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Polarizability of Rydberg atoms and the dominant long-range interactions
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The dominant long-range interaction of an alkali-metal atom with charged particles at low energies is given
for large separationR by the dispersive potentialW.2ad /R4 in terms of the dipole polarizabilityad . For
atoms prepared initially in Rydberg states of quantum numbers~n, l!, the potential assumes a more complicated
form due to the complete or near degeneracy of then manifold. Contributions to the polarizability are treated
in two parts,~a! one for the nondegenerate states and~b! the other for the degenerate or near degenerate cases.
It is shown thatãd

(b) for case~b! is in generalR dependent, and in the limit of complete degeneracy, diverges
asR2. That is, for a small energy gapD between a pair of nearly degenerate states which are dipole coupled,
the dispersion potentialW(b).D/R2 for R,Rx and W(b).2ad

(b)/R4 for R.Rx , where D is the dipole
moment,Rx5@2uD/Du#1/2, andad

(b).D2/D. They may also compete with a 1/R3 potential for Rydberg atoms
with l .0. The totalad can be very large in magnitude for smallD and even assume negative values, but the
correspondingRx also increases asD decreases. The validity region inR of the R24 behavior of the potential
recedes to largerR as the polarizability grows. A general formula forad is given, taking into account the
effects of fine-structure splitting, the Lamb shift, and quantum defects.

PACS number~s!: 34.20.2b, 34.60.1z, 34.80.Kw
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I. INTRODUCTION

The collision of alkali-metal atoms in their ground stat
with charged projectiles at low energies is described by
long-range interaction, which is usually given@1–4# in terms
of the dipole polarizabilityad . A pair of alkali-metal atoms
interacts by a van der Waal’s type long-range potential t
also depends on the product of electric dipole polarizabili
of participating atoms. However, atoms prepared initially
their excited states interact in a more complex way, mai
due to near degeneracy of the Rydberg states that are d
coupled to the initial state. The corresponding potentia
sensitive to the degree of degeneracy breaking. We pres
coherent discussion of the long-range potentials for Rydb
atoms. As will become clear, the polarizability can be ve
large in magnitude and sometimes can even be negative
its effect becomes significant only at large distances.

In view of the importance of the long-range interactio
involving Rydberg atoms in many applications, such as
cold trapped atoms and plasmas, it is of interest to ana
various theoretical complications in determining the lead
polarization potentials. Thus, cold excited atomic gas may
produced, e.g., by laser exciting trapped atoms. Since
polarizability depends on the initial excited states, the lo
range potential may be tunable by selectively exciting ato
to specific states. Of course such excited initial states are
stable against radiative and other collisional cascades,
this quasistability must be taken into account in experime
that involve Rydberg atoms. The excited atoms can inte
with each other to produce ions and free electrons by m
lecular autoionization@5#. For a dilute gas of excited atom
the natural relaxation time can be as long as a fraction
millisecond for a high-Rydberg state~HRS!, while typical
collisional relaxation time can be several orders of mag
tude shorter, depending on the relative densities of neu
and charged particle mixtures.
1050-2947/2000/62~4!/042703~7!/$15.00 62 0427
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The trapped atoms may also be directly ionized
laser irradiation to form a cold plasma. Such a plasma m
relax by the recombination of ions and electrons to fo
Rydberg states via three-body and radiative recombinatio
The recombined ions are presumably in excited states,
thus they further relax by collisions of the type discuss
here.

Theoretical evaluation of the dipole polarizabilityad for
the Rydberg atoms is made complicated by the fact that thn
manifold of excited states is nearly degenerate. There
several factors that can break this degeneracy:~i! the
l-dependent quantum defects~QD!, ~ii ! fine-structure split-
ting ~FS!, and~iii ! Lamb shift for thel 50 state.~iv! Hyper-
fine interactions further split levels, but we neglect them h
because of the same orbital angular momenta involved
the pair. ~v! An external field can remove degenera
through Stark and Zeeman effects. Points~i!–~iii ! are dis-
cussed in Sec. III.

We show in this paper that these degeneracy-break
mechanisms play an important role in determining the lo
range behavior ofWd . The degree of degeneracy is a relati
concept and in collisions depends on the separationR be-
tween the colliding particles. Both the degenerate and n
degenerate cases must be treated simultaneously on an
footing. We derive in Sec. IV a set of dipole polarizatio
formulas that are suitable to nondegenerate, degenerate
near degenerate cases. A simple configuration-mixing pro
dure will be adopted to derive a unified form of perturbati
theory that is applicable equally to all cases. The result
polarizability smoothly goes over from one extreme to t
other, depending on the degree of degeneracy breaking.
connection between the treatment of polarizability given
Sec. IV and the resonance states found in the elect
hydrogen scattering is clarified in Sec. V. Atomic units a
used throughout, withm5e25\51 andc5137.
©2000 The American Physical Society03-1
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II. PRELIMINARY DISCUSSION ON THE
POLARIZABILITY

The interactionH8 between a charged projectile and ta
get atom may be expanded in multipoles, asH8(rY,RY )5H08
1Hd81Hq81¯ , whereH08 is the monopole interaction,Hd8

5d̂/R2 is the dipole interaction,Hq85q̂/R3 is the quadrupole
interaction, etc., at largeR. It is assumed in the following
that, for the initial target stateunl&, R is taken to beR
@n2a0 , so that the multipole expansion ofH8 converges.
The operatorsd̂ and q̂, etc., are defined asd̂5rP1(cosQ)
andq̂5r 2P2(cosQ), where cosQ5rY•RY /rR andrY is the inter-
nal coordinates of the target electrons. A similar expansio
possible for the interaction of an atom with external fie
FY (RY )52¹W VF , as Hext8 5Hext2d8 1Hext2q8 1¯ , where

Hext2d8 5dY •FY , and Hext2q8 5(1/2)qY :¹W ¹W VF , etc. These per-
turbations affect the target, resulting in the distortion of
electronic orbitals.

Generally, the effective interactionU in the elastic chan-
nel P is given by

UP5VP1WP , ~1!

where VP is the static potential which is usually of sho
range.~It may contain aq/R3 potential for lÞ0 from the
quadrupole contributionHq8 .! The WP is the dispersion po-
tential defined in terms of the Green’s functionGQ @4#, as
WP5^nluHd8G

QHd8unl&. In atomic collisions, this potential is
usually long ranged and contains the polarization contri
tion. We studyWp in the stationary approximation~SA!
where the projectile is held fixed at largeR.

In the case of nondegenerate target atoms, initially in s
u i .5ug.5unl., the leading contribution to the polariza
tion potential is given to second order in the interactionHd8

Wd~R!.2ad /R4, ~2a!

where

ad5(
n8

(
l 8

uD~ i ,n8l 8!u2/D~ i ,n8l 8! ~2b!

with D( i ,n8l 8)5En82Ei[D and D( i ,n8l 8)5^ i ud̂un8l 8&
[D with l 85 l 61. In the following, we omit the state labe
involved in D andD unless ambiguity arises. TheEn8’s are
the energies of the target atom. As is well known@4#, there
are additional contributions to the effective potentialW com-
ing from the electric quadrupole and dynamical correctio
etc., which are of higher powers in 1/R. ~A small R25 addi-
tive correction is present due to the retardation effect.! For-
mula ~2! makes sense when the validity region ofR is speci-
fied. For ui& equal to the ground stateug&, all En8.Eg and
thusad.0. But, for ui& equal to the excited statesunl&, some
of the terms in Eq.~2b! can be negative because of th
change in sign of the energy denominatorsD for n8,n. The
situation is similar to that for the oscillator strengths.
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For the initial excited states (nl), l .0, the quadrupole
interactionHq8 is the leading nonzero contribution to the d
agonal potential of the type

Vq}qnl /R
3 ~ lÞ0!, ~3!

whereqnl5^nluq̂unl&[q. In the pure hydrogenic case, th
radial part of q scales asqnl}^r 2&5(n2/2)@5n21123/(l
11)#; this is to be compared witĥr &5@3n22 l ( l 11)#/2,
while, for example,D(nl,n8l 85 l 21)}(3/2)nAn22 l 2 for a
degenerate pair. Potential~3! is always present forl .0, in-
dependent of the degeneracy question.

We consider in this paper a generalization of formula~2!
to the case of nearly degenerate Rydberg atoms, which
be prepared initially in the HRS,u i &5unl& with largen. The
form ~2! will break down for systems with degenerate leve
In order to develop a proper treatment of the degenerate c
we first discuss in Sec. III various ways by which degenera
may be broken in complex atoms.

III. DEGENERACY BREAKING

Rydberg states of complex atoms are shifted from
pure hydrogenic values by internal perturbations. Thus,
effect of the core screening by inner-shell electrons is c
veniently described in terms of quantum defects~QD!. The
spin-orbit coupling@fine structure~FS!# and vacuum polar-
ization effects~the Lamb shifts! also shift levels. The actua
form of the polarizability critically depends on thes
degeneracy-breaking mechanisms. In collisions, the rela
degree of degeneracy depends on the relative separatiR
between the colliding particles. For the present discuss
therefore, we define

Rx5A2uD/Du, ~4!

whereD is the dipole coupling matrix element for the tw
near degenerate levels andD is the magnitude of the shift
This parameterRx separates the regions ofR where the rela-
tive degrees of degeneracy are different, as explained m
fully in Sec. IV.

A. Quantum defects

Consider a complex atom with one or more core electr
and an outer-shell electron in the HRS. Its energies are o
represented in terms ofl-dependent, but presumabl
n-independent, quantum defectss l , which become small
with increasingl. Thus, for the HRS electron,Enl.21/(n
2s l)

2Ry. The shift due to QD is thenSnl
QD[Enl2Enl

(0)5

22s l /n3Ry for largen, whereEnl
(0)[21/n2Ry. The energy

gapDQD for the two levels~nl! and (nl8) within the samen
manifold of levels (n5n8) is then given by

D~nl,nl8![Enl82Enl.2~s l2s l 8!/n
3[DQD. ~5!

The radial part of the dipole coupling matrix element for t
above degenerate pair, withn85n, is given by D
.(3/2)nAn22 l 2, for say l 85 l 21. For complex atoms in
states of lowl, the quantum defect can be large, in whi
3-2
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case levels of the samen manifold may not be that close t
each other in energies. For example, whens l.1, we may set
n85n21, l 85 l 11, and obtain D(n8l 8,nl).(2/n83)(s l

2s l 821). Following Eq. ~4!, we haveRx
QD.A2uD/DQDu

.n5/2/Aus l2s l 8u. DQD is usually the largest for lowl, and
can often be in the eV range.

B. Fine-structure effect

The fine-structure~FS! shift is given by@6,7#

SFS5^nls juVFSunls j&, ~6a!

VFS52~e\2/2m2c2!~]VCoul/r ]r ! lY•sY. ~6b!

For two states withl 50 and l 51, we haveSFS( l 50)50
and SFS( l 51)[SFS, which give DFS5SFS and Rx

FS

5A2uD/DFSu. Whenn is large,DFS}1/(c2n3), so thatRx
FS

}n5/2 for near degenerate cases. In the pure hydrogenic
with n52, for example, we have D(p3/22p1/2)
50.37 cm21, and thus

ad~2s1/2→2p3/2!.0 and ad~2s1/2→np,n.2!.0.
~7a!

On the other hand, for 2p3/2,

ad~2p3/2→2s1/2!,0 and ad~2p3/2→1s1/2!,0 ~7b!

while

ad~2p3/2→n8s,n8d,n8.2!.0, ~7c!

etc. ~1Ry51.13105 cm21533109Mc/sec andc5137 in
a.u.!. The magnitude ofa for Eq. ~7b!, for example, is of the
order ofa.106a0

3 for n52, and rapidly increases for highe
n. On the other hand, typicallyRx.103a0 and thus, forR
.Rx , Wd.61026Ry. This can be compared with a nond
generate contribution ofWd

(a)(2s).10210Ry at the same
value ofR.

The Dirac theory gives the hydrogenic states with
samej values degenerate. Thus, the states 2s1/2 and 2p1/2 are
degenerate, which is eventually broken by the Lamb shift
discussed below. The levels 3p3/2 and 3d3/2 remain degener-
ate, but for atoms with more than one electron,DQD will
break this degeneracy. Since theD for QD and FS can be
either positive or negative, depending on particular sit
tions, the resultinga from such a pair can assume either sig

C. Lamb shift

The effective interaction that produces the Lamb shift
given @8# by

SL5^nluVLunl&, ~8a!

VL5~4/3c3!@ ln~mc2/2Eave!119/30#d~rW ! Ry. ~8b!

Operator~8b! affects only thel 50 orbitals and we have
generallySL}m/(Mc2n3), wherem andM are the electron
and nuclear masses, respectively. In hydrogen, it shifts
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2s1/2 level up from the originally degenerate 2p1/2 by 0.035
cm21, while the 3s1/2 by 0.010 cm21 up from 3p1/2. Thus,
for hydrogenic 2s1/2 and 2p1/2, we haveSL(2p1/2)50 and
DL5S(2s1/2). Rx

L5A2uD/DLu. On the other hand, the gapD
between the 2s1/2 and 2p3/2 states is 0.33 and 0.098 cm21

between 3p3/2 and 3s1/2. ~Note that 3p3/2 and 3d3/2 are still
degenerate.! This gives ad(2s1/2→2p1/2).D2/DL.107a0

3.
In the regionR.Rx

L.104a0 , for example, wheread is pre-
sumably valid~Sec. IV!, we expect the polarization potentia
Wd.2ad /R4.1028 Ry, which may be compared with
typical nondegenerate contributionW(a).10215Ry at the
sameR. ~At R5102a0 , W(a).1027 Ry!. Continuing this ex-
ample of the hydrogenic case, withn52 and the Lamb shift
taken into account, we have

ad~2s1/2→2p1/2!,0,

ad~2p1/2→2s1/2!.0,

and

ad~2p3/2→2s1/2!,0.

Similar inequalities may be obtained forn.2 for both hy-
drogenic and nonhydrogenic cases.

Dipole polarizability associated with a pair of nearly d
generate levels can be very large and assume either sign
three shiftsS’s and gapsD’s discussed above behave at lar
n as 1/n3, resulting inRx}n5/2. Combining these cases, w
define the total shift

D5DQD1DFS1DL , ~9!

where one or more of the HRS may be zero or negat
depending on the choice of the stateunl&. Some cancellations
among the terms in Eq.~9! are possible. Generally, the mag
nitude of DQD is the largest among the three forl ,3, but
becomes comparable toDFS at largerl. DL for l 50 is usu-
ally an order of magnitude smaller thanDFS. For the excited
HRS with largel, DQD becomes very small whileDFS be-
comes relatively more important.

IV. STATIONARY DIPOLE POLARIZABILITY
OF EXCITED ATOMS

To extend the polarization potential~2! for the nondegen-
erate case to excited atoms in state~nl!, which is nearly
degenerate with other dipole-coupled states, it is conven
to treat the problem in two parts:~a! one that involves only
the nondegenerate states (n8,l 8), with n8Þn, and ~b! the
second part that involves states which are near degene
and that usually involves states of the same manifold,n8
5n. This division is arbitrary, but facilitates the analys
without affecting the final result. Part~a! can be treated by
the conventional method via Eq.~2!, while part~b! requires a
special reformulation. While the conventional procedu
treat the degenerate and nondegenerate cases separate@6#,
we will present a unified approach in Sec. IV B.

We set

ad5ad
~a!1ad

~b! . ~10!
3-3
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YUKAP HAHN PHYSICAL REVIEW A 62 042703
A. Nongenerate case„a…

As in Eq. ~2!, we define the dipole polarizability

ad
~a!5 (

n8Þn
(

l 85 l 61

z^nlud̂un8l 8& z2/~En8 l 82Enl!, l 85 l 61.

~11!

ad
(a)(nl) is of order unity whenn for the initial state is small,

but for high Rydberg states with largen the dipole matrix
elementsD become very large (}n2). In addition, the en-
ergy denominators become very small forn8 close to n.
Therefore, the dominant contributions toad

(a) may be esti-
mated rather simply by taking into account only a fe
nearest-neighbor states, because of the 1/D weighting in Eq.
~11!. Obviously, there will be sizable cancellations amo
the contributions from those states which lie above and
low the state~nl!. Generally,ad becomes large in magnitud
with increasingn because of itsn dependencead}n7a0

3. On
the other hand, forR.n2a0 , Wd.2ad /R4}1/n.

The sum overn8 in Eq. ~11! may be replaced by the
integrals, as

ad
~a!5(

l 8
^nlud̂uXl 8&, ~12!

wherel 85 l 61, andX satisfies the equation

@h~rW !2Enl#Xl 85d̂unl&2al 8unl8&, ~13!

and whereal 8 is a Lagrangian multiplier, introduced here
makeX orthogonal tounl8&. Note that the term withn85n is
excluded in the sum in Eq.~11!.

B. Degenerate case„b…

A perturbation theory is needed that covers both the
generate and near degenerate cases simultaneously. T
achieved by simply taking the relevant sets of states~usually
pairwise at a time! which lie close in energy and mixing
them. The task of estimating the polarizability is simplifie
by the fact that the coupling potential is of the formHd8

.d̂/R2. We are here interested in the leading term in
effective potential at largeR, so that the level mixing byHd8
needs to be taken only to second order, i.e., the mixing
two nearest-neighbor levels at a time. We denote the
states selected for mixing by 1 and 2 with energiesE1 and
E2 which contain all the effects of shiftsS. Then, the energy
matrix to be diagonalized is

UE12E M128

M128 E22E
U50, ~14!

where M128 (R)5^1uHd8u2&5D(12)/R2 with D(12)

5^1ud̂u2&[D. We obtain

E5Ē60.5AD12
2 14M128 ~R!2, ~15!
04270
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where Ē5(E11E2)/2. D(12)5E22E1[D can assume
either a positive or negative sign.

Now consider several special cases.

1. D¶0, i.e.,D2Ë4M128
2; case (b)

We have

E.Ē6M128 5Ē6D/R2[Ē6ã~b!~R!/R4, ~16!

whereã (b)(R)5DR2 if we follow the convention~2!. Obvi-
ously, this polarizability goes to infinity asR increases and
the potential becomes

Wd
~b!.D/R2. ~17!

The expression~16! is limited to the region ofR,Rx where,
following Eq. ~4! and for the parameters defined above,

Rx5@2uD/Du#1/2. ~18!

Therefore, the limitD→0 is accompanied byRx→`; that is,
the region ofR where Eq.~17! is valid expands asD de-
creases.

2. D2Ì4M 128
2; case (a)

This is similar to the nondegenerate case~a!, and we ex-
pect the result to be the same as that obtained in Sec. I
For R.Rx , uDu becomes relatively larger thanuM128 u, and we
have instead of Eq.~16!

E.Ē6D6Wd , Wd52ad
~a!/R4, ~19!

which is the result expected from the nondegenerate pe
bation theory. With the usualR24 behavior factored out, we
have

ad
~a!.D2/D. ~20!

HereD can be positive or negative. ForuDu small, the mag-
nitude of the polarizability becomes large, butRx also in-
creases. This behavior is one of the main results of
study; asD→0,ad

(a)→`, but at the same timeRx→` as
well. That is, asD decreases the region ofR where Eqs.~20!
and ~19! are valid recedes to infinity while the region ofR
for the cases represented by Eqs.~16! and ~17! expands.

Incidentally, any other potentials of the type 1/R2, such as
the centrifugal potential, can be included in the above dia
nalization procedure with minimal changes.~See Sec. V.!

3. Intermediate region of R¶Rx

We have a smooth transition between the two extre
cases~a! and ~b!; Eq. ~15! may be written in the form

E~R!5Ē6~D/Rx
2!@11~Rx /R!4#1/2, ~21a!

whereRx andR are directly compared, and thus

W~R![E~R!2E~R→`![2ãd~R!/R4. ~21b!
3-4
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Polarization of Rydberg atoms by an external electr
field perturbation is similar to the collisional case in the s
tionary approximation. As an external fieldFW distorts the
target, we have a new parameterFx

22.2D/D, which re-
placesRx

2. All the relations defined for the collisional cas
are recovered by the substitutionF→1/R2.

4. Multiple nearly degenerate levels

The procedure described above in Secs. IV B1–IV B
may be easily generalized to cases in which more than
levels are nearly degenerate, such as for targets in H
where largen and l are examples, and whereDQD are negli-
gibly small.@The other terms in the totalD of Eq. ~9! can be
significant.# Since we are interested in the leading order
1/R for largeR, only the diagonal and the two terms next
the diagonal terms that represent dipole coupling are
evant. This feature greatly simplifies the problem in that
mixing takes place only pairwise. Therefore, the results
Secs. IV B 1–IV B 3 are essentially unchanged; the final
tential is given simply by a sum of the contributions from t
individual pairs, withl 85 l 61.

C. Evaluation of ad

The auxiliary functionX introduced in Eq.~12! for ad
(a)

may be evaluated easily by a series solution. For exam
for (nl)52s of hydrogen, we set

Xl 851~r !5~r 2/2! (
m50

bmr m exp~2r /2! ~22!

with the resultb0 is arbitrary, b150, b25 1
10 , b35 1

60 , b4
5 1

560, etc. The constantb0 is adjusted to make the functio
X orthogonal to the 2p orbital, while bm5(m21)/@(m
12)(m11)22#bm21 , for m.3. This is similar to the po-
larized orbital procedure@2#.

Alternatively, a semiclassical Green’s functionGsc
0 may

be used@9# in the evaluation ofa (a) andWP . Thus, for states
with angular momentuml, we have the radial Green’s func
tion

gl~r ,r 8!5~4/pm!E
pl1

pl2
p2dp jl~pr ! j l~pr8!/Pl

2, ~23!

wherePl(u)52$2m@Ei2L2/u22V(u)#%1/2 with u5r 2r 8
andv5(r 1r 8)/2. The limits of integrationPl1 and Pl2 are
similarly defined, withu replaced byv. L5 l 1 1

2 . For a full
Green’s function covering the entire spectrum, we havePl1
50 andPl25`.

The polarization potential may also be viewed as a fl
tuation potential@10# affecting the collision via virtual exci-
tation of the target. In the closure approximation, the sum
Eq. ~2! for a collapses when an average excitation energĒ
is introduced, as

ad
f l5@Šnlud̂22^d̂&2unl‹#/~Ē2Enl!, ~24!
04270
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where ^d̂&[^nlud̂un8l 8&[d for l 85 l 61. The form ~24! is
useful in determining the magnitude of cancellations
volved in the excited-state polarizability and also its over
sign.

Summarizing the result obtained above, the domin
long-range potential for an excited atom in state (n,l 50)
and interacting with charged projectile is of the formW
}D/R2 for R,Rx and W}2ad

(b)/R4 for R.Rx . On the
other hand, thel .0 case requires three regions ofR defined
by RqD5uq/Du and Rdq5uad /qu, with RqD}n2 and Rdq
}n3. Generally RqD,Rx,Rdq , where Rx}n5/2. For R
,RqD , the dipole potentialD/R2 dominates, and in the re
gion RqD,R,Rdq , the direct quadrupole potentialq/R3 is
important. Finally, forR.Rdq , the potential changes toW
}2ad /R4.

V. RESONANCES AND DYNAMICAL EFFECTS
ON THE POTENTIAL

In the scattering of charged particles off hydrogen, sets
resonances are produced@11# for scattering energies just be
low each of thenth excitation thresholds, adjusted by a cu
off due to Lamb shifts that break the degeneracy. This
attributed to thens-npdegeneracy, which produces a diag
nal potential of 1/R2 type, which can in principle support a
infinite number of ‘‘bound’’ states. The polarizability in cas
~a! is given by the sum of contributions from these resona
states.

A. Two-channel problem

In the two-channel problem of electron hydrogen scatt
ing near then52 threshold, where the 2s and 2p channels
are nearly degenerate~DQD50 andDFS50 for j 5 1

2 !, two
coupled equations for the scattering particle may be set
as

@K1Vi2ei #ui52Vi j uj , ~25!

wherei , j 51 and 2, andVi j 5^ i uHd8u j &. The total energyE is
given by E5Ei1ei for the atom (Ei) and projectile (ei),
with e15e2[ec . Vi may be neglected because they a
short-ranged, and for dipole coupling,Vi j behaves asD/R2.
We can treat this by simply definingu65(u16u2)/2, which
gives immediately@11#

@K2ec1V12#u150. ~26!

~One of theVi contains the centrifugal potentialVl , but the
above procedure can readily be modified; of course the m
ing will not be of a 1 to 1ratio, but the above result will no
change in its essential contents. This was also noted in
III !. Now, the diagonal potential is of long-range 1/R2 type.
The resonances observed in thee-H collisions near then
52 threshold are thus attributed to this potential. Howev
the number of resonances is made finite by the cutoff at
energies associated with the Lamb shift, where the assu
degeneracy between the 2s and 2p ( j 5 1

2 ) is broken. Hence
this is consistent with the picture derived for case~b! in Secs.
III C and IV B.
3-5
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In this respect, the resonances observed in thee-H scat-
tering system are not quite the Breit-Wigner-type quasibo
compound resonances, aQ type ~commonly called the Fes
hbach resonances! where strong correlations among the a
tively interacting particles are present. Rather, they are so
what close to the potential shape resonances, aP type,
because they come from the Rydberg-level state degen
cies and are associated with the 1/R2 potential. Therefore, we
may designate them as‘‘dipole resonances’’@11#. Further-
more, this is in contrast with those resonances that ap
throughout the neutral and charged ions, as multiply exc
states, at energies close to the individual excitation ener
associated with pure Coulomb values. We may identify th
as ‘‘Rydberg resonances;’’they are also close to the pote
tial resonances. Evidently, in atoms and ions, the cen
Coulomb field of the nucleus plays a dominant role, wh
the inner-core electrons predominantly play the role
screening this field. Thus, the outer Rydberg electrons
largely controlled by the screened central Coulomb field.

B. Stationary vs adiabatic approximations

In view of the sensitivity of the polarizability on the en
ergy denominators in the expression~2!, we reexamine its
origin for the purpose of obtaining possible dynamical c
rections toW. For the collision of charged particles wit
excited atomic targets, the effective potential in the ela
channel is given by@4#

Wnl5^nluH8GQH8unl&, ~27!

where

GQ5@Q~E2K2h2H8!Q#21. ~28!

Here,h is the target Hamiltonian andK is the kinetic energy
operator for the projectile. The projection operatorQ is de-
fined byQ[Qnl512Pnl , wherePnl5unl&^nlu. That is,Q
spans the space orthogonal tounl&; for example, Q
.(n8( l 8un8l 8&^n8l 8u with l 85 l 61.

The polarizability in the stationary approximation~sa! is
defined by setting (K1H82enl).0 in GQ, whereE5Enl
1enl andEnl are the eigenvalues of the target Hamiltoni
h. Then, we haveGsa

Q5@Q(Enl2h)Q#21 and Wsa(R)
5^nluH8Gsa

QH8unl&. The singular nature of the polarizabilit
comes from the vanishing of the new denominatorQ(Enl
2h)Q, i.e., atEnl.En8 l 8 . Obviously, the situation change
if the neglected term inGsa

Q,^n8l 8u(K1H82enl)un8l 8&, is
not small.

On the other hand, in the usual adiabatic picture, one
culates the potential energy for each fixedR. Aside from a
slight adjustment in the choice of Jacobi coordinates us
such a potential may be defined in terms of the adiab
Green’s function@12# defined by

Gad
Q 5@Q~enl1Wad~R!2h2H8!Q#21, ~29a!

Wad~R!5^nluH8Gad
Q H8unl&. ~29b!
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Note that Eq.~29! is nonlinear inWad becauseWad appears
also inGad

Q . To second order inH8,Gsa
Q gives the same resul

as that withGad
Q , except whenGQ is singular.

C. Degenerate case„b…

Now we compare the twoGQ’s for the degenerate cas
~b! with n85n, where the denominator ofGsa

Q vanishes. It
was shown@4# in the nondegenerate case that the effect oK
in GQ is to yield a dynamical correction to the adiaba
potential, which is of higher power in 1/R thanWd

(a) . Thus,
for nondegenerate cases, bothGsa

Q and Gad
Q yield the same

potentials in so far as the leading term in 1/R is concerned.
But, for degenerate casesWad in Gad

Q of Eq. ~29a! can be of
a dipole form which can seriously alter the spectrum. T
comparison betweenGsa

Q andGad
Q is more complicated in the

degenerate case and requires more careful analyses.
We have to this point omitted one important aspect of

collisions involving excited targets. In addition to the dispe
sive part,GQ for the Rydberg atom should also contain
absorptive part which has not been dealt with; for highn,
there are many open channels and overlapping branch cu
energy space, which broaden the resonance levels. It is
clear whether the two or more near degenerate and br
ened channels can produce a potential that still behave
1/R2 and/or 1/R4. This problem, together with the radiativ
channel coupling and possible cooperative processes in
excited gases, such as the molecular autoionization, wil
discussed elsewhere.

VI. DISCUSSION AND SUMMARY

We have examined the long-range behavior of
Rydberg-atom charged-particle interaction and shown
for near degenerate levels, the dispersive dipole potentialWd
is dominated by the 1/R2-type behavior forR,Rx , and it
gradually switches over to the 1/R4 type interaction atR
.Rx , often with very large polarizability. We obtained th
general result by treating both degenerate and nondege
ates cases simultaneously; the conventional configurat
mixing procedure provides a unified treatment. When
energy gapD between two adjacent levels coupled by t
dipole operatorHd8 is small, the polarizability is dominated
by the~b! term,ad

(b) of Eq. ~21!. Experimental study of this
behavior may be warranted, as it affects the behavior o
cold excited gas and cold plasmas at low density, wh
average interatomic separation is large.

We summarize the result discussed in this paper on
dominant long-range potential for Rydberg atoms. Firs
with l 50, we haveU.D/R2 given by Eq. ~17! for R
,Rx , followed by theU.2ad

(b)/R4 type potential~19! for
R.Rx with a large polarizability~of either sign!, and where
Rx5A2uDuDu. For l .0, we start with theU.D/R2 type for
R,RqD , whereRqD5uq/Du, followed by U.q/R3 in the
regionRqD,R,Rdq , whereRdq5uad /qu. Finally we have
the U.2ad /R4 potential for R.Rdq . It is somewhat
strange that the dominant long-range behavior ofW}R2g is
such that, asR gets large,g also increases. For atoms wit
3-6
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polarizable cores and two or more valence electrons, and
excited atom-atom collisions, situations analogous to
above appear that are associated with the cross polariz
@13# when states of the core electrons are degenerate.@See
the form in Eq.~31b! below.# Two HRS electrons, whethe
they belong to the same atom or to two different atoms, m
also be treated in the same way as in Sec. IV when the
degeneracy problem is to be taken into account. The do
nant long-range behavior ofU thus depends on the param
etersn, l, D, q, D, andad , and also on the regions ofR of
interest, as specified byRqD , Rx , andRdq .

Rydberg-atom–Rydberg-atom collisions in cold excit
atomic gas are mediated at largeR by a van der Waal’s
~vdW!–type potential@14# that depends on the product o
two a’s, hence it is sensitive to the polarizability. The bas
interaction between two alkali-metal atomsA andB (5A),
for example, is given by@5,14#

H8.2~dW A•dW B1dAzdBz!/R
3. ~30!

The dispersion potentialW is then given in second order i
H8, and by the Green’s functionGsa

Q which factorizes to a
form GA

QGB
Q when the convolution integral over the energy

approximated. Thus, for excited atoms in thel 50 state, we
have

WP.DADB /R3 for R,Rx , ~31a!

WP.2aAaB /R6 for R.Rx , ~31b!

and at even largerR we expectW}1/R7 due to the retarda
tion effect. @The cross-polarization term assumes the fo
e
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similar to Eq. ~31b!, with the R26 replaced by (r 1r 2)23.
Therefore, a modification of the type~31a! is relevant for the
degenerate case.# The crossover point between Eqs.~31a!
and ~31b! is Rx , given by

Rx.uDADB /~DADB!u1/3, ~32!

which is to be compared with a quadratic power depende
in Eq. ~18!. For near degenerate cases, both thea’s andRx
can be very large. Thus, the possibility of a repulsive vd
potential at large separation exists when atomsA andB are
selectively excited such thataA andaB assume signs differ-
ent from each other. ForlÞ0, VP assumes a formVP
.dAdB /R3, analogous to Eq.~31!, for all R (.n2a0). This
is also the case with weak external electric-field perturbat
@15#. Detailed treatment of the interaction between Rydb
atoms will be given elsewhere.

The collisional lifetime of an excited cold gas may b
estimated using the vdW interaction@5#, modified by Eq.
~31!, for example. Since the system is radiatively unstab
the time required to accelerate a pair to each other from
largeR initially is critical, as the collisional relaxation occur
only at relatively shorter distances. The possibility of obse
ing the effect of degeneracy and retardation on the polar
tion potential discussed in this paper is being examined
the presently attainable density and temperature,NA
.109 cm23 andTA<1 mK.
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