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Calculation of positron binding to silver and gold atoms
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~Received 25 January 2000; revised manuscript received 9 May 2000; published 12 September 2000!

Positron binding to silver and gold atoms was studied using a fullyab initio relativistic method, which
combines the configuration-interaction method with many-body perturbation theory. It was found that the
silver atom forms a bound state with a positron with binding energy 123~630%! meV, while the gold atom
cannot bind a positron. Our calculations reveal the importance of the relativistic effects for positron binding to
heavy atoms. The role of these effects was studied by varying the value of the fine-structure constanta. In the
nonrelativistic limit,a50, both systemse1Ag ande1Au are bound with binding energies of about 200 meV
for e1Ag and 220 meV fore1Au. Relativistic corrections for a negative ion are essentially different from that
for a positron interacting with an atom. Therefore the calculation of electron affinities cannot serve as a test of
the method used for positron binding in the nonrelativistic case. However, it is still a good test of the
relativistic calculations. Our calculated electron affinities for silver~1.327 eV! and gold~2.307 eV! atoms are
in very good agreement with corresponding experimental values~1.303 and 2.309 eV, respectively!.

PACS number~s!: 36.10.2k, 31.15.Ar, 31.25.Eb
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I. INTRODUCTION

Positron binding by neutral atoms has not been dire
observed yet. However, intensive theoretical study of
problem undertaken in the last few years strongly sugg
that many atoms can actually form bound states with a p
itron ~see, e.g.@1–8#!. Most of the atoms studied so far we
atoms with a relatively small value of the nuclear chargeZ. It
is important to extend the study to heavy atoms. The m
obstacle in this way is the rapid rise of computational di
culties associated with increasing the number of electro
However, as we show in this paper, an inclusion of rela
istic effects is also important. The role of these effects
positron binding to atoms has not been properly investiga
Indeed, one can say that due to strong Coulomb repulsio
positron cannot penetrate to short distances from the nuc
and remains nonrelativistic. However, the positron binding
due to interaction with electrons that have large relativis
corrections to their energies and wave functions. The bind
energy is the difference between the energies of a neu
atom and an atom bound with a positron. This difference
usually small. On the other hand, relativistic contributions
the energies of both systems are large and there is no re
to expect they are the same and cancel each other. There
some relativistic technique is needed to study positron b
ing by heavy atoms.

For both light and heavy atoms, the main difficulty
calculations of positron interaction comes from the stro
electron-positron Coulomb attraction. This attraction leads
virtual positronium~Ps! formation @9#. One can say that i
gives rise to a specific short-range attraction between
positron and the atom, in addition to the usual polarizatio
potential, which acts between a neutral target and a cha
projectile @1,9–12#. This attraction cannot be treated acc
rately by perturbations and some all-order technique
needed. In our earlier works@1,9–12# we used the Ps wav
function explicitly to approximate the virtual Ps-formatio
contribution to the positron-atom interaction and predic
e1Mg, e1Zn, e1Cd, and a few other bound states. The sa
physics may also explain the success of the stochastic v
1050-2947/2000/62~4!/042504~7!/$15.00 62 0425
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tional method in positron-atom bound-state calculations~see,
e.g., @3# and references therein!. In this approach, the wave
function is expanded in terms of explicitly correlated Gau
ian functions that include factors exp(2arij

2) with interpar-
ticle distancesr i j . Using this method, Ryzhikh and Mitroy
obtained positron bound states for a whole range of ato
~Be, Mg, Zn, Cu, Ag, Li, Na, etc.!. This method is well
suited for few-particle systems. Its application to heavier s
tems is done by considering the Hamiltonian of the valen
electrons and the positron in the model potential of the io
core. However, for heavier atoms, e.g., Zn, the calculat
becomes extremely time consuming@5#, and its convergence
cannot be ensured.

Another nonperturbative technique is the configuration
teraction~CI! method widely used in standard atomic calc
lations. This method was applied to the positron-cop
bound state in@6#. In this work, the single-particle orbitals o
the valence electron and positron are chosen as Slater-
orbitals, and their interaction with the Cu1 core is approxi-
mated by the sum of the Hartree-Fock and model polar
tion potentials. The calculation shows slow convergen
with respect to the number of spherical harmonics includ
in the CI expansion,Lmax510 being still not sufficient to
extrapolate the results reliably toLmax→`. In their more re-
cent work, the same authors applied the CI method to a
liminary analysis of such systems as PsH,e1Cu, e1Li,
e1Be, e1Cd, and CuPs.

In our previous paper, we developed a different version
the CI method for the positron-atom problem@13#. The
method is based on the relativistic Hartree-Fock meth
~RHF! and a combination of the CI method with many-bo
perturbation theory~MBPT!. This method was first devel
oped for pure electron systems@14#, and its high effective-
ness was demonstrated in a number of calculations@16–18#.
In the paper@13#, it was successfully applied to the positro
binding by copper. There are several important advance
the technique as compared to the standard nonrelativisti
method that make it a very effective tool for the investigati
of positron binding by heavy atoms:

~1! The method is relativistic in the sense that the Dira
©2000 The American Physical Society04-1



tiv
n

tr
le
th
ns
ng

d

re
lu
rn
-
ns
o

le
la
es
t
th
er
h
e

ef
he
ck
-

en

e-

il-
and

-

la-
-

t

self-
rnal

are
th

ex-

tion

e

.

va

n

ion

V. A. DZUBA, V. V. FLAMBAUM, AND C. HARABATI PHYSICAL REVIEW A 62 042504
Hartree-Fock operator is used to construct an effec
Hamiltonian for the problem and to calculate electron a
positron orbitals.

~2! B splines@19# in a cavity of finite radiusR were used
to generate single-particle basis sets for an external elec
and a positron. TheB-spline technique has the remarkab
property of providing fast convergence with respect to
number of radial functions included in the calculatio
@20,21#. Convergence can be further controlled by varyi
the cavity radiusR while the effect of the cavity on the
energy of the system is taken into account analytically@13#.
Convergence was clearly achieved for thee1Cu system in
Ref. @13# and for thee1Ag ande1Au systems as presente
below.

~3! We use MBPT to include excitations from the co
into the effective Hamiltonian. This corresponds to the inc
sion of the correlations between core electrons and exte
particles~electron and positron! and of the effect of screen
ing of the electron-positron interaction by core electro
These effects are also often called the polarization of the c
by the external particles. We include them in a fullyab initio
manner up to the second order of the MBPT.

In the present paper we apply this method to the prob
of positron binding by silver and gold atoms. Using a simi
technique we also calculate electron affinities for both th
atoms. Calculations for negative ions serve as a test of
technique used for positron-atom binding. We also study
role of the relativistic effects in neutral silver and gold, silv
and gold negative ions, and silver and gold interacting wit
positron. This is done by varying the value of the fin
structure constanta towards its nonrelativistic limita50.

II. THEORY

A detailed description of the method was given in R
@13#. We briefly repeat it here, emphasizing the role of t
relativistic effects. We use the relativistic Hartree-Fo
method in theVN21 approximation to obtain the single
particle basis sets of electron and positron orbitals and
construct an effective Hamiltonian.

FIG. 1. Second-order diagrams for the self-energy of the

lence electron (Ŝe operator!. Summation over excited electro
statesa andb and core hole statesm andn is assumed.

FIG. 2. Second-order diagram for the positron self-energy (Ŝp

operator!. Double line denotes positron states.
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The two-particle electron-positron wave function is giv
by the CI expansion,

C~re ,r p!5(
i , j

Ci j c i
e~re!c j

p~r p!, ~1!

wherec i
e and c j

p are the electron and positron orbitals, r
spectively. The expansion coefficientsCi j are determined by
the diagonalization of the matrix of the effective CI Ham
tonian acting in the Hilbert space of the valence electron
the positron,

Heff
CI5ĥe1ĥp1ĥep ,

ĥe5ca•p1~b21!mc22
Ze2

r e
1Vd

N212V̂exch
N211Ŝe ,

~2!

ĥp5ca•p1~b21!mc21
Ze2

r p
2Vd

N211Ŝp ,

ĥep52
e2

ure2r pu
1Ŝep ,

where ĥe and ĥp are the effective single-particle Hamilto
nians of the electron and positron, andĥep is the effective
electron-positron two-body interaction. Apart from the re
tivistic Dirac operator,ĥe and ĥp include the direct and ex
change Hartree-Fock potentials of the core electronsVd

N21

and V̂exch
N21 , respectively. The additionalŜ operators accoun

for correlations involving core electrons.Se and Sp are
single-particle operators that can be considered as a
energy part of the correlation interaction between an exte
electron or positron and core electrons. These operators
often called ‘‘correlation potentials’’ due to the analogy wi

the nonlocal exchange Hartree-Fock potential.Ŝep repre-
sents the screening of the Coulomb interaction between
ternal particles by core electrons~see@14,13# for a detailed
discussion!.

We use many-body perturbation theory to calculateŜ. All
second-order diagrams in the residual Coulomb interac

are included. Diagrams forŜe are presented in Fig. 1. Th

only second-order diagram forŜp is presented in Fig. 2

Diagrams forŜep are presented in Fig. 3. We includeŜ in

s,p, and d states only. TheŜ in higher waves practically

does not contribute to the CI energy. Calculation ofŜ in-

- FIG. 3. Screening of the positron-electron Coulomb interact

(Ŝep operator!.
4-2
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CALCULATION OF POSITRON BINDING TO SILVER . . . PHYSICAL REVIEW A62 042504
volves summation over intermediate electron or posit
states. We restrict this summation to states withl<5. Con-
vergence is very fast and states withl .5 do not contribute

to the Ŝ in s,p,d states. Note that the polarization potent
2a/(2r 4) is often used as a local energy-independent

proximation for the correlation potentialŜ. However, one
needs only a dipole multipole in the Coulomb interaction

Ŝ to obtain the expression for this potential. According to t

calculations, the dipole term really dominates inŜ. How-
ever, the contributions of the higher multipolarities are n
small and we include them as well. Note also that the f

convergence in the wave expansion ofŜ is in contrast with
the very slow convergence of the CI expansion of the tw
particle electron-positron wave function. As was discus
above, this slow convergence is caused by strong attrac
between positron and valence electrons, which leads to
virtual positronium formation. There is no such interaction

the Ŝ operator. Indeed,Ŝe has no positron-electron interac

tion at all. Ŝp and Ŝep do include positron-electron interac
tion but with the core electrons only. The effect of attracti
of positron to core electrons is not as strong as that fo
valence electron and practically does not lead to the vir
positronium formation. This problem was also considered
Ref. @15#.

To study the role of the relativistic effects we use t
form of the operatorshe andhp in which the dependence o
the fine-structure constanta is explicitly shown. Single-
particle orbitals have the form

c~r !n jlm5
1

r S f n~r !V~r /r ! j lm

iagn~r !Ṽ~r /r ! j lm
D . ~3!

Then the RHF equations

~hi2en!cn
i 50, ~ i 5e,p!

take the following form:

f n8~r !1
kn

r
f n~r !2@21a2~en2V̂!#gn~r !50,

~4!

gn8~r !2
kn

r
gn~r !1~en2V̂! f n~r !50,

wherek5(21)l 1 j 11/2( j 11/2) andV̂ is the effective poten-
tial. For the core electron statesV̂ is the sum of direct and
exchange Hartree-Fock potentials

V̂52
Ze2

r e
1Vd

N212V̂exch
N21 . ~5!

For the states above core~electron or positron!, Ŝ is the sum
of the Hartree-Fock potential and correlation potentialS:

V̂52
Ze2

r e
1Vd

N212V̂exch
N211Ŝe ~ for an electron!, ~6!
04250
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V̂5
Ze2

r p
2Vd

N211Ŝp ~ for a positron!.

The nonrelativistic limit can be achieved by reducing t
value ofa in Eq. ~4! to a50.

The relativistic energy shift in atoms with one extern
electron can also be estimated by the following equat
@22#:

Dn5
En

n
~Za!2F 1

j 11/2
2C~Z, j ,l !G , ~7!

whereEn is the energy of an external electron,n is the ef-
fective principal quantum number (En520.5/n2 a.u.!. The
coefficient C(Z, j ,l ) accounts for many-body effects. Not
that formula~7! is based on the specific expression for t
electron density in the vicinity of the nucleus and therefore
not applicable for a positron.

III. SILVER AND GOLD NEGATIVE IONS

We calculated electron affinities of silver and gold atom
mostly to test the technique used for positron-atom bindi
The calculation of a negative ion Ag2 or Au2 is a two-
particle problem technically very similar to positron-ato
binding. The effective Hamiltonian of the problem has
form similar to that of Eq.~2!:

Heff
CI5ĥe~r 1!1ĥe~r 2!1ĥee,

ĥee5
e2

ure2r pu
1Ŝee,

whereŜee represents the screening of the Coulomb inter
tion between external electrons by core electrons~see Refs.
@14,13# for a detailed discussion!. Electron affinity is defined
when an electron can form a bound state with an atom
this case the difference between the energy of a neutral a
and the energy of a negative ion is called the electron affin
to this atom. Energies of Ag, Ag2, Au, Au2 obtained in
different approximations and corresponding electron affi
ties are presented in Table I together with experimental d
The energies are given with respect to the cores (Ag1 and
Au1). Like in the case of Cu2 @13#, the accuracy of the
Hartree-Fock approximation is very poor. The binding en
gies of the 5s electron in neutral Ag and the 6s electron in
neutral Au are underestimated by about 21% and 23%,
spectively, while the negative ions are unbound. Inclusion
either core-valence correlations (S) or valence-valence cor
relations~CI! does produce binding but the accuracy is s
poor. Only when both these effects are included does
accuracy for the electron affinities improve significantly, b
coming 20% for Ag2 and 11% for Au2. Further improve-
ment can be achieved by introducing numerical factors

fore Ŝe to fit the lowests,p, and d energy levels of the
neutral atoms. These factors simulate the effect of high
order correlations. Their values aref s50.88, f p50.97, f d
51.08 for the Ag atom andf s50.81, f p51, f d51.04 for the
4-3
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V. A. DZUBA, V. V. FLAMBAUM, AND C. HARABATI PHYSICAL REVIEW A 62 042504
Au atom in thes, p, and d channels, respectively. As i
evident from Table I, the fitting of the energies of neut
atoms also significantly improves electron affinities. Resu
of other calculations of the electron affinities of silver a
gold are presented in Table II together with the experime
values.

IV. POSITRON BINDING TO SILVER AND GOLD
AND THE ROLE OF RELATIVISTIC EFFECTS

As for the case of copper@13#, we have performed calcu
lations for two different cavity radiiR530a0 andR515a0.
For a smaller radius, convergence with respect to the num
of single-particle basis states is fast. However, the effec
the cavity on the converged energy is large. For a lar
cavity radius, convergence is slower and the effect of
cavity on the energy is small. When the energy shift cau
by the finite cavity radius is taken into account both calcu
tions come to the same value of the positron binding ene
Table III illustrates the convergence of the calculated en
gies ofe1Ag ande1Au with respect to the maximum valu
of the angular momentum of single-particle orbitals. En

TABLE I. Ground state energies~in a.u.! of silver, gold and
their negative ions calculated in different approximations.

Neutral atom Negative ion Electron affinitya

Silver
RHF b 20.229 52 20.201 56 20.027 95
RHF1S c 20.279 90 20.302 31 0.022 41
CI d 20.229 52 20.256 75 0.027 22
CI1Se

e 20.285 64 20.335 60 0.049 96
CI1Se1See

f 20.285 64 20.342 98 0.057 34
CI1 f Se1See

g 20.278 41 20.327 21 0.048 80
Experimenth 20.278 41 20.326 26 0.047 84

Gold
RHF b 20.274 61 20.261 69 20.012 92
RHF1S c 20.349 00 20.410 46 0.061 46
CI d 20.274 61 20.313 69 0.039 08
CI1Se

e 20.355 36 20.439 13 0.083 76
CI1Se1See

f 20.355 36 20.449 43 0.094 07
CI1 f Se1See

g 20.339 03 20.423 89 0.084 86
Experimenth 20.339 03 20.423 86 0.084 83

aNegative affinity means no binding.
bRelativistic Hartree-Fock; a single-configuration approximatio
no core-valence correlations are included.
cSingle-configuration approximation, core-valence correlations
included by means of MBPT.
dStandard CI method.
eSelf-energy part of core-valence correlations are included by a
ing theSe operator to the CI Hamiltonian.
fCI1MBPT method, self-energy and screening correlations are
cluded byS operators while valence-valence correlations are
cluded by configuration interaction.
gSe in different waves are taken with factors to fit energies o
neutral atom.
hRefs.@23,24#.
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gies presented in the table are two-particle energies~in a.u.!
with respect to the energies of Ag1 and Au1. The number of
radial orbitalsn in each partial wave is fixed atn516. Fig-
ures 4 and 5 show the convergence of the calculated en
with respect ton when maximum momentum of the single
particle orbitals was fixed atL510. The cavity radius in both
cases wasR530a0. Table III and Figs. 4 and 5 show tha
even for a larger cavity radius, convergence was clea
achieved. Table III also shows the convergence in differ
approximations, namely, with and without core-valence c
relations (S). One can see that while inclusion ofS does
shift the energy, the convergence is not affected.

Table IV shows how positron binding by silver and go
is formed in different approximations. This table is ve
similar to Table I for the negative ions except there is
RHF approximation for the positron binding. Indeed, t
RHF approximation for the negative ions means a sing
configuration approximation: 5s2 for Ag2 and 6s2 for Au2.
These configurations strongly dominate in the two-elect
wave function of the negative ions even when a large nu
ber of configurations are mixed to ensure convergence
contrast, no single configuration strongly dominates in
positron binding problem. Therefore we present our res
in Table IV starting from the standard CI approximation.
this approximation the energy of the positron and an atom
lower than the energy of a neutral atom for both silver a
gold atoms. Note, however, that the absolute value of
energy 0.2488 a.u. of thee1Ag system is smaller than that o
positronium, which is 0.25 a.u. This makes the system
stable against dissociation in the silver positive ion and p
itronium. In their nonrelativistic calculations, Ryzhikh an
Mitroy get 0.260 a.u. for the CI energy@3#. The difference
between this and our results is most likely due to relativis
effects ~see Table V and the discussion of the relativis
effects in the end of this section!.

Inclusion of core-valence correlations through the int
duction of Se , Sp , and Sep operators shifts the energie

,

re

d-

-
-

TABLE II. Electron affinities of Ag and Au~eV!. Comparison
with other calculations and experiment.

Ag Au Ref. Method

Theory
1.008 1.103 @25# Nonrelativistic quadratic configuration

interaction method
1.199 2.073 @25# Relativistic quadratic configuration

interaction method
1.254 2.229 @26# Relativistic coupled cluster method
1.022 @4# Nonrelativistic stochastic

variational method
2.28 @27# Fock-space relativistic

coupled-cluster method
2.26 @28# Fock-space coupled-cluster method

with Douglas-Kroll
transformation~relativistic!

1.327 2.307 Present work
Experiment

1.303 2.309 @29#
4-4
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CALCULATION OF POSITRON BINDING TO SILVER . . . PHYSICAL REVIEW A62 042504
significantly. Thee1Ag system becomes bound and stab
while thee1Au system is unbound.

As was discussed in our previous paper@13#, the domi-
nating factor affecting the accuracy of the calculations
higher-order correlations that mostly manifest themself
the value of theS operator. An introduction of the fitting
parameters as described in the preceding section can be
sidered as a way to simulate the effect of higher-order c
relations. Also, the energy shift caused by the fitting can
considered as an estimation of the uncertainty of the ca

lations. We use the same rescaling parameters forŜp andSe

~see preceding section!. Ŝep is not rescaled. Shift of the en
ergy caused by rescaling is 0.0015 a.u. in the case of s
and 0.0003 a.u. in the case of gold~see Table IV!. Note that
these values are considerably smaller than energy shifts
the silver and gold negative ions~0.008 54 and 0.009 21 a.u

TABLE III. Convergence of the calculation of the energies
e1Ag and e1Au with respect to the number of included parti
waves~a.u.!. ~Finite box size correction is not included.!

Lmax CI a CI1S b CI1 f S c

e1Ag 0 20.223 272 9 20.280 022 3 20.272 903 8
1 20.227 170 9 20.283 836 0 20.274 959 1
2 20.230 920 7 20.286 837 5 20.276 512 4
3 20.235 082 3 20.289 569 1 20.278 057 1
4 20.238 831 5 20.291 680 0 20.279 378 4
5 20.241 925 1 20.293 238 1 20.280 448 7
6 20.244 321 8 20.294 347 0 20.281 267 8
7 20.246 074 5 20.295 108 5 20.281 860 3
8 20.247 281 2 20.295 610 0 20.282 264 7
9 20.248 047 7 20.295 918 9 20.282 519 9
10 20.248 474 9 20.296 082 9 20.282 659 6
11 20.248 669 8 20.296 144 4 20.282 714 3
12 20.248 755 4 20.296 168 2 20.282 736 7
13 20.248 792 8 20.296 177 8 20.282 745 9
14 20.248 809 0 20.296 181 7 20.282 749 8

e1Au 0 20.268 404 9 20.350 044 7 20.333 016 3
1 20.270 658 2 20.352 660 2 20.333 950 0
2 20.271 981 3 20.353 974 5 20.334 456 4
3 20.273 270 5 20.355 048 1 20.334 876 5
4 20.274 390 5 20.355 803 0 20.335 178 7
5 20.275 322 2 20.356 328 9 20.335 397 3
6 20.276 053 9 20.356 688 3 20.335 552 5
7 20.276 594 3 20.356 928 3 20.335 659 0
8 20.276 968 6 20.357 083 7 20.335 729 4
9 20.277 207 4 20.357 179 1 20.335 373 3
10 20.277 339 0 20.357 229 3 20.335 797 2
11 20.277 392 5 20.357 244 9 20.335 804 9
12 20.277 414 6 20.357 250 5 20.335 807 8
13 20.277 423 9 20.357 252 7 20.335 809 1
14 20.277 427 8 20.357 253 6 20.335 809 5

aStandard CI method.
bCI1MBPT method,Se andSp are included whileSep is not.
cSame as before butSe andSp are taken with fitting parameters a
explained in the text.
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respectively; see Table I!. This is because of the cancellatio
of the effects of the variation ofSe andSp . In particular, for
gold it is accidentally very small. One can see that even if
value of 0.0015 a.u. is adopted as an upper limit of the
certainty of the calculations, thee1Ag system remains
bound while thee1Au system remains unbound. Howeve
the actual accuracy might be even higher. We saw that
fitting procedure significantly improves the accuracy of t
calculations for the silver and gold negative ions. It is natu
to assume that the same procedure works equally well for
positron binding problem. The final result for the energy
positron binding by the silver atom as presented in Table
is 0.0043 a.u. This result does not include the effect of
finite cavity size. When this effect is taken into account,
means of the procedure described in Ref.@13#, the binding
energy becomes 0.004 52 a.u. or 123 meV. If we adopt
value of 0.0015 a.u as an estimation of the uncertainty of
result, then the accuracy we can claim is about 30%.

The calculation of the positron binding by copper@13#,
silver, and gold reveal an interesting trend. All three ato
have a very similar electron structure. However, the posit
binding energy for silver~123 meV! is considerably smaller
than that for copper~170 meV@13#!, while gold atoms can-
not bind positrons at all. We believe that this trend is cau
by relativistic effects. An argument that the positron is
ways nonrelativistic does not look very convincing becau
electrons also contribute to the binding energy. Relativis
effects are large for heavy atoms and electron contributi
to the positron binding energy could be very different in t
relativistic and nonrelativistic limits. Indeed, we demo

FIG. 4. Energy ofe1Ag as a function of the number of radia
electron and positron basis functions in each partial wave (Lmax

510) in the cavity withR530a0. Dashed line represents the e
ergy of neutral silver.
4-5
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V. A. DZUBA, V. V. FLAMBAUM, AND C. HARABATI PHYSICAL REVIEW A 62 042504
strated in Ref.@22# that the relativistic energy shift conside
ably changes the values of the transition frequencies in H1

ions and sometimes even changes the order of the en
levels. If we use formula~7! with the contribution of the
many-body effectsC50.6, as suggested in Ref.@22#, to es-
timate the relativistic energy shift for neutral Au, then t
result is 20.037 a.u. This is about an order of magnitu
larger than the energy difference between Au ande1Au. If
the relativistic energy shift ine1Au is different from that in
Au then the positron binding energy may be strongly
fected.

To study the role of the relativistic effects in positro
binding in more detail we performed the calculations for A
Ag2, e1Ag, Au, Au2, ande1Au in the relativistic and non-
relativistic limits. The latter corresponds to the zero value
the fine-structure constanta ~see Sec. II!. In the nonrelativ-

FIG. 5. Same as Fig. 4 but fore1Au.
04250
gy
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f

istic case we start the calculations from the very beginni
putting a50 in the Hartree-Fock calculations of the co
states. Then the electron states above the core and pos
states are also calculated witha50. This means that ou
nonrelativistic calculations are equivalent to the fully nonr
ativistic calculations of other authors~like Mitroy and
Ryzhikh, see, e.g.@2#!. Note that there are ‘‘direct’’ and ‘‘in-
direct’’ relativistic effects. The direct effect describes th
difference between the Dirac and Schro¨dinger solution of the
one-body equations for an external electron and a posi
and the two-body CI equations for the electron-positron p
The indirect relativistic effect describes the differences d
to different electron-charge distributions arising from the u
of Dirac-Hartree-Fock equations or Schro¨dinger-Hartree-
Fock equations for the atomic core. In our relativistic calc
lations both effects are included, while in the nonrelativis
limit ( a50) both effects are neglected. The comparison
tween the relativistic and non-relativistic calculations is p
sented in Table V. One can see that the actual relativi
energy shift for neutral Au is even bigger than is sugges
by formula ~7! with C50.6. The shift is 0.0805 a.u., whic
corresponds toC50.08. Formula~7! with C50.08 also re-
produces the relativistic energy shift for neutral Ag. The re

TABLE IV. Positron binding by silver and gold calculated i
different approximations~all energies are in a.u.; finite box siz
correction is not included!.

Neutral atom Atom withe1
Binding
energya

Silver
CI 20.2295 20.2488 0.0193
CI1Se1Sp 20.2856 20.2962 0.0105
CI1Se1Sp1Sep 20.2856 20.2884 0.0028
CI1 f Se1 f Sp1Sep 20.2784 20.2828 0.0043

Gold
CI 20.2746 20.2774 0.0028
CI1Se1Sp 20.3554 20.3573 0.0019
CI1Se1Sp1Sep 20.3554 20.3519 20.0035
CI1 f Se1 f Sp1Sep 20.3390 20.3358 20.0032

aNegative energy means no binding.
e
TABLE V. Energies~in a.u.! of Ag, Ag2, e1Ag, Au, Au2, ande1Au with respect to the energy of th
core in relativistic and nonrelativistic cases.

Neutral Negative Atom with Electron Positron binding
atom ion a positron affinity energya

Silver
Nonrelativistic 20.2558 20.2974 20.2640 0.0416 0.0073
Relativistic 20.2784 20.3272 20.2827 0.0488 0.0043
D 0.0226 0.0298 0.0187 20.0072 0.0030

Gold
Nonrelativistic 20.2537 20.3040 20.2665 0.0503 0.0080
Relativistic 20.3390 20.4239 20.3358 0.0849 20.0032
D 0.0853 0.1199 0.0693 20.0346 0.0112

aPositive energy means bound state.
4-6
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tivistic energy shift for an atom with a positron is of th
same order of magnitude but a little different in value. Th
difference turned out to be enough to affect the posit
binding energy significantly. In particular, thee1Au system,
which is unbound in relativistic calculations, becomes bou
in the nonrelativistic limit with binding energy 0.0080 a.u
218 meV. In the case of silver, the positron binding energ
considerably higher in the nonrelativistic limit. It is 0.007
a.u. or 199 meV. It is interesting to compare this value w
the value of 150 meV obtained by Mitroy and Ryzhikh usi
the nonrelativistic stochastic variational method@4#. Since
the convergence was achieved in both calculations, the
maining difference should probably be attributed to the d
ferent treatment of the core-valence correlations. We
many-body perturbation theory for an accurate calculation
theS operator, which accounts for these correlations. Mitr
and Ryzhikh use an approximate semiempirical expres
for theS operator that is based on its long-range asympt
behavior.

Note that the relativistic energy shift for negative ions
also large. However, electron affinities are less affected. T
is because electron affinities are many times larger than
itron binding energies and therefore less sensitive to the
ergy shift. Apart from that there is a strong cancellation b
tween relativistic energy shifts in the negative ion a
,

A

,

ti,

A

04250
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f
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is
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neutral atom. This means in particular that the calculation
the electron affinities cannot serve as a test of a nonrela
istic method chosen for the positron binding problem. Ho
ever, it is still a good test of the relativistic calculations. No
also that our calculated relativistic energy shifts for neut
and negative silver and gold are in very good agreement w
calculations performed by Schwerdtfeger and Bowmaker
means of relativistic and nonrelativistic versions of the qu
dratic configuration interaction method~see Table VI and
Ref. @25#!.
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TABLE VI. Comparison of the relativistic energy shift with
other calculations~energies are in a.u.!.

Atom/Ion Present work Schwerdtfeger and Bowmakera

Ag 0.0226 0.0200
Ag2 0.0072 0.0070
Au 0.0853 0.0714
Au2 0.0346 0.0357

aQuadratic configuration interaction method, Ref.@25#.
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