin =4 gives a better fit. This power law emerges in the limit
the limit asn—co. In this limit vq— 0 with n; large but fixed.

i Electron capture cross sections fof #HH collisions were
(ion) 2 _ _ . _
on = R {1—exd — 16( v n;) 1} exd — 16/ mv q)] computed fom;=5 andn;=10. The distribution oven val-

3.6} s

0 10 20 30 40 50 60
n

At ues showed an unrealistically large fraction for resonant
———n ex] — 16/ 70 q)]. (3.30  charge transfer. This large fraction suggests that the use of an
Urd incoherent sum over paths, well accepted for processes in-

) . ion) volving low n states, is incorrect for high. Total cross sec-
The exponent obtained by fitting the computeff” with (ions which are sensitive only to the crossing radius in this
A from Eq.(3.30 is shown in Fig. 4a) as a function of the  oqge| agree within 10% with CTMC results. We conclude
reduced velocity. It is seen that the=3 exponent is ap- that the dynamics of high Rydberg states are indeed gov-
prqached fairly quickly for red_uced velocities of the order of grpeq mainly by the top-of-barrier mechanism, but that the
unity, but forvq=0.1 rather high values of are needed. I present formulation of the hidden crossing theory must be

addition, the exponent is actually negative, but rapidly vary-extended to include phase information normally omitted in
ing, for low values ofn. In this region, the exponential law  that theory.

with the asymptotic coefficiera is not very informative due

to the rapid variation of with n. Indeed a constant negative

value would imply a decreasing cross section, but the rapid

increase ofa actually gives a cross section that increases S.0. and J.M. acknowledge support by the Division of
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APPENDIX A: THE U MATRIX

To evaluateU(r,7') we project Eq.(2.1) onto |0),|1)

and use Eq(2.3) to obtain the system of differential equa-

tions,

ao(T)_hal(T)ZO, (Al)

[
i

. d
I(97_8

The adiabatic energy levels are given by

a;(7)—hay(7)=0. (A2)

Eoa(7)= %[s-l—ﬁ/ri V(BIT—€)?+4h?].  (A3)
As 7—x we get
(Ad)

wherewy= (e +\)/2, w;=(e—\)/2, and\ = &2+ 4h?.
To solve Eq.(Al) and Eq.(A2), let

rd7r’
aO,l(T):dO,l(T)exf{_igf 7-_7’] (A5)
thendg 4(7) satisfy
. d B
(' o7 Z_T)dO(T):hdl(T) (AB)
and
. d B
(IE_-i-z_)dl(T):hdo(T)-l-sdl(T). (A7)

Operating on Eq(A7) by [i(d/d7)—(B/27)] and replacing
do(7) from Eq. (A6), and then takingl;(7)=e"'*"27y(7)
in the new equation gives

P IR

3%y(7) > B 4
———+| h2+———+
aT h 4 27 7

y(7)=0. (A8)

Letting 7= aX, the above equation gives

Upon setting a’[h?+ (£2/4)]=—1% [i.e., a=—(i/\)], k
=igBl(2\), and u=iB/2—1/2, the above equation takes
the form

1 k 7—p?

(92
y(X) N
4 X X2

NG

)V(X)ZO, (A10)

which is Whittaker’s equatiof29] with solutionsMy . ,(x).
It follows that Eqs.(Al) and (A2) have the solution array

1/ 9

fOO(T):H Iﬁ—ﬁr—s)flo(r), (A11)
1/ 4

f01(7')zﬁ( E_s)fn(ﬂ, (A12)

fio(7)= el—iel)ra(=ip2)[dr"I7" )\ (iaﬁ/zx),(iB/Z)—(llz)(i AT),
(A13

f1a( T):e(_is/z)re(_iﬁlz)ff(mlhl)M(ieﬁ/zx),(—i3/2)+(1/2)(22\17)-

Now using the definition to the time evolution matrix
U(7,7"), namely

f(r)=U(r,7")f(7"), (A15)
we find, usingU(7,7')=f(n)f(+') ", the result
Ui=[fi(nf;(7")—f;(nf(7")]/d(7"), 1=0,1; j=1,0,

Ui =[—fi(Df(7")+fi;(nfi(7)]/d(7"), (Al6)
where

d(7")="foo 7' )F12(7") = Foa( 7" ) For(7")

(i+B8)\
h

exp—iBIn7 +iwgr'). (A17)

To evaluate Whittaker’'s functions we use

My (2)=2*" Y2 P2 F (u—k+1/2,2u+172)
(A18)

and
d a
d—lel(a,b,z)=51F1(a+ 1b+172), (A19)

where ;F4(a,b,z) is the confluent hypergeometric function,
to obtain the expressions
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foo( ) =wih 1(iN)F2e 190 | F1(1—iBwy /N 1+iB,iNT)
_lFl(_iBwll)\,iﬁ,i)\T)], (AZO)

f01<r>=<ix>1"3’2hlexf{ _ion—iﬁfT T—J
T

X|(i+B—wy7)1F1(1—iBwy/N,2—iB,iINT)
—Tmllzl(z—lﬂwo/)\,3—lﬂ,l7\7') )
(A21)
fio(m)=(IN) P2 1907 F (=i Bwy/N,iB,iNT),
(A22)
and
) rd7r’
fll(T)Z(i)\)l_lﬁlzTEX[{—ia)OT—iﬁj —7:
7-
Since ;1F,(a,b,0)=1, then asr’ —0 we have
fool7")=F11(7")=0,
i+ . )
fm(r'):—hﬁ(mlf'ﬁ%'r'ﬁexp[—iwof'],
(A24)
f1o(7)=(N)"PPexd —iwyr'],
therefore, as’ —0 we obtain
f f
Ugg(r.7') = 01(71), Ugy(re')= oo(T,)
fou(7") fio(7")
(A25)
f
Up(m )= 11(7')’ Up(r )= 10(7').
fou(7") fio(7")
Since, agz— >,
*i[lzl = (=/2)(b-a)] )
— a-
,F.(a,b,z) F(b)( @ |z|
e=(imi2)a
—a
+—F(b—a)|z| ) (A26)

wherez= *i|z|, then, asr—, we obtain

PHYSICAL REVIEW A 62 042710

e—iw17+(7T,Bw0 /2X\)

o7 5 1\
i

LGB) o

foo(T)Z—T(i)\) (N7) " 1Beolr

e iwgr+ (TBw,/2\)

- iBwy /N
F(I@) (A7) )
A

f01(r)=i—F(Zx;'ﬁ)(ix)l—“ﬁ’z)

e lwoT+ (TBwyl2\)
iBwg/\ iBwy /N
B A T
Py

14221
Y

X —wq
r

e—iw17+(7T,Bwl /2\)

.,Bwo)

x*iﬁwll)\TfiBwol)\
e

+(1)0
N
(A28)
) —iw T+ (7mBwy/2\)
fio(r)=L(iB)(iN)'A2 W
=i

()\T)fiﬁwol)\

e*iw07'+(7'r,3w1 12\)

iBw2/\
F(i@) (A7) )

+ (A29)

A

fra(r)=—i F(Z;iﬂ) (in)171B2)

e—iw17+ (mBw1/2\) ) .
X| )\ "iBor/\ ~iBwg/\
rl1_;Pee
N

e—iw07+(7rﬁw0 /2\)

)\i,BwO/)\TiBwll}x ) (A30)

We therefore obtain

U, (,0)= lim lim (Ai,- exp{—i deT'EO(T')

T—)OCT/_}O

which shows that the matrix elemenitk,(c,0) are linear
combinations of adiabatic amplitudes, where

+Bijex4—if dT’Ez(T/)

Xexpliwgr' +id;08In7"), (A31)

_ _I'=iB) o,
Aoo— CO'[( Q)Alo—r(_—”jl))\ 0 eXF( ’7TVO/2),
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ra . 1
A =tan 0)A01=ﬁ)\‘w1 exp(— mvq/2), Q(R)=—In[32ZR]—1. (B5)
I'(ivg) 4
Boo=—tan 0)Byo=A},, (A32) For the specific potential of interest here,
B11=—cot( 6)Bo;=Agy, o
R)=32Z/R, a(R)= —=(Cy/R—¢). (B6)
¢( ( \/3—22 0

and wherev;=w;/(8\) and ¥ is given by Eq.(2.9) of Sec.

. The position of the branch poirR,, corresponding to a

givenn was found in Ref[18] from the quantization condi-

APPENDIX B: THE MASSEY PARAMETER FOR TOP-OF- tion Eq. (B3). They obtain

BARRIER TRANSITIONS

_ 2.2
The Massey parameter for transitions at crossings of po- ReR,=m"n%/2Z,
tential curves is defined in terms of the probability for tran-
sition p according to 3x1

2

1

[2ReR,|
Z |4

2°Z ReR,

7],2

ImMR,= In

p=exd —2A/v]. (B1)

The exponential transition probability follows from Landau-

Zener and other multicrossing models, however the hidden
crossing theory is the most general context for this represen-
tation. In that theory transitions are computed by integratingvhere y is Euler’s constant and: refers to gerade and un-

+1In , (B7)

1 7
Eln(z ReR,)—2+7y

the phase integral

e(R)

de

(B2)

—=1Im
v

gerade states, respectively.

The Massey parameter is found by integratiagRR),
given implicitly by Eq.(B3), around a path on the real axis
that starts aR=ReR,,, goes around the branch point, and
ends atR=ReR,, ;. This integral is approximated by the

along a path in the complex plane such that the adiabatiﬁroduct of 2 IMR, andAe =g, 1(R) —£,(R). A simple es-

energy functiorE(R) starts with the value; on the real axis
at smallR and ends up with the valug; on the real axis in
the R—o limit. This can only happen if the path goes
around a branch point connecting two sheetndf, of the
Riemann surface of(R). The position of the branch point

timate of the energy difference, namelye = —Cy(1/R,
—1/R,; 1), was used in Ref[10], but this estimate is not
sufficiently accurate for large values nf A more accurate
value is derived here.

Sincea~0 at the top-of-barrier, an estimate af for

R. and the phase integral are critical quantities that we Wi"large n is found by expanding the quantization condition
compute in this appendix for the top-of-barrier hidden crossypout the poina=0 to obtain

ings.

The energy eigenvaluegR) near the top of a potential
barrier have been treated semiclassically by Macek an
Ovchinnikov [18]. Their Eq.(B14) for symmetric systems

H(R)+[((2x1)/4)/2+ Q(R) Ja= m7(n+ 1/2+= 1/8).

such as H is used as the starting point for the computationThe differenceAe is readily found to be

of A,,. They give
d(R)+argl’'{[2+1+i2a(R)]/4}—iQ(R)a(R)

=m(n+1/2%1/8), (B3)
where ¢(R) is a WKB phase integral,
1/2
#R)= | " ZRIC, IR VIR Xl
0
(B4)
V(R.x) 1 Z z 1
(RO=R1 12X “Tzin T

anda(R) andQ(R) are given by
a(R) = JR¥32Z(—Cy/R—¢),

d (B8)
- 32Z T
A=\ R QR T N2 1)/A)2 (B9)
The Massey parameter is then
_Am 1 )
A(Rn)—R—n (2%1)+0| - = | (B10)

SubstitutingR,,= 72n?/2Z into Eq.(B10) and specializing to
even symmetry gives the expression
B 8z

=— (B1D)

n

used in Sec. Il
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