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A method is proposed for searching the formal solution of the Hylleraas equation for the helium atom. A
mathematically rigorous study confirms, in a unified and simpler manner, several results obtained earlier in the
literature but not necessarily in the same contexts. We use an adequate transformation of tHmdgrhro
equation to identify three asymptotic channels. Two of these are considered in detail as physical and are seen
to differ from “traditional” ones. In particular, we demonstrate that there is no place for the widely used
Hylleraas-type exponent. Furthermore, we show how the mathematical presence of logarithms at small hyper-
radii, first suggested by Bartlett, is linked to the electron-electron interaction. Finally, the study leads to the
development of simple procedures for the numerical calculations of energy levels and approximate wave
functions.

PACS numbds): 31.15—p

[. INTRODUCTION These integrals are both equal to zero for exact solutions, but
may yield, for the same probing functidp, different values
Recent series ofg(3e) experiments on heliufil] clearly  of energy levels. The minimization process is therefore not
demonstrate that simple bound-state wave functions, usedhique and conclusive on the quality of a proposed wave
with success for calculations of elastic and inelastic scatterfunction[22]. One may also consider the simple relation
ing, are not necessarily satisfactory to describe the details of
many-electron ionization processes. Seeking almost exact so- I
lutions is now timely. In this context, many efforts were E(rlvrz):?’
concentrated to get the proper final-state wave functions

close to the formal solution of the Scliiager equation  which will give a constant valug over the whole space only
(named SE hereaftef2—4]; however, the probing functions for the exact solution. For the six-term Hylleraas wave func-
used up to now for the bound state are far from the SKijon, Bartlett [23] has shown that the calculated val&e

formal solution. . ranged from—c to +c and was near its true value only in
The theory of the helium atom has been developed fogmall regions of space.
more than 70 years, starting from the works of Hyllergs In his earlier paper$6], Bartlett demonstrated that the

By considering onlySstate solutions, he reduced the six- helium-atom eigenfunctions cannot be power series of the
dimensional SE into a three-dimensional omamed HE  variablesr, r, andr, (the two radial coordinates and the
hereafte); from it, basic wave functions were obtained and electron-electron distangeand suggested that a formal solu-
used in the Ritz variational method to get the helium energyion might contain logarithms. Later on, Fock reached the
SpeCtrum. However, later on, it was shown that the Hy"eraagame propos|t|o|ﬁ24] He built a recurrancy System that al-
approximate basis is not a formal solution of the [Sf lows us, in principle, to construct the helium ground-state
Since then, a great number of papers have been devoted §gave function as a series consisting of products of powers
approximate solutions of SE, the most known approximatiomnd logarithms. A truncated series vyields a fitting function
being that of Hartree-Fock. The main idea of many othefthat may be used in variational methods to obtain the ground
studies is to find series expansions that are somehow close épergy. However, many mathematical questions linked to his
the formal solution of HE(here we refer only to a few of jnyestigation were, and are still, left open. For example, one
them[7-13)). This approach is more correct for numerical may suggest combinations of powers and, say, exponential
applications than, say, the choice of a complete basis s@ftegral functiong25] or other variants. Even the pure power
Consisting of some suitable functioriSturmian basis, for expansion cannot be Comp|ete|y rejected; indeed, we know
example, even if highly accurate energy levels can be ob-that the exact solution of SE in the absence of the electron-

tained[14-21]. electron interaction has a hyper-radial expansion that does

The minimization of the energy can be done using thenot contain any logaritims. The Temkin-Poet mofi26]
conventional variational integrgkb|H—E|®) or by mini-  contains a combination of powers and logarithms that differs
mizing the following integra[22]: from that predicted by Fock, and so on.

Surprising as it may seem, many issues about the helium
ground-state wave function are therefore still unclarified. It is
important to underline that no probing helium wave function
used until now in practical calculations has the correct be-

f [(H—E)®]%dV.
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havior both at small and large hyper-radigs Even the 1 @ .. ..
asymptotic behavior is not well established. In this respect, |[581F 582+ E+ P D(ry,rp)=ed(ry,ra),

all probing wave functions can be conventionally subdivided

into two main groups: the Hartree-Fock type with the binary £=0, 1)

exponential factor exp{p;r{—p.ro), and the Hylleraas type,

which is characterized by the presence of the interelectronigshere the quantityr is used here to “turn on’(physically

distancer 1, in the exponential factof27]. Both groups of a=1) or “switch off” ( «=0) the electron-electron interac-

wave functions have been and are currently being used ition. Fora=0, the elementary partial solution of Ed.) for

calculations for interpreting cross sections for single andhe Sbound states of two noninteractive electrons is known:

double ionization on He. For example, in the high-energy

dipolar regime[28] (small ejected energies and small mo- ®(rq,r,)=®V(r;,r) =0 2(r) e =2(r,)P(cosby,),

mentum transfejsone observes in the triple differential cross (2

section a persistent discrepancy in the vicinity of the recoil .

peak between the experimental data and the results of sevemheref;, is the mutual angle between the two vectoysind

calculationg'see[29] and references thereirBeveral models r, given by cosd;,=(r3,—r2—r2)/(2ryr,), P, is the Leg-

with .s.|mple or complicated final-state wave functmns andgpgre ponnomiaI,goﬁnZ,zz)(r) is a one-electron Coulombic

“traditional” He ground-state wave functions give results pq,nd wave function corresponding to charge2 and

that are practically the same, but differing noticeably fromquantum energy,,, ande=e,+&, (MN=1=0).

the experiments. Popaeat al. [30] have investigated this is- Note that in Eq(2) we have considered only nonsymme-

sue and have reached the conclusion that it is the asymptotiized solutions of the SE and shall do similarly below, for

behavior of both wave functioribound and scatter¢thatis  the sake of brevity; one should therefore keep in mind to

mainly responsible for the ratio of the binary to recoil peakperform at the end proper symmetrizati@r antisymmetri-

heights. Moreover, recently, surprising results on heliumzation of the wave functions, in the usual way.

were obtained in a series 0€,8e) experimentg1], and no The S-state wave function depends on the scalar combi-

explanation can be found with conventional wave functionsnations of variables,, r,, andrq,, which are restricted to
Motivated by these considerations, we study here the Skheir physical domains

for helium Sbound stategand in particular theS° ground

statg in an attempt to move ahead as far as possible without O=ry,rp<oe,
any preliminary approximations and simplifications. An
original transformation of SE allows us to obtain a system of [ri—ra|<ry=<(ri+ry). ()

channeling equations that leads to two results. On one hand, ] ] ]
from these, the correct asymptotic solution is derived We have chosen instead to use the following hyperspherical
Merkuriev and collaborator§31] have intensively studied Variables since they are more convenient for three-body
the asymptotics of many-body wave functions, but mainlyProblems:
for the scattering states. Fof®4] considered the asymptotic )
behavior of the helium-ground wave function, but derived r1=pCcose, Tr,=psing, ry,=y\2pcosé, ()
only the correct exponential index of the binary channel.
Here we enlarge his result. On the other hand, these equiith 0=p<< and O<¢= /2, and the range for the angular
tions make clear the behavior of the helium wave functionvariable ¢ is fixed by Eq.(3). The asymptotic behavior
near the triple collisions pointthe hyper-radiusp—0). A (hype_r-radluso—>00) of the noninteractive solutiof®) looks
recurrancy system that gives automatically the proper behayhen like
ior can then be derived. .. ‘

In this investigation, we show what the formal solution D o(11,5)~ p™ "(Cosp) (sing) e VZep coste—0)
must look like at small and large hyper-radius and prove that .
the widely used Sturmian basis is not adequate to represent X Py(cos Zsin 2¢), ©)

the HE formal solution. This information should be valuable, — _ .
for example, to those who make calculations for interpreting}ﬁhere we have sey/sp=1e cos6 and yz,= e sin6 (0

(e,2e) and (,3e) reactions on helium. We also illustrate \ﬁw/Z).lele pa.ra_meteﬁt_ls Illnkfe(gr_to ;Ze enehrgy sharmlg
how the analytical study can further be used for practicaPe een electrons; In particular 1er=m/4 we have equa

calculations of energy levels and construction of an approxi€"¢'9Y sharin@m;en. .
gy PP In the new variables, the radial SE) reads

mate formal bound-state wave function.
102+5 (7+ 1?( g)+12( &) |P=ed
A 5 Py - 5 (Pl - (Pl =& 1

Il. TRANSFORMATION OF SE 2 9p%> 2pdp  2p? p

6
Designing byr, andr, the two electrons radial coordi- ©

nates, and 12=|F1—F2| the electron-electron distance, the where the angular operators, in what we call teg) form,
radial SE for the He atomZ=2) reads are given by
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tot= 2+ L5 cotze)con2e " 37 Yy
€)= —+——2col2¢)co —+ - —+ =T(x
v dp?  9&? v dpdé ap> P Ip  p? Y

A(p,Xx,Y)

J J 1 J
+4 co(2<p)£+4 00(25)(9_5’ (7 D(x y)—2Z(x%y)+2xp - A(p XY), (13
where f)(x,y) is a first-order differential angular operator
2(p.8)= gt g given by
cos¢ sing /2 cos¢ A A .
D(x,y)=2G(x)+[T(x,y)+5]x (14)
Two other equivalent forms, which shall be useful below, are vith
the (x,y) form
x| a
2 7A
. 2 g2 PR 2 G(x)= 4{(1 X ) XY oy ax
Txy)=4| —+—+1-{X—+y—+1] |,
x> gy ax Ty o
(8 4/ (1-y )—— Yox|ay® (15
22 22« . _
Z(x,y)= + - , Note that Eq(12) is also equivalent to
Vi+x  J1-x 1+y
x>+ G(x)x=2e. (16)

with x=cos ,y=C0S , and the ¢, ) form
(20).y (%) ¢.7) This choice of decompositiofl2) and(13) is guided by the

assumption that the exponential behaviordofwill not be

(U =4l (1— 02)&—2+ 3_30_ i+iﬁ_2 too dissimilar to that of®,s in Eq. (5). In the following
Jdo? \o do g2 gn? sections, the solutions of these coupled equations are studied
(9)  for large (Secs. Il and IV and small(Sec. ) hyper-radii,
while a procedure to obtain the numerical solutions on the
Z(o )= V2 22 « whole space is proposed in Sec. VI.

+ - .
Vl+ocosy l1-ocosy +1+osing
I1l. CHANNELS OF THE BOUND STATES

with x=o Cosy, y=osiny (0<#»=<2m). The physical do- ~ Equation(12) has an infinite number of solutions. The
mains(3) translate intoc*=x“+y“<1. One can easily see simplest one is

from Eq.(9) that the second-order differential angular opera-

tor T(o, 7) is invariant with respect to rotations in the.(;) Xo=\2e. (17
space, i.e., ifg(o,n) is an eigenfunction of this operator, ) )

theng(a, 7+ ) with any arbitrary angle & y<2 is also Other solutlons_ e_X|st, separately, for<@r=< 1_ and for _1
an eigenfunction. This property will be used below in the<o<V2. Restricting ourselves to the physical domain (0
(x,y) form, for which we may write in matricial form the <o<1), there exist only two other solutions:

tati into t iabl : .
rotation into two new variables andv Y= \/E(cose\/m+ sma\/m) (18
u cosy siny X with u=xcosy+ysiny [see Eq(10)], and
= o (10
v sy cosyJ\y Yo= e (COSOVLT o+ sin6y1—0) (19)

with o2=x2+y?2.
For eachy; (i=0,1,2), Eq.(13) must be solved to deter-

R mine, up to a multiplicative factor, the corresponding

D(ry,rp)=Alp, @, e X&dr, (1) AD(p,x,y), which we shall write asAl") for brevity. The
general form of the bound-state wave function can be written

a decomposition that can be done without loss of generalityds a linear combination of these solutions

Using the &,y) form for the angular operators and writing ..

for brevity y instead ofy(x,y), we transform Eq(6) into ®(ry,rp)=aA@e xor+ Ale 1P+ g APex2P,

two coupled equations (20

Suppose now that the solution (&) takes the form

5 ) We call each term in Eq20) a channel of the bound state.
&_x) _( X,y &_x) s, (12 We have artificially multiplied by the first and third term
ay ' to emphasize their vanishing at=0. Indeed, onlyy; can

2

J
X) .

2
+4
X

X
ax 7 ay
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reduce, fora=0, to the noninteractive resu“’/Z COS(QD is Satis_fied(the left-hand side is of OrdQJ_'iz). On the other

— ) given by Eq.(5), and this fory=0. We note that the hand, if 8 glepends on _the angular varlabl_es, the rh; of Eq.
dependence on the mutual angle between the veE;oaiﬂd (13) contains an additional term proportional gnwhich

S . must be set to zero through

r, is present in bothy; andy,. It can be removed frony;

for y=0, but always subsists ig,. The third term in Eq.

(20) shows therefore very strong electron-electron correla-
tion.

G(x)B=0. (25)

The asymptotic form(23) is therefore valid if the two
coupled linear first-order differential equatioh&gs. (24)
IV. ASYMPTOTIC SOLUTIONS and(25)] are both satisfied. Equatid@5) can be satisfied if

Let us investigate Eq13) in the domain of the so-called X 'S @ constanithis is the case foy=xo), or if B is a
global three-body asymptoticsp{ o, @+ 0,7/2,# w/2), fynction of the.integral of motion of operat@(y) (a par-
and consider two reasonable asymptotic behaviorg\for ticular case being a constant valueg). . _

The first, which we call the Hylleraas-type asymptotics, ~The limit p—o corresponds to four different asymptotic
has the form domains:r,r,,ri,—c (global three-body asymptotigsr,

—00,[<00; [1—00,[,<0; [1,[,—®,I,<%©, The coeffi-
A(p,¢,&)~a(p, &) pleriedr (21  cienta(e,&) satisfying Eq.(25) can have presumable singu-
lar points ate=0,7/2 andé= /2 that mark the boundaries
with u(¢,£) a real quantity such that-Qu(¢,&) <y<w in of the domains, but not any other ones. This property will be
order to keep Eq(11) physical, i.e., well behaved fop ~ used when solving Eq24).
—o and any anglesg, £). With this choice and considering Let us now look at what happens for the three situations
only the leadingp term, one gets from Eq13) a first-order  x=xo, x1, andx;.

nonlinear differential equation fqu(¢,¢): (i) x=xo: we shall call this channel “hyperspherical.”
The general solution of Eq$24) and (25) takes the form
[G(w)+ul(n—2x)=0. (22 (23 with
The obvious solutionu=2y leads to a divergent behavior Z(e,¢) 5
for p—o. It is unphysical as a solution for the bound state = s 2 (26)

but may appear for continuum states, i.e., whenO. To
analyze Eq(22) further, we sefu=x—{. Using the PrOP- \hile the functiona®(g,£) remains undetermined. Note
erty G(u) x=G(x)p, we fall back onto Eq(16) for £, i.e.,  that, if Z(¢,£)=0, this behavior coincides with a well-
P+ G(0)¢=x*+G(x)x=2¢ with again the solutions known result of nuclear physics widely used in practical cal-
Xo,» X1, andy,. Take, for examplex=yxq; then up=x1  culations(see, for exampld,32]).
—Xo: #1=0, uo=x1— X2, and therefore the solutions with (i) x=x1(¥): we shall call this channel “binary.” For
the Hylleraas-type of asymptotic behavi®1) are of the brevity, we omit the calculation details and simply list the
same family as those presented in E2D). This proves that results obtained in solving E@24). In the general case, the
all possible physical exponential behaviors are already insolution has a singularity ai==*1 inside the domain of
cluded in Eq.(20) and hence form(21) can be discarded. physical interesfsee also Eq(10)]. This singularity can be
Moreover, from the analysis of thg given below, it appears removed if y=0; in this particular case, Eq24) has the
that none of the channels in E@Q0) contains an exponential following integral (or constant of motion:
of the form expfry,), with & a constant: Eq(22) leaves
therefore no place for the pure Hylleraas basis. cog2¢)

Thus, in the general case, the coeffici&d?(p, ¢, &) for C= _C°5‘9122W’ (27)
largerq, r, andrq, contains a growing exponential term

th(%t may be. larger than the decreasing exponent w(:E]).. __whered,, is the mutual angle between the two vectorsind
AY(p,p,&) is expressed as a power growth only for definite -

values of the parametersand 6, which will determine the r,. This is a remarkable result since it means that the triangle

helium bound spectrum in one of the channels. The seconlfl the momentum space formed by the two vectors
type of asymptotics, which we call of the Hartree-Fock type, -

i R r . r
is then of the form p1=\/Zcoser—l, p2=\/Zsin0r—2, 28
1 2

Alp,e.6)~a(¢,&)p” (23
with fixed mutual angled,, fully determines the asymptotic
with 8 a real number. Inserting E3) in Eq. (13), we find  dynamics of both electrons. Since the sides of the triangle are
that in the right-hand sidérhs) of Eq. (13), the term of  quantum numbers, the angl, becomes perhaps the as-
asymptotic ordep " is eliminated if ymptotical quantum number of the systémteresting refer-
. ences to Heisenberg and Sommerfeld correspondence on this
[D(p,&)—2Z(¢p,&)+2xBla(e,£)=0 (24)  subject can be found if83]).
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For #,,>0 (C>—1), the general solution of Eq24) FaS(Fl'Fz):Fl(c)(Zplrl)lel—1(2p2r2)2/p2—1

takes then the following form:

ry B+2-2lpy—2lpy+ al2pqy

P1 P2

all(¢,&)=F(C)|sin(¢— )| #+272/P12Pa" al2p12

X (cos¢)?/P1 " Y(sing)?/P2 1

1 1
X E(pl+ p2C)ry+ E(p2+ p:C)ry

1 1
X E(pl_" p,C)cose+ E(Dz“‘ p:C)sine

—al2pyp
—al2py, P12 (33

: (29

+1/2py,cosé
We reiterate, at this point, that the angular variables appear
whereF(C) is an arbitrary finite function o€, 512=%(I51 t;ot_hlt)jwectly and viepz, through C= cas(Z)/sin(2p) (C

- . . . _ 2 2 -
—Pz) is the relative momentum with pho=pi+p3 Let us analyze formul&32). First of all, it reproduces the
+2Cpyp,, and now./2 cos¢=+1+Csin 2p. We can keep case of “noninteractive” electronsa(=0). We may then
a)(¢,£) finite for all values ofe if the parameters are put 2p,—1=m, 2/p,—1=n and B=m+n, and regain

subject to the following limitations: from Eq.(32) the asymptotic behavior of E¢). In this case
we have the strict equality in E¢31), a result that leads us
2 1=0- 2 1=0 @30 0 believe(without any rigorous argument thougthat per-
P1 P2 haps it should always be so for a given vajgie 3,
and — 2 2 a
+2—-———+-—=0, 34
2 2 a p P1 P2 2p: (34
+2————+-—=0. 31
B P1 P2 2pP12 3D which indeed depends on the integral of mot®@according

to Eqg.(25). Incidentally, this choice altogether eliminates the

Note that Eq.(30) set an upper limit to the total energy  power of|r,/p;—r,/p,| from Eq.(33). If we accept hypoth-
=3(p+p3)=<4, which is a very reasonable physical in- esis(34) also fora=1, we may rewrite Eq(32) in an el-
equality. egant and compact form:

For the special cas#,,=0 (C=-1), we have also
found a nontrivial solution fod= 7/4 (equal energy-sharing . . a9, Z(¢,§&)
P1=P,,P1o=0). However, mathematically such a solution Pas(F1.r2)=—F%;—@€x —\2ep+ s Iny2ep
has zero measure. p €

(i) xy=x». For brevity, we omit again the calculation F.(C) ..
details and list the results. For this channel, Ef) is best o exd— (Par it Para) +W(ry,ro) ]
studied in the §,») form, and »=C, is the constant of ve
motion. The general solution contains two angular singular (39

points: o=0 (¢=ml4,0,,=m/2) and o=1 (6,,=0, 7

and anye). These singularities can be removed if we put

0=ml4 (p1=p,=p) and =0 (0<op<mw/4) or 75 o 2 o 2 L

=7 (wl4<e<w/2). These conditions lead to the unique W(r,rp)=—In(pri+psrq) +—IN(poro+por,)

choice of ,,=m/2. This angle is generally a continuous P1 P2

function of the @, ») variablegsee Eq(27)]; the restriction 1 o

to a unique value means that it is not possible to find a —z—ln(p12r12+ P1of 12). (36)

nonsingular and nontrivial general solution of Eg@4). In P12

the domain of global asymptotics, this channel has thereforgps |atter result is very satisfactory since it visually reminds

no pla<2:e, and we exclude it from further investigation, sety,s of the asymptotic behavior of two-electron Coulomb con-

ting A ):.0 in Eq. (20). S verging scattering waves including plane and spherical eiko-
Collecting and inserting all the above findings in E20),  npa| waves, which are well known in scattering the@8y].

we can write, using the more familiar (,r,) variables, the  Thjs observation provides an additional argument for the ac-

with

asymptotic form of the helium bound wave function ceptance of hypothesi84). Note, however, that the binary
RO 2(0.6) term in Eq.(35) cannot be presented as the[ pr]oduct of func-
S - @, @, tions depending separately o, r,, andrq, [12].
Pag(r1.r2)=a 52 exp( —\2ep+ V2e Iny2ep Expression(35) constitutes then the global asymptotics of
all helium S-bound states, both ground and excited, and pro-
+Fad(rq,F2)eXp(— pir1— Paf 2) (32)  vides us with the proper boundary conditions for studying
the physical solutions of Eq1) on the whole space. Any
with particular bound state may have either the binary asymptot-
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ics [the second term in Eq35)], the hyperspherical onghe 1 27 . R
first term), or their sum if both channels correspond to the F(m);q'm))= Jo Udﬁfo dnf) (o, n)F(o,n)fin(o,n).
same energy level. The latter situation is possible for the

particular case of equal energy sharing, i /4. Since small values g correspond to large the rhs of Eq.

(40) can be considered as a perturbation and we may write
V. SOLUTIONS AT SMALL DISTANCES

Let us now investigate Eq13) at small hyper-radiip. alym(t)zz al('%(t)
The (o, ) representation is best suited for studying operator ko

T(o,7), since it “diagonalizes” this operator. It may be
seen that the functions

#? 9
2l+m+1 [ T
fim(o,m)= \/Tamme'o)(l—Zaz)exp(imn) {&tz 4&t 4an(n+2)

(37)

with

a9(t)=0, (41)

2
(Pf“’ﬂ) are Jacobian polynomiglare eigenfunctions of this {—2—45—4n(n+2) a,(fnfl)(t)
operator with eigenvalues 4n(n+2) with n=2I+m [with
no relation with then, m, andl used in Eq(2)]. They form o J
a full orthonormal set since et > |D-2Z-2y— aft() (D). (42)
|/ m/:O (9t et m
, (Imy;(1”'m’)

1 2
fo Ud"fo dy fin(o )i (0, m) =81 S - 38 |t follows that the nonexploding solution is

We would like to note that this operator is also “diagonal- al(,on)1(t):)\l(,on)1e ot (43)
ized” if one uses the full set of hyperspherical harmonics
(see, for instancd,24] or [10]), in what we would call the

(@,0,,) form. Although convenient, we opted not to use it

and

herg(g!though the results are equivalenith the purpose of affﬂ:l)(t):)\l(xl)e—znq > G,(t,w)e
exhibiting another lesser-known angular representation. I m' =0

Earlier in this paper, we observed that coefficient 5
AW (p,o,7) in general takes the forma(o, 7)pP" " for 2 f)—ZZ—ZX—) a% (w)dw,
large values ofp. Any expansion ofA() on a full set of dw :

angular functions is not very effective from the point of view (m:rm?
of numerical calculations since it demands to take into ac-

count many termsgsee, for examplé,10] or [34]). The slow  \yheren=2]+m, A, ., are some constants, and where we
rate of convergence results directly from the singular behavy e introduced’ a Gnr]een function ’

ior of the Coulomb potential. Perhaps, it is more effective to

build a suitable spline; for this, however, we must know the

(44)

behavior ofA() at smallp. Gp(t,w)=— m[ﬁ(t— w)e (=)

In spite of the above observation, let us expandith the
set of angular function&37) + 0(w—t)e 20421

- We note, for later use, the following formulas:
Alp,a,m= 2 aim(p)fin(a,7), (39
) ) i . In(s)=f Gy(t,w)e *°dw
where we have omitted the channel indek.™ Using p 0
= exp(—t) for the sake of simplicity, we obtain from Eq.
(13): 1 exp(—2nt) B exp(—st) 45
" (2n—s)| 4(n+1) (2n+s+4)|

i 4(9 4n(n+2) (1)

o Ay —4anin a, exp(—2nt 1

gtz ot m In(2n)=— i ) + : (46)

4(n+1) 4(n+1)
S d
—e ! X (D—ZZ—ZXE) ayr m(t) It is obvious from Eq.(45) that each solution of the recur-
I"m’=0 (Im);(1'm’) rancy (44) contains terms proportional to exp2nt)=p?",
(40) which leads us to renormalize the initial arbitrary constants
i M9 at each step, we therefore choag), in a such way to

with the matrix elements for an operatérdefined by remove the terms exp(2nt).
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Let us illustrate this with an example. Consider for the [ j2 5 P
zeroth approximation the particular solutioss 0 _+(__2X(Im)'(lm)) —
ap? \p ’ ap
0) ) — 1. 4n(n+2)
a N00S100mo -
I,m(p) 00¢10¢m0 _ _(D_ZZ)(Im);(Im)_ —2 al,m(p)
p p
Then, using Eqs(45) and (46) and going back to the nota- 1 R J
tion in p, we get for anyl andm (with alwaysn= 2| +m) == X D-2Z+2xp—~ aym(p).
Przrm +m (Im);(1"'m’)
(D-22) 49
- Im); (00 . . . .
af,lr%(p)= 4\00%9- Considering again the rhs of E@7) as a perturbation, we
(2n—1)(2n+5) . > =
obtain a recurrancy relation similar to E@4).
Finally, as an illustrative example, let us consider ¢he
branch(i.e.,|=m=0) in the binary channel. The zeroth ap-
@) ) 1 Inp ' !
' m(p) =Noo¥i,mp m(l—anl)—?ém proximation to Eq.(47) reads
9 (5 g 1 .
. . F+ I_)_ZXEé%),(OO)) %_;(D(l)_zz)(ooy(om afd(p)
y _ 2 (D_ZZ+2X)(|m);(|/mr)(D_22)(|/m/);(00) P
S (2n’—1)(2n’ +5) —o0. (48)
X Onr 2 +m s Its nontrivial solution is a confluent hypergeometrical func-
tion
andsoon. ad(p) =NoF 1(7.5:2x{4y (oop) (49)
For each particular quantum numbersl, and m=mj,
the initial condition of typd43), with fy:(f)(l)—22)(00)1(00)/2)(%%%)‘(00) To have a power-
growth solution, we must demangdto be a negative integer
(0) /5y _ or y=0 for the lowest state. For equal energy-shanng
al,m() =N gmy Ot Omm, EXP(— 2Not), =p,=p, one findsp=e=2—1/2\/2=1.65. This is a rea-

sonable prediction of the experimental ground-state energy
(Veexp=1.704), considering that E¢49) does not obey the

may be introduced in the recurran§$2) opening a new proper asymptotics predicted in E@9).

branch of the general functich(r],r}). In the general case,
the sum(39) contains therefore an infinite number of con-
stants.

The present investigation is not unrelated to others that With an original approach based on the splitting of the HE
have been proposed in the péste, for example, the thesis into the two equation§l2) and(13) we have confirmed—in
[25] where a rather full review on this subject is preseited a more unified manner—many results presented in various
In particular, it confirms the presence of weak singularitiesforms in the literature, and found some new ones. The prin-
such as the logarithmic term aj?)(p), as predicted by Fock cipals are as follows.

[24]. However, our approach is quite different in that we do  The solutions of Eq(22) indicate that there is no place for
not assume the structureab initio; rather the behavior at the Hylleraas type exponent.

the triple collision point is obtained here automatically from  The existence of two physical channels is identified; they
Egs.(40)—(44), without any preliminary assumptions. More- coincide with those in nuclear physics, Zf(¢,£)=0, and
over, if we truncate the seri€89) we obtain an approximate determine the exact global asymptotics of the helium bound
formal solution of Eq(13) for finite values ofp. wave functions given by expressi¢d5). The binary channel

Note also that, for the noninteracting case, the logarithmiwisually coincides with the traditional global asymptotics of
terms certainly do not appear in expansi@9): indeed, we the convergent wave function of fully stripped helium. It is
know that the wave functiot2)—formal solution of Eq(1) interesting to note that, for this channel, the plane argle
for a=0—does not contain any. This means that all thebetween electrons is a constant of motion of the first-order
angular matrix elements related to the logarithmg sbme-  partial differential[Eq. (24)] that determines this asymptot-
how conspire to cancel each other. This is not obvious at allics. This may have unexpectable physical consequences and
however, from the recurrancy we have constructed. Thepplications for simplified models.
same observation is valid if we assume a constant value for The recurrancy44) supports theab initio assumption of

VI. RESULTS AND DISCUSSION

Z(o,n) and consider the hyperspherical channel. Bartlett [6] and Fock[24]: the formal helium bound-state
Let us now go back to Eq40) written in thep represen- wave function includes logarithmic terms at small hyper-
tation and consider the diagonalization approximation radii; they are seen here to be a result of the electron-electron
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interaction. Contrary to Fock’s scheme, our recurrancy is 9
much simpler, and provides automatically the necessary Pol 7 InA(p, o, 7;N,K) =p(o,n) (53)
hyper-radius form and a relatively easier procedure for nu- p=pg
merical implementation.
It is shown that the Sturmian basis is not adequate for
describing the formal solution of helium bound states. Everwith g taken from Eq.(26) or Eq. (34).
the well-known binary channel wave function cannot be rep- For the binary channel, Eq51) is equivalent to writing
resented as the produdt(r,)f(r,)g(ri»). The electron- FMNK(p, p,:po;o,7)=0. From the numerical point of
electron interaction manifests itself also through the appeariew, the sought valueg; should not depend on the param-
ance of a new hypersherical channel and therefore newterss, 7, N, K, andp,. A numerical algorithm should
collective energy levels. . _ _allow one to find stable values @ ; the latter can then be
To conclude, let us briefly discuss possible numericaiinimized by searching the absolute minima in the “space
methods for getting approximate energy levels and the fulps physical constants” contained in EGO). In doing so, the
solutions of Eq(13). A widely used approach starts from a approximate functioA® is also determined. For the hyper-
truncated serie§39) containing a large number of unknown spherical channel, only the valusis to be found.

constants; upon substitution into the variational m_tegral, 9P~ Based on the analytical study of the asymptotic behavior
timal values of these constants are sought to obtain the mini- . . - .
esented in this contribution, such a numerical approach

mal energy. We discussed the disadvantages of this approagﬁould give us the energy spectrum and a very good approxi-

in the Introduction. Certainly, taking a probing wave func- tion 1o the f | soluti ¢ HE for the hell ‘
tion close to the formal solution is a judicious choice. mation to the tormal solution o or the hefium atom.

Another method, which uses the knowledge of the
asymptotic boundary conditions, consists in constructing a

suitable spline and can be done, for example, in the follow- ACKNOWLEDGMENTS
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