PHYSICAL REVIEW A, VOLUME 62, 042507
Relativistic many-body calculations of transition amplitudes for berylliumlike ions
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Transition amplitudes for allowed transitions in Be-like ions are determined to second order within the
framework of relativistic many-body perturbation theory. The calculations start witi¥a? Dirac-Fock
potential and include correlation corrections systematically. Multiconfiguration reference states are employed
to account for the valence-valence correlations within the valence shell and perturbation theory is applied to
systematically improve upon the wave functions. The transition amplitudes obtained in different gauges are in
close agreement. The theoretical transition amplitudes agree well with experiment for all ions except for the
neutral Be atom.

PACS numbgs): 32.70.Cs, 31.15.Md, 31.25y, 31.30.Jv

[. INTRODUCTION The core-valence and core-core correlations are treated by
perturbation. It is possible in this way to take into account
In this paper, we present a systematic study of transitiorstrongly interacting configurations to all orders and treat the
amplitudes for allowed transitions in the Be-like ions. Theweakly interacting ones by means of low-order perturbation.
Be-like ions are the simplest atomic systems in which bothl ransition amplitudes for allowed transitions in the Be-like
valence-valence and core-valence correlations are importarigns are determined to second order in both length and ve-
Energies and transition amplitudes for transitions in the Belocity gauges. In Sec. Il, we derive the second-order relativ-
like ions have been the subject of many theoretical and existic MBPT formulas for energies and transition amplitudes
perimental investigations. Numerous experimental data foPf atoms with two valence electrons. In Sec. IIl, we carry out
the transition amplitudes in the Be-like ions can be found inthe angular reduction of the second-order formulas. Results
the literaturg 1—19]. The calculation of transition amplitudes and discussions are given in Sec. IV.
for transitions in highly charged ions is one of the most
fascinating problems in atomic physics. Both correlation and [l. SECOND-ORDER MBPT FORMULAS
relativistic effects are important in highly charged ions. The
transition amplitudes provide a quite sensitive measure of the
reliability of approximate solutions to the many-body prob- H|W)=E| V). (2.1)
lem. Relativistic effects become more and more important
with increasingZ along the isoelectronic sequence, so thatHere,H is the “no-pair” Hamiltonian given by
the usual perturbative treatment of relativistic effects is not
adequate. Many calculations have been carried out for tran- H=Ho+V,. (2.2
sition amplitudes in the Be-like ions. Among others, severa
approaches are Hartree-FdgkF) calculationd 20], configu-
ration interaction(Cl) calculations[21,22, variational ClI
techniqueg23], non-closed-shell many-electron the®0], Ho= 2 €ala, (2.3
Z-expansion methodg24], multiconfiguration Hartree-Fock :
(MCHF) calculations[21,25,26, multiconfiguration Dirac- and
Fock (MCDF) calculations [9,27,2§, superposition-of-
configuration calculation$29], and the multiconfiguration
relativistic random-phase approximatiOfMlCRRPA) calcu- Vi=1/2> gijualalaac— > Ujala;. 2.4
lations [30,31). We proposed a relativistic many-body per- ikl .
turbation theor)(MBPT) approach to calculate the transition |, Eq. (2.9, ¢ is the eigenvalue of the one-electron Dirac
rates for Be-like iongd32-36. Recently, Safronovat al. equation
[37] applied the relativistic MBPT to calculate the transition
rate for Be-like ions. Large discrepancies existed between h(r)u; (1)=& ui(r), (2.5
the relativistic MBPT results and experiment for ions of low
ionicities where correlation effects play an important role;\yhere the Dirac Hamiltoniah(r) is given by
notably, the relativistic MBPT results differ significantly
from other theoretical calculations. o ' h(r)=ca-p+ Bc%+Vyyuc(r)+U(r). (2.6)
In this paper, we perform relativistic MBPT calculations
up to second order to study transition amplitudes for allowedAtomic units(a.u) are employed in this paper. The nuclear
transitions in the Be-like ions. In the present calculations, theCoulomb potentialVyyc(r), in general includes the effect
reference states are described by multiconfiguration wavef the finite size of the nucleus. The model potentiglr)
functions that account for the valence-valence correlationsaccounts approximately for the effect of the electron-electron

The atomic systems satisfy the Sotlirmger equation

|In second-quantized form,
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interactions. In Eq(2.4), the quantityU;; is a one-electron

matrix element of the model potentitll(r), > CuHQ,u PN = E 2 vaQuw@(O)

(vw) e P

- - (2.19

U.J=fu?(r)U<r)u,-(r>, 2.7
Projection of Eq(2.15 on the left with(d)fj%v,| leads to an

andgjy is the Coulomb integral eigenvalue equation
33— WPyl > C =EC, 2.1
Gi= | d®rd3’'———u!(Nu(Hu’(rHu(r’). ow(Hett)orwiow=ECyrwr (2.16
! Ir=r'| " ] (vW)eP
(2.9

where the effective Hamiltonian is given by

We now specialize the discussion to atoms with two va- (0) (0)
) H =(D 50 HQ | D, 2.1
lence electrons outside a closed core. A zeroth-order wave (Hero)orwrow=( Py [H Ol Pow). (219
function describing an atomic state with angular momentu

(¢ (0)
JM may be written as Mhn arriving at Eq.(2.16, we have used®, ,W,|QUW|<I>UW)

=6,,0uw- It follows from Eq.(2.16) that the eigenvectors
|\If(°)>= E |q>(0)> 2.9 of the effective Hamiltonian contain the configuration weight
IMIT S Cow ' coefficients and the eigenvalues are the exact energies of the
corresponding exact states.
where the quantityC,,, are configuration weight coefficients Multiplication with E(U,W,)EPQU,W,|<IJ(O) )(@f}ofm,l on
and where the configuration wave functioji(?)) are de-  the left of Eq.(2.19 yields

fined by
> Conyw | @0, N HO, W )
o0 = anZ (JoMjwmy|IM)a]al|0), (2.10 ww.owhep v "
with :E(U\%:E vava|q)(0)> (2.18
1 for v#w
Now= N2 for w (2.11) A comparison of Eq(2.195 and Eq.(2.18 shows that
U=W.

0 0
In Eq. (2.10, |0) designates the core wave function. The HQuw|®)= 2> Q| D0, N IHO, | D),

(v'w')eP

indicesv andw stand for valence orbitals. The configura-
. ; . . (2.19
tions included in the zeroth-order wave function span the
model spaceP. In the present calculations, we include all which leads to
possible configurations within the complex in the model )
space. In the following paragraph, the letterd,c,d, ...  [Qow,Hol|®yw)
denote occupied core orbitals, the lettensn,r,s, ... de- —V, 0, D)
note excited orbitals outside the cdiiacluding the valence 1= ow
orbitalg, whereasi,j,k,I, ... represent either excited or ©) ©) o
core orbitals. With this notation, we may write = 2 Q| @0 NIV, D).
(v'w)eP
1
V|=§ % gijIkN[aiTajTakal]"_% AijN[aiTaj] (2.20
Equation(2.20 is the generalized form of the Bloch equa-
tion.
+ $Viur—U)aa, 2.1 . . . .
g (2Vir~U)aa (212 It is convenient to introduce correlation operatgysg, de-

fined by
where N[---] designates the normal product, any;

=(Vue—U)j; . Here,Vy is the Hartree-Fock potential Quuw=1+Xpw- (2.21

It follows from Egs.(2.9), (2.14), and(2.21) that
(VHF)ijzg [Giaja— Yiaajl- (2.13 a

|W )= + 2 CowXow ®) (2.22
We introduce the wave operatolQ,, that map the m) . > v )

zeroth-order wave function onto the exact wave function ) ) )
Operating on the zeroth-order wave functions, the correlation

_ () operators generate the higher-order corrections. Substituting
¥ am) (Uwz;‘ep Coutloul Pow). (214 Eq. (2.2)) into Eq.(2.17) leads to
(0)
Substituting Eq(2.14) into Eq.(2.1) yields (HetD)orwrow={( Py [HA+ x,0) [P, (223
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In the present calculations, we are interested in the second- <‘1’5?\/)||‘I’JM>=1- (2.33
order transition amplitudes. It suffices to diagonalize the
first-order effective Hamiltonian that is given by In addition, we assume that the zeroth-order wave function is
normalized to unity,
(HEDwrwrow= (@0, [H[ @) y
(wRIvEH=1, (2.34
= w! '/mr' /mrJ’M/
7711 w UumeZmU’ <JU v JW W | > Wthh Ieads tO
my,My,’
i m > c?.=1 2.3
X(JUmUJWmW|JM>X[(5U’U5W’W_5U’W5W’v) (W =P oW ( . 3
X(Ev+ EW) + 6W'WAU'U + 5U'UAW'W
B and
_607 A rv_(s ’UAU’ +gvr v ], (224)
W PR Setwow (@ OO =5, 8- (2.36

wheregii =i — ik - It is evident that
Gijra = Dijwa ~ itk It follows from Egs.(2.33 and(2.34) that

[Qw.Hol=[Xow.Hol- (2.25
(@9 |oMy=o0. (2.37)
Therefore, we can replad@,,, by x, for the commutators
in Eq. (2.20. This choice leads to unnormalized wave functions, with
We assume that the correlation operatpgs can be ex- _2
panded in powers d¥, as (WamlWam)=N"2, (2.39
Xow=Xoa+ XS+ (2.26  where to second order
It follows from Eqgs.(2.22 and(2.26 that
gs.(2.22 and(2.26 N=1-12 3  CoryCon(®@H |0W).
[Wom) =P +PED+- -, (2.27 (0w, (W) <P
(2.39
where
From Egs.(2.3)), (2.34), and(2.36), we see that
Ny — (n)
ViD= 2, ComlPiin)- (229 EO=(UQH T =EQA+EQ, (240
The nth-order configuration wave function®(") are given ~ Where
by
0 —
) = 02, 229 Elbre= 20 €a 249
The energy can be correspondingly expanded as E(%)F E Czwfvw- (2.42
E=EO4+EDL 4. .. (2.30 A wer 7
Substituting Eqs(2.27) and(2.30 into Eq.(2.1) yields In Eq. (2.42, €,,=€,+ €, . Projection of Eq(2.32 on the
(Ho— E@)|w©y=0 (2.31) left with (W] yields
g EV- B +ED. 243
(Ho—EOWi)=(ED-Vv[w{D. (232  where
The wave functior¥ ) is normalized using the interme- EQ) — 1y, —U 2.4
diate normalization condition core é (2Vir=Ulaa, 249

Ez(;la)I: E ng[Avv—'—Aww]—i_l/Z 2 Corw CowMurw! Mow E <jv’mv’jw’mw’|JM><jvmvjwmw|JM>
(vw)eP (UW),(U/W')EP m,my’
my,My,’

X(Bw’v’wv+av’w'yw)- (2-43

We are now in a position to obtain the first-order correction for the wave functions. FroniZE23, (2.21), (2.25, (2.26),
and(2.29, we see that
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q)(l)>

(HO 2 €a™ €yw

vl 3 (el )@l

(v'w')eP

The solution to Eq(2.46), which is automatically orthogonal
to the zeroth-order wave functldﬂf(o)

|(DEJW>: |Dlvw>+ |D2vW>+|D3UW>+ |T1UW>
+ |T2vW> + |T3uw>+ |QUW>’

where the doubled), triple (T), and quadrupol€Q) exci-

tations are given by

|D1UW> ~— Mow 2 <] m mew|JM>

U W

mw

X
(vm)¢P Em™ €y

|D20W> %WE <] m,jw w|‘]M>

v W

X
(mw)¢P €Em™ €,

|D3UW> ~ Mow 2 <] m mew|JM>

U W

X

(mn)¢P €Emn— Eyw

|Tlvw>: — Tow E <jvmvjwmw
m, My,

A
x> —a’r rayalal|o),

mb €m—

gman
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|T2vW> == nquEm <J vaijW|J M>

0
V| D). x> _Genow_ 1 Talagall0),  (2.52

mnb €mn™ €pw

(2.46
|T3vw> nuwz <J My jw wl‘]M>

1) W

X, Ma ala.al|o), (253
mnc €mn™ €yc
(2.47) -
|va>: -

> (sMyiwmylIM)
mvmw

Imnbc
X > —2E gt
mnbc €mn~ €pc

Tala.agalal|0). (2.54

We are interested in the transition matrix elements be-
tween two states induced by an external electromagnetic
(2.48 field. For a many-body system, the multipole-transition op-
erators are given by

The = 2] (th)ijala, (2.59

(2.49 wheret(kﬁ‘) is the multipole-transition operators for one elec-
tron [38]. The multipole-moment operators for a many-body
system are defined by

QN =(clo)“2k+ 111 TR, (2.56

wherew is the photon energy. We consider a transition from
(2.50 a statel with angular momentundM to a stateF with an-
gular momentuml’M’. The zeroth-order energies of these
states ar€E(?) andE, respectively. The energy of the ab-
sorbed photon is then, in zeroth-ordér=E® —E(® . The
first-order transition matrix elements are given by

(25 (FITRI®=w O TR, @57
With the aid of Eqs(2.9), (2.10, and(2.55, we obtain

(FITQMH®=" >

Corw Cowyrw Mow E <Jv’m ’Jw’mw’|\.J M’ ><J vaWmW|‘]M>

(vw) e Py My,
(v'w')ePg my,mw’
X[ 8, (W [t W) = Sy (W [t [0) = Sy (0" [t W) + Sr (0 [0 |0) ], (2.58

where P, and P designate the model spaces for the initial where

and the final states, respectively. The first-order wave func- Q) _ g

tion may be employed to determine second-order corrections 5w(l):Tl (2.60
to transition matrix elements. The second-order transition

matrix elements take the form

(FITEIN@= (w0, TR G+ (v

J'm’

+ 00D [dTR do| TR,

J'm’

is the first-order correction to the photon energy. The third
term on the right-hand side is the derivative term. A simple
interpretation can be given. When we expafd-E(®

T 1Sy +EM+ ... for the energies of the initial and the final states,

the energy-dependent operaTc&Q must also be expanded as

259 TM(E—E)=TY)(w) + 60D TX)(w)/dw+---.  Thus,
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the derivative term arises naturally in the perturbation theoryin the length gauge, and
It follows from EQs.(2.56—(2.59 that the transition matrix
elements are related to the dipole-moment matrix elements

by

<F|T(k)a)||>(1)+(2):mwk<F|Q(k)(\q)||>(1)+(2)
1 1"
My+@y=— = Kt SwMkpk1 2.6
(FITig 1) (2Kt 1)!!Ck[(w Skt ) (2.62
(N)]y (1 k (M7 (2
X(F|Qkq N+ (FlQkq H®] in the velocity gauge. With the aid of Eq&.47—(2.55),

(2.61 we obtain

<|:|Tf()a)||>(2)=

2 Corw Cowyrw’ Mow 2 <jv’mu’jw’mw’|‘],M ’><jvaijW|J|V|>

(vw) e P m,m,
(v'w')ePg m,mw’
Jywmn
X v

% <r|tf<)(\q)|s>[5w’r5u’m55n+ 5W’n5u’r55m_ 5W’r5u’n5sm

(mn) &P, €w ™ €mn

g ! ’
- 5W'm5v’r55n] + z —= E <r |tf<)<\q)|s>[5nr5mv Sswt SnwOmrSsy ~ Onr Omwdsy ~ Ony 5mr‘ssw]

(mn) ¢ P €,y — €mnp TS

9o
+ 2 — 2 <a|tf<}(\q)|r>[5w’m5v’n5ab5rv+ 5w'n5u'u5ab5rm+ 5w’v5u'm5ab5rn_ 5w’m5u'u5ab5rn

mnb €pw— €mn ar

by
_5W’n5u’m5ab5ru_5w’u5u’n5ab5rm]+2 $2 <a|t(k}zq)|r>[5w’n5u’m5ab5rw+5w’m5u’w5ab5rn

mnb €py — €mn ar

Fow'
+ 5W’w5v'n5ab5rm_ 5w’n5v’waab5rm_ 5W’m5v’n5ab5rw_ 5W’W5u’m5ab5rn] + E —= 2 <I‘ |t(k)a)|a>

mnb €pw' — €Emn ar

><|:5v’r‘()‘ab5nu 5mw+ 5v’v5ab5nw5mr+ 5v’w53b5nr5mv_ 5u’r5ab5nw5mu_ 5v'v5ab5nr5mw_ 5v'w5ab5nv 5mr]

Gbu’
+ 2 — ; <I’ |t(k)a)|a>[5w’r5ab5mv Snwt SwrwOabOmrSny T Sy SabOmwSnr — Ow'r SabSmwdno

mnb €y, — €mp

A
_5w’w53b5mu5nr_5w’u5ab5mr5nw]+( 2 i 2 <r|tf<)t\:|)|s>[5w’r5mv’55v+5w’v5v'r5sm

vm) &P, €Em™ €w rs

A
_5W’r50’055m_ 5w’m5v’r55v]+ 2 — E <r|t(k)zq)|s>[5u’r5mw’6sw+ 5u'w5w’r5sm_ 5v’r5w’wﬁsm

(mw) & P, €Em— € rs

Aw’m

- 5v’m5w’r55w]+ E

(v'mePp Ew' ™~ €m

Av'm

% <I’ |t(k)a)|s>[5v’r5mwésu+ 5v’u5mrﬁsw_ 5u'r5mu 5sw_ 5u’w5mr55v]

+ X

(mw’)¢ PF EU’ - Em

% <I’|tf<)a)|8>[ 5w’r5mv Sswt 5W’w5mr55v_ 5w’r5mwésu - 5w’v5mr5sw]

Amp
+ 2 = 2 (@I SwrmByrs SabSrut Sury SyrwBandimt SurwByrmBanSry = Swrmyrwandi,
mb €m— €p ar
Ap
_5W’u5v’m5ab5rw_5w’w5v’v5ab5rm]+%% Eb—n; ; <r|t(k}a)|a>[5ab5W’r5v’W5mv+5ab6W’v5v’r5mW
m

+ SabOw'wOu v Omr™ SabOw’r Oy’ v Omw™ OabOw’ v Oy wOmr— 5ab5w’w5v’r5mv] + 5“’(1)[ 5vv’<W,|dt(k><\q)/dw|W>

— S (W[t dw[v) = 8, (v | AR 0| W) + S (v AR D] 0) ] ¢ . (2.63
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Ill. ANGULAR REDUCTION

The Dirac orbital takes the form

R iOn «.0,
u,(r)=— L (3.1
r fna"aﬂfxama
We introduce the two-component radial function
On,x,,
U,=U,(r)= . (3.2
fnﬂKa/

Carrying out the sum over magnetic substates in (B4
leads to

(HED, wrow= %«swwf(Ea ea+§ (3Vie—U)aat e,

+V,

+EW+Avv+AWW v'w'ow s (33)

where
Vv/W'vW: 77u/w’77vaJ(U,W,UW)- (34)

Here, we have introduced the notation

>

(vw) e P

(FITIH®=[31"73 14— 1)*
(v'w'")ePg

!

Y I LN B | .
H(=DTTN W[t o) Sy (= 1)he e
w

o dw ]
R S O I
(=) e T

Jo Jvr Jw

Mo'w! 771}WCU’W’CUW><

] <U ' ||t(k)\)||v>5ww’} )

PHYSICAL REVIEW A62 042507

o ja Jp J
Y (abcd =D, (—l)Jb“c“<“|.a .b ]Xk(abcd)
K ja Jc K
. ja Jp J
+ (—1)“3“°+k{ P ]Xk(ade),
K je Ja K
(3.5

where

Xy(abcd)=(—1)%al|Cy/|c)(b||Ci/|d)Ry(abcd).
(3.6)

The quantitiesC, are normalized spherical harmonics and
Ry(abcd) are Slater integrals. The first-order valence energy
can be expressed in terms of radial integrals as

>

(vw) e P

+ 2

(vw),(v'w)eP

E(l) _

val —

C2IA,,+Auy]

CU,W/CUWVU,W,UW' (3-7)

Angular reduction of Eq(2.58 yields the first-order transi-
tion amplitude that is defined as the reduced matrix element
of the multipole-transition operator,

!

-1 I +j,+iw J J K ’ t(k) S
( ) ] ] ] <W || k ||W> vo'!
w’ v

w

’ K (N)
j J J (UI”tk ||W>5UW’
w v’ v

(3.9

where[J]=2J+1. Similarly, angular reduction of Eq2.63 gives

>

(FIITOIY @ =314 37142

(vw) e P
(v'w")ePg
! HIrIey;
(1) rJ J _k] (iltMlv)
(iw) ¢ Pg jl} JI JW Eiw — €yrw’

(m[tM]b)Z (wmw b) .

nvwnv’W’CvWCU’W’{ (_1)J+J,+k 2

Z(wbw' m)(b[[tV]|m)

J 3 k) wtMi
[ o ]—< It >YJ(iU,UW)
(iv") &P, Ji Jw o €y’ — €Epw

o J J k
Yo' WwWi)+ 8, (— 1)l Hhw -t .

Jw Jw o

x| >

mb

>

mb

€pw’ — Emw

- , J o J ok
F Oy (— D)l I =4

Jo Jw Jw

(Mt 0)Z(vmw'b) N

x| > >

€bw ™ Emw’

Zy(vbw' m)(b]|t™M] m)

mb mb

€pw’ — €Emy

€phy ~ Emw’

P (Y AN N ¢
+6vv’(_l)Jv+JW+J +k ] ) )
Jw Jw Jo
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A1t w) (W[t A
2 5KK /—+ E 5 - _

+5 (_1)J+J’+k+1{‘]/ J k}
wo ! . . .

X ] .
i=w €y’ — E€j iFw  fw €y € 0w w
Ay i||t()‘)||v (W'Ht()‘)”i A o , 3] K
X 2 S n ,M.g_z S n +>w + 8| 8,,/(— 1)l itk _ _
izw Y €y € iFo v e, € iy dw

!

, J J k
X (W' || dtV dw||w)+ Sy, (—1)7F +k+l{j j jJ<w'||o|t<k“/o|w||v>

v w’ w

+(_1)1U+Jw+juf+iwf+J+J’(1<_>2)], 3.9

where interchanged. It is understood that the indiceendv’ in the

6 function should be interchanged with andw’, respec-

tively. The first two terms in Eq(3.9) lead to the second-

order valence-valence correlation corrections to the first-

(3.10 order transition amplitudes, while the next four terms
represent the second-order RPA corrections. The use of HF

In Eqg. (3.9), the notation (1-2) denotes all preceding potential leads to a major simplication for £§.9). The A;

terms inside the same brackets with the subscripts 1 and t2rms vanish for the HF case.

a ¢ k
Z(abcd =X, (abcd) + >, [k][b g k,]xk/(abdc).
k/

TABLE |. Contributions to the E1 transition amplitudes for the Be-like ions. Numbers in brackets denote powers of 10.

(2s2p) 'PI—(28%) 'S, (2p%) 'Sy—(2s2p) 'PY (2p?) 'D,—(2s2p) 'PY
|2 b |2 Inb |2 1o

Z=4

T(1) 6.7327-4] 1.3682-3] 7.9021-4] 2.5189-4] 1.4964-3] 1.5554-3]
Val2 1.7188-4] 4.8891-4] 4.1492-5] 9.2387-4] -4.1417-4] -1.268§-3]
RPA2 -3.5750-6] -4.8103-5] -4.197(-6] -8.856(-6] -7.9477-6] -5.4685-5]
S® 9.451§-4] 0.0000 4.737p4] 0.0000 -8.30274] 0.0000
Total 1.7868-3] 1.8090-3] 1.3013-3] 1.1669-3] 2.4401-4] 2.3197-4]
Z=30

T(1) 1.5269-3] 2.1069-3] 1.397§-3] 8.4227-4] 2.227¢-3] 2.1960-3]
Val2 2.0625-5] 4.1006-4] -8.0161-6] 1.0263-3] -3.5668-6] -1.393§-4]
RPA2 -2.67856] -1.3342-4] -2.4461-6] -5.0086-5] -3.9001-6] -1.353§-4]
S 8.422%-4] 0.0000 4.35304] 0.0000 -2.981p4] 0.0000
Total 2.3871-3] 2.3836-3] 1.8227-3] 1.8184-3] 1.9215-3] 1.9212-3]
Z=60

T(1) 6.4763-3] 6.8686-3] 4.9543-3] 4.3864-3] 7.5052-3] 7.4872-3]
Val2 4.0380-5] 2.473%-4] -1.076§-5] 8.6528-4] -2.0803-6] -4.535§-5]
RPA2 -5.7200-6] -1.226(-4] -4.3551-6] -7.4671-5] -6.6082-6] -1.2959-4]
S 4.8429-4] 0.0000 2.364[74] 0.0000 -1.870[74] 0.0000
Total 6.9959-3] 6.9933-3] 5.1756-3] 5.177¢-3] 7.309%-3] 7.3122-3]
Z=90

T(1) 2.2413-2] 2.2779-2] 1.6298-2] 1.5717-2] 2.536%-2] 2.5381-2]
Val2 1.0180-4] 1.49172-4] -1.2129-5] 7.6914-4] -2.6236-5] -1.8437-4]
RPA2 -1.240p-5] -1.2536-4] -8.984(-6] -8.5108-5] -1.400(¢-5] -1.381(-4]
Sw® 2.9465-4] 0.0000 1.17364] 0.0000 -2.763t4] 0.0000
Total 2.27971-2] 2.280%-2] 1.6394-2] 1.6401-2] 2.5048-2] 2.5058-2]

#The length results.
The velocity results.
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TABLE II. Transition amplitudes for the (2p) 'P{—(2s?) 'S, transition in the Be-like ions. Num-
bers in parentheses denote experimental uncertainties.

z 12 e Expt. Ref.

4 1.7868-3] 1.4338-3] 1.523)[-3] [1]
1.552)[-3] (2]

5 1.8833-3] 1.658%-3] 1.7(1)[-3] [2]

6 1.9086¢-3] 1.7326-3] 1.76(4)[-3] [3]

7 1.9163-3] 1.7691-3] 1.793)[-3] (4]

8 1.9190-3] 1.7918-3] 1.834)[-3] (4]

9 1.9206-3] 1.8081-3] 1.8(1)[-3] [5]

10 1.9227-3] 1.8217-3] 1.91(15)[-3] [6]

11 1.9258-3] 1.834(-3]

12 1.9302-3] 1.8458-3] 1.887)[-3] [7]

13 1.9360-3] 1.8579-3] 1.869)[-3] [7]

14 1.9436-3] 1.8707-3] 1.927)[-3] [7]

15 1.9529-3] 1.8844-3] 1.908)[-3] [7]

16 1.9640-3] 1.8993-3] 1.8911)[-3] (7]

17 1.9771-3] 1.9157-3]

18 1.9928-3] 1.9338-3]

19 2.0098-3] 1.9537-3]

20 2.029%-3] 1.975%-3]

21 2.0517-3] 1.9996-3]

22 2.0765-3] 2.0259-3]

23 2.1040-3] 2.0547-3]

24 2.1344-3] 2.0864-3]

25 2.1679-3] 2.1210-3]

26 2.2046-3] 2.1583-3] 2.2(1)[-3] (8]

27 2.2446-3] 2.1998-3]

28 2.2888-3] 2.2425-3]

29 2.3357-3] 2.2900-3]

aVith first-order energies.
bWith experimental energies.

IV. RESULTS AND DISCUSSION always reduce the transition amplitudes. A simple physical
interpretation can be given. The second-order RPA correc-

electric-dipole E1) transitions within the1=2 complex of tion to the transition amplitude is the product of the zeroth-
the Be-like ions. Contributions to thel transition ampli- order photqn energy af‘d the matrix e'eme’.“ of the electro-
tudes of the (82p) Po—(28) 1S, (2p?) 1Sy magnetic d|'polg potential. Thg RPA corrections accoupt for
—.(2s2p) P?, and (20?) D,—(2s2p) 1P§ transitions the core-shieldindCS) effects in atoms. The external field

for selected ions are given in Table I. The first four rows givelnduces an internal field inside the atom that shields the ex-

the first-order transition amplitude, the second-order valencet-ernal field. Therefore, the CS effects lead to an effective

valence correction, the second-order RPA correction, and thgotential that weakens the electromagnetic dipole potential
second-order derivative terms correction. The last row give&nd reduces the dipole-moment matrix elements.
the total second-order transition amplitude, which is the sum Significant differences are observed between the length

V(N_Z) frozen-core Dirac-Hartree_Foc(DHF) calculation. amplitudes. Much of the difference is removed when second-

Thus theA;; terms in the second-order transition amplitudeorder corrections are included. It is observed that the inclu-
vanish. The second-order valence-valence correlation corregion of the derivative term substantially reduces the differ-
tions and the second-order RPA corrections have greaténces between the length and the velocity results of the
contributions to the velocity results than to the length resultstransition amplitudes. It has been sho{a8] that the elec-

By contrast, the derivative terms are seen to contribute suliromagnetic transition amplitudes calculated using the no-
stantially to the length results, but have no contributions tgair Hamiltonian are gauge dependent. This is a result of the
the velocity results. The percentages of the second-order corestriction to positive-energy states in the no-pair Hamil-
rections to the transition amplitudes decrease with increasingpnian. The transition amplitudes obtained from E(®8)
nuclear charge&. It is noticed that the RPA corrections and(3.9) are gauge independent, provided one starts from a

We calculated the transition amplitudes for allowed
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TABLE llI. Transition amplitudes for the (8%) Sy—(2s2p) P$ transition in the Be-like ions.

Z 12 1o Expt. Ref.
4 1.3013-3] 9.5833-4]

5 1.3625-3] 1.151%-3] 1.1(1)[-3] [10]
6 1.4010-3] 1.2630-3] 1.21)[-3] [3]

7 1.4258-3] 1.3150-3] 1.309)[-3] [11]
8 1.4438-3] 1.3503-3] 1.31)[-3] [12]
9 1.4566-3] 1.376%-3] 1.41)[-3] (5]

10 1.4676-3]

11 1.4779-3] 1.414%-3]

12 1.4861-3] 1.4296-3] 1.41)[-3] (7]

13 1.49483] 1.443%-3] 1.51)[-3] (7]

14 1.5036-3] 1.4567-3] 1.51)[-3] [13]
15 1.5127-3] 1.469%-3] 1.51)[-3] [7]

16 1.5228-3] 1.4825-3] 1.51)[-3] [7]

17 1.5328-3]

18 1.5449-3] 1.5101-3]

19 1.5566-3] 1.524%-3]

20 1.5704-3] 1.5404-3]

21 1.5857-3] 1.5577-3]

22 1.6026-3] 1.5763-3]

23 1.6215-3] 1.5968-3]

24 1.6428-3] 1.6190-3]

25 1.6655-3] 1.6437-3]

26 1.6911-3] 1.6715-3] 1.6(1)[-3] [8]

27 1.7195-3] 1.6998-3]

28 1.7507-3] 1.7326-3]

29 1.7851-3] 1.7697-3]

AVith first-order energies.
bWith experimental energies.

local potential andartificially includes contributions from On the other hand, the first-order photon energy is
negative-energy statesee the Appendix The excellent 4.1193-01], which disagrees with the experimental result
agreement between the length and the velocity results indB8.344(-01]. This indicates that the differences between the
cates that the negative-energy states are not important to tkecond-order transition amplitudes and the experimental re-
transition amplitudes of the Be-like ions. The length-gaugesults are due to the unreliability of the first-order photon
transition amplitudes will be adopted for our final tabula-energies. The discrepancies between the second-order transi-
tions. It is well known that the all-order RPA transition am- tion amplitudes and the experimental results can be resolved
plitude is gauge independent. The fact that the length-gaudey using the experimental energies. In Tables II-1V, the sec-
transition amplitudes are consistent with the velocity result&nd column gives the second-order transition amplitudes
suggests that the higher-order RPA corrections are not imwith experimental energies, which are in excellent agreement
portant to the transition amplitudes of the Be-like ions. with experiment for all ions except for the neutral Be atom.
The transition amplitudes from the present calculationsThe second-order transition amplitudes with experimental
are present in Tables 1I-V. In Tables II-IV, the first column energies for other transitions are given in Table V.
gives the second-order transition amplitudes. Discrepancies Inspections of the dipole-moment matrix elements help us
are observed between the second-order transition amplitudegin insight into the difference between the theoretical and
and the experimental results for ions near the neutral endhe experimental transition amplitudes in Be. The first-order
Inspections of the photon energies and the dipole-momerndipole-moment matrix element for the resonance transition in
matrix elements help us gain insight into the discrepanciesBe is 2.4315. The second-order correction is 6.(0®l,
The second-order dipole-moment matrix element for thewhich is the quarte(note thatz=4 for Be) of the first-order
resonance transition 62p) P9—(2s?) 1S, in the B'*  contribution. According to th&-expansion theory, the third-
ion is 2.0385, in agreement with the experimental regilt  order contribution is expected to be 1.5[9&], which is
2.1(1). The energy dependence has been excluded from thegain the quarter of the second-order contribution. The esti-
dipole-moment matrix elements. The agreement between thmated third-order dipole-moment matrix element is then
second-order dipole-moment matrix elements and the exper8.1913, which is in agreement with the experimental result
mental result indicates that the wave functions are reliablg.1] 3.226). This indicates that the differences between the
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TABLE IV. Transition amplitudes for the (#) 'D,—(2s2p) P{ transition in the Be-like ions.

Z 12 e Expt. Ref.
4 2.4401-4] 4.6249-4]

5 7.4497-4] 8.2870-4] 8.1919)[-4] [14]
6 9.608%-4] 1.0045%-3] 1.01)[-3] [15]
7 1.0829-3] 1.1115-3] 1.123)[-3] [16]
8 1.1624-3] 1.1837-3] 1.2(1)[-3] [17]
9 1.2196-3] 1.2365-3] 1.233)[-3] [18]
10 1.2638-3]

11 1.3002-3] 1.3123-3]

12 1.3320-3] 1.3421-3] 1.41)[-3] (7]
13 1.3608-3] 1.3693-3] 1.41)[-3] (7]
14 1.3881-3] 1.3955%-3] 1.41)[-3] (7]
15 1.4147-3] 1.4210-3] 1.51)[-3] (7]
16 1.4410-3] 1.4464-3] 1.51)[-3] (7]
17 1.4676-3] 1.4720-3] 1.472)[-3] [19]
18 1.4944-3]

19 1.5217-3] 1.5246-3]

20 1.5498-3] 1.5521-3]

21 1.5778-3] 1.578%-3]

22 1.6057-3] 1.6067-3]

23 1.6348-3] 1.6353-3]

24 1.6651-3] 1.6650-3]

25 1.6978-3] 1.6963-3]

26 1.7326-3] 1.7297-3]

27 1.7717-3] 1.7679-3]

28 1.8157-3] 1.8124-3]

29 1.8655-3] 1.8619-3]

AVith first-order energies.
bWith experimental energies.

theoretical and the experimental transition amplitudes ar®epublic of China under Grant No. NSC88-2112-M-019-
due to the omission of the higher-order corrections in thed01.

present calculations. Comparisons of the transition probabili-

ties from the present calculations with experiment as well as APPENDIX: GAUGE TRANSFORMATION

with other theoretical results are given in Table VI and Table AND TRANSITION AMPLITUDE

VIl for selected transitions. ) . ) )

In summary, we perform relativistic MBPT calculations It is convenient to introduce an operator representing the
up to second order to study the transition amplitudes foglifference between the multipole-transition operators in the
allowed transitions in the Be-like ions. The transition ampli-length and the velocity gauges,
tudes obtained in different gauges are in close agreement.

The theoretical transition amplitudes agree well with experi- ATW: (Tsll\zl)l _(TSlN)I v (A1)
ment for all ions except for the neutral Be atom. The acCU= . araton T can be written as
racy of the present calculations is expected to increase at P JM

higherZ because of the rapid rate of convergence of MBPT.

The discrepancies between theory and experiment for Be are ATglw)IZ'_ LAHJM , (A2)
a matter of concern. Further theoretical and experimental in- ec V(J+1)(23+1)
vestigations are certainly needed to understand fully, and re-h
move, the remaining discrepancies. where
AH =2 <i|(AhI)JM|j>aiTaj- (A3)
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supported in part by the National Science Council of theformation. It is straightforward to show thg8]

042507-10



RELATIVISTIC MANY-BODY CALCULATIONS OF. .. PHYSICAL REVIEW A 62 042507

TABLE V. Transition amplitudes for Be-like ions.

z |2 o 1 ¢ v d Ve Vi

4 8.2801-4] 9.257(-4] 7.1714-4] 8.281%-4] 1.6035-3] 9.2589-4]
5 9.2411-4] 1.0330-3] 8.0048-4] 9.2444-4] 1.789§-3] 1.0337-3]
6 9.6767-4] 1.0814-3] 8.3839-4] 9.6844-4] 1.8744-3] 1.0831-3]
7 9.9153-4] 1.1076-3] 8.594(-4] 9.9304-4] 1.983(-3] 9 1.111¢-3]
8 1.0065%-3] 1.1238-3] 8.7290-4] 1.0092-3] 1.9511-3] 1.1296-3]
9 1.0171-3] 1.1346-3] 8.8271-4] 1.0212-3] 1.9725%-3] 1.1438-3]
10 1.0259-3] 1.1426-3] 8.9066-4] 1.0314-3] 1.9897-3] 1.1563-3]
11 1.031¢-3] 1.1487-3] 8.9771-4] 1.0408-3] 2.0044-3] 1.1681-3]
12 1.0378-3] 1.1537-3] 9.0457-4] 1.0503-3] 2.0178-3] 1.1801-3]
13 1.0434-3] 1.1576-3] 9.1104-4] 1.0597-3] 2.0304-3] 1.192§-3]
14 1.0488-3] 1.1612-3] 9.1800-4] 1.0700-3] 2.0424-3] 1.206§-3]
15 1.0541-3] 1.1644-3] 9.2541-4] 1.0813-3] 2.0537-3] 1.222¢-3]
16 1.0596-3] 1.1673-3] 9.334§-4] 1.0938-3] 2.0640-3] 1.239¢-3]
17 1.0776-3] 9 1.1826-3] 9 9.5367-4]9 1.1224-3]9 2.1015-3]9 1.2769-3] 9
18 1.0711-3] 1.1726-3] 9.5184-4] 1.1373-3]9 2.0789-3] 1.2783-3]
19 1.0769-3] 1.1753-3] 9.6248-4] 1.1395-3] 2.0818-3] 1.3008-3]
20 1.0831-3] 1.1776-3] 9.741%-4] 1.1583-3] 2.0792-3] 1.32572-3]
21 1.0894-3] 1.1801-3] 9.8691-4] 1.1788-3] 2.0715%-3] 1.3515-3]
22 1.0961-3] 1.182%-3] 1.0009-3] 1.2014-3] 2.0571-3] 1.3799-3]
23 1.1032-3] 1.1851-3] 1.0164-3] 1.2263-3] 2.0363-3] 1.4108-3]
24 1.1096-3] 1.1871-3] 1.0329-3] 1.2533-3] 2.0083-3] 1.4441-3]
25 1.1172-3] 1.1898-3] 1.0514-3] 1.2827-3] 1.975%-3] 1.4811-3]
26 1.1249-3] 1.1924-3] 1.0711-3] 1.3150-3] 1.9395-3] 1.5219-3]
27 1.1307-3] 1.1943-3] 1.0921-3] 1.364%-3]9 1.9007-3] 1.567%-3]
28 1.1370-3] 1.1962-3] 1.1147-3] 1.3868-3] 1.8623-3] 1.6187-3]
29 1.1446-3] 1.1989-3] 1.1402-3] 1.4268-3] 1.8207-3] 1.6737-3]

@The (20?) 3Py—(2s2p) 3P$ transition
®The (2p?) 3P,—(2s2p) 3P9 transition
2 1 p 2

“The (20%) 3P,—(2s2p) 3PY transition
The (2p?) P,—(2s2p) 3P} transition
®The (2p?) 3P,—(2s2p) 3P$ transition
The (2p?) 2P,—(2s2p) 3P9 transition
9With first-order energies.

ie i 4]
(8h)gw=—F{Thooml—fioxad, A4 (FIATRINO=VETRIVE) = N 55D
. . . . X(W O AH 5| ()
for local potential. Herey ;v is the gauge function. With the
aid of Eq.(A4), Eqg. (A3) can be expressed as 1 47]

A Lo
“rc VarDarn Ve IHoXoul

ie
AH == 2 {[Ho Xoul~hoXou},  (A5) ~hwXoul V1) =0, (A7)

Therefore, the first-order amplitude is gauge independent,
where provided we start from docal potential. The change in
second-order amplitude is given by
EIATDY@ = (O ATD gDy 4 (g D] ATD [ (0)
XJM:Z (XJM)ijaiTaj- (AB) < | JM| > < F | JM| | > < F | JM| | >
. + 80T OdATR /dw| ¥ (D). (A8)

The change in first-order amplitude under the gauge transfoiith the aid of Eqs(2.32), (A2), and(A5), the first term in
mation is given by Eqg. (A8) can be rewritten as
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TABLE VI. Transition probabilitiegin sec ?) for the (2s2p) P%—(2s?) S, transition in the Be-like

ons.
Z MCHF? MCHF® CI® CI®  MCDF®¢ MBPTY This work® Expt. Ref.
4 5.548] 5.538] 5.598] 3.848] 4.818] 5.4(2)[8] [1]
5.602[8] [2]
5 1.249] 9.438] 1.119] 12009 [2]
6 1.499] 1.699] 18109 [3]
7 2.3349] 2.049] 2.249] 2.358)[9] [4]
8 2.88%9] 2.549] 2.809]  2.9213[9] [4]
10 4.0039] 3.749] 3.949] 436)[9] [6]
12 5.1729] 4.849] 5.099] 534[9] [7]
14 6.4309] 6.149] 6.349] 6.75[9]  [7]
8Referencd 25].
bReferencd21].
‘Referencd9].

dReferencd37], with experimental energies.
fWith experimental energies.

1 4] 1 4]
(0) Wy — [ = /0 _ Ay — /77 g0 _g0)_
<\I,F |ATJM|\PI > he (J+ 1)(2J+1)<\PF |[HO1XJM] ﬁwXJM|\PI > e (J+ 1)(2J+1){(EF EI hw)

X (WO Xy WDy = (WO X m(ER = V) [0 (D)=

V)| T ).

The second term ifA8) can be expressed as

1 [ 4m
N 7" o) (1)
reNGTDaT o VF XouE

(A9)

1 47 1 | 47
(1) WpON — [ "7 /p) _ Oy — /77 g0 _g0)_
<\PF |ATJM|\I,I > #he (J—I— 1)(2J+1)<\PF |[HO!XJM] ﬁwXJM|\I,I > #e (J-I— 1)(2J+1){(EF EI ﬁw)

1 47]
XU DXy PO+ (WO (ES - V) Xy T (D)} = <V m(‘l’(po)l(E(Fl)—V|)XJM|‘1’|(O)>-

The third term in Eq(A8) can be expressed as

(A10)

TABLE VII. Transition probabilities(in sec'?) for the (2p?) D,—(2s2p) P{ transition in the Be-

like ions.
Z HF?2 MBPT® This work Exptd
4 1.277] 2.366] 9.796]
5 5.347] 6.547] 6.4(3)[7]
8Referencd 20].

PReferencd37], with experimental energies.
‘With experimental energies.
dReferencd 14].
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&)
e dATSY)

4]
dw

(J+1)(23+1)

1 4]
=7V m&vm{(ﬂo)— E{?—f0)(PP|dXsu/do|[W() = A (PP Xu| (7))

1 4]
P S — N 5 V2 1Y () (0)
c (J+1)(2J+1)5w (P Xgul®1™). (A11)

The sum of Eqs(A9), (A10), and(All) is

1 4]
<V m{(EE)— E(Y—780M) (WO Xyl W)+ (W[ Xy, V1| ¥ ()}

_ 1 4d
T hc V(J+1)(23+ 1)<

1
| w0y = o SNV O[Hy,dXyu/dw] —AodXyy/do—7aXy|v®)

VO Xom, V11T, (A12)

The commutatof X;y,V,] vanishes, provided wartificially include the contributions from negative-energy stdteg].
Therefore, the second-order amplitude is gauge independent, provided we startl&omh @otential andartificially include
the contributions from the negative-energy states.
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