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Rigorous mathematical study of the He bound states
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A method is proposed for searching the formal solution of the Hylleraas equation for the helium atom. A
mathematically rigorous study confirms, in a unified and simpler manner, several results obtained earlier in the
literature but not necessarily in the same contexts. We use an adequate transformation of the Schro¨dinger
equation to identify three asymptotic channels. Two of these are considered in detail as physical and are seen
to differ from ‘‘traditional’’ ones. In particular, we demonstrate that there is no place for the widely used
Hylleraas-type exponent. Furthermore, we show how the mathematical presence of logarithms at small hyper-
radii, first suggested by Bartlett, is linked to the electron-electron interaction. Finally, the study leads to the
development of simple procedures for the numerical calculations of energy levels and approximate wave
functions.

PACS number~s!: 31.15.2p
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I. INTRODUCTION

Recent series of (e,3e) experiments on helium@1# clearly
demonstrate that simple bound-state wave functions, u
with success for calculations of elastic and inelastic scat
ing, are not necessarily satisfactory to describe the detai
many-electron ionization processes. Seeking almost exac
lutions is now timely. In this context, many efforts we
concentrated to get the proper final-state wave functi
close to the formal solution of the Schro¨dinger equation
~named SE hereafter! @2–4#; however, the probing function
used up to now for the bound state are far from the
formal solution.

The theory of the helium atom has been developed
more than 70 years, starting from the works of Hylleraas@5#.
By considering onlyS-state solutions, he reduced the si
dimensional SE into a three-dimensional one~named HE
hereafter!; from it, basic wave functions were obtained a
used in the Ritz variational method to get the helium ene
spectrum. However, later on, it was shown that the Hyller
approximate basis is not a formal solution of the SE@6#.

Since then, a great number of papers have been devot
approximate solutions of SE, the most known approximat
being that of Hartree-Fock. The main idea of many oth
studies is to find series expansions that are somehow clo
the formal solution of HE~here we refer only to a few o
them @7–13#!. This approach is more correct for numeric
applications than, say, the choice of a complete basis
consisting of some suitable functions~Sturmian basis, for
example!, even if highly accurate energy levels can be o
tained@14–21#.

The minimization of the energy can be done using
conventional variational integral^FuĤ2EuF& or by mini-
mizing the following integral@22#:

E @~Ĥ2E!F#2dV.
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These integrals are both equal to zero for exact solutions,
may yield, for the same probing functionF, different values
of energy levels. The minimization process is therefore
unique and conclusive on the quality of a proposed wa
function @22#. One may also consider the simple relation

E~rW1 ,rW2!5
ĤF

F
,

which will give a constant valueE over the whole space only
for the exact solution. For the six-term Hylleraas wave fun
tion, Bartlett @23# has shown that the calculated valueE
ranged from2` to 1` and was near its true value only i
small regions of space.

In his earlier papers@6#, Bartlett demonstrated that th
helium-atom eigenfunctions cannot be power series of
variablesr 1 , r 2 and r 12 ~the two radial coordinates and th
electron-electron distance!, and suggested that a formal sol
tion might contain logarithms. Later on, Fock reached
same proposition@24#. He built a recurrancy system that a
lows us, in principle, to construct the helium ground-sta
wave function as a series consisting of products of pow
and logarithms. A truncated series yields a fitting functi
that may be used in variational methods to obtain the gro
energy. However, many mathematical questions linked to
investigation were, and are still, left open. For example, o
may suggest combinations of powers and, say, expone
integral functions@25# or other variants. Even the pure pow
expansion cannot be completely rejected; indeed, we kn
that the exact solution of SE in the absence of the electr
electron interaction has a hyper-radial expansion that d
not contain any logarithms. The Temkin-Poet model@26#
contains a combination of powers and logarithms that diff
from that predicted by Fock, and so on.

Surprising as it may seem, many issues about the hel
ground-state wave function are therefore still unclarified. I
important to underline that no probing helium wave functi
used until now in practical calculations has the correct
©2000 The American Physical Society02-1
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havior both at small and large hyper-radiusr. Even the
asymptotic behavior is not well established. In this resp
all probing wave functions can be conventionally subdivid
into two main groups: the Hartree-Fock type with the bina
exponential factor exp(2p1r12p2r2), and the Hylleraas type
which is characterized by the presence of the interelectro
distancer 12 in the exponential factor@27#. Both groups of
wave functions have been and are currently being use
calculations for interpreting cross sections for single a
double ionization on He. For example, in the high-ene
dipolar regime@28# ~small ejected energies and small m
mentum transfers! one observes in the triple differential cro
section a persistent discrepancy in the vicinity of the rec
peak between the experimental data and the results of se
calculations~see@29# and references therein!. Several models
with simple or complicated final-state wave functions a
‘‘traditional’’ He ground-state wave functions give resul
that are practically the same, but differing noticeably fro
the experiments. Popovet al. @30# have investigated this is
sue and have reached the conclusion that it is the asymp
behavior of both wave functions~bound and scattered! that is
mainly responsible for the ratio of the binary to recoil pe
heights. Moreover, recently, surprising results on heli
were obtained in a series of (e,3e) experiments@1#, and no
explanation can be found with conventional wave functio

Motivated by these considerations, we study here the
for helium S-bound states~and in particular the1S0 ground
state! in an attempt to move ahead as far as possible with
any preliminary approximations and simplifications. A
original transformation of SE allows us to obtain a system
channeling equations that leads to two results. On one h
from these, the correct asymptotic solution is deriv
Merkuriev and collaborators@31# have intensively studied
the asymptotics of many-body wave functions, but mai
for the scattering states. Fock@24# considered the asymptoti
behavior of the helium-ground wave function, but deriv
only the correct exponential index of the binary chann
Here we enlarge his result. On the other hand, these e
tions make clear the behavior of the helium wave funct
near the triple collisions point~the hyper-radiusr→0). A
recurrancy system that gives automatically the proper beh
ior can then be derived.

In this investigation, we show what the formal solutio
must look like at small and large hyper-radius and prove t
the widely used Sturmian basis is not adequate to repre
the HE formal solution. This information should be valuab
for example, to those who make calculations for interpret
(e,2e) and (e,3e) reactions on helium. We also illustrat
how the analytical study can further be used for practi
calculations of energy levels and construction of an appro
mate formal bound-state wave function.

II. TRANSFORMATION OF SE

Designing byr 1 and r 2 the two electrons radial coordi
nates, andr 125urW12rW2u the electron-electron distance, th
radial SE for the He atom (Z52) reads
04270
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F1

2
D11

1

2
D21

2

r 1
1

2

r 2
2

a

r 12
GF~rW1 ,rW2!5«F~rW1 ,rW2!,

«>0, ~1!

where the quantitya is used here to ‘‘turn on’’~physically
a51) or ‘‘switch off’’ ( a50) the electron-electron interac
tion. Fora50, the elementary partial solution of Eq.~1! for
the S-bound states of two noninteractive electrons is know

F~rW1 ,rW2!5Fmn
( l ) ~rW1 ,rW2!5wml

(Z52)~r 1!wnl
(Z52)~r 2!Pl~cosu12!,

~2!

whereu12 is the mutual angle between the two vectorsrW1 and
rW2 given by cosu125(r 12

2 2r 1
22r 2

2)/(2r 1r 2), Pl is the Leg-

endre polynomial,wml
(Z52)(r ) is a one-electron Coulombic

bound wave function corresponding to chargeZ52 and
quantum energy«m , and«5«m1«n (m,n> l>0).

Note that in Eq.~2! we have considered only nonsymm
trized solutions of the SE and shall do similarly below, f
the sake of brevity; one should therefore keep in mind
perform at the end proper symmetrization~or antisymmetri-
zation! of the wave functions, in the usual way.

The S-state wave function depends on the scalar com
nations of variablesr 1 , r 2, andr 12, which are restricted to
their physical domains

0<r 1 ,r 2,`,

ur 12r 2u<r 12<~r 11r 2!. ~3!

We have chosen instead to use the following hyperspher
variables since they are more convenient for three-b
problems:

r 15r cosw, r 25r sinw, r 125A2r cosj, ~4!

with 0<r,` and 0<w<p/2, and the range for the angula
variable j is fixed by Eq. ~3!. The asymptotic behavio
~hyper-radiusr→`) of the noninteractive solution~2! looks
then like

Fas~rW1,rW2!;rm1n~cosw!m~sinw!ne2A2«r cos(w2u)

3Pl~cos 2j/sin 2w!, ~5!

where we have setA«m5A« cosu and A«n5A« sinu (0
<u<p/2). The parameteru is linked to the energy sharing
between electrons; in particular foru5p/4 we have equal
energy sharing«m5«n .

In the new variables, the radial SE~1! reads

F1

2

]2

]r2
1

5

2r

]

]r
1

1

2r2
T̂~w,j!1

1

r
Z~w,j!GF5«F,

~6!

where the angular operators, in what we call the (w,j) form,
are given by
2-2
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T̂~w,j!5
]2

]w2
1

]2

]j2
22 cot~2w!cot~2j!

]2

]w]j

14 cot~2w!
]

]w
14 cot~2j!

]

]j
, ~7!

Z~w,j!5
2

cosw
1

2

sinw
2

a

A2 cosj
.

Two other equivalent forms, which shall be useful below,
the (x,y) form

T̂~x,y!54F ]2

]x2
1

]2

]y2
112S x

]

]x
1y

]

]y
11D 2G ,

~8!

Z~x,y!5
2A2

A11x
1

2A2

A12x
2

a

A11y
,

with x5cos(2w),y5cos(2j), and the (s,h) form

T̂~s,h!54F ~12s2!
]2

]s2
1S 1

s
23s D ]

]s
1

1

s2

]2

]h2G ,

~9!

Z~s,h!5
2A2

A11s cosh
1

2A2

A12s cosh
2

a

A11s sinh

with x5s cosh, y5s sinh (0<h<2p). The physical do-
mains~3! translate intos25x21y2<1. One can easily se
from Eq.~9! that the second-order differential angular ope
tor T̂(s,h) is invariant with respect to rotations in the (s,h)
space, i.e., ifg(s,h) is an eigenfunction of this operato
theng(s,h1g) with any arbitrary angle 0<g<2p is also
an eigenfunction. This property will be used below in t
(x,y) form, for which we may write in matricial form the
rotation into two new variablesu andv:

S u

v D 5S cosg sing

2sing cosg D S x

yD . ~10!

Suppose now that the solution of~6! takes the form

F~rW1 ,rW2!5A~r,w,j!e2x(w,j)r, ~11!

a decomposition that can be done without loss of genera
Using the (x,y) form for the angular operators and writin
for brevity x instead ofx(x,y), we transform Eq.~6! into
two coupled equations

x214F S ]x

]x D 2

1S ]x

]y D 2

2S x
]x

]x
1y

]x

]y D 2G52«, ~12!
04270
e
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F ]2

]r2
1

5

r

]

]r
1

1

r2
T̂~x,y!GA~r,x,y!

5
1

r F D̂~x,y!22Z~x,y!12xr
]

]r GA~r,x,y!, ~13!

where D̂(x,y) is a first-order differential angular operato
given by

D̂~x,y!52Ĝ~x!1@ T̂~x,y!15#x ~14!

with

Ĝ~x!54F ~12x2!
]x

]x
2xy

]x

]y G ]

]x

14F ~12y2!
]x

]y
2xy

]x

]xG ]

]y
. ~15!

Note that Eq.~12! is also equivalent to

x21Ĝ~x!x52«. ~16!

This choice of decomposition~12! and~13! is guided by the
assumption that the exponential behavior ofF will not be
too dissimilar to that ofFas in Eq. ~5!. In the following
sections, the solutions of these coupled equations are stu
for large ~Secs. III and IV! and small~Sec. V! hyper-radii,
while a procedure to obtain the numerical solutions on
whole space is proposed in Sec. VI.

III. CHANNELS OF THE BOUND STATES

Equation ~12! has an infinite number of solutions. Th
simplest one is

x05A2«. ~17!

Other solutions exist, separately, for 0<s<1 and for 1
,s<A2. Restricting ourselves to the physical domain
<s<1), there exist only two other solutions:

x15A« ~cosuA11u1sinuA12u! ~18!

with u5x cosg1y sing @see Eq.~10!#, and

x25A« ~cosuA11s1sinuA12s! ~19!

with s25x21y2.
For eachx i ( i 50,1,2), Eq.~13! must be solved to deter

mine, up to a multiplicative factor, the correspondin
A( i )(r,x,y), which we shall write asA( i ) for brevity. The
general form of the bound-state wave function can be writ
as a linear combination of these solutions

F~rW1 ,rW2!5aA(0)e2x0r1A(1)e2x1r1aA(2)e2x2r.
~20!

We call each term in Eq.~20! a channel of the bound state
We have artificially multiplied bya the first and third term
to emphasize their vanishing ata50. Indeed, onlyx1 can
2-3



la

s

g

r
te

h

in
.

l

ite

o
e

Eq.

ic

-
s
be

ns

’’

e
-
al-

e
e

gle

are
s-

this

YU. V. POPOV AND L. U. ANCARANI PHYSICAL REVIEW A 62 042702
reduce, fora50, to the noninteractive resultA2« cos(w
2u) given by Eq.~5!, and this forg50. We note that the
dependence on the mutual angle between the vectorsrW1 and
rW2 is present in bothx1 andx2. It can be removed fromx1
for g50, but always subsists inx2. The third term in Eq.
~20! shows therefore very strong electron-electron corre
tion.

IV. ASYMPTOTIC SOLUTIONS

Let us investigate Eq.~13! in the domain of the so-called
global three-body asymptotics (r→`,wÞ0,p/2,jÞp/2),
and consider two reasonable asymptotic behaviors forA( i ).

The first, which we call the Hylleraas-type asymptotic
has the form

A~r,w,j!;a~w,j!rbem(w,j)r ~21!

with m(w,j) a real quantity such that 0,m(w,j),x,` in
order to keep Eq.~11! physical, i.e., well behaved forr
→` and any angles (w,j). With this choice and considerin
only the leadingr term, one gets from Eq.~13! a first-order
nonlinear differential equation form(w,j):

@Ĝ~m!1m#~m22x!50. ~22!

The obvious solutionm52x leads to a divergent behavio
for r→`. It is unphysical as a solution for the bound sta
but may appear for continuum states, i.e., when«,0. To
analyze Eq.~22! further, we setm5x2z. Using the prop-
erty Ĝ(m)x5Ĝ(x)m, we fall back onto Eq.~16! for z, i.e.,
z21Ĝ(z)z5x21Ĝ(x)x52« with again the solutions
x0 , x1, and x2. Take, for example,x5x1; then m05x1
2x0 , m150, m25x12x2, and therefore the solutions wit
the Hylleraas-type of asymptotic behavior~21! are of the
same family as those presented in Eq.~20!. This proves that
all possible physical exponential behaviors are already
cluded in Eq.~20! and hence form~21! can be discarded
Moreover, from the analysis of thex i given below, it appears
that none of the channels in Eq.~20! contains an exponentia
of the form exp(dr12), with d a constant: Eq.~22! leaves
therefore no place for the pure Hylleraas basis.

Thus, in the general case, the coefficientA( i )(r,w,j) for
large r 1 , r 2 and r 12 contains a growing exponential term
that may be larger than the decreasing exponent in Eq.~20!.
A( i )(r,w,j) is expressed as a power growth only for defin
values of the parameters« andu, which will determine the
helium bound spectrum in one of the channels. The sec
type of asymptotics, which we call of the Hartree-Fock typ
is then of the form

A~r,w,j!;a~w,j!rb ~23!

with b a real number. Inserting Eq.~23! in Eq. ~13!, we find
that in the right-hand side~rhs! of Eq. ~13!, the term of
asymptotic orderr21 is eliminated if

@D̂~w,j!22Z~w,j!12xb#a~w,j!50 ~24!
04270
-
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is satisfied~the left-hand side is of orderr22). On the other
hand, if b depends on the angular variables, the rhs of
~13! contains an additional term proportional lnr, which
must be set to zero through

Ĝ~x!b50. ~25!

The asymptotic form~23! is therefore valid if the two
coupled linear first-order differential equations@Eqs. ~24!
and~25!# are both satisfied. Equation~25! can be satisfied if
x is a constant~this is the case forx5x0), or if b is a
function of the integral of motion of operatorĜ(x) ~a par-
ticular case being a constant value ofb).

The limit r→` corresponds to four different asymptot
domains:r 1 ,r 2 ,r 12→` ~global three-body asymptotics!; r 2
→`,r 1,`; r 1→`,r 2,`; r 1 ,r 2→`,r 12,`. The coeffi-
cienta(w,j) satisfying Eq.~25! can have presumable singu
lar points atw50,p/2 andj5p/2 that mark the boundarie
of the domains, but not any other ones. This property will
used when solving Eq.~24!.

Let us now look at what happens for the three situatio
x5x0 , x1, andx2.

~i! x5x0: we shall call this channel ‘‘hyperspherical.
The general solution of Eqs.~24! and ~25! takes the form
~23! with

b5
Z~w,j!

A2«
2

5

2
, ~26!

while the functiona(0)(w,j) remains undetermined. Not
that, if Z(w,j)50, this behavior coincides with a well
known result of nuclear physics widely used in practical c
culations~see, for example,@32#!.

~ii ! x5x1(g): we shall call this channel ‘‘binary.’’ For
brevity, we omit the calculation details and simply list th
results obtained in solving Eq.~24!. In the general case, th
solution has a singularity atu561 inside the domain of
physical interest@see also Eq.~10!#. This singularity can be
removed if g50; in this particular case, Eq.~24! has the
following integral ~or constant! of motion:

C52cosu125
cos~2j!

sin~2w!
, ~27!

whereu12 is the mutual angle between the two vectorsrW1 and
rW2. This is a remarkable result since it means that the trian
in the momentum space formed by the two vectors

pW 15A2« cosu
rW1

r 1
, pW 25A2« sinu

rW2

r 2
, ~28!

with fixed mutual angleu12 fully determines the asymptotic
dynamics of both electrons. Since the sides of the triangle
quantum numbers, the angleu12 becomes perhaps the a
ymptotical quantum number of the system~interesting refer-
ences to Heisenberg and Sommerfeld correspondence on
subject can be found in@33#!.
2-4
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For u12.0 (C.21), the general solution of Eq.~24!
takes then the following form:

a(1)~w,j!5F1~C!usin~w2u!ub1222/p122/p21a/2p12

3~cosw!2/p1 21~sinw!2/p2 21

3F1

2
~p11p2C!cosw1

1

2
~p21p1C!sinw

1A2p12cosjG2a/2p12

, ~29!

whereF1(C) is an arbitrary finite function ofC, pW 125
1
2 (pW 1

2pW 2) is the relative momentum with 4p12
2 5p1

21p2
2

12Cp1p2, and nowA2 cosj5A11C sin 2w. We can keep
a(1)(w,j) finite for all values ofw if the parameters are
subject to the following limitations:

2

p1
21>0;

2

p2
21>0 ~30!

and

b122
2

p1
2

2

p2
1

a

2p12
>0. ~31!

Note that Eq.~30! set an upper limit to the total energy«
5 1

2 (p1
21p2

2)<4, which is a very reasonable physical i
equality.

For the special caseu1250 (C521), we have also
found a nontrivial solution foru5p/4 ~equal energy-sharing
p15p2 ,p1250). However, mathematically such a solutio
has zero measure.

~iii ! x5x2. For brevity, we omit again the calculatio
details and list the results. For this channel, Eq.~24! is best
studied in the (s,h) form, and h5C1 is the constant of
motion. The general solution contains two angular singu
points: s50 (w5p/4,u125p/2) and s51 (u1250, p
and anyw). These singularities can be removed if we p
u5p/4 (p15p25p) and h50 (0,w,p/4) or h
5p (p/4,w,p/2). These conditions lead to the uniqu
choice of u125p/2. This angle is generally a continuou
function of the (s,h) variables@see Eq.~27!#; the restriction
to a unique value means that it is not possible to find
nonsingular and nontrivial general solution of Eq.~24!. In
the domain of global asymptotics, this channel has there
no place, and we exclude it from further investigation, s
ting A(2)50 in Eq. ~20!.

Collecting and inserting all the above findings in Eq.~20!,
we can write, using the more familiar (r 1 ,r 2) variables, the
asymptotic form of the helium bound wave function

Fas~rW1 ,rW2!5a
a(0)~w,j!

r5/2
expS 2A2«r1

Z~w,j!

A2«
lnA2«r D

1Fas~rW1 ,rW2!exp~2p1r 12p2r 2! ~32!

with
04270
r

t

a

re
-

Fas~rW1 ,rW2!5F1~C!~2p1r 1!2/p121~2p2r 2!2/p221

3U r 1

p1
2

r 2

p2
Ub1222/p122/p21 a/2p12

3F1

2
~p11p2C!r 11

1

2
~p21p1C!r 2

1p12r 12G2a/2p12

. ~33!

We reiterate, at this point, that the angular variables app
both directly and viap12, throughC5 cos(2j)/sin(2w) (C
.21).

Let us analyze formula~32!. First of all, it reproduces the
case of ‘‘noninteractive’’ electrons (a50). We may then
put 2/p1215m, 2/p2215n and b5m1n, and regain
from Eq.~32! the asymptotic behavior of Eq.~5!. In this case
we have the strict equality in Eq.~31!, a result that leads us
to believe~without any rigorous argument though! that per-
haps it should always be so for a given valueb5b̄,

b̄122
2

p1
2

2

p2
1

a

2p12
50, ~34!

which indeed depends on the integral of motionC according
to Eq.~25!. Incidentally, this choice altogether eliminates t
power ofur 1 /p12r 2 /p2u from Eq.~33!. If we accept hypoth-
esis ~34! also for a51, we may rewrite Eq.~32! in an el-
egant and compact form:

Fas~rW1 ,rW2!5
a(0)~w,j!

r5/2
expF2A2«r1

Z~w,j!

A2«
lnA2«rG

1
F1~C!

r 1r 2
exp@2~p1r 11p2r 2!1W~rW1 ,rW2!#

~35!

with

W~rW1 ,rW2!5
2

p1
ln~p1r 11pW 1rW1!1

2

p2
ln~p2r 21pW 2rW2!

2
1

2p12
ln~p12r 121pW 12rW12!. ~36!

This latter result is very satisfactory since it visually remin
us of the asymptotic behavior of two-electron Coulomb co
verging scattering waves including plane and spherical e
nal waves, which are well known in scattering theory@31#.
This observation provides an additional argument for the
ceptance of hypothesis~34!. Note, however, that the binar
term in Eq.~35! cannot be presented as the product of fun
tions depending separately onr 1 , r 2, andr 12 @12#.

Expression~35! constitutes then the global asymptotics
all heliumS-bound states, both ground and excited, and p
vides us with the proper boundary conditions for studyi
the physical solutions of Eq.~1! on the whole space. Any
particular bound state may have either the binary asymp
2-5
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ics @the second term in Eq.~35!#, the hyperspherical one~the
first term!, or their sum if both channels correspond to t
same energy level. The latter situation is possible for
particular case of equal energy sharing, i.e.,u5p/4.

V. SOLUTIONS AT SMALL DISTANCES

Let us now investigate Eq.~13! at small hyper-radiir.
The (s,h) representation is best suited for studying opera
T̂(s,h), since it ‘‘diagonalizes’’ this operator. It may b
seen that the functions

f lm~s,h!5A2l 1m11

p
smPl

(m,0)~122s2!exp~ imh!

~37!

(Pl
(a,b) are Jacobian polynomials! are eigenfunctions of this

operator with eigenvalues24n(n12) with n52l 1m @with
no relation with then, m, andl used in Eq.~2!#. They form
a full orthonormal set since

E
0

1

sdsE
0

2p

dh f lm* ~s,h! f l 8m8~s,h!5d l l 8dmm8 . ~38!

We would like to note that this operator is also ‘‘diagona
ized’’ if one uses the full set of hyperspherical harmon
~see, for instance,@24# or @10#!, in what we would call the
(w,u12) form. Although convenient, we opted not to use
here~although the results are equivalent! with the purpose of
exhibiting another lesser-known angular representation.

Earlier in this paper, we observed that coefficie
A( i )(r,s,h) in general takes the forma(s,h)rb(s,h) for
large values ofr. Any expansion ofA( i ) on a full set of
angular functions is not very effective from the point of vie
of numerical calculations since it demands to take into
count many terms~see, for example,@10# or @34#!. The slow
rate of convergence results directly from the singular beh
ior of the Coulomb potential. Perhaps, it is more effective
build a suitable spline; for this, however, we must know t
behavior ofA( i ) at smallr.

In spite of the above observation, let us expandA with the
set of angular functions~37!

A~r,s,h!5 (
l ,m50

`

al ,m~r! f lm~s,h!, ~39!

where we have omitted the channel index ‘‘i . ’’ Using r
5 exp(2t) for the sake of simplicity, we obtain from Eq
~13!:

F ]2

]t2
24

]

]t
24n~n12!Gal ,m~ t !

5e2t (
l 8,m850

` S D̂22Z22x
]

]t D
( lm);( l 8m8)

al 8,m8~ t !

~40!

with the matrix elements for an operatorF̂ defined by
04270
e

r

t

-

v-

F ( lm);( l 8m8)5E
0

1

sdsE
0

2p

dh f l 8m8
* ~s,h!F̂~s,h! f lm~s,h!.

Since small values ofr correspond to larget, the rhs of Eq.
~40! can be considered as a perturbation and we may wr

al ,m~ t !5(
k

al ,m
(k) ~ t !

with

F ]2

]t2
24

]

]t
24n~n12!Gal ,m

(0)~ t !50, ~41!

F ]2

]t2
24

]

]t
24n~n12!Gal ,m

(k11)~ t !

5e2t (
l 8,m850

` S D̂22Z22x
]

]t D
( lm);( l 8m8)

al 8,m8
(k)

~ t !. ~42!

It follows that the nonexploding solution is

al ,m
(0)~ t !5l l ,m

(0)e22nt ~43!

and

al ,m
(k11)~ t !5l l ,m

(k11)e22nt1 (
l 8,m850

` E
0

`

Gn~ t,v!e2v

3S D̂22Z22x
]

]v D
( lm);( l 8m8)

al 8,m8
(k)

~v!dv,

~44!

where n52l 1m, l l ,m are some constants, and where w
have introduced a Green function

Gn~ t,v!52
1

4~n11!
@u~ t2v!e22n(t2v)

1u~v2t !e22(n12)(v2t)#.

We note, for later use, the following formulas:

I n~s!5E
0

`

Gn~ t,v!e2svdv

5
1

~2n2s! Fexp~22nt!

4~n11!
2

exp~2st!

~2n1s14!G , ~45!

I n~2n!52
exp~22nt!

4~n11! F t1
1

4~n11!G . ~46!

It is obvious from Eq.~45! that each solution of the recur
rancy ~44! contains terms proportional to exp(22nt)5r2n,
which leads us to renormalize the initial arbitrary consta
l l ,m

(0) ; at each step, we therefore choosel l ,m
(k) in a such way to

remove the terms exp(22nt).
2-6
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Let us illustrate this with an example. Consider for t
zeroth approximation the particular solutionn50

al ,m
(0)~r!5l00d l0dm0 .

Then, using Eqs.~45! and ~46! and going back to the nota
tion in r, we get for anyl andm ~with alwaysn52l 1m)

al ,m
(1)~r!52l00

~D̂22Z!( lm);(00)

~2n21!~2n15!
r,

al ,m
(2)~r!5l00g l ,mr2F 1

4~n21!~n13!
~12dn1!2

ln r

8
dn1G

g l ,m5 (
l 8,m8

~D̂22Z12x!( lm);( l 8m8)~D̂22Z!( l 8m8);(00)

~2n821!~2n815!

3dn8,2l 81m8 ,

and so on.
For each particular quantum numbersl 5 l 0 and m5m0,

the initial condition of type~43!,

al ,m
(0)~ t !5l l 0m0

d l l 0
dmm0

exp~22n0t !,

may be introduced in the recurrancy~42! opening a new
branch of the general functionF(rW1 ,rW2). In the general case
the sum~39! contains therefore an infinite number of co
stants.

The present investigation is not unrelated to others
have been proposed in the past~see, for example, the thes
@25# where a rather full review on this subject is presente!.
In particular, it confirms the presence of weak singulariti
such as the logarithmic term inal ,m

(2)(r), as predicted by Fock
@24#. However, our approach is quite different in that we
not assume ther structureab initio; rather the behavior a
the triple collision point is obtained here automatically fro
Eqs.~40!–~44!, without any preliminary assumptions. More
over, if we truncate the series~39! we obtain an approximate
formal solution of Eq.~13! for finite values ofr.

Note also that, for the noninteracting case, the logarith
terms certainly do not appear in expansion~39!: indeed, we
know that the wave function~2!—formal solution of Eq.~1!
for a50—does not contain any. This means that all t
angular matrix elements related to the logarithms ofr some-
how conspire to cancel each other. This is not obvious at
however, from the recurrancy we have constructed. T
same observation is valid if we assume a constant value
Z(s,h) and consider the hyperspherical channel.

Let us now go back to Eq.~40! written in ther represen-
tation and consider the diagonalization approximation
04270
at

,

ic

e

ll,
e
or

F ]2

]r2
1S 5

r
22x ( lm);( lm)D ]

]r

2
1

r
~D̂22Z!( lm);( lm)2

4n~n12!

r2 Gal ,m~r!

5
1

r (
l 8Þ l ,m8Þm

S D̂22Z12xr
]

]r D
( lm);( l 8m8)

al 8,m8~r!.

~47!

Considering again the rhs of Eq.~47! as a perturbation, we
obtain a recurrancy relation similar to Eq.~44!.

Finally, as an illustrative example, let us consider thes
branch~i.e., l 5m50) in the binary channel. The zeroth ap
proximation to Eq.~47! reads

F ]2

]r2
1S 5

r
22x (00),(00)

(1) D ]

]r
2

1

r
~D̂ (1)22Z!(00),(00)Ga0,0

(0)~r!

50. ~48!

Its nontrivial solution is a confluent hypergeometrical fun
tion

a0,0
(0)~r!5l0F1~g,5;2x (00),(00)

(1) r! ~49!

with g5(D̂ (1)22Z)(00),(00)/2x (00),(00)
(1) . To have a power-

growth solution, we must demandg to be a negative intege
or g50 for the lowest state. For equal energy-sharingp1

5p25p, one findsp5A«5221/2A251.65. This is a rea-
sonable prediction of the experimental ground-state ene
(A«exp51.704), considering that Eq.~49! does not obey the
proper asymptotics predicted in Eq.~29!.

VI. RESULTS AND DISCUSSION

With an original approach based on the splitting of the H
into the two equations~12! and~13! we have confirmed—in
a more unified manner—many results presented in vari
forms in the literature, and found some new ones. The p
cipals are as follows.

The solutions of Eq.~22! indicate that there is no place fo
the Hylleraas type exponent.

The existence of two physical channels is identified; th
coincide with those in nuclear physics, ifZ(w,j)50, and
determine the exact global asymptotics of the helium bou
wave functions given by expression~35!. The binary channel
visually coincides with the traditional global asymptotics
the convergent wave function of fully stripped helium. It
interesting to note that, for this channel, the plane angleu12
between electrons is a constant of motion of the first-or
partial differential@Eq. ~24!# that determines this asympto
ics. This may have unexpectable physical consequences
applications for simplified models.

The recurrancy~44! supports theab initio assumption of
Bartlett @6# and Fock@24#: the formal helium bound-state
wave function includes logarithmic terms at small hype
radii; they are seen here to be a result of the electron-elec
2-7
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interaction. Contrary to Fock’s scheme, our recurrancy
much simpler, and provides automatically the necess
hyper-radius form and a relatively easier procedure for
merical implementation.

It is shown that the Sturmian basis is not adequate
describing the formal solution of helium bound states. Ev
the well-known binary channel wave function cannot be r
resented as the productf (r 1) f (r 2)g(r 12). The electron-
electron interaction manifests itself also through the app
ance of a new hypersherical channel and therefore
collective energy levels.

To conclude, let us briefly discuss possible numeri
methods for getting approximate energy levels and the
solutions of Eq.~13!. A widely used approach starts from
truncated series~39! containing a large number of unknow
constants; upon substitution into the variational integral,
timal values of these constants are sought to obtain the m
mal energy. We discussed the disadvantages of this appr
in the Introduction. Certainly, taking a probing wave fun
tion close to the formal solution is a judicious choice.

Another method, which uses the knowledge of t
asymptotic boundary conditions, consists in constructin
suitable spline and can be done, for example, in the follo
ing way. Consider a truncated solution of Eq.~39! at small
hyper-radiir:

A~r,s,h;N,K !5 (
l ,m50

N

(
k50

K

al ,m
(k) ~r! f lm~s,h!. ~50!

Taking into account the general asymptotic behavior
A(r,s,h) at larger @Eq. ~23!#, we connect both limiting
parts at a large arbitrary valuer0. Equalling the logarithmic
derivatives~a known technique widely used in quantum m
chanics!, we obtain the constraint
nd

lia

on
r,

s,

04270
s
ry
-

r
n
-

r-
w

l
ll

-
i-
ch

a
-

f

-

r0F ]

]r
ln A~r,s,h;N,K !G

r5r0

5b~s,h! ~51!

with b taken from Eq.~26! or Eq. ~34!.
For the binary channel, Eq.~51! is equivalent to writing

F (N,K)(p1 ,p2 ;r0 ;s,h)50. From the numerical point o
view, the sought valuespi should not depend on the param
eterss, h, N, K, andr0. A numerical algorithm should
allow one to find stable values ofpi ; the latter can then be
minimized by searching the absolute minima in the ‘‘spa
of physical constants’’ contained in Eq.~50!. In doing so, the
approximate functionA(1) is also determined. For the hype
spherical channel, only the value« is to be found.

Based on the analytical study of the asymptotic behav
presented in this contribution, such a numerical appro
should give us the energy spectrum and a very good appr
mation to the formal solution of HE for the helium atom.
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