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Polarizability of Rydberg atoms and the dominant long-range interactions
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The dominant long-range interaction of an alkali-metal atom with charged particles at low energies is given
for large separatiolR by the dispersive potentiaV=— a4/R* in terms of the dipole polarizabilityry. For
atoms prepared initially in Rydberg states of quantum num(oeis, the potential assumes a more complicated
form due to the complete or near degeneracy ofrtimeanifold. Contributions to the polarizability are treated
in two parts,(a) one for the nondegenerate states érjdhe other for the degenerate or near degenerate cases.
It is shown thafafjb) for case(b) is in generaR dependent, and in the limit of complete degeneracy, diverges
asR?. That is, for a small energy gab between a pair of nearly degenerate states which are dipole coupled,
the dispersion potentia®=D/R? for R<R, and W= —a{P/R* for R>R,, whereD is the dipole
moment,R,=[2|D/A|]*? anda{P)=D?%A. They may also compete with aR¥ potential for Rydberg atoms
with [>0. The totaley can be very large in magnitude for smalland even assume negative values, but the
correspondindR, also increases as decreases. The validity region Riof the R™# behavior of the potential
recedes to largeR as the polarizability grows. A general formula fay, is given, taking into account the
effects of fine-structure splitting, the Lamb shift, and quantum defects.

PACS numbgs): 34.20—-b, 34.60+2z, 34.80.Kw

I. INTRODUCTION The trapped atoms may also be directly ionized by
laser irradiation to form a cold plasma. Such a plasma may
The collision of alkali-metal atoms in their ground statesrelax by the recombination of ions and electrons to form
with charged projectiles at low energies is described by th&kydberg states via three-body and radiative recombinations.
long-range interaction, which is usually givEh+4] in terms  The recombined ions are presumably in excited states, and
of the dipole polarizabilityxy. A pair of alkali-metal atoms thus they further relax by collisions of the type discussed
interacts by a van der Waal's type long-range potential thahere.
also depends on the product of electric dipole polarizabilities Theoretical evaluation of the dipole polarizabiliay for
of participating atoms. However, atoms prepared initially inthe Rydberg atoms is made complicated by the fact that the
their excited states interact in a more complex way, mainlymanifold of excited states is nearly degenerate. There are
due to near degeneracy of the Rydberg states that are dipal@yeral factors that can break this degeneradi). the
coup_lgd to the initial state. The corresponding potential isl-dependent quantum defed®D), (ii) fine-structure split-
sensitive tq the dggree of degeneracy breakmg. We presentme\g (F9), and(iii) Lamb shift for thel =0 state.(iv) Hyper-
coherent dlsgussmn of the long-range p.oter'rglals for Rydbergne interactions further split levels, but we neglect them here
atoms. As will become clear, the polarizability can be Veryb?cause of the same orbital angular momenta involved for

large in magnitude and sometimes can even be negative, wae pair. (v) An external field can remove degeneracy

its effect becomes significant only at large distances. e :
In view of the importance of the long-range interactionsg:;sosg dhir?t;ﬂ(c alﬂd Zeeman effects. Poifitsiii) are dis-

involving Rydberg atoms in many applications, such as in X . .
cold trapped atoms and plasmas, it is of interest to analyze W& Show in this paper that these degeneracy-breaking

various theoretical complications in determining the leading™&chanisms play an important role in determining the long-
polarization potentials. Thus, cold excited atomic gas may béange behavior oiV, . The degree of degeneracy is a relative
produced, e.g., by laser exciting trapped atoms. Since thgoncept and in collisions depends on the separaidpe-
polarizability depends on the initial excited states, the longiween the colliding particles. Both the degenerate and near
range potential may be tunable by selectively exciting atomélegenerate cases must be treated simultaneously on an equal
to specific states. Of course such excited initial states are né@oting. We derive in Sec. IV a set of dipole polarization
stable against radiative and other collisional cascades, arfdrmulas that are suitable to nondegenerate, degenerate, and
this quasistability must be taken into account in experimentgiear degenerate cases. A simple configuration-mixing proce-
that involve Rydberg atoms. The excited atoms can interaaiure will be adopted to derive a unified form of perturbation
with each other to produce ions and free electrons by motheory that is applicable equally to all cases. The resulting
lecular autoionizatiof5]. For a dilute gas of excited atoms, polarizability smoothly goes over from one extreme to the
the natural relaxation time can be as long as a fraction of ather, depending on the degree of degeneracy breaking. The
millisecond for a high-Rydberg stai@¢lRS), while typical  connection between the treatment of polarizability given in
collisional relaxation time can be several orders of magni-Sec. IV and the resonance states found in the electron-
tude shorter, depending on the relative densities of neutrdlydrogen scattering is clarified in Sec. V. Atomic units are
and charged particle mixtures. used throughout, witm=e?=%=1 andc=137.
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Il. PRELIMINARY DISCUSSION ON THE For the initial excited statesn(), 1>0, the quadrupole
POLARIZABILITY interactionH is the leading nonzero contribution to the di-

The interactiorH’ between a charged projectile and tar- agonal potential of the type

get atom may be expandgd in multipoles,lfa’s(r‘,Fﬂz)_=H(’, Vo= qn/R® (1#0), (3
+Hg+Hg+---, whereHy is the monopole interactiort 4

~d/R? is the dipole interactiort;= §/R? is the quadrupole Whered, =(nl|g|nl)=q. In the pure hydrogenic case, the
interaction, etc., at larg®. It is assumed in the following fadial part ofq scales asgn>(r)=(n 12)[5n+1-3/(
that, for the initial target stat¢nl), R is taken to beR T 1)]; this is to be compared withr)=[3n"—I(I+1)]/2,
>n?a,, so that the multipole expansion &f’ converges. While, for exampleD(nl,n’l’=1-1)(3/2)nyn”—1 for a
The operatorsfj and §, etc., are defined a&=rP1(cos®) degenerate pair. Potentigd) is always present for>0, in-

- f th ion.
and@=r2P,(cos®), where co®=r-R/IR andr is the inter- dependent of the degeneracy question

. ha .. We consider in this paper a generalization of form@a
nal coordinates of the target electrons. A similar expansion i$; e case of nearly degenerate Rydberg atoms, which may
possible for the interaction of an atom with external field be '

o = prepared initially in the HRSi)=|nl) with largen. The

F(R)I==VVg, as H=He gtHew gt where  form (2) will break down for systems with degenerate levels.
oxtd= d-F, and Héxt7q= (1/2)q:§§VF , etc. These per- Inorder to develop a proper treatment of the degenerate case,

turbations affect the target, resulting in the distortion of itswe first discuss in Sec. Ill various ways by which degeneracy

electronic orbitals. may be broken in complex atoms.
Generally, the effective interactidd in the elastic chan-
nel P is given by Ill. DEGENERACY BREAKING

Rydberg states of complex atoms are shifted from the
pure hydrogenic values by internal perturbations. Thus, the
) _ ) o effect of the core screening by inner-shell electrons is con-
where Vp is the stapc potential wh!ch is usually of short veniently described in terms of quantum defe@D). The
range. (It may contain ag/R® potential forl+0 from the  spin-orbit coupling[fine structure(FS)] and vacuum polar-
quadrupole contributiot,.) The Wp is the dispersion po- jzation effects(the Lamb shifts also shift levels. The actual
tential defined in terms of the Green's functi@® [4], as  form of the polarizability critically depends on these
Wp=(nl[H4G®H[nl). In atomic collisions, this potential is degeneracy-breaking mechanisms. In collisions, the relative
usually long ranged and contains the polarization contribudegree of degeneracy depends on the relative sepaftion
tion. We studyW, in the stationary approximatiofSA) between the colliding particles. For the present discussion,

Up=Vp+Wp, (1)

where the projectile is held fixed at larée therefore, we define
In the case of nondegenerate target atoms, initially in state
li>=|g>=|nl>, the leading contribution to the polariza- R,=V2|D/A]|, (4)

tion potential is given to second order in the interactitfp
whereD is the dipole coupling matrix element for the two
Wy(R)=— ag /R, (2a) near degenerate levels aadis the magnitude of the shift.
This parameteR, separates the regions Bfwhere the rela-
tive degrees of degeneracy are different, as explained more

where fully in Sec. IV.

ag= 2 |D(i,n’|’)|2/A(i,n’I’) (2b) A. Quantum defects
n’ oV Consider a complex atom with one or more core electrons
R and an outer-shell electron in the HRS. Its energies are often
with A(i,n’l")=E, —E;=A and D(i,n’'l")=(i|d|n’l") represented in terms of-dependent, but presumably
=D with I"=1%=1. In the following, we omit the state labels n-independent, quantum defectg§, which become small
involved in A and D unless ambiguity arises. Thg,,'s are  with increasingl. Thus, for the HRS electrorg,,,=—1/(n
the energies of the target atom. As is well knold, there  —)?Ry. The shift due to QD is the®3°=E, —E{)=

nl —

are additional contributions to the effective ppten\‘Mbom—. — 20, /n°Ry for largen, whereE(?)=—1/n?Ry. The energy
ing from the electric quadrupole and dynamical c;)rrec_tlonsgapAQD for the two levels(nl) and (1’) within the samen
etc., which are of higher powers inR/(A smallR™ addi-  manjfold of levels 6=n’) is then given by

tive correction is present due to the retardation effdedr-

mula(2) makes sense when the validity regionRfs speci- A(nl,nl")=E, —Ey,=2(0,— a,,)/n3EAQD. (5)
fied. Forli) equal to the ground statg), all E, >E, and

thus 4> 0. But, for i) equal to the excited statés), some  The radial part of the dipole coupling matrix element for the
of the terms in Eq.(2b) can be negative because of the above degenerate pair, witm’=n, is given by D
change in sign of the energy denominatarfor n’<n. The  =(3/2)nyn?—12, for sayl’=1-1. For complex atoms in
situation is similar to that for the oscillator strengths. states of lowl, the quantum defect can be large, in which
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case levels of the samremanifold may not be that close to 2s,,, level up from the originally degeneratgzg, by 0.035
each other in energies. For example, wigs 1, we may set  cm %, while the 3,,, by 0.010 cm? up from 3p,/,. Thus,
n"=n—1, I’=1+1, and obtain A(n’l’,nl)=(2/n"3) (o, for hydrogenic 3,,, and 204», we haveS, (2p4;) =0 and
—oy,—1). Following Eq.(4), we haveR®=\2[D/Agp| A =S(2sy,). Ri=+2|D/A,|. On the other hand, the gap
=n*%\loy—ay|. Aqpis usually the largest for lol and  between the &, and 2y, states is 0.33 and 0.098 ¢

can often be in the eV range. between P;, and 3,,,. (Note that 5, and A5, are still
degenerat. This gives ay(25;,—2p1) =D A, =10a3.
B. Fine-structure effect In the regionR> szlo“ao, for example, wherey, is pre-

sumably valid(Sec. V), we expect the polarization potential

The fine-structuréFS) shift is given by[6,7] W= — g /R*~10-8Ry, which may be compared with a

See=(nlsj|Vednlsj), (6a)  typical nondegenerate contributioV®=10"'°Ry at the
sameR. (At R=10Pa,, W®=10""Ry). Continuing this ex-
Vis= — (eh212m2c?) (dV gyl 1 ar)i - 8. (6b)  ample of the hydrogenic case, with=2 and the Lamb shift

taken into account, we have
For two states witH=0 andl=1, we haveS{I=0)=0
and Sqql=1)=Sgg, which give Ars=Sgs and R.®
= \5/?2| D/Ard. Whenn is large, Ars* 1/(c?n3), so thatle_S (2D 1 2515) >0,
«n><for near degenerate cases. In the pure hydrogenic case
with n=2, for example, we have A(pPzpr—Pip) and
=0.37cm}, and thus

ay(281/,—2p12) <0,

aq(2pz—28112)<0.

2 2 >0 d 2 >2)>0.
#4(2812~2py) >0 and ag(28y,—np.n=>2) (7a  Similar inequalities may be obtained far-2 for both hy-

drogenic and nonhydrogenic cases.
On the other hand, for&,, Dipole polarizability associated with a pair of nearly de-
generate levels can be very large and assume either sign. All
ay(2p3p—2515)<0 and ay4(2ps—1s1)<0 (7b)  three shiftsSs and gaps\’s discussed above behave at large
. n as 1h%, resulting inR,=n>2 Combining these cases, we
while define the total shift

ag(2pzp—n’'s,n'd,n'>2)>0, (70 A=AgptApstA, 9)

etc. (1Ry=1.1x10°cm '=3x10°Mc/sec andc=137 in  where one or more of the HRS may be zero or negative,
a.u). The magnitude of for Eq. (7b), for example, is of the depending on the choice of the st@td. Some cancellations
order ofa=10fa3 for n=2, and rapidly increases for higher among the terms in Eq9) are possible. Generally, the mag-
n. On the other hand, typicallR,=10%a, and thus, forR  hitude of Agp is the largest among the three for'3, but
=R,, Wy==*10 °Ry. This can be compared with a nonde- becomes comparable to-s at largerl. A, for =0 is usu-
generate contribution otV (2s)=10"1°Ry at the same ally an order of magnitude smaller thais. For the excited
value ofR. HRS with largel, Agp becomes very small whilé s be-
The Dirac theory gives the hydrogenic states with theCOmes relatively more important.
samegj values degenerate. Thus, the stateg,&and 24, are

degenerate, which is eventually broken by the Lamb shift, as IV. STATIONARY DIPOLE POLARIZABILITY
discussed below. The levelpg, and 3, remain degener- OF EXCITED ATOMS
ate, but for atoms with more than one electrd,p will To extend the polarization potentiél) for the nondegen-

break this degeneracy. Since thefor QD and FS can be o ate case to excited atoms in statd), which is nearly

either positive or negative, depending on particular situagegenerate with other dipole-coupled states, it is convenient
tions, the resultingr from such a pair can assume either sign.q treat the problem in two parts:(a) one that involves only
the nondegenerate states’ ('), with n’#n, and (b) the

C. Lamb shift second part that involves states which are near degenerate
The effective interaction that produces the Lamb shift isand that usually involves states of the same manifald,
given[8] by =n. This division is arbitrary, but facilitates the analysis
without affecting the final result. Patd) can be treated by
S =(nl|V|nl), (88  the conventional method via E(®), while part(b) requires a

special reformulation. While the conventional procedures
V= (4/3c®)[In(ME/2E 4,0 +19/30/6(F) Ry. (8b) treat the degenerate and nondegenerate cases sepgBately
we will present a unified approach in Sec. IV B.
Operator(8b) affects only thel=0 orbitals and we have We set
generallyS, «m/(Mc?n?), wherem andM are the electron .
and nuclear masses, respectively. In hydrogen, it shifts the ad:agahrag . (10
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A. Nongenerate casda) where E=(E;+E,)/2. A(12)=E,—E,;=A can assume
As in Eq.(2), we define the dipole polarizability either a positive or negative sign.
Now consider several special cases.
aga):n’%:n |f:§|:+1 K1) P/ Enye = En), 1=l 1. A=0, i.e.,A’<4M;3; case (b)
(11) We have
a{P(nl) is of order unity whem for the initial state is small, E~E+=M},—E+D/R?=E=a®(R)/R%  (16)

but for high Rydberg states with largethe dipole matrix

elementsD become very larges(n?). In addition, the en- wherea®(R)=DR? if we follow the convention(2). Obvi-

ergy denominators become very small fof close ton.  ously, this polarizability goes to infinity aR increases and

Therefore, the dominant contributions h@a) may be esti- the potential becomes

mated rather simply by taking into account only a few

nearest-neighbor states, because of thevi¢ighting in Eq. W' =D/R?, (17)

(11). Obviously, there will be sizable cancellations among

the contributions from those states which lie above and beThe expressionl6) is limited to the region oR<R, where,

low the stategnl). Generally,ay becomes large in magnitude following Eq. (4) and for the parameters defined above,

with increasingn because of its dependencezdocn7a8. On 2

the other hand, foR>n2?a,, Wy=— aq/R*x1/n. R.=[2[D/A[]** (18)
The sum ovem’ in Eqg. (11) may be replaced by the

integrals, as Therefore, the limitA — 0 is accompanied bR,—o; that is,

the region ofR where Eq.(17) is valid expands ad de-
creases.
(8) — q
ay’'= nlid|X;.), 12
d |2 (nildix;) 12 2. A>>4M13; case (a)
This is similar to the nondegenerate cdag and we ex-
pect the result to be the same as that obtained in Sec. IV A.
ForR>R,, |A| becomes relatively larger thaN ;,|, and we

wherel’ =1+ 1, andX satisfies the equation

[h(F)—En]X;-=d[nl)—a(nl"), (13 have instead of Eq(16)
and wherea,, is a Lagrangian multiplier, introduced here to E=E+A+*W,, Wy=-aPIR? (19
makeX orthogonal tdnl’). Note that the term withh’ =n is
excluded in the sum in Eq11). which is the result expected from the nondegenerate pertur-
bation theory. With the usu@®~* behavior factored out, we
B. Degenerate caséb) have
A perturbation theory is needed that covers both the de- ag”:DZ/A, (20)

generate and near degenerate cases simultaneously. This is

achieved by simply taking the relevant sets of statssially  Here A can be positive or negative. FpX| small, the mag-
pairwise at a timg which lie close in energy and mixing nitude of the polarizability becomes large, R} also in-
them. The task of estimating the polarizability is simplified creases. This behavior is one of the main results of this
by the fact that the coupling potential is of the fory  study; asA—0,a{P)—=, but at the same tim&—x» as
~d/R% We are here interested in the leading term in thewell. That is, asA decreases the region Bfwhere Eqs(20)
effective potential at larg®, so that the level mixing by; ~ and(19) are valid recedes to infinity while the region Bf
needs to be taken only to second order, i.e., the mixing ofor the cases represented by E(6) and(17) expands.

two nearest-neighbor levels at a time. We denote the two Incidentally, any other potentials of the typer¥/ such as
states selected for mixing by 1 and 2 with energigsand  the centrifugal potential, can be included in the above diago-
E, which contain all the effects of shif&@ Then, the energy nalization procedure with minimal changéSee Sec. V.

matrix to be diagonalized is
3. Intermediate region of R=R,

BB My -0 (14) We have a smooth transition between the two extreme
M1, E,—E ' casega) and(b); Eq. (15 may be written in the form
where  M/(R)=(1|H}|2)=D(12)/R? with D(12) E(R)=E=(D/RY)[ 1+ (R /R)*T2, (219

=(1]d[2)=D. We obain whereR, andR are directly compared, and thus

E=E*05/AL,+4M(R)?, (15) W(R)=E(R) — E(R—)=—a4(RIR%. (21
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Polarization of Rydberg atoms by an external electric—where<a>5<n||a|nf|f)Ed for I’=1+1. The form(24) is
field perturbation is similar to the collisional case in the Sta'usefui in determining the magnitude of cancellations in-
tionary approximation. As an external fiekl distorts the volved in the excited-state polarizability and also its overall
target, we have a new parameﬁéEZ:ZD/A, which re-  sign.
placesR2. All the relations defined for the collisional case =~ Summarizing the result obtained above, the dominant

are recovered by the substitutién— 1/R?. long-range potential for an excited atom in statel €0)
and interacting with charged projectile is of the foi
4. Multiple nearly degenerate levels «D/R? for R<R, and Wec —a{’)/R* for R>R,. On the

. . other hand, thé>0 case requires three regionsP®flefined
The procedure described above in Secs. IV Bl—IVBSby RqD:|q/D| and qu:|ad/Q|, with RqDOan and Ry,

may be easily generalized to cases in which more than two’ 3 5/2
Ievgls are ngagrjly degenerate, such as for targets in HRS" - Genere_mlly RqD<RX.<qu’2 whe_re Ryen™. _For R

: <Ryp, the dipole potentiaD/R* dominates, and in the re-
where largen andl are examples, and whete,, are negli- . qR <R<R.. . the direct q | tential R |
gibly small.[The other terms in the total of Eq. (9) can be g10n Rgp=R=Rqq, th€ direct quadrupoie poten laIR" is
significant] Since we are interested in the leading order oflmportantﬂr_ Finally, forR>Ry,, the potential changes @/
1/R for largeR, only the diagonal and the two terms next to =~ ag/R
the diagonal terms that represent dipole coupling are rel-
evant. This feature greatly simplifies the problem in that the V- RESONANCES AND DYNAMICAL EFFECTS
mixing takes place only pairwise. Therefore, the results of ON THE POTENTIAL

Secs. IVB 1-IVB 3 are essentially unchanged; the final po- | the scattering of charged particles off hydrogen, sets of
tential is given simply by a sum of the contributions from the (asonances are produckdL] for scattering energies just be-

individual pairs, withl " =1+ 1. low each of thenth excitation thresholds, adjusted by a cut-
off due to Lamb shifts that break the degeneracy. This is
C. Evaluation of ay attributed to thens-npdegeneracy, which produces a diago-

. 2 . - . .
. . . . (a) nal potential of 1R~ type, which can in principle support an
The auxiliary functionX introduced in Eq(12) for aq infinite number of “bound” states. The polarizability in case

may be evaluated easily by a series solution. For exampleg) js given by the sum of contributions from these resonance
for (nl)=2s of hydrogen, we set states.

Xy —1(r)=(r?/2) 20 brmMexp —r/2) (22 A. Two-channel problem
m=

In the two-channel problem of electron hydrogen scatter-
ing near then=2 threshold, where thes?and 2 channels
are nearly degeneraté op=0 andAgs=0 for j=3), two
coupled equations for the scattering particle may be set up,
as

with the resultb, is arbitrary,b;=0, b,=15, bs=175, by
= st5, etc. The constarti, is adjusted to make the function
X orthogonal to the @ orbital, while b,=(m—21)/[(m
+2)(m+1)—2]b,,_4, for m>3. This is similar to the po-
larized orbital procedurg2]. [K+Vi—eu=—Viu;, (25)
Alternatively, a semiclassical Green’s functi@f, may o S
be used9] in the evaluation of® andW, . Thus, for states wherei,j=1 and 2, and/;;=(i|Hglj). The total energ is
with angular momenturh, we have the radial Green’s func- given by E=E;+¢, for the atom E;) and projectile ¢),
tion with e;=e,=e;. V; may be neglected because they are
short-ranged, and for dipole coupling;; behaves a®/R?,

P2 We can treat this by simply defining. = (u;*u,)/2, which
gi(r,r')=(4/mm) ip p2dpji(pn)ji(pr /P, (29 gives immediately11]
11

[K—e.+Vi,]u, =0. (26)

whereP,(u)=—{2m[E;—L%u?—V(u)]}*? with u=r—r’
andv=(r+r")/2. The limits of integratiorP,; andP,, are  (One of theV; contains the centrifugal potentis} , but the
similarly defined, withu replaced by. L=1+%. Forafull above procedure can readily be modified; of course the mix-
Green’s function covering the entire spectrum, we hBye ing will not be d a 1 to 1ratio, but the above result will not
=0 andP,=. change in its essential contents. This was also noted in Sec.

The polarization potential may also be viewed as a fluclll). Now, the diagonal potential is of long-rangeRi/type.
tuation potentia[10] affecting the collision via virtual exci- The resonances observed in teél collisions near then
tation of the target. In the closure approximation, the sum in=2 threshold are thus attributed to this potential. However,

Eq. (2) for a collapses when an average excitation enégy the number of resonances is made finite by the cutoff at the
is introduced. as energies associated with the Lamb shift, where the assumed

degeneracy between the 2and 2 (j=3) is broken. Hence

fl no o — this is consistent with the picture derived for célsgin Secs.
ag =[{nl|d*=(d)*nI)]/(E-En), (249 jcandIVB.
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In this respect, the resonances observed inethescat-  Note that Eq.(29) is nonlinear inW,4 becauseN,q4 appears
tering system are not quite the Breit-Wigner-type quasiboundlso inGSd. To second order ikl’ ,GSagives the same result
compound resonances,atype (commonly called the Fes- 3s that withGSd, except wherG® is singular.
hbach resonancgsvhere strong correlations among the ac-
tively interacting particles are present. Rather, they are some-
what close to the potential shape resonance$ #pe, C. Degenerate caséb)
because they come from the Rydberg-level state degenera-
cies and are associated with th&4potential. Therefore, we . . . ) :
may designate them dslipole resonances”[11]. Further- (b) with n =N where the denominator dbg, vanishes. It
more, this is in contrast with those resonances that appedf3S 3hpwr[4] in the nondegenerate case that the effed of
throughout the neutral and charged ions, as multiply excited? G~ IS to vield a dynamical correction to tg? adiabatic
states, at energies close to the individual excitation energig&otential, which is of higher power in R/thanWg™ . Thus,
associated with pure Coulomb values. We may identify thenfor nondegenerate cases, b, and G, yield the same
as “Rydberg resonances;’they are also close to the poten- potentials in so far as the leading term ifR15 concerned.
tial resonances. Evidently, in atoms and ions, the centraBut, for degenerate cas®¥,q in G, of Eq. (298 can be of
Coulomb field of the nucleus plays a dominant role, whilea dipole form which can seriously alter the spectrum. The
the inner-core electrons predominantly play the role ofcomparison betwee@sQaandGaQd is more complicated in the
screening this field. Thus, the outer Rydberg electrons ardegenerate case and requires more careful analyses.
largely controlled by the screened central Coulomb field. We have to this point omitted one important aspect of the
collisions involving excited targets. In addition to the disper-
sive part,G® for the Rydberg atom should also contain an
) o o absorptive part which has not been dealt with; for high

In view of the sensitivity of the polarizability on the en- there are many open channels and overlapping branch cuts in
ergy denominators in the expressi@®), we reexamine its  energy space, which broaden the resonance levels. It is not
origin for the purpose of obtaining possible dynamical cor-clear whether the two or more near degenerate and broad-
rections toW. For the collision of charged particles with ened channels can produce a potential that still behaves as
excited atomic targets, the effective potential in the elastic)R2 and/or 1R*. This problem, together with the radiative
channel is given by4] channel coupling and possible cooperative processes in cold
excited gases, such as the molecular autoionization, will be

Now we compare the tw&®’s for the degenerate case

B. Stationary vs adiabatic approximations

Wiy =(nl[H'GH'[nl), @7 discussed elsewhere.
where VI. DISCUSSION AND SUMMARY
GO=[Q(E-K—h—H")Q] L (28) We have examined the long-range behavior of the

Rydberg-atom charged-particle interaction and shown that

Here,h is the target Hamiltonian ani is the kinetic energy for near degenerate levels, the dispersive dipole poteial
operator for the projectile. The projection opera@is de- IS dominated by the B’-type behavior forR<R,, and it
fined byQ=Q,,=1—P,,, whereP,=|nl)(nl|. That is,Q gradually SWIt'CheS over to the F;‘Y type interaction aR
spans the space orthogonal tal); for example, Q >R,, often with very I_arge polarizability. We obtained the
=320 1N 1’| with I'=1+1. general result by treating both degenerate and nondegener-

The polarizability in the stationary approximati¢sa is  ate€S cases simultaneously; the conventional configuration-
defined by settingK+H’—e,)=0 in G2, whereE=E,, mixing procedure provides a unified treatment. When the
+e, andE,, are the eigenvalues of the target Hamiltonian€Nergy gapA betw_een two adjacent_leve_l_s c_oupled_ by the
h. Then, we haveGS=[Q(E,—h)Q]™! and W.R) dipole operatoH is small, the polarizability is dominated
=(nl|H'GZH’|nl). The singular nature of the polarizability by the (b) term, o of Eq. (2. Experimental study of this
comes from the vanishing of the new denomina®(E,, behavior may be warranted, as it affects the behavior of a

—h)Q, i.e., atE,=E, . Obviously, the situation changes cold exci_ted gas and cold _plas_mas at low density, where
if the neglected term IGQ(n'I’|(K+H' —e,)|n'l'), is  aVerage interatomic separation is large.
not small. We summarize the result. discussed in this paper on the
On the other hand, in the usual adiabatic picture, one cadominant long-range potentlzal for Rydberg atoms. Firstly,
culates the potential energy for each fixedAside from a  With 1=0, we haveUzD/R(b)g|v‘?n by Eq.(17) for R
slight adjustment in the choice of Jacobi coordinates usedsRx, followed by theU=—aq”/R" type potential(19) for
such a potential may be defined in terms of the adiabati&®> Rx With a large polarizability(of either sign, and where
Green’s functior{12] defined by R,= V2|DJAJ. Forl>0, we start with theJ =D/R? type for
R<Ryp, WhereR,p=1q/D|, followed by U=q/R? in the
GQ=[0O(e+W.(R)—h—H")O] L 29 regionR,p<R<Ry,, WhereRyq=|aq/q|. Finally we have
aa=[Qen+Wad(R) Q] (299 the U=—ay/R* potential for R>Ry,. It is somewhat
. strange that the dominant long-range behavioWefR™ 7 is
Wag(R)=(nl[H'GzgH'[nl). (29D such that, aR gets large,y also increases. For atoms with
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polarizable cores and two or more valence electrons, and fasimilar to Eq. (31b), with the R™® replaced by (;r,) 3.
excited atom-atom collisions, situations analogous to th&herefore, a modification of the tyg81a is relevant for the
above appear that are associated with the cross polarizatialegenerate cageThe crossover point between Eq813
[13] when states of the core electrons are degenef@ee  and(31b) is R,, given by

the form in Eq.(31b) below.] Two HRS electrons, whether

they belong to the same atom or to two different atoms, must Ry=|DaDg/(Aadg)|*?, (32
also be treated in the same way as in Sec. IV when the full

degeneracy problem is to be taken into account. The domiynich is to be compared with a quadratic power dependence
nant long-range behavior & thus depends on the param- j, Eq. (18). For near degenerate cases, both dreand R,
etersn, |, D, g A, andag, and also on the regions & of  can be very large. Thus, the possibility of a repulsive vdw
interest, as specified By,p, Ry, andRyq. _ potential at large separation exists when atdendB are
Rydberg-atom—Rydberg-atom collisions in cold excitedsg|ectively excited such that, and e assume signs differ-

atomic gas are mediated at larGeby a van der Waal's gnt from each other. Fot= 0, Vp assumes a formvp
(vdW)—type potential[14] that depends on the product of g4, /R?, analogous to Eq31), for all R (>nZap). This

two a’s, hence it is sensitive to the polarizability. The basicjs aso the case with weak external electric-field perturbation
interaction between two alkali-metal atorAsandB (=A),  [15]. Detailed treatment of the interaction between Rydberg

for example, is given by5,14] atoms will be given elsewhere.
) I 3 The collisional lifetime of an excited cold gas may be
H'=—(da-dg+dade,)/R". B0 estimated using the vdW interactidb], modified by Eq.

(31), for example. Since the system is radiatively unstable,
the time required to accelerate a pair to each other from a
largeR initially is critical, as the collisional relaxation occurs
only at relatively shorter distances. The possibility of observ-
ing the effect of degeneracy and retardation on the polariza-
tion potential discussed in this paper is being examined for
- 3 the presently attainable density and temperatukg,

Wp=DDg/R®> for R<R,, (319 — 1P cm 3 andT =1 mK.

The dispersion potentidlV is then given in second order in
H’, and by the Green’s functioB, which factorizes to a
form GRG§ when the convolution integral over the energy is
approximated. Thus, for excited atoms in the0 state, we
have

Wp=—aag/R® for R>R,, (31b
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