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Anisotropic muonium atoms: Energy levels and electron spin exchange
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The time evolution of the muon spin in fully anisotropic muonium @u*+e~) in the presence of
Heisenberg spin exchange has been investigated theoretically. First, the energy levels of anisotropic Mu as a
function of field are investigated analytically with a particular emphasis on the crossing and avoidance of
energy levels at certain magnetic fields, which have important consequences in muon spin dynamics. Second,
the knowledge of the energy levels is applied to investigate the muon spin depolarization due to electron spin
exchange with spir%— paramagnetic species, where the muon spin depolarization rate and the precession
amplitude observed by the muon-spin-rotatim8R) technique are explicitly expressed solely in terms of the
matrix that diagonalizes the anisotropic Mu hyperfine Hamiltonian. The treatment presented here represents a
special systematic and practical method that allows one to investigate the time evolution of the muon spin in
anisotropic Mu in the presence of electron spin exchange. Several concrete examples are discussed in detail,
including those in which all th&SR observables can be obtairethlytically. The method developed in this
work is used to explain the relaxation rate maximum in anisotropic Mu in semiconductors observed at the
longitudinal fields at which two of the Mu energy levels avoid each other due to a strong level mixing or
avoidance, where the present formalism takes the tensor nature of the anisotropic hyperfine interaction fully
into account without invoking the convenient but not necessarily correct notion of an effective magnetic field
in an anisotropic Mu. Also discussed is the possibility of observing additional relaxation maximum at a
low-avoidance field, where the effective magnetic-field approximation completely breaks down. Observation of
such a maximum will provide valuable information on the parameters characterizing the anisotropic Mu in
question. The formalism presented here can also be applied to anisotropic positronium on surfaces, anisotropic
Mu undergoing both charge exchange and spin exchange, and fast spin exchange.

PACS numbd(s): 36.10.Dr, 34.50+s, 76.75+i

[. INTRODUCTION Br) [9], in the gas phase. If reaction partners of Mu are
paramagnetic species having at least one unpaired electron,
The muon-spin-rotatiofiuSR) techniquef{1-5] takes ad- Mu undergoes electron spin-flip collisions, which affects,
vantage of two important consequences of the parity violathrough the Mu hyperfine interaction, the muon spin polar-
tion in the weak interaction: first, the spin of the muon pro-jzation. The spin-flip cross section has been obtained for sys-
duced in the pion decayr®—pu"+v, is nearly 100% tems such as MaO, [10], Mu+Cs[11], and Mu+NO [12]
polarized in the rest frame of the pion, and second, the decgy the gas phase from the muon-spin depolarization rate
positron from the muon decay” —e™ + v, +7v, is emitted  gused by electron spin exchange.
preferentially in the direction of the muon siié]. By mea- Mu has also been observed in condensed media, including
suri'ng the counting rate of the decay positrons as a f””Cti_ogemiconductor$13—2q and fullerene$23—29. In particu-
of time, one can study the time evolution of the muon spin,. 1y states in semiconductors have been studied exten-
polarization. sively in order to obtain insights into H states that affect the

. L .

Muonl'u.m (Mu=4"+e7) is a hydrogenlike bound state electrical and optical properties of technologically important
of a positive muon and an electron, analogous to hydrogerr]naterial[m 21]. Two different Mu states, labeled as ﬁ’/lu
(H=p*"+e"). Sinceu™ is about 200 times heavier than e :

e~, the reduced mass of Mu is essentially the electron mas&nd M, are observed in Si, Ge, diamond, GaAs, and GaP,
Thus Mu has a virtually identical ionization potential to H. In Where the superscript zero refers to neutral Mu and the sub-
this sense, Mu can be regarded as a light isotope of H. Sinc&ripts T and BC denote theetrahedral and bond-center

the advent of theuSR technique, the atomic and chemical POsitions, respectively. My which diffuses rapidly among
properties of Mu in the gas phase have been investigatei@trahedral interstitial sites, has an isotropic hyperfine inter-
extensively and results are compared to those of H in th@ction with a reduced hyperfine interaction,/27 (=2.0
context of isotope mass effedtg]. GHz in Si[13]) compared to Mu in vacuun¥.463 GHz.

The Mu atom in vacuum has an isotropic hyperfine inter-Mugc, localized on the time scale of the muon lifetirt&2
action characterized by the interaction energy/2m  wS) near a bond-center positigd5], has an anisotropic hy-
=4.463 GHz. The chemical reaction rates of isotropic Muperfine interaction with an axial symmetry characterized by
have been measured in reactions such as+Mu o, and o, , where the values in Si arew /2w
—MuH+H [8] and Mut+X,—MuX+X (where X=F, Cl, =-16.82MHz andw, /27=—92.59 MHz [19,20. Muf_l,C

is also called anomalous muonium denoted by*Mu
In the past, the connection between the depolarization rate
*Email address: ms@fizz.phys.dal.ca observed byuSR and the spin-flip cross section that charac-
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terizes spin exchange at the quantum-mechanical level hagnts of the muortelectron spin in the laboratory frame of
been studied theoretically by two different methods: a Bolt-reference X,y,z). First, the 4<4 Hamiltonian(H) matrix of
zmann equation approa¢d6—3Q and a time-ordered sto- a fully anisotropic Mu in a magnetic field applied in tke
chastic method31-42. The Boltzmann equation method, direction is expressed in terms of the Euler angtes3, and
which deals with paramagnetic species of any $gin 3, 1, v, which relate the principal axeX(Y,Z) of the Mu hyper-
3, etc), has been applied taSR in a transverse as well as fine tensor to the laboratory system,¥,z). By solving the
longitudinal field, H-masef43], and stored beam experi- 4x4 secular equation analyticall¢1], one investigates the
ments[44]. The second method, which will be used in this four eigenvalues?s o, with k=1, 2, 3, and % of Mu as a
work, calculates explicitly the muon spin polarization after function of the magnetic-field strength and the orientation of
consecutive binary collisions with paramagnetic speciesthe Mu principal axes with respect to the field direction. Of
P.(t1,t2,... t,,1), wheret, is the time of thekth collision  particular interest are crossing and avoidance of energy lev-
andt is the time of observation. One obtains the muon po-ls that will have important consequences in the muon spin
larization observed at timet by the average of depolarization observed hySR. Once an eigenenerdyw;
P.(ty1,t,...t,,t) weighted (i) over all possible Poisson is obtained for a given magnetic field and Mu orientation, it
distributions oftq,t,,...t, under the condition &t;<t, is possible to obtain, numerically or analytically, the eigen-
<---<t,=<t, and(ii) over all possiblen from 0 to. The  statel|j) corresponding tdiw; as a superposition aof ,a-,
method was developed first for Mu spin exchange with spinw, 8., B,ae, and B,Be, as |j)=Ujia,aetUjra,Be
3 species(e”, Cs, NO, eto. in transverse and longitudinal +Uj3B et UjsB,Be With j=1,2,3,4.
fields[31], where paramagnetic species are unpolarized, and After investigating the transitions amond), |2), |3), and
later extended to a number of cases: fast Mu spin exchandé) induced by electron spin-exchange collisions, the time-
[34], the transverse field dependence of the relaxation raterdered stochastic method will be used to study anisotropic
[35], Mu spin exchange with spin polarized paramagnetidMu. One of the main goals here is to show that the experi-
specieq37], Mu spin exchange with spin on&€ 1) para- mental observables of theSR technique, including the re-
magnetic species ({p[40], spin exchange of H detected by laxation rate due to spin exchange, the amplitude, and the
the electron spin resonan¢ESR technique[40], spin ex-  phase ofuSR signals, can be expressed explicitly in terms of
change of positronium (Pse” +e") studied by the positron Uj,’s. Several concrete cases are presented as examples, in-
lifetime (PLT) techniqug40,41. The transverse field depen- cluding some special cases, wherg’s, thus all observables
dence of the muon spin depolarization rate, predicted theomf uSR also, can be obtained analytically.
retically in Ref.[35], proved to be a convenient tool to use to  In this work, anisotropic Mu is assumed to be stationary
distinguish spin exchange from chemical reactions as causés the (x,y,z) system as in the case bfu3 in semiconduc-
of Mu spin depolarizatioi11,12,36,4% The work based on tors. The spin exchange of rapidly rotating MuCO, MyO
the time-ordered stochastic method described in Refsgtc., will be discussed elsewhere.
[40,41 lead to direct comparisons of the spin-flip cross sec-
tions in Mu+0O, [10], H+0O, [40,46], and Ps-O, [42,47,
studied by three different experimental techniques, i8R,
ESR, and PLT, respectively, where the spin-flip cross section Let (X,Y,Z) be the coordinate system fixed to anisotropic
for Ps+ O, was found to be 1000 times smaller than that forMu, while (x,y,z) is attached to the laboratory system. The
Mu+0, [42,47. unit vectors along the, y, and z axes are expressed in
Even though anisotropic Mu has been investigated experiterms of the direction cosines in thX,(Y,Z) system:
mentally in recent years, the theoretical and quantitative un- . .
derstanding of anisotropic Mu undergoing electron spin ex- %= (COSay,COSBy,COSYx), §=(COSay,COSBy,COSYy),
change, which is much more complex than the case of R
isotropic Mu, is still lacking. The present work will extend 2=(cosa;,C08p3;,C0SY,). @
the above-mentioned time-ordered stochastic method to the ) )
case of anisotropic Mu, in order to provide a systematic anciMilarly, the unit vectors along th¥, Y, andZ axes with
practical scheme that allows one to calculate, often analytitespect to thex;y,z) system are
cally, the relaxation rate, amplitude, and phase of muon spin_ R
precessions in the presence of spin exchange directly inX=(c0oSay,C0say,C0Sa,), Y=(CO0SBy,COSBy,C0SB,),
terms of the matrix that diagonalizes the anisotropic Hamil-
tonian. Here, we confine ourselves to the case of anisotropic Z=(COSyy ,COSYy,COSY,). 2)
Mu or Mu radicals, such as My, MuC,, MuCO, and
MuO,, where the only spins in the system are carried by thesincex, §, andz are unit vectors that are mutually orthogo-
muon and electrons; i.e., there is no nuclear moment. nal, one obtains

A. Euler angles

Il. THEORY COSa,, COSam+ COSB,, COSBm~+ COSY, COSYm= Snm»
)
It is convenient to use the spin functions,a., «,pBe,
B,ae, and B,B., as the basis for expressing the Hamil- where s, is Kronecker’sé function andn, m=x, y, andz
tonian, wherea,(a.) and B,(B.) represent the compo-  Since the vector produétxy is equal toz, one obtains
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COSay COSf3y— COSPy COSary= COSY,, in the (X,Y,Z) system are expre_ssed in terms of the compo-
nents of the same vector seen in they(z) system as
COS7yy COSary — COSary COSy, = COSf,, (4)
Sx Sx
COSPy COSyy— COSY, COSB,= COSa; . Sy|=D(a,B,7)| 5. (5)
Similar relations can be obtained by cyclic permutations Sz S,

X,Y,Z—Y,Z,X—Z,X,Y.
The components of a spin angular-momentum vector seefhe transformation matrio («,B,y) can be expressed by

[ cosay, cosa, cosa,

D(a,B,y)=| COSBy cos,By C0Sp,
[ COSyx COSy, COSY,

[ cosa cospBcosy—sinasiny Sina cosB cosy+cosa siny  —sinBcosy
=| —CoSa cosB siny—sinw cosy —sina cosBsiny+cosacosy sinBsiny |, (6)
L cosa sinB sina sinB cosp

where «, B, and y are the Euler angles of the three consecutive rotations around,th¥, and Z axes of the X,Y,Z2)
coordinate system, which initially coincides with the,y,z) system. It should be emphasized that the malrix, B3, v)
represents rotations of the coordinate system with the object of interest fixed in space.

B. Hamiltonian for anisotropic Mu

The hyperfine interaction between the muon spin and the electron spin consists of the scaler Fermi contact term and
traceless dipolar terms. In an external magnetic field apgiBedn the z direction, the Hamiltonian of anisotropic Mu can
bewritten down in terms of the Pauli spin operators as

h h h
H= Ewea'g— Ewﬂa'é‘-i— waaga';—k Zwya¢a$+ ZwZU’Z‘UE, (7)

wherew, (o) is the Larmor precession angular velocity defined in terms of the absolute value of the gyromagnetic ratio of
the electron(muon as we="7y.B (w,=v,B), o° and ¢ are Pauli's spin matrices for the electron and positive muon,
respectively, the lower case subscrigty,z refer to the axes fixed in the laboratory frame of reference, Wik, Z is the
system fixed in Mu, in which the hyperfine interaction tensor is diagonal with the principal valigs 2wy, andf w; .

Using the transformation matrix given in E&) one can rewrite the vector components referring to the X (Z) axes, o,

al, o, 0%, o, anda$, in terms of the corresponding quantities in the laboratory @) system. The matrix represen-
tation of the Hamiltonian expressed on the basis(&glre, @,B:, B e, B,Be) is

w_+Q,, Qe iQy, Qe iQy; Q= Q=210

H_ QptiQy, —w.—Q,, Qpt Qyy ~(Qp—iQy) ©

% iy, Qe t Qyy w0, —Q,, —(Qp—i0y) |’
Q= 0y 210y, —(QtiQy)  —(Qu+i0y) —w_+0Q,,

wherew.. are defined byw. =(we* w,)/2 andQ,,, Qyy, Q,,, Oy, Q,, Q,, are defined by
Q= 1[0y COS ay+ wy COS By+ w7 COS 4], Q= i[ wy COS ay+ wy COS By+ w; COS yy],
Q= i[wy COS a,+ wy COS B,+ w7 COS v,], =il wy COSay COSary+ wy COSPy COSBy + w7 COSYy COSYy ],
9)

Qy= oy COSay COSa,+ wy COSPB, COSB,+ wz COSy, COSY,],

Q,,=i[ wx COSa, COSa,+ wy COSB, COSBy+ w7 COSY, COSYy].
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The following quantity in Eq(8) is of particular interest for
later discussions:

Qe iQy,= — € sinBX [ (wy COF y+ wy Sif y
— w7)COPB+ (wy— wy)i cOSysiny].
(10

If Mu is isotropic (wx= wy= w;= wy), it can easily be veri-
fied from the orthogonality o, Y, and Z [Eq. (3)] that
Qu=Qyy=0,,= wo/4 andQ,,=Q,,=0,,=0.

C. Energy levels

PHYSICAL REVIEW A 62 042505

=(30°,0°,0°), (30°,10°,09, (30°,80°,09, and (30°,90°,09.

For the Euler angles 62 3<90°, when theZ axis of Mu
does not point in the field direction, these energy levels will
avoid rather than cross. Crossing and avoidance are also ob-
served betweelt; and E, at a high field analogous to the
case of axially symmetric Mu. Fapy= wy, where any di-
rection in theXY plane can be regarded as a principal axis, a
level crossing is observed, either betwésrnandE; at a low

field or betweerE, andE, at a high field, when th8& field

is in the XY (symmetry plane. For isotropic Mu, where any
direction in space can be regarded as a principal axis, the
high-field crossing betweds; andE, occurs at a field given

by wp=2wew,/(0.—0,)~20, regardless ofa,B,y) and

One can obtain the energy eigenvalues by solving th&© level avoidance will take place. As seen in a later section,

secular equatiofH —AX1|=0 for \, wherel is the 4x 4 unit

matrix. By a straightforward calculation, one can show tha

the secular equation will reduce td*+a; 3+ a,\?+ag\
+a,=0, where

a;=0, a,= —[wi-i—wz_-i- %(wi-i— w\2(+ w%)],

a3=20, 0% — w?)+ toxoyoy,

11

as= wi w?+ wi[(ﬂxx_ ny)z_ ng_" 4Q>2<y]
+ 02 [(Qp— Q) ?—02,+40,,0,,]
+3(— wx— oy— 0)i(—oxt oyt o)

X 3 (wx— 0yt w7) i (0x+ oy—wz).

these low-field as well as high-field avoidances of energy

{evels will drastically affect the amplitude and relaxation rate

of uSR signals.

D. Eigenstates

The eigenstates of the Hamiltoniam corresponding to
w, can be expressed as
|n>=Un1(a,,8,'y)a'uae+Unz(a,ﬂ,'y)a”ﬁe
+Uns(a,B,7)BuaetUnala,B,7)BBe, (12

where the coefficients) 1, U,», U,3, U4 are obtained by
solving the eigenvalue equations

The quartic equation that determines the energy levels can be
solved analytically, even though this is rarely done because
of complexities in choosing the right phases in the solutions
of the auxiliary cubic equation associated with the quartic
equation. In this work, the quartic equation has been solved
analytically according to the phase convention described in

Ref.[41]. Figures 1a)—1(c) show the magnetic-field depen-
dence of the energy level&/h= /27 in units of MH2) of
axially symmetric Mu with the principal valuesy/27
=80, wy/2m=80, andwz/27=130 MHz for Euler angles
(a,B,7)=(0°,0°,0°), (0°,10°09, and (0°,90°,09, where
the energy level&,, E,, E;, andE, are labeled in the
decreasing order of energy at a given field. In Figa),1
where theZ axis is in the direction oB(z), one observes
that the energy levelg, andE; crossnearB=1.5mT (low-
field crossing. In Fig. 1(b), where theZ symmetry axis of
Mu is tilted away from the direction dB, the E, andE3 do
not cross anymore, but thegvoid each other(low-field

avoidance Similar crossing and avoidance of energy levels

are observed betwedfy andE, at much higher fieldghigh-
field crossing or avoidangeas shown in Fig. @), where the
differenceE, — E, is plotted as a functioB for Euler angles

(0°,8,0°. It can be seen that these two levels cross only
when one of the principal axes coincides with the directiont

of the field: B=0° and 8=90°. Figures £a)—2(d) show
similar low-field crossing or avoidance amokg, E,, and
E5 for fully anisotropic Mu withwy/27 =80, wy/27=100,
and wz/2m=130 MHz for Euler angles «,B,7y)

Hii—fiw, Hio His His
Hyq Hoo— o, Hos Hoy
Hsq Hs, His—fiw, Hay
Hay Haz Hys Hy— Ao,
Unl
Un2
=0 13
Ups (13
Un4

under the normalization conditioflJ;|2+|Unp|%+ |Ups|?
+|Upal?=1. Writing

||1>:a,uaev ||2>:aMBe’ ||3>:ﬂ#aea H4>:,3,u:3ev

(14)

one can cast Eq12) and its inverse relation in a more com-
pact form:

4 4
|n>:j21 Un](aaﬁiy)‘|l>! ”J):kgl Uﬁl(a’ﬁ”y)“(%
(15)

respectively. It is straightforward to show tHal] satisfies
he orthonormality condition

4
,Zl Unj(e. B, 9)U5 (. B,7)= 8k (16)
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FIG. 1. Energy levels of axially symmetric Mu withy/27=80 MHz, wy/27=80 MHz, w,/27=130 MHz with the applied magnetic
field in thez direction in the laboratory frame, where the energy le¥gls 7 w; are labeled in the descending order in energy at each field.
(a) Euler angles are in units of degree,{3,y) =(0°,0°,0°), where th& symmetry axis of Mu is in the field direction. Two levets and
E; cross(low-field crossing at a field neaB=1.5mT. (b) («,8,y)=(0°,10°,0°), where th& symmetry axis points away from the field.
The two levelsE, and E; now avoid (low-field avoidancg each other, rather than cross, at a field nBar1.5 mT. (c) (a,B,7)
=(0°,90°,0°). (d) The differenceE,—E, is plotted as a function of field witha,3,v)=(0°,8,0°), showing a high-field crossing or
avoidance betweeR; andE, depending or3 value.

and that U*HUT is diagonal with (jlU*HUT|K)  |4), labeled in the decreasing order of their energy eigenval-
:znmu;*anmu km= E;j ik , whereU is the transpose of the ues below the high-field crossing are given[B]
matrix U and d;, is Kronecker delta.

Once the eigenvalues are calculated analyticéllgan be |11)=a,ae, [2)=sa,BetCB, e,

obtained either numerically with standard routirjd§] or (17)
often analytically. In this work, the muon spin relaxation rate 13)=8,8e, |4)=Ca, Be—SB,ae
plles m neres

due to spin exchange and the initial amplitude of each pre-

icnef;?nnsc;n:ﬁ g ﬁgir&bzgr\;%?lggl:{oif el)'EFi);eiiZ?rdugt)i(\? EI:c;ttIy wherec ands are field-dependent positive quantities defined
- © ma Sk ONY- LIS I by c2=(1+x/ X2+ 1)/2 and s2=(1—x/ X2+ 1)/2 ex-

this stage to investigate special cases in which the mbkrix qi of— / h " thi

can be obtained analyticallyi) isotropic Mu, (i) axially ~ Pressed interms of=B(ye+ y,)/wo. Thus comparing this

symmetric anisotropic Mu in zero fieldiji) fully anisotropic ~ esult with Eq.(12) one obtains the matrikU ;] as

Mu in zero field,(iv) anisotropic Mu with one of its principal

axes in thez direction, and(v) Mu in a high field. 10 0 O
. 0 s 0
1. Isotropic MU: wy=wy=w;=w, [Ujk]: o 0 L (18)
In this case, the secular equation can be solved analyti-
0O c —-s O

cally [40,42. The corresponding eigen-statg |2), |3), and
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FIG. 2. Energy levels of fully anisotropic Mu witly/27 =80 MHz, wy/27=100 MHz, w,/27=130 MHz. (a) Euler angles &,3,v)
=(30°,0°,0°), where th&Z symmetry axis of Mu points in the field direction. A level crossing occurs betweeland E; below T
=2mT. (b) (a,B,y)=(30°,10°,0°), where th& axis points away from the field direction. The two lev&ls and E; avoid, rather than
cross.(c) (a,8,v)=(30°,80°,0°).(d) (a,B,y)=(30°,90°,0°). In this case, theX symmetry axis of Mu is in the fiel¢) direction, leading

to a levelcrossingbetweenE; andE,.

2. Axially symmetric Mu in zero field

In zero field, wherew , =w_=0, two eigenenergies of
axially anisotropic Mu are degenerate. In the casewgf
= wy, the eigenvalues,, w,, w3, andw, are obtained as

One can show that, in zero field, the singlet Mu st&g)
=(a,Be— Buae)/2 is the energy eigen-state corresponding
to the eigenenergw,, regardless of the orientation of Mu.
This means that the other three eigenstdtes|2), and|3),

are linear combinations of the triplet states only, which im-

plies from Eq(12) thatU;,=U;z for j=1, 2, and 3. One can

(cosyy+icosyy)/siny,
—(Cosy,+i cosyy)/tany,

(20

COSy,+i Ccosyy

w1= w74, wy;=willd, w3=(2wx— wz)/4,
(199  directly solve Eqs(13) to obtain
ws=—(2wx+ wz)/4.
(cosyx—icosyy)/siny, 0 0
1 | (cosys—icosyy)/tany, siny, siny,
[Uil= 2 — oSy, +i cosyy COSy, COSY,
0 1 -1

0

From Eqgs.(3) and(4), it is straightforward to show thai* HUT is a diagonal matrix with th§ elements being w; .

042505-6



ANISOTROPIC MUONIUM ATOMS: ENERGY LEVEIS. .. PHYSICAL REVIEW A 62 042505

3. Fully anisotropic Mu in zero field

In this case, the solutions of the secular equation are given by
w1=(—wxt oyt w)ld, w;=(ox— oyt oz)l4, (21
w3=(wxtoy—wz)/4, ws=(—ox—wy—wz)/4, (22

and the simultaneous Eq4.3) for [Uj,] can analytically be solved to give

—COSa,+iCcosa, COSa, COSa, COSay+icCOSay
(U= i —COsBy+icosp, CcosB, COsB, COsPBy+icospy 23
Ik V2| —cosy,+icosy, COSy, COSy, COSy,+icCosyy '

0 1 -1 0

4. One of the principal axes in the field direction

If one of the principal axes coincides with the fi¢il direction, one can easily verify from E€LO) that(),,=(),,=0, thus
the Hamiltonian matrix given by Ed8) becomes

w_+Q,, 0 0 Qo Qyy =200y
H 0 0=y QutQyy 0 | o
A 0 Ot Qyy 0, —Qy 0

Q= Oy, +2i0,, 0 0 —w_+Q,,

where the matrix takes a block form, i.e., {(®||3) subspace spanned ()= o, B and||3) =B, a. is completely decoupled
from the||1)||4) subspace. In this case, the eigenenergies can easily be calculated within each subspace separately:

(1)1=Q,+QZZ, w2=_Q+_QZZI w3=Q+_QZZY “’42_97‘*’922: (25)

where(), and()_ are defined as

Q1= Vol + (Dt Qyy)% Q=0 +(Qy— Qy))°+407,. (26)

One can obtain the matrplJ;, | by straightforward calculations as

(w_+Q_)IN_ 0 0 (Qyx— Qyy+2iQy)IN_
0 (01 Q)N = ( Qe Qyy) /N 0 27
0 (QuxtQyy)INy - (04 + Q)N 0 ’
= (Qyx= Qyy=2iQ,y)/N_ 0 0 (w_+Q_)IN_

where N, and N_ are defined adN, =20 (w,.+Q,) |1) and|3) near the field at which the matrix elemerts,

andN_=2Q (w_+Q_). Here, the order ok, w,, w3, =w_+Q,,andH;3=w, —Q,,become identical, leading to
and w, is chosen such thdtU;] becomes diagonal in the a level avoidance, as shown in Figgbil 1(d), 2(b), and
high-field limit. 2(c). If Q,,<0, the crossing is betwee) and |4) at w,

If Q,,>0, the eigenenergies; andw; will become equal =w4.
at a high field approximately given hy,=2(,,. Since the
eigenstates corresponding & and wg, i.e., [1)=Uy,|1) 5. High field

+U444) and|3)=U3J|2) + U34|3), belong to the mutually

independent|1)||4) and [2)[|3) subspaces, respectively, the If the applied field is high such that. > wy,wy,w;, the
stateg1) and|3) do not mix even atv; = w3, thus leading to  Hamiltonian matrix[Eq. (8)] becomes diagonal with the
a crossing of energy levels, rather than an avoidance, as egiagonal elementsw;=w,—Q,,, w,=w_+8Q,,, o3
emplified by Figs. ta), 1(d), 2(a), and Zd). If the principal =—-w_+Q,,, ws=—w;—Q,,, Wherew,,w,,ws;,w, are
axis does not point exactly in the field direction, nonzerolabeled in the decreasing order in the high-field limit. In this
off-diagonal matrix elements cause a strong mixing betweewase, the matri}J;, is given by
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similar set of equations for the electron by replacing the sub-
script “u” by *“ e.” Even though the muon is initially 100%
(28) spin polarized, the spins of electrons involved in Mu forma-
tions are not necessarily polarized. This leads to two possible
Mu spin states at the time of a Mu formatiofi) A-Mu
(parallel Mu, in which the electron spin is parallel to the
. ) muon spin andii) B-Mu (antiparallel My, where the two
E. Matrix elements of the spin operators spins are antiparallel to each other. In this work, the electrons
on the (1), [2), 3), 4)) basis are assumed to be unpolarized so tAa¥lu and B-Mu are
It is customary to express the muon spin polarization inproduced with the same probabilities, even though it is pos-
the xy plane by a complex number, where th@ndy pro-  sible to extend the argument presented in this work to the
jections correspond to the real and imaginary parts, respecase of polarized electrons by using a method developed for
tively, o4 = o +iol [2,31]. It is convenient to express the isotropic Mu[37].
spin operatorg’ anda¥ on the basis setl),/2),|3),4)). For
instance, the quantityj|c*|k) is the jk matrix element of

[Ujk]:

o O » O
O O O
o O O -
o » O O

2. Time evolution of the spin

o’ with respect to the eigenstatgsand k): From Eq. (32), the initial state of thisA-Mu atom in
) which both muon and electron spins are in fedirection
(ilof[k)=2(U}Uks + UUa), (29 [Eq. (31)] can be written by
(ilof|ky=UUa+UHKU = UfU—Uf Ui, (30 .
’ J : : : ¢*(0)= COS%&M'FeI&OSin?BM
where(a,|o%|B,)=2 is used.
Yo is. . Y0
F. Time evolution of the muon spin in Mu X|cos5aet e'% sin=- Bels (34)

The time evolution of the muon spin in anisotropic Mu
will be discussed in the general case, where the initial muotivhere cosy and sing, are defined in Eq¥32) and(33). By
spin in Mu is in the direction specified by a unit vec® ~ '€Wnting a,ae, a,fBe, Bua., and Ewge, in Eq. (34) in
— (cOSap,C0SB,,Co8y,), where the components & are the terms of|n) [Eq. (15)], one can cas”(0) in the following

direction cosines in the laboratory system. The foIIowingform:

identity will turn out to be useful for later discussions: A

& A
So=(cosag,Cc0spBy,C0SYo) PM0)=A|1)+A[2) +Ag[3) T A 4)=| N7 ],

3

=X(X-So) +Y(Y-Sp) +Z(Z- S), (31 Aq

where the anglesyy, By, and y, should not be confused whereA, is the coefficient ofk) given by
with the Euler anglesy, 8, and y, which specify the orien-

tation of the Mu atom in the laboratory frame. v _
Y A= ;‘lco§70+%(U;‘2+U’,§3)e'505inyo

1. Initial spin state of Mu
The muon spin statez_ﬁz and¢,, in which the muon spin +U},e? % Sinz%_ (35)
points in an arbitrary direction specified by the unit vectors
So [Ea. (31)] and =S, can be written down 9] Since |k) is an eigenstate of the Hamiltonian with the

Yo cosagy+i cospBy eigenenergyi w,, the spin state at timg ¢”(t), is obtained

f=cosma,t———— from the time-dependent Scliioger equation as
w 2 YT T2 cogyl2)
0
e—iwltAl
= E i%0 gj E —iwot
cos> a,+e'%sin 5 Bus (32 S(t)= eiiwztA2
e A
Y cosag+i cospBy e lodtp,
¢,=sin-a,————————8, _ ' ,
2 2 sin(yo/2) =e 1A 1)+ e 2 A|2) + e w3t A,[3)
. —iwgt
= Sin? @,— e 2 COS? IB# , (33) +e 4 A4|4>1 (36)

where the kth component of ¢*(t) is (k|¢™(t))
respectively, where ca% and sing, are defined by co&, =e '“dA, . The expectation value of the muon spin polar-
=C0Say/siny, and sindy=cospBy/siny,. One can obtain a ization o* can be calculated as
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ﬁﬁ (1) =( (1) o pA(1)) replacing the quantityh, in Eq. (37) by By. If A-Mn and
oPo7o B-Mn are produced with the same probability, the average
expectation value ofr* is

=22 (W11 k(K $4W)
Gaoﬁo’vo( ) [Gaoﬁo’m( )+ Gaoﬁo‘*n( )]

_ iwi t A* ;
—% e'“IKAT A(ila#(K), (37 = 3 g 5[A;Ak + B;By (jlo*|k)
7% time evolution inicial state quantity observed at ¢
whereo* is eithera’ [Eq. (29)] or o [Eq. (30)] and wj (39
=w;—wy is the energy difference between thg and [k)
states. From Egs.(35 and(38) the quantity AfA,+ B} B,)/2 can
Similarly, the initial spin stzi\te for antiparallel MiB-Mu) be expressed in terms pU ;| as
with the electron spin in the- S, direction is
Yo
Yo %(ATAk+BTBk):%(Uj1U:1+Uj2U§2)CO§?
$B(0)= cos>-a, 1 &% gin 2 ,BM
. 5,70
Y +3(Uj3U5s+ Uj4u;;4)sm27
x| sin7- are— e'% cos— Be}
+3(UjUgs+U ULy
B
Bl X 3 (cosap+i cosBy)
_ 2
Ba |’ +3(Uj3Ui +UjaU5)
B .
4 x 3 (cosay—i cospBy)
whereB, is :
K =(j| (a0, B0, v0)[K)- (40)
Bk=(U’k‘lfU§4e2'50)cos; sm? The notation(j| ¢(aq,Bo,¥0)|K) is introduced to represent

the initial muon spin state in théo direction. It should be

¥ %) noted that(j|¢(ao.Bo,v0) Ky =(k|p(ao.Bo.¥0)|i)*. The
K2 CO§7O_U§3 Sm270 e'%, (38  time evolution of the muon spin initially in the direction

specified byéo observed at time is expressed in terms of

The muon spin iB-Mu at timet, G2 oBovo(l). is obtained by (il #(ag,Bo,v0) k) as

Golome) =3 €% (kl¢(ao, Bo, 10)l7) (jlo*lk) =D e I% (o, Bo,Y0)s (41)

7k

% time evolution initial state observed at ¢

wherea* is eithera? [Eq. (30)] or o [Eq. (29)]. It should  Unlike in the case of isotropic Mu, the muon spin in aniso-
be noted that the amplitude given by tropic Mu in a transverséongitudina) field does not neces-
sarily remain in the xy plane (z axi9, i.e., both

15 (@0, 8o, v0) = (il b0, Bo, Yo K)(j|o# k) (42 |;’k'z‘(0°,90°,90°) andjf’k'i(90°,90°,0°),can be nonvanishing,

is completely specified by the matrix elemefts ] through which reflects the tensor nature of the anisotropic hyperfine

Egs.(29), (30), and(40). Concerning Eq(40), the following Interaction.
two special cases are of practical interégt:ithe transverse o _
field, where @, 80, 7o) = (0°,90°,90°) andii) the longitu- G. Transitions induced by spin exchange
dinal field, where &g,80,v0) =(90°,90°,0°): When Mu collides with a paramagnetic species with an
_ . . . unpaired electron, there is a finite probability that two un-
(j1¢(0°,90°,909|k)=z[(Uj1+U;3)(Ug; + Uis) paired electrons are exchandél,37,41,40,4p
+(Uja+t Uja) (Ui + U], (43 aea— aga(1+e2) 2+ aga(1—e)/2,
_ (45)
(il #(90°,90°,09]k)=3(Uj1Ui  +UjUG).  (44) aeB— aeB(1+e)/2+ Boa(1—€'2)/2,
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Bear— Boa(1+€2) 2+ aB(1—€4)/2, Here, one introduces a>44 matrix T*, which operates on a
(46) Mu spin state expressed in terms of a superposition of the

BeB— BB(L+E2) 24 BB(1—€1)/2, Mu hyperfine eigenstates

where the subscriptse” refer to the electron spin in the Mu X1
atom, while the electron spin states without a subscript rep- X,
resent those of paramagnetic species. This phenomenon, =X 1) +X2[2) +X3[3) + X4[4) = X3
called Heisenberg spin exchange, arises from the fact that X,
electrons obey the Pauli princidl@1,42, where the quantity

A'is the difference in phase shifts between electron spin tripand produces the spin state immediately after a collision with
let and singlet encountef81,42,5Q. The probability that a  an « paramagnetic species. In this notation, Ex) can also
collision is of the spin-flip type is given bi(1—€'*)/2]*>  pe written in the following form:

=sir?(A/2), while the spin nonflip probability is|(1

(52

+€'%)/2|2=cog(A/2). The case withh =7 (A=0) corre- Sur TS
sponds to a purely spin-fligpor nonflip) collision. It is cus- S T
tomary to define the spin-flip and spin nonflip rates as [Nya—T4n)y=T¢ 52” = Ti” , (53
3n 3n
Ase=\ siP(A/2)=nvo sif(Al2)=nvoge,  (47) O4n Tan
Ane=\ COS(A/2)=nvo cog(Al2)=nvoye, (48)  where the matrix elemerit), can be obtained from E¢51)
as
wheren is the number density of the paramagnetic species, _
is the relative velocityh ando are the rate and cross section Tin= Ojn a(1+ ety 2+ [(UfiUn1+Uj3Upg) e
for collisions, whileosg, and oy are the spin-flip and spin . N A
nonflip cross sections, respectively. It should be emphasized +(UfUna+UjsUna) BI(1—€7)/2. (54)

that \ includes collisions of both spin-flip and spin nonflip
types: A\=Aget+ Ane. More detailed interpretation fokge
and \yg and the quantum-mechanical expressions dor
osg, and oy in terms of partial-wave phase shifts can be

Thus the effect of operating§® on  [Eq. (52)] can be writ-
ten down as

= 4 -
found in Ref.[42]. S Tex.
It is important to study the effects of a collision, which T un
can be either of spin-flip or spin nonflip type, on the eigen- 4
states of Mu. Suppose that Mu is in tm state and that the X1 S Tex
muonium atom is to collide a paramagnetic species witkk an ) T An
electron. Using Eq(15), one can write down the initial state T=T Xy | T| 4 : (59
as X4 2 Tg‘ij
|n>a:Un1a,uaea+Ur‘lza,u,ﬁea—’—Un3Bp,aea+Un4B,uBea' 4
(49) 2 TEX
]
Substituting Eqs(45) and (46) in the right-hand side of this - -
equation, one can write the wave function after the collisionassuming now Eq(52) is the Mu spin state at timg, just
as before a collision, one can obtain tkth component off “y

" att, immediately after the collision and at tinteaftert,, as

|n>a,_)|n>a 2 +(Un1a',uaea+un2aﬂae,8 4
R <k|T“¢<tn>>=$ TeX;(tn),
+Un3,8,uaea+un4ﬂp.ae,8)T- (50)
4
Using Eq.(15), one can express the statese, and B, a, in KTt =ta) g(tn)) = ef'“’"(H”)zj: TiiXj(tn),  (56)

the second term ase,a.=3/_,Uf[j) and B,a.
=3¢_,Ulj). Thus the net effect of a collision with a@  respectively. It should be noted that the coefficief

paramagnetic species can be written as (j,k=1,2,3,4) containx and 3, which refer to the electron
i\ o\ 4 spin of the paramagnetic species after the collision, and that
l+e 1-e . Te(t—t,) ¥(t,) is normalized, provided thak(t,,) before the
* * n n 1 n
ma— 2 e+ 2 le [(UniUji+UnsU3)li) e collision is normalized.
. o Similarly, one can define a matrik5;, which describes
+(UnaUf+ U U158 (51)  the effect of a collision with g paramagnetic species, by
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T8 =65,B(1+e™)/2+[(USU,+U%U, . B8 lier for isotropic hydrogenlike atom@,Mu,P9 undergoing
in jn j2~¥n2 ja~n4 ) ) ? X
‘ spin exchange with spia{41,42 and spin-140] paramag-
+(URUp +UfUng)a](1-e')/2. (57 netic species.
The operato? converts the spin state given by E§2) to _ _
TPy, where thekth components off?y immediately after H. Effects of spin exchange on the muon spin
the collision att, and that at aftert, are One considers now aA-Mu atom, produced at time
4 =0 with the muon spin pointing in th&, direction [Eq.
(K| TRy ()= >, TEJ-X,- , (31)], undergoes the first collision &f. The state of this Mu
]

just before the first collision at;, *(t1), is given by Eq.
(36), where thejth componentjth row) is e*"”itloAj . Sup-
pose now that the first collision takes place with a paramag-
netic species with aa electron. The spin state immediately
after the first collision at; with an o paramagnetic species
The matricesT® and T # introduced here represent an exten-and that immediately before the second collisiot,atan be
sion to anisotropic Mu of similar quantities considered ear-written from Eq.(56) as

4
(KITA(t =ty p(ty))=e "> TEX; . (58)
J

4
<k|Ta¢A(tlo)>=; e 0T A and (59
1
4
<k|Ta<t21)¢A<tlo>>=e*”’k‘21k21 P
4

=[(1+€2)/2]e Tokt20n al+[(1—€'2)/2]D, e ieKtzig~iwktig Ui Ui 1t UfUi a) A ot
Ky

4
+[(1- eiA)/z]kE e okzig O U Uy o+ UdsUy ) A B, (60)
1

respectively, where* and8* represent the spin states aftgiof the paramagnetic species involved in the first collisioty at
From Eq.(16), one can show that the stafé(t,;) ¢”(t10) is normalized. The expectation value of a muon spin operator
[Eq. (29) or (30)] att, after a collision at, with « paramagnetic species can be calculated as

<¢A(t10)Ta(t21)|UM|Ta(t21)¢A(t10)>:% (Mt Tt ) oK) (K T*(t20) ™ (t10))
=co(A/2) Zk e'eit20p* A(j| o |k)
]
FSIP(AR)S) €0k, oAt A (jskal A i) oK)
J J1Kg

+(1+e‘iA)(1—e‘A)/4% eiwjktzlk2 e'“i'10A% Ay (UfyUy 1+ UisU 9)(jl oK)
1

+(1+eiA)(1_e—iA)/4% eiwjkt21j21 eiwjlktloAkAJ?‘l(Ule}"ll+Ujsui.klg)(j|0-M|k>,
(61)
where(j 1ki|A ,|jk) is expressed by by
(I1ka|Aglik)y=(Uj1U] 1+ U305 5) (Ui Uy 1+ UgUi a) + (U UT o+ U 30T ) (U Ui o+ UiUk ). (62)

For the case where the first collisiontatis with a 8 paramagnetic species, one can write down the expectation value of the
muon spin polarization at, by replacingT¢ in Eq. (61) by T#:
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<<Z5A('f10)'|'ﬁ('[21)|(T”|T3(t21)<Z5A('Elo)>:(3032(A/2)JZk el “ik20AX A(j| oK)

+sirt(A/2) E e""lk‘ﬂE elelklthA* A (]1k1|AB|jk><j|a"”|k>

J1kg

+<1+e*‘A><1—ef‘A)/4§ e‘“’ik‘ﬂkE e IAS Ay (UiGU o+ UggUya)(il o k)
1

+(1+e?)(1—e” 'A)/4E e'wjktn}) e""ukthAkA*(U 2Uf 2+ UjaUT ) (oK)

(63
where (j1k| A gljk)=(U;2UT 1+ U;jU 5) (UioUi 1+ URgUi a) + (UjaUT o+ UjaUT ) (UiUi 2+ UigUi ). (64)

If the spin of the paramagnetic species is not polarized so that collisionsavatid 8 paramagnetic species occur with the
same probabilities, the average of the muon spin polarization can be obtained froéEgsd (63):

Pﬁoﬁoyo(tl 12) =3[P (110 T (ton) | 0| T(to0) §(t10)) + (A (10 TA(t20) | 0| TA(t20) $(t10)) ]

—co§(A/2)2 el “ikt20A% A k<j|(r“|k>+smz(A/2)2 etz el oAk Ay (j1kg| A|jk)(j[o#[k),

J1kg

(65)

where the last two terms of Eg&1) cancel against those of E3) because of the orthogonality given by Ed6). In Eq.
(65), the quantity(j,k,|A|jk) is defined as

2(j1ka| Aljk)=(j1ke| Aol jK) + (j1ka| A gljK). (66)
By rearranging Eqs(62) and (64), one can expres§ k| A|jk) as

2(jake|Afjk)= (U} 1Ug 1+ Uf oUk2) (U1 U+ UjpU5) + (U Uk s+ U Uk ) (Ujn Ui+ U Uy

+(Uf sUi 1+ UT14Uk12)(Uj3U:1+Uj4U:2)+(Ui3Uk13+ UT aUka) (Uj3Uis+ U aURy). (67)

It is important to recognize thdj.k,|A|jk)=(jk|A|j1k:)*. One can obtain the muon spin BfMu after one collision at;
by replacingA;A, in Eq. (65) by B;B,.. The muon spin polarization observedtaiafter one collision at, averaged over the
spin direction of the paramagnetic species and éveand B-Mu is

Pl 11:12) = HL Pl (11,82) + P g (11.12) 1=COS(A2) S, (| o, B, v0) KN [K) + sir(A12)

XE e'w'kIME e'ik"19(] 1| (g, Bo, o) [Ke){J 1k A jK)(j| oK), (68)

J1ky

where(j| ¢(aq,B0,70)|K) is defined by Eq(40). The coefficient of cd§A/2) in Eq.(68) can be recognized 37 13070(t20)

[Eq. (41)], which represents the time evolution froty=0 to t, unaffected by the collision at;, consistent with the
interpretation of co%A/2) being the spin nonflip probability, while the second terms of (B6) describe a spin-flip collision
att,. With two terms together, Eq68) represents the weighted average of spin-flip and nonflip contributions. The quantities
(nm|A|jk) contain all the information on spin exchange. It is interesting to note that in each term @&8tthree pieces of
information concerning the initial wave function, spin-exchange collision, and the physical quantity obsenateatthe
expression as a simple product. Extending this to the case of two collisions, one can write the muon spin polarizatfter at
two collisions att; andt, as
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pot

@oBoY0

(t11t2-t3):COSO'(Al/Z)COS?(Az/Z)% i j| (g, Bo, o) |K)(j| oK)

+0052(A1/2)5|n2(A2/2)E e'w'kt?’zZ €121 | p( g, Bo, Yo) [K)(j 1Ka| A|jK){j|o*(K)

J1ky

+5|n2(A1/2)CO§(A2/2)2 e'w'kt312 €191 b( g, Bo, Yo) [K)(j 1ka| A|jK){j| (k)

J1kg

+S|n2(A1/2)S|n2(A2/2)2 eleidaz e"“ukl‘ﬂE e'ik"19(] 5| (g, Bo, Yo) | Ka) (i 2Kal Al 1K1)

J1kg ioka
X(j kel Aljk)(j[o*k), (69)

where o is either ¢/, [equation(29)] or ¢4 [equation(30)]. The first term of Eq.(69) is independent of, and t,,
representing two spin nonflip collisions, where spin dynamics is not affected by the two collisions. The fourth term gives the
muon spin polarization in anisotropic Mu after two spin-flip collisiongaandt,. In the case of isotropic Mu, Eq69)
reduces to a much simpler equation discussed earlier in[ BE].

One can obtain the muon spin polarization in anisotropic Mu observigolyadiveraging the quantityggﬁm(tl,tz,...,tn )

over all possible time distributions @f ,t,, ... t, for a fixedn, then overn from zero to infinity. If the collision process is
Poissonian, the statistically averaged muon polarization is givei3by

ot _ S t2 E fn ! -\t ot
P”‘Oﬁoyo _nzo fo dtlfo dtzfo dtn_lfodt e )\ Pa Bo'yo(tlitZl"-ytnvt)! (70)

where\ is the average collision rate regardless of the types of collisions, spin flip or spin nonflip. As evident fré69)Eq.
the quantityngﬁoyO(tl,tz,.. tn,t) contains 2~ spin nonflip collisions. Slncé’a 8o (tq,t5,...,t,,t) does not depend an,

at which spin nonflip collisions take place, one can carry out all the integrations with respect to times associated with spin
nonflip collisions in a straightforward mannjgg7,41]. In the present case, the result of such integrations can be written down
as

ngﬁoyo Z f dtlJ' dty - fdtn J dt, e MsF\ SFPaoﬁm{tl,tz,...,tn,t}, (71)

wherePg oBoo {t1,t5,...ty,t} is defined by

time evolution

a B . {th tz’ e tm t} — Z Z . Z 6iwj‘=(t't") ei“’u"x tan-1 . eiwln—lkn—lt2l eiwln*ntlo
0500

ik ik Inkn
X (jnl@(ao, Bo, 0)lkn) (GnknlAljn-1kn-1) - Gkl AljiEr) (Gika|AliE)  (jlo*|k) (72)
N’
initial state n consecutive spin flips quantity observed at ¢

Equation (71) shows that for a Poisson process the muon

spin polarization observed atdepends on the spin-flip rate 2 (i1l (a0, Bo,v0) K1) (j1ke|Aljk)

(Agp but not on the spin nonflip ratenf). It should be Ik

emphasized however, that for non-Poissonian processes the =(jlp(ao.Bo,¥0)|K), (74)
quanntyPa B0 (t) can depend not only on the spin-flip rate

but also on the spin nonflip rat¢37]. The quantity
P‘a’gﬁm{tl,tz,...,tn ,t} represents the muon spin polarization

aftern consecutivespin-flip collisions. It can easily be shown
from Egs.(29), (30), (40), and(67) that

%<Jlk1|A|jk><j|aﬂ|k>=<jl|oﬂ|kl>. (75)

I. Slow spin exchange

> (iokal Aljko)(itka Aljk)=(ika Aljk),  (73) In order to obtain the expression for the muon spin polar-
J1kg ization observed at timefrom Eqg. (71), it is convenient to
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treat slow and fast spin exchange separately. In this work, vy, jwqot i woat
only slow spin exchange is treated in detail, and the case of 12|12 2= € (1| #l2)(1] 012) +€23(2| ¢[3)(2]r|3)
fast spin exchange will be discussed elsewhere. _— (1|o*[2)

If Agris much less thatwy|, |wy|, and|w|, only terms =e'“12[(1|$[2),(2|$[3)] (2|a#|3)
in Eq. (72) with j=j;=j,=--=j, and k=k;=k,="--
=k, will survive the integrations with respect tg,t,,... t,
in Eq. (71) as discussed in Ref31]. In this case, Eq(72)  where the amplitudé, ,3is a product from a row vector
can be simplified as with a column vector. After one spin flip, the corresponding

coherent terms iP”“{t, ,t} can be found from Eq72) to be

(79

Pgoﬁoyo{tlatzy"'!tn!t}:% eiwjkt<j|¢(a0!30’y0)|k> ) )

gl telendi(1) | 2)(12 A|12)(1] | 2)
+elerdt-teleadi(1] g 2)(12 A |23)(2| o#(3)
+ele2dt-telo1d1( 2| | 3)(23 A|12)(1| o#|2)

X(Jk[Aljk)jla* k). (76)

Since this quantity is independent oft,,... t,, the inte-
grals in Eq.(71) lead tof dtlf 3dt, -+ [Hdt,—t"/n!. Thus

PgsBov (t) in Eq. (71) can be written as +elezdt-Weload( 2| | 3)(23 A[23)(2| o#|3)
: 1|o*|2)
. . :elwlzt 1 2 , 2 3 A2><2 <
ngﬁoyo t)zzk e'wjkt<1|¢(a0”30,70)|k> [< |¢| > < |¢| >][ 12,2 <2|O-M|3>
]

© oA = el R, (80)
><<J|0“|k>z [Ase(iK|Aljk)t]"

where[ A$;2] is a 2x 2 matrix defined as
:Zk eiwjkt'quﬂ(afofgoyo)
: ep. [(121A112) (12A23)
xexf —Nsd(1—(jKk|A|jk))t], (77 [Af2 3= (23A112) (23A]23) (81)

where [, ¢ (@0Bovo) = (il d(aoBo¥o) K)(j|o*|k) is the ini-

tial amph’[ude fore'“ik' defined by Eq.(42). Equation(77) Extending this argument to the case of many collisions, one
shows that the relaxation rate for th&”ik! precession is can show in a straightforward manner that this component
given by after n spin-flip collisions will become

A= N 1= (jK|AjK)), (78) (1]a*]2)
(2/0*(3)

iwqot 2X21n
where\%° can be expressed in terms of thlematrix ele- e21(1]412).(2/413)1[ A2z
ments through Eq(67), which also shows thajk|A|jk) S
=(jk|Aljk)*, i.e., (jk|A]jk) is a real quantity. Further- =€, RyZ2)", (82)
more, it can be showmk|A|Jk> (kJ|A|kJ> so that the
Kt iwyit
two precessing componen&s”iic ande'" have the same whereR**#is a scaler quantity defined by this equation. If

relaxation rate, even though their amplltudﬁs(aoﬁoyo) RI223% R12 2. =Rl22 Ri.5 ONE Can carry out, using

and 1} (aoBoyo) may differ from each other as shown Eq (71), the calculat|on for the Poisson average for this

in Fig 3(a) Since(nm|A|jk) can be regarded from EGZ2)  component as

as the probability that a spin-flip collision conved&nnt to

e'“ik, the quantity( jk|A|jk) is the survival probability that

the precessior'“ik' is not affected by a spin-flip collision. Py, odt)=€“1217, yiexd — (1~ Ryzp9Ngt]. (83

The quantity - (jk|A|jk) in Eq. (78), therefore, represents ' ’

the probability thate'“ik! is converted to other precession

components, thus causing dephasing. If, on the other hand, the conditionR}?>?*=R}*?®
The above argument leading to E@7) is strictly for the — =---=R:*?*=Ry, ,5 is not satisfied, the relaxation is not

case where the precession frequencigsare all different. If ~ simply exponential.

some ofwj's happen to be the same, a little more careful Equation(72) has a nonoscillatingDC) component aris-

analysis is required. For the sake of argument,det be  ing from terms withj=k, j,=k;, jo=Kk,,..., jn=Kk, that

identical tow,3 as in the case of isotropic Mu in low fields. survives the integrations with respect tp,t,,....t,. The

The component that precesses coherently with the precessioelaxation rate for this component can be calculated in the

frequencywq,= w43 before the first collisiofEq. (41)] can  following way. The time-independent muon spin polarization

be written out as before the first collisiodEq. (41)] is expressed by
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Ps‘é{tl,t}=; ]E (Gl plin)aial Alii )]

(1[o#1) =[(1]¢]1).(2| #]2),(3| $[3).(4] | ) I[ A"
2|o*|2
~LUdID. (21012 (2ol (A ol4]| 5] (1o]1)
(4|a*|4) (2l012) || goc (85)
(3[o[3) | ~1BRE"
&4 (4c+|4)
The DC component after one spin-flip collision can be writ-
ten from Eq.(72) as where[ A" is a 4x 4 matrix defined by
|
(1UA[11) (11A[22) (11A|33) (11A|44)
22 A |11 22/A|22 22/A|33 22|\ |44
[Aéé4]=<||><2||><||>< ) 9

(33A|11) (33A|22) (33A|33) (33A44) |’

(44A[10) (44A[22) (44A[33) (44A[44)

and the quantity(jj|A|kk) is given by Eq.(67). After n
spin-flip collisions, the DC component of the muon spin po-
larization is

A. Axially symmetric Mu in zero field

If the Mu atom is axially asymmetric withwy=wy
# wz, the[ U, ] matrix is given by Eq(20). In this case, one
can show from Eq(40) that

PBcltys- -t t}= 2 2 2 (inl #lin) 1 2% C D
1 n
. o . . 7. S 1 —-ib -C
X(JninlAlin-1in-1)"-(i1ialAli]) i 6 )k _1] S
(il p(aoBoyo) k) il ¢ iD 1 sa |
x(il i) | Z %
—-iD —-C Z.8 1
~[(116]1).(2/ #12) (3] 4/3).(4| #14)] * 50
¥
(1]e11) where C=cosa c0sBcosay+Sina cosBcosf,
(2|lo*(2) ; : .
X[AEEA u —sinBcosy, and D = sina C0Sap—C0Sa C0SBy. The matrix
giIU“Iji (jlot|k) can be calculated from E¢29) as
ag
:Igg(RDc)n 87) (ilo[k)
n " . . .
0 e“sing  e'“cosB —e'?
If RP°=R5°=---=RP°=Rpc, one can express the relax- el“sing 0 e“  —e“cosp
ation of the DC component as | ele cosp —gl 0 el*sing
B B e —el“cosp €e“sinB 0
Poc(t) =15cexd —(1—Rpc)Asit]. (88)
(90)
Il DISCUSSION while the matrix(j|o%|k) is from Eq.(30):
Using the method developed above, one can express the 0 cosB —sinp 0
initial amplitudes and the relaxation rates due to electron cosp 0 0 sing
spin exchange explicitly in terms of the matfil; |, which (jlot k)= . . (9D
diagonalizes the Hamiltonian. In this section, this method is —sing 0 0 cosB
applied to several specific cases of experimental relevance, 0 sinB  cosB 0

including the cases where all the experimental observables of
the muon spin rotation techniques can be expressed analyfor wyx=wy, the two energy levels are degenerate as seen
cally. from Eq. (19 and Figs. 18)-1(c), wherew;,= w»1=0, w43
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= wy3, and wi4=wy,. From Egs.(20) and (67) one can from which one obtainsR}>#=R;>%=---RI3%=R, ,,
show <131|A|13>:<144A|14>=<23|A|23>=<241A|24) =1 The observed relaxation rate is, therefore, (1
=(34A|34H=3 and <13|A|23>:_<23|A|13>:<1,44At|24> —Ry39\se=3\gd4 from Eq.(83). It turns out that all the
:_<2qu|14>:0- Thus the precession componeet$** and  precession components have the same relaxation rate.
e'?s3 have a relaxation rateXz#4 given by Eq.(78). The There are six nonoscillating terms corresponding'tt:,
relaxation rate of the'*13 (e'“2) component is obtained givz gloss giwas oz andel“2. Here, one considers the
from a matrix similar to Eq(81): expectation value of* . The amplitude of the nonoscillat-

(13A]13) (13A[23)] 1[1 0 ing com_pone_nt_ before the first collision is obtained in an

[A332]= == , expression similar to Eq84):
27| (23A]113) (23A[23) 4|0 1
|
loe=[(1l¢[1),(2| #|2).(3]$I3).(4| #]4),(1] $]2).(2| $]1)]
X[(1] o’ ]1),(2|0"]2),(3|0%[3) (4|0 ]4) (1] % |2) (2] o |1)]T, (92)
|

whereT means the transpose of _the row vector. Since the +(L)e st cosy(Z- &) coswait]
diagonal elements ofj|a* |k) vanish, this expression re-
duces to +(5)e st cosy(Z- &), (96)

) (1lo%]2)
D=[(112)(21dID)]] 15| pu|1)

—4z :Q'o e sing wherew;, are obtained from Eq19). It should be noted that
=zl ' the oscillating and nonoscillating components have different

93 elaxation rates. The quantiti@ay (t) and Pa  Bao (t)

One can verify directly that (12A]kk)=(21Alkk)  can be obtained by replacing the subscxlm EQ.(96) by y
=(kk|A|12)=(kk|A|21)=0 for k=1, 2, 3, and 4. Thus the andz, respectively. If many anisotropic Mu atoms are ori-
DC components aften spin-flip collisions can be simplified ented randomly, whil&, is fixed in the &,y,z) system, the
to

quantltyP X (t) averaged over the Euler angles, B,
andy, can be obtalned by

Pty b, o 1 =[(1] $]2),(2] 4 1)]

O.M
(AZ2)r (1]0*]2) (P sore D apy
12,2 <2| 0"“ | l>
2w
=(3)"3(Z2-S)esing, (94 “8a? f da f sinpdp f PassaroV)
where =1 cosag[e MsP24 g sl
Lo (12A]12) (12A]21) [1/4 1/j X (2 COSwyst +2 COSwost +COSwaat)], (97)
[ALz2]= (21A|12) (21AJ2D)| |14 14" ) The angle-average quantities along shandz direction are
obtained by replacing cag, in this equation by cog, and
Equation (94) meansRY°=R5°=---RP°=R/.=3. There-  cosy,, respectively.
fore, the relaxation rate for the DC componentng(l
—R%0) =N sd#2. Combining the oscillating and nonoscillating B. Fully anisotropic Mu in zero field

components calculated above and taking the real part of
P J P Using Egs.(13) and(40), one can verify directly that

(t), one can rewrite th& component of the polariza-
aoﬁ Y0

tion at timet as (il¢(@oBoyo) k)
o 1 iz-5 —iY-§ XS
Pl = (D 5 cosa X&) (cosoad oz 1wy 08
Feoswzd) 1+ (3)e s cosp (V- &) Ti vy ks o1 25| P
X (COSw,zt + COSwo4t) ] X5 V& Z-5, 1
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0 —icosy, 1icosB, CcoOsa, the special case 0fg=0, Eq.(100 should be compared to
the result by Macraet al. [24]. One can obtain the andy

i cosy, 0 —icosa, COSB, - C )
(jlot k)= . . ' components of the muon spin polarization simply by replac-
—licosB; Icosa, 0 COsy, ing the subscriptz in Eq. (100 by x andy, respectively.
cosa, Cosp; coSY, 0 Three detectors placed on the Y, and Z axes of the Mu
frame observe different sets of oscillation frequencies, e.g.,
(99

the X(Y) detector sees only, and w,3 (w13 and w,,), a
where similar matricegj|o%|k) and(j|oy|k) are obtained manifestation of the tensor nature of the anisotropic interac-
by replacing the subscrigt by x andy. Since the diagonal tion. The angle-averaged quantity can be written by
elements of(j|o*|k) and (j|o%|k) vanish, all the initial

amplitudes for the nonprecessing componentﬁ” (PZQB » (1)) apy
=(j|#|i)jla*|j) will vanish. From Eqs(23) and(67) one ororo
obtains (jk|A|jk)=%, i.e., all the precessing components 1 (2= ™ 2r  n
have the same relaxation rate\ /4. Thus the muon spin :Wfo daJ’O sinpdp o dYP 2 gy, (D)
polarization in thez direction is written down as
. =1 cosype 3 sFU4 coswi,t + COSw gt + COSw 4t

wip D= cosa,(X- Sy)e 3 s*4( 1) coswyat + COSwo4t]

+COSwogt +COSwot +COSwat].

+c0sB,(Y-Sy)e Ms?4 (1) coswy - ok ot

o Similar quantities Paoﬁovo(t»“ﬂy and<Pagﬁoy0(t)>aB7 can
+COSwogt ] +COSY,(Z- Sg)e 3 st L) be obtained by replacing the cegg by cosa, and cogB,,

respectively.

X [ COSwlzt + COS(,()34t] . (100)
. . . High field
One observes up to six precession frequencies. If one of the . . _
symmetry axes of MuX,Y,Z) is chosen as the (detection From Eq. (28) the matrices(j|¢|k), (jlo*|k), and

direction, only two oscillation frequencies are observed. In{j|o%|k) are written down as

1 Yo 1
—sinf— — —i 0 0
3 sir? 5 7 (Cosag—i cosfy)
l l Yo
- i —CcoOS— 0 0
) 7 (Cosag+i cospy) 5 cog > .
j = 101
(il elk) . . 1% 1 | , (109
5 Sin—- Z(COSaO—I C0SpBy)
1 1 Yo
0 0 Z i Zcok 2
- 7 (C0sag+i cosfo) 5 cog 5 -
0 00O -1 0 0 O
o 2 0 0O . 0O 1 0 O
0 020 0O 0 0 1
|
From Eq.(42) the only precession components observed are C. Transverse fields

e'“2t ande'*« in thexy components, while one can directly  Eor this field configuration of practical importangd.
calculate(2 A[21)=(43A[43)=;; the relaxation rate for (43)] whereo* is measured, the amplitude for the preces-
oscillating components anesd2. One can write . " o T

sion componene""Jk‘IJ.k+(0°,90°,90°) is simplified as;, " .

P‘fﬁ , (t)=1%(cosay+i cosBy)e Msi(el wal+ gl @a3), Using Egs.(29) and (42), one can show thalt "+ (I,;))*

e (109 =0 forj#k, thatis, the imaginary parts of," andl,;" are
identical. Figure 8a) shows the absolute value of the preces-

ol _
P (t)=cosy. sion amplituded ;" for axially symmetric Mu withwy/27

aoBoYo
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FIG. 3. Axially symmetric Mu withwy/277=80 MHz, w/27

=80MHz, w,/27=130MHz at the Euler angles a(B,7)
=(0°,10°,0°).(a) The absolute value of the amplltuﬂtﬁﬂ for the
precession componemt®ik' for the transverse field conflguratlon
[Eq. (43)], whered”; is measured. The labélk) represent$l
Above the high-field avoidance &8=0.48T onIyI and | 5,

are observable(b) The transverse relaxation rate in units )ojF
calculated from Eq(78). Because of jk|A|jk)=(kj|A|kj), the
two precessing componengs“ikt and e'“«it have the same relax-
ation rate.

=80 MHz, wy/27=80 MHz, andwz/27=130 MHz for
Euler angles ¢,8,y) =(0°,10°,0°), where the matri}{J;, ]
was calculated numerically. Near the low-field avoidance,
nearB=1.5mT, the amphtude's,*l;T show complex field de-
pendencies because of the avoidance betweerand E;
shown in Fig. lb) Above the high-field avoidanc®
>480 mT, onlyl;;" andl/; are observable in agreement
with Eq. (103). Figure 3b) shows the transverse relaxation
rate for the same Mu in units of the spin-flip ratge. From
Eqg. (67) one can show the precession componeia]itEa\'‘*’Jkt
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FIG. 4. The relaxation rate for the nonoscillatifigC) compo-
nent in the longitudinal configuration near the high-field avoiding or
crossing field for an axially symmetric Mu witky/27=80 MHz,
wy/27m=80 MHz, w,/27=130 MHz.

relaxation rate is Bg¢/4 as given by Eq(100. The relax-
ation rates show complex field dependencies near the low-
field crossing, while the high-field crossing has no effect.

D. Longitudinal fields
In this section, one investigates the nonoscillating compo-

y7a
nent ofP”ZB y (t) in the case where the initial muon spin
%0P0Y0

polarization is in thez direction[Eqg. (44)]. Using Eqs.(30)
and(71), one can write the DC term before the first collision
as

IDC:; 7(Uj1Uf1+UjpU5)

X (U Uj1+USU ,— U%U 53— URU ). (104

The DC component after one amdspin-flip collisions can

be obtained from Eq$85) and(87), respectively. The quan-

tities RY°,RY°,R5C, ... arecalculated numerically for the

cases of wy/2r=80MHz, wy/27=80MHz, w,/27

=130MHz for B=1°, 10°, 45°, 80°, and 89° with fixed

a=0° and y=0°, where it is found RP“=RD°=R5®
=Rpc . Figure 4 shows the Iongltudlnal relaxatlon rate,

N ,:(1 Rpe), calculated numerically in units ofsg, where

a relaxation maximum occurs at the field of energy level

€avoidance betweeli; andE,. As the angle3 approaches 0°

or 90°, the peak narrows considerably and eventually disap-

pears at3=0° or 90°, where th& or X axis points in the

field direction. Such a relaxation rate maximum was ob-

served experimentally in axially symmetric Mu mtype Si

by Chowet al.[16] and Krasnoperoy22] and the phenom-

enon was satisfactorily interpreted by an effective magnetic-

field approximatior] 16] that replaces the anisotropic hyper-

and IJ'T 'ewi have the same relaxation rate. The low-fieldfine interaction(tensoy by an effective fieldvecto. In the
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FIG. 5. The amplitude and relaxation rate of the DC component near the low-field avoiding/crossing field for an axially symmetric Mu
with wy/27m=80 MHz, wy/27m=80 MHz, w,/2m=130 MHz at the Euler anglese(B,y)=(0°,8,0°). (a) The amplitude for Euler angle
B=5°, 30°, 60°, and 85%b) The relaxation rate foB=5°, 30°, 60°, and 85°%c) The amplitude and the relaxation rate averaged over the
random uniform distribution of3, showing a relaxation rate maximum below the low-field crossing or avoidance.

following, an alternative interpretation of the maximum is e. Furthermore, it is assumed that one of the principal axes

given, where the tensor nature of the anisotropic interactiomakes a small angle with the z axis. Because of E|10)

is fully taken into account. with 8= 7, the matrix elements),,+iQ,, andQ,,—iQ,,
Here one considers a high field so thab, are proportional to the small parametgrThus one can write

>|wy|,|wy|,| 07| so that all the off-diagonal elements of the down the equations that determine the eigengjata the

Hamiltonian[Eq. (8)] are characterized by a small parameterfollowing form:

o_+Q;,~ o n€J1o n€g1o €014 Ui,
7€g1, —0.— 0 ;) €923 — €912 Uj, 0 (105
7€97; €033 0= Oy w; — €012 Ujs '
€g7, — €9y, — 1€gy, —o_+0,,~ w; Ui

042505-19



MASAYOSHI SENBA PHYSICAL REVIEW A 62 042505

Since the HamiltoniarfH] in this case isalmost diagonal gitudinal configuration near the low-field crossing avoiding,
because ofw. > €|g;x|> 7e|gj|, the four eigenvalues are where the amplitudé(B) and the relaxation rat(B) are
approximately w1 =w_+Q,,, w,=—w,;—Q,,, wz3=w, calculated directly fronjUj, ] numerically as a function of
—Q,,, and w,=—w_+Q,,. If Q,,.>0, theH;; andH33  Euler angleg for fixed a=0° andy=0°. Oncel(B) and
matrix elements become identical near the crossing or avoidk(8) are calculated, the time dependence of the muon polar-

ing field v, —w_=w,=2Q,,. Forj=1 or 3, the two di- ization averaged fop can be expressed as

agonal elements ofh]=[H—-%wl], ie., h;;=w_+Q,, 1

—o;j andhgz=w —Q,,— 0, simultaneously become small P(t :_f”d sinB1(B)exd —\(B)t]. 106
guantities near the high-field crossing or avoidance, while ® 2Jo Bsinpl(Bexd —NA] (10§

the other two diagonal elements, and h,, remain much . o
larger. If hy; and has become much smaller than the off- The quantityP(t) calculated in this way was found to decay

diagonal elemenh;s= 7eg;, at a certain field, one obtains with time nearly exponentially. The the averaged initial am-
T I TS 2. 2. 2 plitude I=P(0) and the average decay constant calculated
U~U~Usp~Uz~0 and  [Uyy|*~|Ug*~|Ug S
~|Usd?~1, thus one can choo§a>~(aﬂae+ﬂﬂae)/\/2 frc_)m )\=—_(1/t)ln P(t) are pIotteq in Fig. {c). The_ (elaxj
and |3)~(a,ae— B,a0)/v2, which means a strong mixing ation maximum near 'the low-field cro_ssmg/avmdlng f|el_d
of a,a, andB,a in |1) and|3) near the avoidance field. If [Figs. b) and Jc)], which has not been investigated experi-
the anglez between the principal axes and theaxis be- ~Mentally, should provide valuable information on the energy
comes extremely small, the condition for strong mixing, '€VelS and spin dynamics in anisotropic Mu.
|hia], |hag < me|lgqy, is satisfied only for a small range of
magnetic field neaw ,=2(),,. This explains why the relax-
ation peaks for the Euler angjg=1 and 89 in Fig. 4 are It was shown that the energy levels for anisotropic Mu
narrow. If =0, the HamiltoniarH reduces to a block form can be obtained analytically and that the mafrix; ] that
and the two states, @, and 8,a, cannot mix, leading to diagonalizes the Hamiltonian can be written down analyti-
|1)~a,a. and|3)~ B, a. even at the crossing field. In this cally for several important cases. Onpg | is obtained,
case, bothA-Mu(a,a.) and B-Mu(«,B.) are nearly analytically or otherwise, all the experimental observables in
eigenstates. Thus electron spin-flip collisions that change theSR, including the amplitude, phase, and relaxation rate, can
electron spin but not the muon spin will have no effects onexplicitly be expressed in terms of the matrix elements
the muon spin, which accounts for the disappearance of thgu;,]. The amplitude and relaxation rate near level crossing
relaxation peak g8= »=0. It should be mentioned that lon- or avoidance fields are discussed in detail. Finally, it should
gitudinal field dependences of the relaxation rate similar tdbe mentioned that the method developed here is currently
those in Fig. 4 are discussed by Roduftt] in the context applied to the casesi) the lifetimes of anisotropic positro-
of the reorientational dynamics of radicals containing Mu. nium on surfaces(ii) anisotropic Mu undergoing both spin
Figures %a)—5(c) show the amplitude and relaxation rate exchange and charge exchangé, spin exchange of Mu
of the DC component in axially symmetric Mu withy/27 radicals containing nuclear spins, afid) muon spin dynam-
=80MHz, wy/2m=80MHz, w,/27m=130MHz in the lon- ics on anisotropic Mu in the gas phase.
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