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Anisotropic muonium atoms: Energy levels and electron spin exchange
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The time evolution of the muon spin in fully anisotropic muonium (Mu5m11e2) in the presence of
Heisenberg spin exchange has been investigated theoretically. First, the energy levels of anisotropic Mu as a
function of field are investigated analytically with a particular emphasis on the crossing and avoidance of
energy levels at certain magnetic fields, which have important consequences in muon spin dynamics. Second,
the knowledge of the energy levels is applied to investigate the muon spin depolarization due to electron spin
exchange with spin-12 paramagnetic species, where the muon spin depolarization rate and the precession
amplitude observed by the muon-spin-rotation~mSR! technique are explicitly expressed solely in terms of the
matrix that diagonalizes the anisotropic Mu hyperfine Hamiltonian. The treatment presented here represents a
special systematic and practical method that allows one to investigate the time evolution of the muon spin in
anisotropic Mu in the presence of electron spin exchange. Several concrete examples are discussed in detail,
including those in which all themSR observables can be obtainedanalytically. The method developed in this
work is used to explain the relaxation rate maximum in anisotropic Mu in semiconductors observed at the
longitudinal fields at which two of the Mu energy levels avoid each other due to a strong level mixing or
avoidance, where the present formalism takes the tensor nature of the anisotropic hyperfine interaction fully
into account without invoking the convenient but not necessarily correct notion of an effective magnetic field
in an anisotropic Mu. Also discussed is the possibility of observing additional relaxation maximum at a
low-avoidance field, where the effective magnetic-field approximation completely breaks down. Observation of
such a maximum will provide valuable information on the parameters characterizing the anisotropic Mu in
question. The formalism presented here can also be applied to anisotropic positronium on surfaces, anisotropic
Mu undergoing both charge exchange and spin exchange, and fast spin exchange.

PACS number~s!: 36.10.Dr, 34.50.2s, 76.75.1i
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I. INTRODUCTION

The muon-spin-rotation~mSR! technique@1–5# takes ad-
vantage of two important consequences of the parity vio
tion in the weak interaction: first, the spin of the muon pr
duced in the pion decayp1→m11nm is nearly 100%
polarized in the rest frame of the pion, and second, the de
positron from the muon decaym1→e11ne1 n̄m is emitted
preferentially in the direction of the muon spin@6#. By mea-
suring the counting rate of the decay positrons as a func
of time, one can study the time evolution of the muon s
polarization.

Muonium (Mu5m11e2) is a hydrogenlike bound stat
of a positive muon and an electron, analogous to hydro
(H5p11e2). Since m1 is about 200 times heavier tha
e2, the reduced mass of Mu is essentially the electron m
Thus Mu has a virtually identical ionization potential to H.
this sense, Mu can be regarded as a light isotope of H. S
the advent of themSR technique, the atomic and chemic
properties of Mu in the gas phase have been investig
extensively and results are compared to those of H in
context of isotope mass effects@7#.

The Mu atom in vacuum has an isotropic hyperfine int
action characterized by the interaction energyvhf/2p
54.463 GHz. The chemical reaction rates of isotropic M
have been measured in reactions such as Mu1H2
→MuH1H @8# and Mu1X2→MuX1X ~where X5F, Cl,
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Br! @9#, in the gas phase. If reaction partners of Mu a
paramagnetic species having at least one unpaired elec
Mu undergoes electron spin-flip collisions, which affec
through the Mu hyperfine interaction, the muon spin pol
ization. The spin-flip cross section has been obtained for s
tems such as Mu1O2 @10#, Mu1Cs @11#, and Mu1NO @12#
in the gas phase from the muon-spin depolarization r
caused by electron spin exchange.

Mu has also been observed in condensed media, inclu
semiconductors@13–20# and fullerenes@23–25#. In particu-
lar, Mu states in semiconductors have been studied ex
sively in order to obtain insights into H states that affect t
electrical and optical properties of technologically importa
material @14,21#. Two different Mu states, labeled as MuT

0

and MuBC
0 , are observed in Si, Ge, diamond, GaAs, and G

where the superscript zero refers to neutral Mu and the s
scripts T and BC denote thetetrahedral and bond-center
positions, respectively. MuT

0, which diffuses rapidly among
tetrahedral interstitial sites, has an isotropic hyperfine in
action with a reduced hyperfine interactionvhf/2p ~52.0
GHz in Si @13#! compared to Mu in vacuum~4.463 GHz!.
MuBC

0 , localized on the time scale of the muon lifetime~2.2
ms! near a bond-center position@15#, has an anisotropic hy
perfine interaction with an axial symmetry characterized
v i and v' , where the values in Si arev i/2p
5216.82 MHz andv'/2p5292.59 MHz @19,20#. MuBC

0

is also called anomalous muonium denoted by Mu* .
In the past, the connection between the depolarization

observed bymSR and the spin-flip cross section that chara
©2000 The American Physical Society05-1



h
lt

-
,

s
i-
is

r
ie

o

in
l
an
n
ra
ti

y

-
e
to
us

ef
ec

tio
fo

e
u
ex

d
t
n

ly
p

y
i

op

th

il-

f

of
Of
lev-
pin

, it
n-

e-
pic

eri-
-
the
of

s, in-

ry

ic
he
n

o-

MASAYOSHI SENBA PHYSICAL REVIEW A 62 042505
terizes spin exchange at the quantum-mechanical level
been studied theoretically by two different methods: a Bo
zmann equation approach@26–30# and a time-ordered sto
chastic method@31–42#. The Boltzmann equation method
which deals with paramagnetic species of any spin~S5 1

2 , 1,
3
2, etc.!, has been applied tomSR in a transverse as well a
longitudinal field, H-maser@43#, and stored beam exper
ments@44#. The second method, which will be used in th
work, calculates explicitly the muon spin polarization aften
consecutive binary collisions with paramagnetic spec
Pm(t1 ,t2 ,...,tn ,t), wheretk is the time of thekth collision
and t is the time of observation. One obtains the muon p
larization observed at timet by the average of
Pm(t1 ,t2 ,...,tn ,t) weighted ~i! over all possible Poisson
distributions of t1 ,t2 ,...,tn under the condition 0<t1<t2
<¯<tn<t, and ~ii ! over all possiblen from 0 to `. The
method was developed first for Mu spin exchange with sp
1
2 species~e2, Cs, NO, etc.! in transverse and longitudina
fields @31#, where paramagnetic species are unpolarized,
later extended to a number of cases: fast Mu spin excha
@34#, the transverse field dependence of the relaxation
@35#, Mu spin exchange with spin polarized paramagne
species@37#, Mu spin exchange with spin one (S51) para-
magnetic species (O2) @40#, spin exchange of H detected b
the electron spin resonance~ESR! technique@40#, spin ex-
change of positronium (Ps5e11e2) studied by the positron
lifetime ~PLT! technique@40,41#. The transverse field depen
dence of the muon spin depolarization rate, predicted th
retically in Ref.@35#, proved to be a convenient tool to use
distinguish spin exchange from chemical reactions as ca
of Mu spin depolarization@11,12,36,45#. The work based on
the time-ordered stochastic method described in R
@40,41# lead to direct comparisons of the spin-flip cross s
tions in Mu1O2 @10#, H1O2 @40,46#, and Ps1O2 @42,47#,
studied by three different experimental techniques, i.e.,mSR,
ESR, and PLT, respectively, where the spin-flip cross sec
for Ps1O2 was found to be 1000 times smaller than that
Mu1O2 @42,47#.

Even though anisotropic Mu has been investigated exp
mentally in recent years, the theoretical and quantitative
derstanding of anisotropic Mu undergoing electron spin
change, which is much more complex than the case
isotropic Mu, is still lacking. The present work will exten
the above-mentioned time-ordered stochastic method to
case of anisotropic Mu, in order to provide a systematic a
practical scheme that allows one to calculate, often ana
cally, the relaxation rate, amplitude, and phase of muon s
precessions in the presence of spin exchange directl
terms of the matrix that diagonalizes the anisotropic Ham
tonian. Here, we confine ourselves to the case of anisotr
Mu or Mu radicals, such as MuBC

0 , MuC70, MuCO, and
MuO2, where the only spins in the system are carried by
muon and electrons; i.e., there is no nuclear moment.

II. THEORY

It is convenient to use the spin functionsamae , ambe ,
bmae , and bmbe , as the basis for expressing the Ham
tonian, wheream(ae) and bm(be) represent thez compo-
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nents of the muon~electron! spin in the laboratory frame o
reference (x,y,z). First, the 434 Hamiltonian~H! matrix of
a fully anisotropic Mu in a magnetic field applied in thez
direction is expressed in terms of the Euler angles,a, b, and
g, which relate the principal axes (X,Y,Z) of the Mu hyper-
fine tensor to the laboratory system (x,y,z). By solving the
434 secular equation analytically@41#, one investigates the
four eigenvalues~\vk with k51, 2, 3, and 4! of Mu as a
function of the magnetic-field strength and the orientation
the Mu principal axes with respect to the field direction.
particular interest are crossing and avoidance of energy
els that will have important consequences in the muon s
depolarization observed bymSR. Once an eigenenergy\v j
is obtained for a given magnetic field and Mu orientation
is possible to obtain, numerically or analytically, the eige
stateuj& corresponding to\v j as a superposition ofamae ,
ambe , bmae , and bmbe , as u j &5U j 1amae1U j 2ambe
1U j 3bmae1U j 4bmbe with j 51,2,3,4.

After investigating the transitions amongu1&, u2&, u3&, and
u4& induced by electron spin-exchange collisions, the tim
ordered stochastic method will be used to study anisotro
Mu. One of the main goals here is to show that the exp
mental observables of themSR technique, including the re
laxation rate due to spin exchange, the amplitude, and
phase ofmSR signals, can be expressed explicitly in terms
U jk’s. Several concrete cases are presented as example
cluding some special cases, whereU jk’s, thus all observables
of mSR also, can be obtained analytically.

In this work, anisotropic Mu is assumed to be stationa
in the (x,y,z) system as in the case ofMuBC

0 in semiconduc-
tors. The spin exchange of rapidly rotating MuCO, MuO2,
etc., will be discussed elsewhere.

A. Euler angles

Let (X,Y,Z) be the coordinate system fixed to anisotrop
Mu, while (x,y,z) is attached to the laboratory system. T
unit vectors along thex, y, and z axes are expressed i
terms of the direction cosines in the (X,Y,Z) system:

x̂5~cosax ,cosbx ,cosgx!, ŷ5~cosay ,cosby ,cosgy!,

ẑ5~cosaz ,cosbz ,cosgz!. ~1!

Similarly, the unit vectors along theX, Y, andZ axes with
respect to the (x,y,z) system are

X̂5~cosax ,cosay ,cosaz!, Ŷ5~cosbx ,cosby ,cosbz!,

Ẑ5~cosgx ,cosgy ,cosgz!. ~2!

Sincex̂, ŷ, andẑ are unit vectors that are mutually orthog
nal, one obtains

cosan cosam1cosbn cosbm1cosgn cosgm5dnm ,
~3!

wherednm is Kronecker’sd function andn, m5x, y, andz.
Since the vector productx̂3 ŷ is equal toẑ, one obtains
5-2
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cosax cosby2cosbx cosay5cosgz ,

cosgx cosay2cosax cosgy5cosbz , ~4!

cosbx cosgy2cosgx cosby5cosaz .

Similar relations can be obtained by cyclic permutatio
x,y,z→y,z,x→z,x,y.

The components of a spin angular-momentum vector s
04250
s

en

in the (X,Y,Z) system are expressed in terms of the com
nents of the same vector seen in the (x,y,z) system as

F sX

sY

sZ

G5D~a,b,g!F sx

sy

sz

G . ~5!

The transformation matrixD(a,b,g) can be expressed by
erm and
n

ratio of
on,

-

D~a,b,g!5F cosax cosay cosaz

cosbx cosby cosbz

cosgx cosgy cosgz

G
5F cosa cosb cosg2sina sing sina cosb cosg1cosa sing 2sinb cosg

2cosa cosb sing2sina cosg 2sina cosb sing1cosa cosg sinb sing

cosa sinb sina sinb cosb
G , ~6!

where a, b, and g are the Euler angles of the three consecutive rotations around theZ, Y, and Z axes of the (X,Y,Z)
coordinate system, which initially coincides with the (x,y,z) system. It should be emphasized that the matrixD(a,b,g)
represents rotations of the coordinate system with the object of interest fixed in space.

B. Hamiltonian for anisotropic Mu

The hyperfine interaction between the muon spin and the electron spin consists of the scaler Fermi contact t
traceless dipolar terms. In an external magnetic field applied~B! in the z direction, the Hamiltonian of anisotropic Mu ca
bewritten down in terms of the Pauli spin operators as

H5
\

2
vesz

e2
\

2
vmsz

m1
\

4
vXsX

msX
e1

\

4
vYsY

msY
e1

\

4
vZsZ

msZ
e , ~7!

whereve (vm) is the Larmor precession angular velocity defined in terms of the absolute value of the gyromagnetic
the electron~muon! as ve5geB (vm5gmB), se and sm are Pauli’s spin matrices for the electron and positive mu
respectively, the lower case subscriptsx,y,z refer to the axes fixed in the laboratory frame of reference, whileX,Y,Z is the
system fixed in Mu, in which the hyperfine interaction tensor is diagonal with the principal values\vX , \vY , and\vZ .
Using the transformation matrix given in Eq.~5! one can rewrite the vector components referring to the Mu (X,Y,Z) axes,sX

m ,
sY

m , sZ
m , sX

e , sY
e , andsZ

e , in terms of the corresponding quantities in the laboratory (x,y,z) system. The matrix represen
tation of the Hamiltonian expressed on the basis set~amae , ambe , bmae , bmbe! is

H

\
5F v21Vzz Vzx2 iVyz Vzx2 iVyz Vxx2Vyy22iVxy

Vzx1 iVyz 2v12Vzz Vxx1Vyy 2~Vzx2 iVyz!

Vzx1 iVyz Vxx1Vyy v12Vzz 2~Vzx2 iVyz!

Vxx2Vyy12iVxy 2~Vzx1 iVyz! 2~Vzx1 iVyz! 2v21Vzz

G , ~8!

wherev6 are defined byv65(ve6vm)/2 andVxx , Vyy , Vzz, Vxy , Vyz , Vzx are defined by

Vxx5
1
4 @vX cos2 ax1vY cos2 bx1vZ cos2 gx#, Vyy5

1
4 @vX cos2 ay1vY cos2 by1vZ cos2 gy#,

Vzz5
1
4 @vX cos2 az1vY cos2 bz1vZ cos2 gz#, Vxy5

1
4 @vX cosax cosay1vY cosbx cosby1vZ cosgx cosgy#,

~9!

Vyz5
1
4 @vX cosay cosaz1vY cosby cosbz1vZ cosgy cosgz#,

Vzx5
1
4 @vX cosaz cosax1vY cosbz cosbx1vZ cosgz cosgx#.
5-3
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MASAYOSHI SENBA PHYSICAL REVIEW A 62 042505
The following quantity in Eq.~8! is of particular interest for
later discussions:

Vzx1 iVyz52eia sinb3 1
4 @~vX cos2 g1vY sin2 g

2vZ!cosb1~vX2vY!i cosg sing#.

~10!

If Mu is isotropic (vX5vY5vZ5v0), it can easily be veri-
fied from the orthogonality ofX̂, Ŷ, and Ẑ @Eq. ~3!# that
Vxx5Vyy5Vzz5v0/4 andVxy5Vyz5Vzx50.

C. Energy levels

One can obtain the energy eigenvalues by solving
secular equationuH2\lI u50 for l, whereI is the 434 unit
matrix. By a straightforward calculation, one can show t
the secular equation will reduce tol41a1l31a2l21a3l
1a450, where

a150, a252@v1
2 1v2

2 1 1
8 ~vX

21vY
21vZ

2!#,

a352Vzz~v1
2 2v2

2 !1 1
8 vXvYvZ ,

~11!
a45v1

2 v2
2 1v1

2 @~Vxx2Vyy!
22Vzz

2 14Vxy
2 #

1v2
2 @~Vxx2Vyy!

22Vzz
2 14VxxVyy#

1 1
4 ~2vX2vY2vZ! 1

4 ~2vX1vY1vZ!

3 1
4 ~vX2vY1vZ! 1

4 ~vX1vY2vZ!.

The quartic equation that determines the energy levels ca
solved analytically, even though this is rarely done beca
of complexities in choosing the right phases in the solutio
of the auxiliary cubic equation associated with the qua
equation. In this work, the quartic equation has been sol
analytically according to the phase convention described
Ref. @41#. Figures 1~a!–1~c! show the magnetic-field depen
dence of the energy levels~E/h5v/2p in units of MHz! of
axially symmetric Mu with the principal valuesvX/2p
580, vY/2p580, andvZ/2p5130 MHz for Euler angles
(a,b,g)5(0°,0°,0°), ~0°,10°,0°!, and ~0°,90°,0°!, where
the energy levelsE1 , E2 , E3 , and E4 are labeled in the
decreasing order of energy at a given field. In Fig. 1~a!,
where theZ axis is in the direction ofB(z), one observes
that the energy levelsE2 andE3 crossnearB51.5 mT~low-
field crossing!. In Fig. 1~b!, where theZ symmetry axis of
Mu is tilted away from the direction ofB, theE2 andE3 do
not cross anymore, but theyavoid each other~low-field
avoidance!. Similar crossing and avoidance of energy lev
are observed betweenE1 andE2 at much higher fields~high-
field crossing or avoidance!, as shown in Fig. 1~d!, where the
differenceE12E2 is plotted as a functionB for Euler angles
~0°,b,0°!. It can be seen that these two levels cross o
when one of the principal axes coincides with the direct
of the field: b50° and b590°. Figures 2~a!–2~d! show
similar low-field crossing or avoidance amongE1 , E2 , and
E3 for fully anisotropic Mu withvX/2p580, vY/2p5100,
and vZ/2p5130 MHz for Euler angles (a,b,g)
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5(30°,0°,0°), ~30°,10°,0°!, ~30°,80°,0°!, and ~30°,90°,0°!.
For the Euler angles 0°,b,90°, when theZ axis of Mu
does not point in the field direction, these energy levels w
avoid rather than cross. Crossing and avoidance are also
served betweenE1 and E2 at a high field analogous to th
case of axially symmetric Mu. ForvX5vY , where any di-
rection in theXY plane can be regarded as a principal axis
level crossing is observed, either betweenE2 andE3 at a low
field or betweenE1 andE2 at a high field, when theB field
is in theXY ~symmetry! plane. For isotropic Mu, where an
direction in space can be regarded as a principal axis,
high-field crossing betweenE1 andE2 occurs at a field given
by v052vevm /(ve2vm)'2vm regardless of~a,b,g! and
no level avoidance will take place. As seen in a later sect
these low-field as well as high-field avoidances of ene
levels will drastically affect the amplitude and relaxation ra
of mSR signals.

D. Eigenstates

The eigenstates of the Hamiltonianun& corresponding to
vn can be expressed as

un&5Un1~a,b,g!amae1Un2~a,b,g!ambe

1Un3~a,b,g!bmae1Un4~a,b,g!bmbe , ~12!

where the coefficientsUn1 , Un2 , Un3 , Un4 are obtained by
solving the eigenvalue equations

F H112\vn H12 H13 H14

H21 H222\vn H23 H24

H31 H32 H332\vn H34

H41 H42 H43 H442\vn

G
3F Un1

Un2

Un3

Un4

G50 ~13!

under the normalization conditionuUn1u21uUn2u21uUn3u2

1uUn4u251. Writing

i1&5amae , i2&5ambe , i3&5bmae , i4&5bmbe ,

~14!

one can cast Eq.~12! and its inverse relation in a more com
pact form:

un&5(
j 51

4

Un j~a,b,g!i j &, i j &5 (
k51

4

Uk j* ~a,b,g!uk&,

~15!

respectively. It is straightforward to show that@U# satisfies
the orthonormality condition

(
j 51

4

Un j~a,b,g!Uk j* ~a,b,g!5dnk ~16!
5-4
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FIG. 1. Energy levels of axially symmetric Mu withvX/2p580 MHz, vY/2p580 MHz, vZ/2p5130 MHz with the applied magnetic
field in thez direction in the laboratory frame, where the energy levelsEj5\v j are labeled in the descending order in energy at each fi
~a! Euler angles are in units of degree (a,b,g)5(0°,0°,0°), where theZ symmetry axis of Mu is in the field direction. Two levelsE2 and
E3 cross~low-field crossing! at a field nearB51.5 mT. ~b! (a,b,g)5(0°,10°,0°), where theZ symmetry axis points away from the field
The two levelsE2 and E3 now avoid ~low-field avoidance! each other, rather than cross, at a field nearB51.5 mT. ~c! (a,b,g)
5(0°,90°,0°). ~d! The differenceE12E2 is plotted as a function of field with (a,b,g)5(0°,b,0°), showing a high-field crossing o
avoidance betweenE1 andE2 depending onb value.
te
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and that U* HUT is diagonal with ^ j uU* HUTuk&
5SnmU jn* HnmUkm5Ejd jk , whereUT is the transpose of the
matrix U andd jk is Kronecker delta.

Once the eigenvalues are calculated analytically,U can be
obtained either numerically with standard routines@48# or
often analytically. In this work, the muon spin relaxation ra
due to spin exchange and the initial amplitude of each p
cession component observed bymSR are expressed explicitl
in terms of the matrix elementsU jk only. It is instructive at
this stage to investigate special cases in which the matriU
can be obtained analytically:~i! isotropic Mu, ~ii ! axially
symmetric anisotropic Mu in zero field,~iii ! fully anisotropic
Mu in zero field,~iv! anisotropic Mu with one of its principa
axes in thez direction, and~v! Mu in a high field.

1. Isotropic Mu: vXÄvYÄvZÄv0

In this case, the secular equation can be solved ana
cally @40,42#. The corresponding eigen-statesu1&, u2&, u3&, and
04250
e-

ti-

u4&, labeled in the decreasing order of their energy eigen
ues below the high-field crossing are given by@31#

u1&5amae , u2&5sambe1cbmae ,
~17!

u3&5bmbe , u4&5cambe2sbmae ,

wherec ands are field-dependent positive quantities defin
by c25(11x/Ax211)/2 and s25(12x/Ax211)/2 ex-
pressed in terms ofx5B(ge1gm)/v0 . Thus comparing this
result with Eq.~12! one obtains the matrix@U jk# as

@U jk#5F 1 0 0 0

0 s c 0

0 0 0 1

0 c 2s 0

G . ~18!
5-5
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FIG. 2. Energy levels of fully anisotropic Mu withvX/2p580 MHz, vY/2p5100 MHz, vZ/2p5130 MHz. ~a! Euler angles (a,b,g)
5(30°,0°,0°), where theZ symmetry axis of Mu points in the field direction. A level crossing occurs betweenE2 and E3 below T
52 mT. ~b! (a,b,g)5(30°,10°,0°), where theZ axis points away from the field direction. The two levelsE2 andE3 avoid, rather than
cross.~c! (a,b,g)5(30°,80°,0°).~d! (a,b,g)5(30°,90°,0°). In this case, the2X symmetry axis of Mu is in the field~z! direction, leading
to a levelcrossingbetweenE1 andE2 .
f ng
.

m-
2. Axially symmetric Mu in zero field

In zero field, wherev15v250, two eigenenergies o
axially anisotropic Mu are degenerate. In the case ofvX
5vY , the eigenvaluesv1 , v2 , v3 , andv4 are obtained as

v15vZ/4, v25vZ/4, v35~2vX2vZ!/4,
~19!

v452~2vX1vZ!/4.
04250
One can show that, in zero field, the singlet Mu stateuS0&
5(ambe2bmae)/2 is the energy eigen-state correspondi
to the eigenenergyv4 , regardless of the orientation of Mu
This means that the other three eigenstates,u1&, u2&, and u3&,
are linear combinations of the triplet states only, which i
plies from Eq.~12! thatU j 25U j 3 for j 51, 2, and 3. One can
directly solve Eqs.~13! to obtain
@U jk#5
1

& F ~cosgx2 i cosgy!/singz 0 0 ~cosgx1 i cosgy!/singz

~cosgx2 i cosgy!/tangz singz singz 2~cosgx1 i cosgy!/tangz

2cosgx1 i cosgy cosgz cosgz cosgx1 i cosgy

0 1 21 0

G . ~20!

From Eqs.~3! and ~4!, it is straightforward to show thatU* HUT is a diagonal matrix with thejj elements being\v j .
5-6
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3. Fully anisotropic Mu in zero field

In this case, the solutions of the secular equation are given by

v15~2vX1vY1vZ!/4, v25~vX2vY1vZ!/4, ~21!

v35~vX1vY2vZ!/4, v45~2vX2vY2vZ!/4, ~22!

and the simultaneous Eqs.~13! for @U jk# can analytically be solved to give

@U jk#5
1

& F 2cosax1 i cosay cosaz cosaz cosax1 i cosay

2cosbx1 i cosby cosbz cosbz cosbx1 i cosby

2cosgx1 i cosgy cosgz cosgz cosgx1 i cosgy

0 1 21 0

G . ~23!

4. One of the principal axes in the field direction

If one of the principal axes coincides with the field~z! direction, one can easily verify from Eq.~10! thatVyz5Vzx50, thus
the Hamiltonian matrix given by Eq.~8! becomes

H

\
5F v21Vzz 0 0 Vxx2Vyy22iVxy

0 2v12Vzz Vxx1Vyy 0

0 Vxx1Vyy v12Vzz 0

Vxx2Vyy12iVxy 0 0 2v21Vzz

G , ~24!

where the matrix takes a block form, i.e., thei2&i3& subspace spanned byi2&5ambe andi3&5bmae is completely decoupled
from the i1&i4& subspace. In this case, the eigenenergies can easily be calculated within each subspace separately:

v15V21Vzz, v252V12Vzz, v35V12Vzz, v452V21Vzz, ~25!

whereV1 andV2 are defined as

V15Av1
2 1~Vxx1Vyy!

2, V25Av2
2 1~Vxx2Vyy!

214Vxy
2 . ~26!

One can obtain the matrix@U jk# by straightforward calculations as

F ~v21V2!/N2 0 0 ~Vxx2Vyy12iVxy!/N2

0 ~v11V1!/N1 2~Vxx1Vyy!/N1 0

0 ~Vxx1Vyy!/N1 ~v11V1!/N1 0

2~Vxx2Vyy22iVxy!/N2 0 0 ~v21V2!/N2

G , ~27!
e

e

e

ro
ee

is
where N1 and N2 are defined asN15A2V1(v11V1)
andN25A2V2(v21V2). Here, the order ofv1 , v2 , v3 ,
and v4 is chosen such that@U jk# becomes diagonal in th
high-field limit.

If Vzz.0, the eigenenergiesv1 andv3 will become equal
at a high field approximately given byvm52Vzz. Since the
eigenstates corresponding tov1 and v3 , i.e., u1&5U11i1&
1U14i4& andu3&5U32i2&1U33i3&, belong to the mutually
independenti1&i4& and i2&i3& subspaces, respectively, th
statesu1& andu3& do not mix even atv15v3 , thus leading to
a crossing of energy levels, rather than an avoidance, as
emplified by Figs. 1~a!, 1~d!, 2~a!, and 2~d!. If the principal
axis does not point exactly in the field direction, nonze
off-diagonal matrix elements cause a strong mixing betw
04250
x-

n

u1& and u3& near the field at which the matrix elementsH11

5v21Vzz andH335v12Vzz become identical, leading to
a level avoidance, as shown in Figs. 1~b!, 1~d!, 2~b!, and
2~c!. If Vzz,0, the crossing is betweenu2& and u4& at v2

5v4 .

5. High field

If the applied field is high such thatv6@vX ,vY ,vZ , the
Hamiltonian matrix @Eq. ~8!# becomes diagonal with the
diagonal elementsv15v12Vzz, v25v21Vzz, v3
52v21Vzz, v452v12Vzz, wherev1 ,v2 ,v3 ,v4 are
labeled in the decreasing order in the high-field limit. In th
case, the matrixU jk is given by
5-7
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@U jk#5F 0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

G . ~28!

E. Matrix elements of the spin operators
on the „z1‹, z2‹, z3‹, z4‹… basis

It is customary to express the muon spin polarization
the xy plane by a complex number, where thex andy pro-
jections correspond to the real and imaginary parts, res
tively, s1

m 5sx
m1 isy

m @2,31#. It is convenient to express th
spin operatorss1

m andsz
m on the basis set~u1&,u2&,u3&,u4&!. For

instance, the quantitŷj us1
m uk& is the jk matrix element of

s1
m with respect to the eigenstatesuj& and uk&:

^ j us1
m uk&52~U j 1* Uk31U j 2* Uk4!, ~29!

^ j usz
muk&5U j 1* Uk11U j 2* Uk22U j 3* Uk32U j 4* Uk4 , ~30!

where^amus1
m ubm&52 is used.

F. Time evolution of the muon spin in Mu

The time evolution of the muon spin in anisotropic M
will be discussed in the general case, where the initial m
spin in Mu is in the direction specified by a unit vectorŜ0

5(cosa0,cosb0,cosg0), where the components ofŜ0 are the
direction cosines in the laboratory system. The followi
identity will turn out to be useful for later discussions:

Ŝ05~cosa0 ,cosb0 ,cosg0!

5X̂~X̂•Ŝ0!1Ŷ~Ŷ•Ŝ0!1Ẑ~ Ẑ•Ŝ0!, ~31!

where the anglesa0 , b0 , and g0 should not be confused
with the Euler anglesa, b, andg, which specify the orien-
tation of the Mu atom in the laboratory frame.

1. Initial spin state of Mu

The muon spin statesfm
1 andfm

2 in which the muon spin
points in an arbitrary direction specified by the unit vecto
Ŝ0 @Eq. ~31!# and2Ŝ0 can be written down as@49#

fm
15cos

g0

2
am1

cosa01 i cosb0

2 cos~g0/2!
bm

5cos
g0

2
am1eid0 sin

g0

2
bm , ~32!

fm
25sin

g0

2
am2

cosa01 i cosb0

2 sin~g0/2!
bm

5sin
g0

2
am2eid0 cos

g0

2
bm , ~33!

respectively, where cosd0 and sind0 are defined by cosd0
5cosa0 /sing0 and sind05cosb0 /sing0. One can obtain a
04250
n

c-

n

s

similar set of equations for the electron by replacing the s
script ‘‘m’’ by ‘‘ e.’’ Even though the muon is initially 100%
spin polarized, the spins of electrons involved in Mu form
tions are not necessarily polarized. This leads to two poss
Mu spin states at the time of a Mu formation:~i! A-Mu
~parallel Mu!, in which the electron spin is parallel to th
muon spin and~ii ! B-Mu ~antiparallel Mu!, where the two
spins are antiparallel to each other. In this work, the electr
are assumed to be unpolarized so thatA-Mu and B-Mu are
produced with the same probabilities, even though it is p
sible to extend the argument presented in this work to
case of polarized electrons by using a method developed
isotropic Mu @37#.

2. Time evolution of the spin

From Eq. ~32!, the initial state of thisA-Mu atom in
which both muon and electron spins are in theŜ0 direction
@Eq. ~31!# can be written by

fA~0!5Fcos
g0

2
am1eid0 sin

g0

2
bmG

3Fcos
g0

2
ae1eid0 sin

g0

2
beG , ~34!

where cosd0 and sind0 are defined in Eqs.~32! and~33!. By
rewriting amae , ambe , bmae , and bmbe in Eq. ~34! in
terms ofun& @Eq. ~15!#, one can castfA(0) in the following
form:

fA~0!5A1u1&1A2u2&1A3u3&1A4u4&5F A1

A2

A3

A4

G ,

whereAk is the coefficient ofuk& given by

Ak5Uk1* cos2
g0

2
1 1

2 ~Uk2* 1Uk3* !eid0 sing0

1Uk4* e2id0 sin2
g0

2
. ~35!

Since uk& is an eigenstate of the Hamiltonian with th
eigenenergy\vk , the spin state at timet, fA(t), is obtained
from the time-dependent Schro¨dinger equation as

fA~ t !5F e2 iv1tA1

e2 iv2tA2

e2 iv3tA3

e2 iv4tA4

G
5e2 iv1tA1u1&1e2 iv2tA2u2&1e2 iv3tA3u3&

1e2 iv4tA4u4&, ~36!

where the kth component of fA(t) is ^kufA(t)&
5e2 ivktAk . The expectation value of the muon spin pola
ization sm can be calculated as
5-8
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Ga0b0g0

A ~ t !5^fA~ t !usmufA~ t !&

5(
jk

^fA~ t !u j &^ j usmuk&^kufA~ t !&

5(
jk

eiv jktAj* Ak^ j usmuk&, ~37!

wheresm is eithers1
m @Eq. ~29!# or sz

m @Eq. ~30!# and v jk

5v j2vk is the energy difference between theuj& and uk&
states.

Similarly, the initial spin state for antiparallel Mu~B-Mu!

with the electron spin in the2Ŝ0 direction is

fB~0!5Fcos
g0

2
am1eid0 sin

g0

2
bmG

3Fsin
g0

2
ae2eid0 cos

g0

2
beG

5F B1

B2

B3

B4

G .

whereBk is

Bk5~Uk1* 2Uk4* e2id0!cos
g0

2
sin

g0

2

2S Uk2* cos2
g0

2
2Uk3* sin2

g0

2 Deid0. ~38!

The muon spin inB-Mu at timet, Ga0b0g0

B (t), is obtained by
04250
replacing the quantityAk in Eq. ~37! by Bk . If A-Mn and
B-Mn are produced with the same probability, the avera
expectation value ofs m is

~39!

From Eqs.~35! and ~38! the quantity (Aj* Ak1Bj* Bk)/2 can
be expressed in terms of@U jk# as

1
2 ~Aj* Ak1Bj* Bk!5 1

2 ~U j 1Uk1* 1U j 2Uk2* !cos2
g0

2

1 1
2 ~U j 3Uk3* 1U j 4Uk4* !sin2

g0

2

1 1
2 ~U j 1Uk3* 1U j 2Uk4* !

3 1
2 ~cosa01 i cosb0!

1 1
2 ~U j 3Uk1* 1U j 4Uk2* !

3 1
2 ~cosa02 i cosb0!

[^ j uf~a0 ,b0 ,g0!uk&. ~40!

The notation^ j uf(a0 ,b0 ,g0)uk& is introduced to represen
the initial muon spin state in theŜ0 direction. It should be
noted that^ j uf(a0 ,b0 ,g0)uk&5^kuf(a0 ,b0 ,g0)u j &* . The
time evolution of the muon spin initially in the directio
specified byŜ0 observed at timet is expressed in terms o
^ j uf(a0 ,b0 ,g0)uk& as
~41!
o-
-

,
fine

an
n-
wheresm is eithersz
m @Eq. ~30!# or s1

m @Eq. ~29!#. It should
be noted that the amplitude given by

I jk
sm

~a0 ,b0 ,g0!5^ j uf~a0 ,b0 ,g0!uk&^ j usmuk& ~42!

is completely specified by the matrix elements@U jk# through
Eqs.~29!, ~30!, and~40!. Concerning Eq.~40!, the following
two special cases are of practical interest:~i! the transverse
field, where (a0 ,b0 ,g0)5(0°,90°,90°) and~ii ! the longitu-
dinal field, where (a0 ,b0 ,g0)5(90°,90°,0°):

^ j uf~0°,90°,90°!uk&5 1
4 @~U j 11U j 3!~Uk1* 1Uk3* !

1~U j 21U j 4!~Uk2* 1Uk4* !#, ~43!

^ j uf~90°,90°,0°!uk&5 1
2 ~U j 1Uk1* 1U j 2Uk2* !. ~44!
Unlike in the case of isotropic Mu, the muon spin in anis
tropic Mu in a transverse~longitudinal! field does not neces
sarily remain in the xy plane ~z axis!, i.e., both

I
jk

sz
m

(0°,90°,90°) andI
jk

s1
m

(90°,90°,0°), can be nonvanishing
which reflects the tensor nature of the anisotropic hyper
interaction.

G. Transitions induced by spin exchange

When Mu collides with a paramagnetic species with
unpaired electron, there is a finite probability that two u
paired electrons are exchanged@31,37,41,40,42#:

aea→aea~11eiD!/21aea~12eiD!/2,
~45!

aeb→aeb~11eiD!/21bea~12eiD!/2,
5-9
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bea→bea~11eiD!/21aeb~12eiD!/2,
~46!

beb→beb~11eiD!/21beb~12eiD!/2,

where the subscripts ‘‘e’’ refer to the electron spin in the Mu
atom, while the electron spin states without a subscript r
resent those of paramagnetic species. This phenome
called Heisenberg spin exchange, arises from the fact
electrons obey the Pauli principle@31,42#, where the quantity
D is the difference in phase shifts between electron spin t
let and singlet encounters@31,42,50#. The probability that a
collision is of the spin-flip type is given byu(12eiD)/2u2
5sin2(D/2), while the spin nonflip probability isu(1
1eiD)/2u25cos2(D/2). The case withD5p (D50) corre-
sponds to a purely spin-flip~or nonflip! collision. It is cus-
tomary to define the spin-flip and spin nonflip rates as

lSF5l sin2~D/2!5nvs sin2~D/2!5nvsSF, ~47!

lNF5l cos2~D/2!5nvs cos2~D/2!5nvsNF, ~48!

wheren is the number density of the paramagnetic speciev
is the relative velocity,l ands are the rate and cross sectio
for collisions, whilesSF, andsNF are the spin-flip and spin
nonflip cross sections, respectively. It should be emphas
that l includes collisions of both spin-flip and spin nonfl
types: l5lSF1lNF. More detailed interpretation forlSF
and lNF and the quantum-mechanical expressions fors,
sSF, and sNF in terms of partial-wave phase shifts can
found in Ref.@42#.

It is important to study the effects of a collision, whic
can be either of spin-flip or spin nonflip type, on the eige
states of Mu. Suppose that Mu is in theun& state and that the
muonium atom is to collide a paramagnetic species with aa
electron. Using Eq.~15!, one can write down the initial stat
as

un&a5Un1amaea1Un2ambea1Un3bmaea1Un4bmbea.

~49!

Substituting Eqs.~45! and~46! in the right-hand side of this
equation, one can write the wave function after the collis
as

un&a→un&a
11eiD

2
1~Un1amaea1Un2amaeb

1Un3bmaea1Un4bmaeb!
12eiD

2
. ~50!

Using Eq.~15!, one can express the statesamae andbmae in
the second term asamae5( j 51

4 U j 1* u j & and bmae

5( j 51
4 U j 3* u j &. Thus the net effect of a collision with ana

paramagnetic species can be written as

un&a→ 11eiD

2
un&a1

12eiD

2 (
j 51

4

@~Un1U j 1* 1Un3U j 3* !u j &a

1~Un2U j 1* 1Un4U j 3* !u j &b]. ~51!
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Here, one introduces a 434 matrixTa, which operates on a
Mu spin state expressed in terms of a superposition of
Mu hyperfine eigenstates

c5X1u1&1X2u2&1X3u3&1X4u4&5F X1

X2

X3

X4

G ~52!

and produces the spin state immediately after a collision w
ana paramagnetic species. In this notation, Eq.~51! can also
be written in the following form:

un&a→Taun&5TaF d1n

d2n

d3n

d4n

G5F T1n
a

T2n
a

T3n
a

T4n
a
G , ~53!

where the matrix elementTjn
a can be obtained from Eq.~51!

as

Tjn
a 5d jn a~11eiD!/21@~U j 1* Un11U j 3* Un3!a

1~U j 1* Un21U j 3* Un4!b#~12eiD!/2. ~54!

Thus the effect of operatingTa on c @Eq. ~52!# can be writ-
ten down as

Tac5TaF X1

X2

X3

X4

G53
(

j

4

T1 j
a Xj

(
j

4

T2 j
a Xj

(
j

4

T3 j
a Xj

(
j

4

T4 j
a Xj

4 . ~55!

Assuming now Eq.~52! is the Mu spin state at timetn just
before a collision, one can obtain thekth component ofTac
at tn immediately after the collision and at timet after tn as

^kuTac~ tn!&5(
j

4

Tk j
a Xj~ tn!,

^kuTa~ t2tn!c~ tn!&5e2 ivk~ t2tn!(
j

4

Tk j
a Xj~ tn!, ~56!

respectively. It should be noted that the coefficientsTk j
a

( j ,k51,2,3,4) containa and b, which refer to the electron
spin of the paramagnetic species after the collision, and
Ta(t2tn)c(tn) is normalized, provided thatc(tn) before the
collision is normalized.

Similarly, one can define a matrixTn j
b , which describes

the effect of a collision with ab paramagnetic species, by
5-10
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Tjn
b 5d jnb~11eiD!/21@~U j 2* Un21U j 4* Un4!b

1~U j 2* Un11U j 4* Un3!a#~12eiD!/2. ~57!

The operatorTb converts the spin state given by Eq.~52! to
Tbc, where thekth components ofTbc immediately after
the collision attn and that att after tn are

^kuTbc~ tn!&5(
j

4

Tk j
b Xj ,

^kuTb~ t2tn!c~ tn!&5e2 ivk~ t2tn!(
j

4

Tk j
b Xj . ~58!

The matricesTa andT b introduced here represent an exte
sion to anisotropic Mu of similar quantities considered e
04250
-
-

lier for isotropic hydrogenlike atoms~H,Mu,Ps! undergoing
spin exchange with spin-1

2 @41,42# and spin-1@40# paramag-
netic species.

H. Effects of spin exchange on the muon spin

One considers now anA-Mu atom, produced at timet
50 with the muon spin pointing in theŜ0 direction @Eq.
~31!#, undergoes the first collision att1 . The state of this Mu
just before the first collision att1 ,fA(t10), is given by Eq.
~36!, where thej th component~j th row! is e2 iv j t10Aj . Sup-
pose now that the first collision takes place with a param
netic species with ana electron. The spin state immediate
after the first collision att1 with an a paramagnetic specie
and that immediately before the second collision att2 can be
written from Eq.~56! as
f the
^kuTafA~ t10!&5(
k1

4

e2 ivk1
t10Tkk1

a Ak1
and ~59!

^kuTa~ t21!f
A~ t10!&5e2 ivkt21(

k1

4

e2 ivk1
t10Tkk1

a Ak1

5@~11eiD!/2#e2 ivkt20Aka
11@~12eiD!/2#(

k1

4

e2 ivkt21e2 ivk1
t10~Uk1* Uk111Uk3* Uk13!Ak1

a1

1@~12eiD!/2#(
k1

4

e2 ivkt21e2 ivk1
t10~Uk1* Uk121Uk3* Uk14!Ak1

b1, ~60!

respectively, wherea1 andb1 represent the spin states aftert1 of the paramagnetic species involved in the first collision att1 .
From Eq.~16!, one can show that the stateTa(t21)f

A(t10) is normalized. The expectation value of a muon spin operatorsm

@Eq. ~29! or ~30!# at t2 after a collision att1 with a paramagnetic species can be calculated as

^fA~ t10!T
a~ t21!usmuTa~ t21!f

A~ t10!&5(
jk

^fA~ t10!T
a~ t21!u j &^ j usmuk&^kuTa~ t21!f

A~ t10!&

5cos2~D/2!(
jk

eiv jkt20Aj* Ak^ j usmuk&

1sin2~D/2!(
jk

eiv jkt21(
j 1k1

eiv j 1k1
t10Aj 1

* Ak1
^ j 1k1uLau jk&^ j usmuk&

1~11e2 iD!~12eiD!/4(
jk

eiv jkt21(
k1

eiv jk1
t10Aj* Ak1

~Uk1* Uk111Uk3* Uk13!^ j usmuk&

1~11eiD!~12e2 iD!/4(
jk

eiv jkt21(
j 1

eiv j 1kt10AkAj 1
* ~U j 1U j 11* 1U j 3U j 13* !^ j usmuk&,

~61!

where^ j 1k1uLau jk& is expressed byU jk by

^ j 1k1uLau jk&5~U j 1U j 11* 1U j 3U j 13* !~Uk1* Uk111Uk3* Uk13!1~U j 1U j 12* 1U j 3U j 14* !~Uk1* Uk121Uk3* Uk14!. ~62!

For the case where the first collision att1 is with a b paramagnetic species, one can write down the expectation value o
muon spin polarization att2 by replacingTa in Eq. ~61! by Tb:
5-11
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^fA~ t10!T
b~ t21!usmuTb~ t21!f

A~ t10!&5cos2~D/2!(
jk

eiv jkt20Aj* Ak^ j usmuk&

1sin2~D/2!(
jk

eiv jkt21(
j 1k1

eiv j 1k1
t10Aj 1

* Ak1
^ j 1k1uLbu jk&^ j usmuk&

1~11e2 iD!~12e2 iD!/4(
jk

eiv jkt21(
k1

eiv jk1
t10Aj* Ak1

~Uk2* Uk121Uk4* Uk14!^ j usmuk&

1~11eiD!~12e2 iD!/4(
jk

eiv jkt21(
j 1

eiv j 1kt10AkAj 1
* ~U j 2U j 12* 1U j 4U j 14* !^ j usmuk&

~63!

where ^ j 1k1uLbu jk&5~U j 2U j 11* 1U j 4U j 13* !~Uk2* Uk111Uk4* Uk13!1~U j 2U j 12* 1U j 4U j 14* !~Uk2* Uk121Uk4* Uk14!. ~64!

If the spin of the paramagnetic species is not polarized so that collisions witha andb paramagnetic species occur with th
same probabilities, the average of the muon spin polarization can be obtained from Eqs.~61! and ~63!:

Pa0b0g0

A ~ t1 ,t2!5 1
2 @^fA~ t10!T

a~ t21!usmuTa~ t21!f
A~ t10!&1^fA~ t10!T

b~ t21!usmuTb~ t21!f
A~ t10!&#

5cos2~D/2!(
jk

eiv jkt20Aj* Ak^ j usmuk&1sin2~D/2!(
jk

eiv jkt21(
j 1k1

eiv j 1k1
t10Aj 1

* Ak1
^ j 1k1uLu jk&^ j usmuk&,

~65!

where the last two terms of Eqs.~61! cancel against those of Eq.~63! because of the orthogonality given by Eq.~16!. In Eq.
~65!, the quantitŷ j 1k1uLu jk& is defined as

2^ j 1k1uLu jk&5^ j 1k1uLau jk&1^ j 1k1uLbu jk&. ~66!

By rearranging Eqs.~62! and ~64!, one can expresŝj 1k1uLu jk& as

2^ j 1k1uLu jk&5~U j 11* Uk111U j 12* Uk12!~U j 1Uk1* 1U j 2Uk2* !1~U j 11* Uk131U j 12* Uk14!~U j 1Uk3* 1U j 2Uk4* !

1~U j 13* Uk111U j 14* Uk12!~U j 3Uk1* 1U j 4Uk2* !1~U
j 13
* Uk131U j 14* Uk14!~U j 3Uk3* 1U j 4Uk4* !. ~67!

It is important to recognize that^ j 1k1uLu jk&5^ jkuLu j 1k1&* . One can obtain the muon spin ofB-Mu after one collision att1
by replacingAjAk in Eq. ~65! by BjBk . The muon spin polarization observed att2 after one collision att1 averaged over the
spin direction of the paramagnetic species and overA- andB-Mu is

Pa0b0g0

sm
~ t1 ,t2!5 1

2 @Pa0b0g0

A ~ t1 ,t2!1Pa0b0g0

B ~ t1 ,t2!#5cos2~D/2!(
jk

eiv jkt20̂ j uf~a0 ,b0 ,g0!uk&^ j usmuk&1sin2~D/2!

3(
jk

eiv jkt21(
j 1k1

eiv j 1k1
t10̂ j 1uf~a0 ,b0 ,g0!uk1&^ j 1k1uLu jk&^ j usmuk&, ~68!

where^ j uf(a0 ,b0 ,g0)uk& is defined by Eq.~40!. The coefficient of cos2(D/2) in Eq. ~68! can be recognized asGa0b0g0

sm
(t20)

@Eq. ~41!#, which represents the time evolution fromt050 to t2 unaffected by the collision att1 , consistent with the
interpretation of cos2(D/2) being the spin nonflip probability, while the second terms of Eq.~68! describe a spin-flip collision
at t1 . With two terms together, Eq.~68! represents the weighted average of spin-flip and nonflip contributions. The quan
^nmuLu jk& contain all the information on spin exchange. It is interesting to note that in each term of Eq.~68! three pieces of
information concerning the initial wave function, spin-exchange collision, and the physical quantity observed att enter the
expression as a simple product. Extending this to the case of two collisions, one can write the muon spin polarization at3 after
two collisions att1 and t2 as
042505-12
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Pa0b0g0

sm
~ t1 ,t2 ,t3!5cos2~D1/2!cos2~D2/2!(

jk
eiv jkt30̂ j uf~a0 ,b0 ,g0!uk&^ j usmuk&

1cos2~D1/2!sin2~D2/2!(
jk

eiv jkt32(
j 1k1

eiv j 1k1
t20̂ j 1uf~a0 ,b0 ,g0!uk1&^ j 1k1uLu jk&^ j usmuk&

1sin2~D1/2!cos2~D2/2!(
jk

eiv jkt31(
j 1k1

eiv j 1k1
t10̂ j 1uf~a0 ,b0 ,g0!uk1&^ j 1k1uLu jk&^ j usmuk&

1sin2~D1/2!sin2~D2/2!(
jk

eiv jkt32(
j 1k1

eiv j 1k1
t21(

j 2k2

eiv j 2k2
t10̂ j 2uf~a0 ,b0 ,g0!uk2&^ j 2k2uLu j 1k1&

3^ j 1k1uLu jk&^ j usmk&, ~69!

where sm is either s1
m @equation~29!# or sz

m @equation~30!#. The first term of Eq.~69! is independent oft1 and t2 ,
representing two spin nonflip collisions, where spin dynamics is not affected by the two collisions. The fourth term gi
muon spin polarization in anisotropic Mu after two spin-flip collisions att1 and t2 . In the case of isotropic Mu, Eq.~69!
reduces to a much simpler equation discussed earlier in Ref.@31#.

One can obtain the muon spin polarization in anisotropic Mu observed att by averaging the quantityPa0b0g0

sm
(t1 ,t2 ,...,tn ,t)

over all possible time distributions oft1 ,t2 ,...,tn for a fixedn, then overn from zero to infinity. If the collision process is
Poissonian, the statistically averaged muon polarization is given by@31#

Pa0b0g0

sm
~ t !5 (

n50

` E
0

t2
dt1E

0

t3
dt2¯E

0

tn
dtn21E

0

t

dtn e2ltlnPa0b0g0

sm
~ t1 ,t2 ,...,tn ,t !, ~70!

wherel is the average collision rate regardless of the types of collisions, spin flip or spin nonflip. As evident from Eq~69!,

the quantityPa0b0g0

sm
(t1 ,t2 ,...,tn ,t) contains 2n21 spin nonflip collisions. SincePa0b0g0

sm
(t1 ,t2 ,...,tn ,t) does not depend ontk ,

at which spin nonflip collisions take place, one can carry out all the integrations with respect to times associated w
nonflip collisions in a straightforward manner@37,41#. In the present case, the result of such integrations can be written d
as

Pa0b0g0

sm
~ t !5 (

n50

` E
0

t2
dt1E

0

t3
dt2¯E

0

tn
dtn21E

0

t

dtn e2lSFtlSF
n Pa0b0g0

sm
$t1 ,t2 ,...,tn ,t%, ~71!

wherePa0b0g0

sm
$t1 ,t2 ,...,tn ,t% is defined by

~72!
o
e

s
te

n
n

ar-
Equation ~71! shows that for a Poisson process the mu
spin polarization observed att depends on the spin-flip rat
(lSF) but not on the spin nonflip rate (lNF). It should be
emphasized, however, that for non-Poissonian processe
quantityPa0b0g0

sm
(t) can depend not only on the spin-flip ra

but also on the spin nonflip rate@37#. The quantity
Pa0b0g0

sm
$t1 ,t2 ,...,tn ,t% represents the muon spin polarizatio

aftern consecutivespin-flipcollisions. It can easily be show
from Eqs.~29!, ~30!, ~40!, and~67! that

(
j 1k1

^ j 2k2uLu j 1k1&^ j 1k1uLu jk&5^ j 2k2uLu jk&, ~73!
04250
n

the

(
j 1k1

^ j 1uf~a0 ,b0 ,g0!uk1&^ j 1k1uLu jk&

5^ j uf~a0 ,b0 ,g0!uk&, ~74!

(
jk

^ j 1k1uLu jk&^ j usmuk&5^ j 1usmuk1&. ~75!

I. Slow spin exchange

In order to obtain the expression for the muon spin pol
ization observed at timet from Eq. ~71!, it is convenient to
5-13
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treat slow and fast spin exchange separately. In this w
only slow spin exchange is treated in detail, and the cas
fast spin exchange will be discussed elsewhere.

If lSF is much less thanuvXu, uvYu, anduvZu, only terms
in Eq. ~72! with j 5 j 15 j 25¯5 j n and k5k15k25•••
5kn will survive the integrations with respect tot1 ,t2 ,...,tn
in Eq. ~71! as discussed in Ref.@31#. In this case, Eq.~72!
can be simplified as

Pa0b0g0

sm
$t1 ,t2 ,...,tn ,t%5(

jk
eiv jkt^ j uf~a0 ,b0 ,g0!uk&

3^ jkuLu jk&n^ j usmuk&. ~76!

Since this quantity is independent oft1 ,t2 ,...,tn , the inte-
grals in Eq.~71! lead to*0

t2dt1*0
t3dt2¯*0

t dtn→tn/n!. Thus

Pa0b0g0

sm
(t) in Eq. ~71! can be written as

Pa0b0g0

sm
~ t !5(

jk
eiv jkt^ j uf~a0 ,b0 ,g0!uk&

3^ j usmuk&(
n

`
e2lSFt

n!
@lSF̂ jkuLu jk&t#n

5(
jk

eiv jktI jk
sm

~a0b0g0!

3exp@2lSF~12^ jkuLu jk&!t#, ~77!

where I jk
sm

(a0b0g0)5^ j uf(a0b0g0)uk&^ j usmuk& is the ini-
tial amplitude foreiv jkt defined by Eq.~42!. Equation~77!
shows that the relaxation rate for theeiv jkt precession is
given by

l jk
obs5lSF~12^ jkuLu jk&!, ~78!

wherel jk
obs can be expressed in terms of theU matrix ele-

ments through Eq.~67!, which also shows that̂jkuLu jk&
5^ jkuLu jk&* , i.e., ^ jkuLu jk& is a real quantity. Further
more, it can be shown̂jkuLu jk&5^k j uLuk j&, so that the
two precessing componentseiv jkt and eivk jt have the same

relaxation rate, even though their amplitudesI jk
sm

(a0b0g0)

and I k j
sm

(a0b0g0) may differ from each other as show
in Fig. 3~a!. Since^nmuLu jk& can be regarded from Eq.~72!
as the probability that a spin-flip collision convertseivnmt to
eiv jkt, the quantitŷ jkuLu jk& is the survival probability that
the precessioneiv jkt is not affected by a spin-flip collision
The quantity 12^ jkuLu jk& in Eq. ~78!, therefore, represent
the probability thateiv jkt is converted to other precessio
components, thus causing dephasing.

The above argument leading to Eq.~77! is strictly for the
case where the precession frequenciesv jk are all different. If
some ofv jk’s happen to be the same, a little more care
analysis is required. For the sake of argument, letv12 be
identical tov23 as in the case of isotropic Mu in low fields
The component that precesses coherently with the preces
frequencyv125v23 before the first collision@Eq. ~41!# can
be written out as
04250
k,
of

l

ion

eiv12tI 12,23
sm

5eiv12t^1ufu2&^1usu2&1eiv23t^2ufu3&^2usu3&

5eiv12t@^1ufu2&,^2ufu3&#F ^1usmu2&
^2usmu3&G , ~79!

where the amplitudeI 12,23 is a product from a row vecto
with a column vector. After one spin flip, the correspondi
coherent terms inPsm

$t1 ,t% can be found from Eq.~72! to be

eiv12~ t2t1!eiv12t1^1ufu2&^12uLu12&^1usmu2&

1eiv12~ t2t1!eiv23t1^1ufu2&^12uLu23&^2usmu3&

1eiv23~ t2t1!eiv12t1^2ufu3&^23uLu12&^1usmu2&

1eiv23~ t2t1!eiv23t1^2ufu3&^23uLu23&^2usmu3&

5eiv12t@^1ufu2&,^2ufu3&#@L12,23
232 #F ^1usmu2&

^2usmu3&G
5eiv12tI 12,23

sm
R1

12,23, ~80!

where@L12,23
232 # is a 232 matrix defined as

@L12,23
232 #5F ^12uLu12& ^12uLu23&

^23uLu12& ^23uLu23&
G . ~81!

Extending this argument to the case of many collisions, o
can show in a straightforward manner that this compon
after n spin-flip collisions will become

eiv12t@^1ufu2&,^2ufu3&#@L12,23
232 #nF ^1usmu2&

^2usmu3&G
5eiv12tI 12,23

sm
~Rn

12,23!n, ~82!

whereRn
12,23 is a scaler quantity defined by this equation.

R1
12,235R2

12,235¯5Rn
12,235R12,23, one can carry out, using

Eq. ~71!, the calculation for the Poisson average for th
component as

P12,23
sm

~ t !5ev12tI 12,23
sm

exp@2~12R12,23!lSFt#. ~83!

If, on the other hand, the conditionR1
12,235R2

12,23

5¯5Rn
12,235R12,23 is not satisfied, the relaxation is no

simply exponential.
Equation~72! has a nonoscillating~DC! component aris-

ing from terms with j 5k, j 15k1 , j 25k2 ,..., j n5kn that
survives the integrations with respect tot1 ,t2 ,...,tn . The
relaxation rate for this component can be calculated in
following way. The time-independent muon spin polarizati
before the first collision@Eq. ~41!# is expressed by
5-14
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I DC
sm

5(
j

^ j ufu j &^ j usmu j &

5@^1ufu1&,^2ufu2&,^3ufu3&,^4ufu4&#F ^1usmu1&
^2usmu2&
^3usmu3&
^4usmu4&

G .

~84!

The DC component after one spin-flip collision can be wr
ten from Eq.~72! as
o

-

t
ro

nc
s
ly

04250
-

PDC
sm

$t1 ,t%5(
j

(
j 1

^ j 1ufu j 1&^ j 1 j 1uLu j j &^ j usmu j &

5@^1ufu1&,^2ufu2&,^3ufu3&,^4ufu4&#@LDC
434#

3F ^1usmu1&
^2usmu2&
^3usmu3&
^4usmu4&

G5I DC
sm

R1
DC, ~85!

where@LDC
434# is a 434 matrix defined by
@LDC
434#5F ^11uLu11& ^11uLu22& ^11uLu33& ^11uLu44&

^22uLu11& ^22uLu22& ^22uLu33& ^22uLu44&

^33uLu11& ^33uLu22& ^33uLu33& ^33uLu44&

^44uLu11& ^44uLu22& ^44uLu33& ^44uLu44&

G , ~86!
i

een
and the quantitŷ j j uLukk& is given by Eq.~67!. After n
spin-flip collisions, the DC component of the muon spin p
larization is

PDC
sm

$t1 ,...,tn ,t%5(
j

(
j 1

¯(
j n

^ j nufu j n&

3^ j nj nuLu j n21 j n21&¯^ j 1 j 1uLu j j &

3^ j usmu j &

5@^1ufu1&,^2ufu2&,^3ufu3&,^4ufu4&#

3@LDC
434#nF ^1usmu1&

^2usmu2&
^3usmu3&
^4usmu4&

G
5I DC

sm
~Rn

DC!n. ~87!

If R1
DC5R2

DC5¯5Rn
DC5RDC, one can express the relax

ation of the DC component as

PDC
sm

~ t !5I DC
sm

exp@2~12RDC!lSFt#. ~88!

III. DISCUSSION

Using the method developed above, one can express
initial amplitudes and the relaxation rates due to elect
spin exchange explicitly in terms of the matrix@U jk#, which
diagonalizes the Hamiltonian. In this section, this method
applied to several specific cases of experimental releva
including the cases where all the experimental observable
the muon spin rotation techniques can be expressed ana
cally.
-

he
n

s
e,
of
ti-

A. Axially symmetric Mu in zero field

If the Mu atom is axially asymmetric withvX5vY
ÞvZ , the@U jk# matrix is given by Eq.~20!. In this case, one
can show from Eq.~40! that

^ j uf~a0b0g0!uk&5
1

4F 1 Ẑ•Ŝ0 C iD

Ẑ•Ŝ0 1 2 iD 2C

C iD 1 Ẑ•Ŝ0

2 iD 2C Ẑ•Ŝ0 1

G ,

~89!

where C5cosa cosb cosa01sina cosb cosb0
2sinb cosg0 andD5sina cosa02cosa cosb0. The matrix
^ j us1

m uk& can be calculated from Eq.~29! as

^ j us1
m uk&

5F 0 eia sinb eia cosb 2eia

eia sinb 0 eia 2eia cosb

eia cosb 2eia 0 eia sinb

eia 2eia cosb eia sinb 0

G ,

~90!

while the matrix^ j usz
muk& is from Eq.~30!:

^ j usz
muk&5F 0 cosb 2sinb 0

cosb 0 0 sinb

2sinb 0 0 cosb

0 sinb cosb 0

G . ~91!

For vX5vY , the two energy levels are degenerate as s
from Eq. ~19! and Figs. 1~a!–1~c!, wherev125v2150, v13
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5v23, and v145v24. From Eqs.~20! and ~67! one can
show ^13uLu13&5^14uLu14&5^23uLu23&5^24uLu24&
5^34uLu34&5 1

4 and ^13uLu23&5^23uLu13&5^14uLu24&
5^24uLu14&50. Thus the precession componentseiv34t and
eiv43t have a relaxation rate 3lSF/4 given by Eq.~78!. The
relaxation rate of theeiv13t (eiv23t) component is obtained
from a matrix similar to Eq.~81!:

@L13,23
232 #5F ^13uLu13& ^13uLu23&

^23uLu13& ^23uLu23&
G5

1

4 F1 0

0 1G ,
th
-

g
t

-

04250
from which one obtainsR1
13,235R2

13,235¯Rn
13,235R13,23

5 1
4 . The observed relaxation rate is, therefore,

2R13,23)lSF53lSF/4 from Eq.~83!. It turns out that all the
precession components have the same relaxation rate.

There are six nonoscillating terms corresponding toeiv11,
eiv22, eiv33, eiv44, eiv12, andeiv21. Here, one considers th
expectation value ofs1

m . The amplitude of the nonoscillat
ing component before the first collision is obtained in
expression similar to Eq.~84!:
I
DC
s1

m

5@^1ufu1&,^2ufu2&,^3ufu3&,^4ufu4&,^1ufu2&,^2ufu1&#

3@^1us1
m u1&,^2us1

m u2&,^3us1
m u3&,^4us1

m u4&,^1us1
m u2&,^2us1

m u1&#T, ~92!
t
ent

ri-
where T means the transpose of the row vector. Since
diagonal elements of̂ j us1

m uk& vanish, this expression re
duces to

I
DC
s1

m

~ t !5@^1ufu2&,^2ufu1&#F ^1us1
m u2&

^2us1
m u1&G5 1

2 ~ Ẑ•Ŝ0!eia sinb.

~93!

One can verify directly that ^12uLukk&5^21uLukk&
5^kkuLu12&5^kkuLu21&50 for k51, 2, 3, and 4. Thus the
DC components aftern spin-flip collisions can be simplified
to

P
DC
s1

m

$t1 ,t2 ,...,tn ,t%5@^1ufu2&,^2ufu1&#

3@L12,21
232 #nF ^1us1

m u2&
^2us1

m u1&G
5~ 1

2 !n 1
2 ~ Ẑ•Ŝ0!eia sinb, ~94!

where

@L12,21
232 #5F ^12uLu12& ^12uLu21&

^21uLu12& ^21uLu21&
G5F1/4 1/4

1/4 1/4G . ~95!

Equation ~94! meansR1
DC5R2

DC5¯Rn
DC5RDC

1 5 1
2 . There-

fore, the relaxation rate for the DC component islSF(1
2RDC

z )5lSF/2. Combining the oscillating and nonoscillatin
components calculated above and taking the real par

P
a0b0g0

s1
m

(t), one can rewrite thex component of the polariza

tion at timet as

P
a0b0g0

sx
m

~ t !5~ 1
2 !e23lSFt/4@cosax~X̂•Ŝ0!~cosv23t

1cosv24t !#1~ 1
2 !e23lSFt/4@cosbx~Ŷ•Ŝ0!

3~cosv23t1cosv24t !#
e

of

1~ 1
2 !e23lSFt/4@cosgx~ Ẑ•Ŝ0!cosv34t#

1~ 1
2 !e2lSFt/2 cosgx~ Ẑ•Ŝ0!, ~96!

wherev jk are obtained from Eq.~19!. It should be noted tha
the oscillating and nonoscillating components have differ

relaxation rates. The quantitiesP
a0b0g0

sy
m

(t) and P
a0b0g0

sz
m

(t)

can be obtained by replacing the subscriptx in Eq. ~96! by y
and z, respectively. If many anisotropic Mu atoms are o
ented randomly, whileŜ0 is fixed in the (x,y,z) system, the

quantity P
a0b0g0

sx
m

(t) averaged over the Euler angles,a, b,

andg, can be obtained by

^P
a0b0g0

sx
m

~ t !&abg

5
1

8p2 E
0

2p

daE
0

p

sinbdbE
0

2p

dgP
a0b0g0

sx
m

~ t !

5 1
6 cosa0@e2lSFt/21e23lSFt/4

3~2 cosv23t12 cosv24t1cosv34t !#, ~97!

The angle-average quantities along they andz direction are
obtained by replacing cosa0 in this equation by cosb0 and
cosg0, respectively.

B. Fully anisotropic Mu in zero field

Using Eqs.~13! and ~40!, one can verify directly that

^ j uf~a0b0g0!uk&

5
1

4F 1 i Ẑ•Ŝ0 2 iŶ•Ŝ0 X̂•Ŝ0

2 i Ẑ•Ŝ0 1 iX̂•Ŝ0 Ŷ•Ŝ0

iŶ•Ŝ0 2 iX̂•Ŝ0 1 Ẑ•Ŝ0

X̂•Ŝ0 Ŷ•Ŝ0 Ẑ•Ŝ0 1

G , ~98!
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^ j usz
muk&5F 0 2 i cosgz i cosbz cosaz

i cosgz 0 2 i cosaz cosbz

2 i cosbz i cosaz 0 cosgz

cosaz cosbz cosgz 0

G ,

~99!

where similar matriceŝ j usx
muk& and ^ j usy

muk& are obtained
by replacing the subscriptz by x and y. Since the diagona
elements of^ j us1

m uk& and ^ j usz
muk& vanish, all the initial

amplitudes for the nonprecessing componentsI j j
sm

5^ j ufu j &^ j usmu j & will vanish. From Eqs.~23! and ~67! one
obtains ^ jkuLu jk&5 1

4 , i.e., all the precessing componen
have the same relaxation rate, 3lSF/4. Thus the muon spin
polarization in thez direction is written down as

P
a0b0g0

sz
m

~ t !5cosaz~X̂•Ŝ0!e23lSFt/4~ 1
2 !@cosv14t1cosv23t#

1cosbz~Ŷ•Ŝ0!e23lSFt/4~ 1
2 !@cosv13t

1cosv24t#1cosgz~ Ẑ•Ŝ0!e23lSFt/4~ 1
2 !

3@cosv12t1cosv34t#. ~100!

One observes up to six precession frequencies. If one o
symmetry axes of Mu~X,Y,Z! is chosen as thez ~detection!
direction, only two oscillation frequencies are observed.
ar
ly

04250
he

n

the special case oflSF50, Eq.~100! should be compared to
the result by Macraeet al. @24#. One can obtain thex andy
components of the muon spin polarization simply by repl
ing the subscriptsz in Eq. ~100! by x and y, respectively.
Three detectors placed on theX, Y, and Z axes of the Mu
frame observe different sets of oscillation frequencies, e
the X(Y) detector sees onlyv14 and v23 ~v13 and v24!, a
manifestation of the tensor nature of the anisotropic inter
tion. The angle-averaged quantity can be written by

^P
a0b0g0

sz
m

~ t !&abg

5
1

8p2 E
0

2p

daE
0

p

sinbdbE
0

2p

dgP
a0b0g0

sz
m

~ t !

5 1
6 cosg0e23lSF t/4@cosv12t1cosv13t1cosv14t

1cosv23t1cosv24t1cosv34t#.

Similar quantitieŝ P
a0b0g0

sx
m

(t)&abg and ^P
a0b0g0

sy
m

(t)&abg can

be obtained by replacing the cosg0 by cosa0 and cosb0,
respectively.

High field

From Eq. ~28! the matrices^ j ufuk&, ^ j us1
m uk&, and

^ j usz
muk& are written down as
^ j ufuk&53
1

2
sin2

g0

2

1

4
~cosa02 i cosb0! 0 0

1

4
~cosa01 i cosb0!

1

2
cos2

g0

2
0 0

0 0
1

2
sin2

g0

2

1

4
~cosa02 i cosb0!

0 0
1

4
~cosa01 i cosb0!

1

2
cos2

g0

2

4 , ~101!

^ j us1
m uk&5F 0 0 0 0

2 0 0 0

0 0 0 0

0 0 2 0

G , ^ j usz
muK&5F 21 0 0 0

0 1 0 0

0 0 21 0

0 0 0 1

G . ~102!
s-

s-
From Eq.~42! the only precession components observed
eiv21t andeiv43t in thexy components, while one can direct
calculate^21uLu21&5^43uLu43&5 1

2 ; the relaxation rate for
oscillating components arelSF/2. One can write

P
a0b0g0

s1
m

~ t !5 1
2 ~cosa01 i cosb0!e2lSFt/2~eiv21t1eiv43!,

~103!
P

a0b0g0

sz
m

~ t !5cosg0 .
e C. Transverse fields

For this field configuration of practical importance@Eq.
~43!#, wheres1

m is measured, the amplitude for the prece

sion componenteiv jktI
jk

s1
m

(0°,90°,90°) is simplified asI jk
1T .

Using Eqs.~29! and ~42!, one can show thatI jk
1T1(I k j

1T)*
>0 for j Þk, that is, the imaginary parts ofI jk

1T andI k j
1T are

identical. Figure 3~a! shows the absolute value of the prece
sion amplitudesI jk

1T for axially symmetric Mu withvX/2p
5-17



c

nt
n

ld

ow-

po-

in

n

-

e,

vel

ap-

b-

tic-
r-

n

-

or

MASAYOSHI SENBA PHYSICAL REVIEW A 62 042505
580 MHz, vY/2p580 MHz, andvZ/2p5130 MHz for
Euler angles (a,b,g)5(0°,10°,0°), where the matrix@U jk#
was calculated numerically. Near the low-field avoidan
nearB51.5 mT, the amplitudesI jk

1T show complex field de-
pendencies because of the avoidance betweenE2 and E3
shown in Fig. 1~b!. Above the high-field avoidanceB
.480 mT, only I 21

1T and I 43
1T are observable in agreeme

with Eq. ~103!. Figure 3~b! shows the transverse relaxatio
rate for the same Mu in units of the spin-flip ratelSF. From
Eq. ~67! one can show the precession componentsI jk

1Teiv jkt

and I k j
1Teivk jt have the same relaxation rate. The low-fie

FIG. 3. Axially symmetric Mu withvX/2p580 MHz, vY/2p
580 MHz, vZ/2p5130 MHz at the Euler angles (a,b,g)
5(0°,10°,0°).~a! The absolute value of the amplitudeuI jk

1Tu for the
precession componenteiv jkt for the transverse field configuratio
@Eq. ~43!#, wheres1

m is measured. The label~j,k! representsuI jk
1Tu.

Above the high-field avoidance atB50.48 T only I 21
1T and I 43

1T

are observable.~b! The transverse relaxation rate in units oflSF

calculated from Eq.~78!. Because of̂ jkuLu jk&5^k j uLuk j&, the
two precessing componentseiv jkt and eivk jt have the same relax
ation rate.
04250
e

relaxation rate is 3lSF/4 as given by Eq.~100!. The relax-
ation rates show complex field dependencies near the l
field crossing, while the high-field crossing has no effect.

D. Longitudinal fields

In this section, one investigates the nonoscillating com

nent of P
a0b0g0

sz
m

(t) in the case where the initial muon sp

polarization is in thez direction @Eq. ~44!#. Using Eqs.~30!
and~71!, one can write the DC term before the first collisio
as

I DC5(
j

1
2 ~U j 1U j 1* 1U j 2U j 2* !

3~U j 1* U j 11U j 2* U j 22U j 3* U j 32U j 4* U j 4!. ~104!

The DC component after one andn spin-flip collisions can
be obtained from Eqs.~85! and~87!, respectively. The quan
tities R1

DC,R2
DC,R3

DC,... arecalculated numerically for the
cases of vX/2p580 MHz, vY/2p580 MHz, vZ/2p
5130 MHz for b51°, 10°, 45°, 80°, and 89° with fixed
a50° and g50°, where it is found R1

DC5R2
DC5R3

DC

5¯5RDC . Figure 4 shows the longitudinal relaxation rat
lSF(12RDC), calculated numerically in units oflSF, where
a relaxation maximum occurs at the field of energy le
avoidance betweenE1 andE2 . As the angleb approaches 0°
or 90°, the peak narrows considerably and eventually dis
pears atb50° or 90°, where theZ or X axis points in the
field direction. Such a relaxation rate maximum was o
served experimentally in axially symmetric Mu inn-type Si
by Chowet al. @16# and Krasnoperov@22# and the phenom-
enon was satisfactorily interpreted by an effective magne
field approximation@16# that replaces the anisotropic hype
fine interaction~tensor! by an effective field~vector!. In the

FIG. 4. The relaxation rate for the nonoscillating~DC! compo-
nent in the longitudinal configuration near the high-field avoiding
crossing field for an axially symmetric Mu withvX/2p580 MHz,
vY/2p580 MHz, vZ/2p5130 MHz.
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FIG. 5. The amplitude and relaxation rate of the DC component near the low-field avoiding/crossing field for an axially symme
with vX/2p580 MHz, vY/2p580 MHz, vZ/2p5130 MHz at the Euler angles (a,b,g)5(0°,b,0°). ~a! The amplitude for Euler angle
b55°, 30°, 60°, and 85°.~b! The relaxation rate forb55°, 30°, 60°, and 85°.~c! The amplitude and the relaxation rate averaged over
random uniform distribution ofb, showing a relaxation rate maximum below the low-field crossing or avoidance.
is
tio

e
te

xes
following, an alternative interpretation of the maximum
given, where the tensor nature of the anisotropic interac
is fully taken into account.

Here one considers a high field so thatvm
@uvXu,uvYu,uvZu so that all the off-diagonal elements of th
Hamiltonian@Eq. ~8!# are characterized by a small parame
04250
n

r

e. Furthermore, it is assumed that one of the principal a
makes a small angleh with the z axis. Because of Eq.~10!
with b5h, the matrix elementsVzx1 iVyz and Vzx2 iVyz
are proportional to the small parameterh. Thus one can write
down the equations that determine the eigenstateuj& in the
following form:
F v21Vzz2v j heg12 heg12 eg14

heg12* 2v12Vzz2v j eg23 2heg12

heg12* eg23* v12Vzz2v j 2heg12

eg14* 2heg12* 2heg12* 2v21Vzz2v j

G F U j 1

U j 2

U j 3

U j 4

G50. ~105!
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Since the Hamiltonian@H# in this case isalmost diagonal
because ofv6@eugjku@heugjku, the four eigenvalues ar
approximatelyv15v21Vzz, v252v12Vzz, v35v1

2Vzz, and v452v21Vzz. If Vzz.0, the H11 and H33
matrix elements become identical near the crossing or av
ing field v12v25vm52Vzz. For j 51 or 3, the two di-
agonal elements of@h#5@H2\v j I #, i.e., h115v21Vzz
2v j andh335v12Vzz2v j , simultaneously become sma
quantities near the high-field crossing or avoidance, wh
the other two diagonal elementsh22 and h44 remain much
larger. If h11 and h33 become much smaller than the of
diagonal elementh135heg12 at a certain field, one obtain
U12'U14'U32'U34'0 and uU11u2'uU13u2'uU31u2
'uU33u2' 1

2 , thus one can chooseu1&'(amae1bmae)/&
and u3&'(amae2bmae)/&, which means a strong mixing
of amae andbmae in u1& and u3& near the avoidance field. I
the angleh between the principal axes and thez axis be-
comes extremely small, the condition for strong mixin
uh11u, uh33u!heug12u, is satisfied only for a small range o
magnetic field nearvm52Vzz. This explains why the relax
ation peaks for the Euler angleb51 and 89 in Fig. 4 are
narrow. If h50, the HamiltonianH reduces to a block form
and the two statesamae and bmae cannot mix, leading to
u1&'amae andu3&'bmae even at the crossing field. In thi
case, bothA-Mu (amae) and B-Mu (ambe) are nearly
eigenstates. Thus electron spin-flip collisions that change
electron spin but not the muon spin will have no effects
the muon spin, which accounts for the disappearance of
relaxation peak atb5h50. It should be mentioned that lon
gitudinal field dependences of the relaxation rate similar
those in Fig. 4 are discussed by Roduner@51# in the context
of the reorientational dynamics of radicals containing Mu

Figures 5~a!–5~c! show the amplitude and relaxation ra
of the DC component in axially symmetric Mu withvX/2p
580 MHz, vY/2p580 MHz, vZ/2p5130 MHz in the lon-
.

v.

i-
e

u

G.
hy

04250
d-

e

,

he
n
he

o

gitudinal configuration near the low-field crossing avoidin
where the amplitudeI (b) and the relaxation ratel~b! are
calculated directly from@U jk# numerically as a function of
Euler angleb for fixed a50° andg50°. OnceI (b) and
l~b! are calculated, the time dependence of the muon po
ization averaged forb can be expressed as

P~ t !5
1

2 E0

p

db sinb I ~b!exp@2l~b!t#. ~106!

The quantityP(t) calculated in this way was found to deca
with time nearly exponentially. The the averaged initial a
plitude I 5P(0) and the average decay constant calcula
from l52(1/t)ln P(t) are plotted in Fig. 5~c!. The relax-
ation maximum near the low-field crossing/avoiding fie
@Figs. 5~b! and 5~c!#, which has not been investigated expe
mentally, should provide valuable information on the ener
levels and spin dynamics in anisotropic Mu.

IV. CONCLUDING REMARKS

It was shown that the energy levels for anisotropic M
can be obtained analytically and that the matrix@U jk# that
diagonalizes the Hamiltonian can be written down analy
cally for several important cases. Once@U jk# is obtained,
analytically or otherwise, all the experimental observables
mSR, including the amplitude, phase, and relaxation rate,
explicitly be expressed in terms of the matrix eleme
@U jk#. The amplitude and relaxation rate near level cross
or avoidance fields are discussed in detail. Finally, it sho
be mentioned that the method developed here is curre
applied to the cases:~i! the lifetimes of anisotropic positro
nium on surfaces,~ii ! anisotropic Mu undergoing both spi
exchange and charge exchange,~iii ! spin exchange of Mu
radicals containing nuclear spins, and~iv! muon spin dynam-
ics on anisotropic Mu in the gas phase.
J.

G.
ev.

. R.

.

,
.

n-
@1# J. H. Brewer and K. M. Crowe, Annu. Rev. Nucl. Part. Sci.28,
239 ~1978!.

@2# D. G. Fleming, D. M. Garner, L. C. Vaz, D. C. Walker, J. H
Brewer, and K. M. Crowe, ACS Adv. Chem. Series175, 279
~1979!.

@3# D. C. Walker, Muon and Muonium Chemistry~Cambridge
University Press, Cambridge, 1983!.

@4# A. Schenck,Muon Spin Rotation Spectroscopy~Adam Hilger
Ltd., Bristol, 1985!.

@5# S. F. J. Cox, Solid State Phys.20, 3187~1987!.
@6# R. L. Garwin, L. M. Lederman, and M. Weinrich, Phys. Re

105, 1415~1957!.
@7# D. G. Fleming and M. Senba, inPerspectives of Meson Sc

ence, edited by T. Yamazaki, K. Nakai, and K. Nagamin
~North-Holland, Amsterdam, 1992!, p. 219.

@8# I. D. Reid, D. M. Garner, L. Y. Lee, M. Senba, D. J. Arsenea
and D. G. Fleming, J. Chem. Phys.86, 5578~1987!.

@9# A. C. Gonzalez, I. D. Reid, D. M. Garner, M. Senba, D.
Fleming, D. J. Arseneau, and J. R. Kempton, J. Chem. P
91, 6164~1989!.
,

s.

@10# M. Senba, D. G. Fleming, D. M. Garner, I. D. Reid, and D.
Arseneau, Phys. Rev. A39, 3871~1989!.

@11# J. J. Pan, M. Senba, D. J. Arseneau, J. R. Kempton, D.
Fleming, S. Baer, A. C. Gonzalez, and R. Snooks, Phys. R
A 48, 1218~1993!.

@12# J. J. Pan, M. Senba, D. J. Arseneau, A. C. Gonzalez, J
Kempton, and D. G. Fleming, J. Phys. Chem.99, 17160
~1995!.

@13# B. D. Patterson, Rev. Mod. Phys.60, 69 ~1988!.
@14# R. F. Kiefl and T. L. Estle, inHydrogen in Semiconductors,

edited by J. Pankove and N. M. Johnson~Academic, New
York, 1990!.

@15# R. F. Kiefl, M. Celio, T. L. Estle, S. R. Kreitzman, G. M
Luke, T. M. Riseman, and E. J. Ansaldo, Phys. Rev. Lett.60,
224 ~1988!.

@16# K. H. Chow, R. L. Lichti, R. F. Kiefl, S. Dunsiger, T. L. Estle
B. Hitti, R. Kadono, W. A. MacFarlane, J. W. Schneider, D
Schumann, and M. Shelley, Phys. Rev. B50, 8918~1994!.

@17# K. H. Chow, R. F. Kiefl, and J. W. Schneider, Hyperfine I
teract.86, 687 ~1994!.
5-20



B.

m

C
-

C
D.

. A

nd

J.
c

, R.

es,

G.

s-

ys.

et-
-

ANISOTROPIC MUONIUM ATOMS: ENERGY LEVELS . . . PHYSICAL REVIEW A 62 042505
@18# K. H. Chow, Hyperfine Interact.105, 285 ~1997!.
@19# K. W. Blazey, T. L. Estle, E. Holzschuh, W. Odermatt, and

D. Patterson, Phys. Rev. B27, 15 ~1983!.
@20# W. Odermatt, H. P. Baumeler, H. Keller, W. Ku¨ndig, B. D.

Patterson, J. W. Schneider, J. P. F. Sellschop, M. C. Stem
S. Connell, and D. P. Spencer, Hyperfine Interact.32, 583
~1986!.

@21# K. H. Chow, B. Hitti, and R. F. Kiefl, Semicond. Semimet.51,
137 ~1998!.

@22# E. P. Krasnoperov~private communication!.
@23# C. Niedermayer, I. D. Reid, E. Roduner, A. J. Ansaldo,

Bernhard, U. Binninger, H. Glu¨ckler, E. Recknagel, J. I. Bud
nick, and A. Weidinger, Phys. Rev. B47, 10 923~1993!.

@24# R. M. Macrae, K. Prassides, I. M. Thomas, E. Roduner,
Niedermayer, U. Binninger, C. Bernhard, A. Hofer, and I.
Reid, J. Phys. Chem.98, 12133~1994!.

@25# K. Prassides, Hyperfine Interact.106, 125 ~1997!.
@26# R. E. Turner, R. F. Snider, and D. G. Fleming, Phys. Rev

41, 1505~1990!.
@27# R. J. Duchovic, A. F. Wagner, R. E. Turner, D. M. Garner, a

D. G. Fleming, J. Chem. Phys.94, 2794~1991!.
@28# R. E. Turner and R. F. Snider, Phys. Rev. A50, 4743~1994!.
@29# R. E. Turner and R. F. Snider, Phys. Rev. A54, 4815~1996!.
@30# R. E. Turner and R. F. Snider, Phys. Rev. A58, 4431~1998!.
@31# M. Senba, J. Phys. B23, 4051~1990!.
@32# M. Senba, Hyperfine Interact.65, 779 ~1990!.
@33# M. Senba, A. C. Gonzalez, J. R. Kempton, D. J. Arseneau,

Pan, A. Tempelmann, and D. G. Fleming, Hyperfine Intera
04250
et,

.

.

J.
t.

65, 979 ~1990!.
@34# M. Senba, J. Phys. B24, 3531~1991!.
@35# M. Senba, J. Phys. B26, 3213~1993!.
@36# M. Senba, J. J. Pan, D. J. Arseneau, S. Baer, H. Shelley

Snooks, and D. G. Fleming, Hyperfine Interact.87, 965
~1994!.

@37# M. Senba, Phys. Rev. A50, 214 ~1994!.
@38# M. Senba, Hyperfine Interact.87, 953 ~1994!.
@39# M. Senba, Hyperfine Interact.87, 959 ~1994!.
@40# M. Senba, Phys. Rev. A52, 4599~1995!.
@41# M. Senba, Can. J. Phys.74, 385 ~1996!; ibid. 75, 117 ~1997!.
@42# M. Senba, Phys. Canada53, 305 ~1997!.
@43# H. C. Berg, Phys. Rev. A137, 1621~1965!.
@44# M. Anderle, D. Bassi, S. Ianotta, S. Marchetti, and G. Scol

Phys. Rev. A23, 34 ~1981!.
@45# D. J. Arseneau, J. J. Pan, M. Senba, M. Shelley, and D.

Fleming, Hyperfine Interact.106, 151 ~1997!.
@46# E. Roduner, P. L. W. Tregenna-Piggott, H. Dilger K. Ehren

berger, and M. Senba, J. Chem. Soc., Faraday Trans.91, 1935
~1995!.

@47# M. Senba and R. A. Dunlap, Nucl. Instrum. Methods Ph
Res. B143, 170 ~1998!.

@48# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. V
terling,Numerical Recipes~Cambridge University Press, Cam
bridge, England, 1986!.

@49# D. Bohm,Quantum Theory~Prentice-Hall, New York, 1951!.
@50# W. Happer, Rev. Mod. Phys.44, 169 ~1972!.
@51# E. Roduner, Hyperfine Interact.65, 857 ~1990!.
5-21


