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Inconclusive rate as a disturbance measure in quantum cryptography
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The inconclusive rate is considered as a disturbance measure in key distribution in quantum cryptography.
Bennett's two-state protocol is addressed for the case in which a positive operator-valued measure is imple-
mented by the legitimate receiver in the presence of an individual attack by a general unitary disturbing
eavesdropping probe. The maximum Renyi information gain by the disturbing probe is calculated for given
receiver error and inconclusive rates. It is demonstrated explicitly that less information is available to an
eavesdropper at a fixed inconclusive rate and error rate than is available at a fixed error rate only.

PACS numbe(s): 03.67.Dd, 03.67.Hk, 03.65.Bz

I. INTRODUCTION 17 )
a=3 (—— 0. (5)

An essential ingredient of quantum cryptography is the
trade-off between the maximum information that an eaves- _
dropper can obtain by intercepting the key-distribution trans{Parametrization in terms of the angle instead of¢, is
mission and the resulting disturbance induced in the transshosen for conveniengeThe statequ) and |v) encode bit
mission. The error rate alone is commonly chosen as the¥alues 0 and 1, respectively. The POVM operators, Ej)s:
disturbance measufé,2]; however, it has been conjectured (3), are positive and their sum is unity. The operatégsand
[1] that the monitoring of other disturbance measures, alond, measure the probability of outcomesand v, respec-
with the error rate, may allow less information gain by thetively. The operatoA, measures the probability of an incon-
eavesdropper and necessitate that fewer bits be sacrificed blusive measurement outcome.
the legitimate users during key distillation. In the present One advantage of a POVM over a standard projective-
work, | consider the inconclusive ratthe rate of inconclu- valued(PV) measurement is that, for the POVM, the prob-
sive measurement outcomeas an additional disturbance ability of obtaining an inconclusive result can be lower
measure. | demonstrate that, in fact, less information is availF9—12. For the POVM receivel{13] considered in the
able to an eavesdropper at a fixed inconclusive rate and errgresent work, the undisturbed inconclusive rﬁi‘éOVM is
rate than is available at a fixed error rate only. It then followsgiven by[4,6,8,12
that fewer bits need to be sacrificed during key distillation if
the inconclusive rate is appropriately monitored along with 5°M=sin 2a. (6)

the error rate. POVM__ s POVM . ,
In particular, | consider the two-state protodd] sub-  (Note thatR,;™""=P5="" in the notation of[12], since

jected to an individual eavesdropping attdtkin which the ~ P5°"" is a probability per incident photon, which | designate
legitimate receiver implements a positive operator-valued€re as a rateFor an ordinary PV receiver consisting of a
measurgPOVM) [4—8]. The following set of POVM opera- beam splitter with Wollaston prisms located at each of its
tors represents the possible measurements performed by th0 exit ports to distinguish the polarization statg from

receiver: the perpendicular polarization stdte ), or the polarization
state|v) from the perpendicular polarization stdte ), re-
A= (1+{ulv)) X1 —|v)v]), (1)  spectively, the inconclusive rate is given k1,12
PV_ 1 :
AU:(1+<U|U>)71(1_|U><U|), (2) 2 —2(1+S|r‘|22a). (7)

(Note thatR5¥=P%Y in the notation 0f12].) It follows from
Ar=1-A—A,. 3 Egs.(6) and(7) that the inconclusive rate of the ideal POVM

) receiver is less than that for the PV receiver, sift#
Here, the ketsgu) and|v) represent the two possible nonor-

thogonal normalized polarization states of a carrier photon, POVM 2 5in 2
with linear polarizations designated byandv, respectively. PV T 1rsi 2a 1. (8)
The angle between the corresponding polarization vectors is ?

9. Since the photon is a spin-one representation of the Lor- The Fuchs-Peres model of eavesdropping on the two-state
entz group, it follows that the Dirac bracket between the twokey distribution protocol represents the most general possible

states i 6] unitary disturbance of each encoded photon incident on the
receiver[1,2] and caused by the eavesdropper’s probe. Based
(ulv)=sin2a, (4)  on this model, it has been shown that the eavesdropping
optimization of Slutskyet al. [1] for the two-state protocol
where holds for a POVM receiver, as well as for a PV receil&l

1050-2947/2000/62)/04231@14)/$15.00 62 042310-1 ©2000 The American Physical Society



HOWARD E. BRANDT PHYSICAL REVIEW A62 042310

For both types of receiver, identical algebraic expressionsvhere
were shown to result for both the Renyi information gain by

the eavesdropper, and for the error rate induced by the eaves- d=sir? X +cos \ cos 20, (14)
dropper, expressed in terms of the parameters characterizing _

the key distribution system and the eavesdropper’s probéndaandc are given by Eqst10) and(11). It follows from
The resulting disturbed inconclusive ra&e of the POVM  EQ- (13) that
receiver is given by EqA29) of Appendix A[12]. Equiva-

lently, one has asirf2a+csin2a=1—-dE’. (15)

_sin2a(1+c+asin2a) Therefore, substituting Eq15) in Eqg. (9), one obtains

= - , 9
? 1+sin2a © R,=(1+sin2a) Y(sin2a+1—dE"). (16)
where(in the notation of 1]) From Eq.(16), it therefore follows that
a=sir? \ sin 2+ co$\ cos 29 sin 2¢, (10 (1+sin2a)(1-R,)
d= ; —. 17
c=cog \ sin 26 cos 2, (11) E

expressed in terms of the probe paramelgrg, 6, and¢ in Since constant error rafé corresponds to constaft’ [see

the Fuchs-Peres modg,2]. Eq. (12), noting « is constany, it follows from Eq.(17) that
The security analysis for the two-state protocol againsl is constant for the constant error rdfeand the constant

individual attacks is based on maximal Renyi informationinconclusive rateR,. In all of the following, the inconclu-

gained by the eavesdropper on corrected data for a fixegive rateR, will appear only through the expression fdy

error rate[1,5]. The error rate is treated as the disturbanceEg. (17), and can be treated simply as a fixed prescribed

measure by the eavesdropper. The inconclusive rate of thearameter.

legitimate receiver is the additional disturbance measure con- The appropriate Lagrange function for determining pos-

sidered in the present work. In the following, an analysis issible conditional extrema is then given ]

presented of the maximal Renyi information gain for fixed

error and inconclusive rates. In Sec. Il possible conditional F=Q'+¢E, (18)

extrema of the corresponding Lagrange function are calcu-

lated. In Sec. Il a parametric analysis is presented to detet”

mine the extremum representing the absolute minimum over- ,_ , ,

lap of the correlated probe states. In Sec. IV the maximum Q'=[1+(sec 2a)E’]Q+ (seC 2a)E", (19

Renyi ir_n_‘ormation gain for fixed error and inconclusi_ve rateswhereQ is the overlap between the correlated states of the

is specified and shown to be less _tha_n that f_or the f|xe_d e”%robe. One also hdd]

rate alone. The advantage of monitoring the inconclusive rate

is demonstrated by further parametric analysis. Section V atb+1

presents a summary of results and conclusions. In Appendix Q'= T (20)

A a derivation is given of the disturbed inconclusive rate,

Egs. (9—(11). In Appendix B analytic expressions are ob- \hereq andd are given by Egs(10) and(17), respectively,

tained for the nonoptimized overlap and the error rate N nd

terms of the probe parameters. In Appen@i a parametric

here¢ is a Lagrange multiplier, and

expression is obtained for the minimum overlap of the cor- b=sir? \ sin 2u+ coZ \ sin 2¢. (21)
related probe states as a function of error (at&h no con-
straint on the inconclusive rate Sinced is constant, it follows from Eq(14) that\ and 6§ are

constrained by
II. INFORMATION-GAIN EXTREMA
1-d
In [1] the quantityE’, simply related to the error rate, cos' A= 1-cos29° 22
was introduced in the problem of conditional minimization
of the overlapQ between the two pertinent correlated probe Therefore\ will be treated as a dependent variable. Also,

states for a fixed error rate, namely,

SIPA=1—CoS\, (23
| cos2a
E'= 1—-2E ° (12 and substituting Eq(22) in Eq. (23), one obtains
Also i d—cos 29
) SiP A= 1= cos %’ (24)
E'= a(l—astZa—csm 2a), (13 Substituting Eqs(13) and (20) in Eq. (18), one obtains
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Fltl+¢
F=——, (25
d
where
F'=a+b—¢E, (26)
and
E=asir?2a+csin 2a. (27

Since¢ andd are constant in Eq.25), extremization ofF’

must also result in extremization & and, because of this,

PHYSICAL REVIEW A 62 042310

JE B
ET =0, (33
JE
73=0 (34)

[Equationd32)—(34) may alternatively be considered as spe-

cial cases of EQs(29—(31) in the limit of an infinite
Lagrange multiplie€ in Eq.(26).] First, substituting Eq(28)
in EQ. (29), we obtain

(2— &sir? 2a)(d—cos 20)cos 2u=0. (35)

F’ may be taken as the effective Lagrange function. | there-

fore extremize the Lagrange function, Eg6). Substituting
Egs.(10), (11), (21)—(23), and(27) in Eqg. (26), we obtain
1-d )

F 2(2—§SII'12 2a)sin 2#(1— m

+[(1— &sir? 2a)cos 20 sin 2¢+ sin 2¢

— &sin 2a sin 260 cos %]m.

(28)

Equation(35) can be satisfied in three possible ways:

) 2

W &= Girza (36
(ii) cos29=d, (37)
(i) cos2u=0. (38

In the following, we refer to Eqs(36), (37), and (38) as

Note that in the expression for the effective Lagrange funcPossible extremd), (i), and(iii), respectively.

tion F', the constant®, andE appear implicitly in the con-
stantd through Eqs(17) and (12).
For the extremum, one requirgs,14]

aF,—O 29
W_ l ( )
aF,_O 30
W_ ’ ( )
[?F,_O 31
w_ ) ( )
or

JE

—=0, (32)
I

First consider possible extremum, corresponding to Eq.
(36). If we substitute Eq(28) in Eq. (30), and use Eq(36),
we obtain

sin2¢=+1. (39

But substituting Eq(28) in Eq. (31), and using Eq(36), we
also obtain

sin 2a(cos 260—1)

tan 2¢= > 20 (40
According to Eqs(39) and(40), we require that
cos 20=—1. (41

Combining Eqgs(10)—(13), (17), (19—(22), (39), and (41),
one obtains

_ (1-Rp) "X (1+sin2a) Y2+ (1= 1)sin* 2a] —[1+(1- 2E) Jtarf 2a— 2
- 2(1-E)tarf 2«

. (42

Note that Eq.(42) yields an unphysical valu®=1 if the inconclusive rate assumes or exceeds its unperturbed value,

R,=sin 2a.

(43

Next, the alternative possible extremui) satisfies Eq(37). Also, substituting Eq(28) in Eg. (30), one requires

!

d
0= a—0=2(1—d)(1—cos 20)~2{(2— &sir? 2a)sin 2u sin 260

—[(1—&sirf 2a)cos 26 sin 2¢+ sin 2¢— £ sin 2« sin 26 cos 24 ]sin 26

—[(1— £sir? 2a)sin 2¢ sin 26+ & sin 2« cos 24 cos 20](1—cos 26)}.

(44)
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From a trigonometric identity and E37), it follows that

PHYSICAL REVIEW A62 042310

sin 260=+ (1—cog 26)?=e,(1—d?)*?, (45)
where
Next, substituting Eqs(37) and (45) in Eq. (44), one obtains
2—£sir? 2a)sin 2¢— &e,(1—d)(1—d?) ~Y2sin 2a cos
SinzIF( & @)sin 2¢p— &ey _ )( ) 2(15_ a7)
2—&sinf 2a
|
Furthermore, substituting Eq28) in Eq. (31), one obtains dQ'—1
sin2¢p= ———. (56)
F o 1 1—esiP2 )cos 20 e
=—=2—r —&si cos 29]cos
a¢ 1—00326{[ (1-¢ « Jcos 2 Then one also has
+ & sin 2a sin 26 sin 2¢}. (48 dQ—1)2]12
o _ _ cos 2p=e, 1_(W } : (57)
Next, substituting Eq937) and(45) in Eq. (48), one obtains
oo | AT 22— (1 d)E 4o where
N2 I sinza 49 e,=*1. (58)
Solving Eq.(49) for & one therefore requires Next, substituting Eqs51), (52), (37), and(45) in Eq. (54)
(which holds generally one obtains
1+d
(50)

= dsi? 2a- ey(1—d?)sin2a tan2¢

Next, substituting Eq(37) in Eq. (22), one requires for pos-
sible extremuntii),

coga=1, (51)
and therefore, one also requires
sinA=0. (52

Next, using Eqs(20), (21), and(10), it follows that

1
Q'= a[z Sirf \ sin 2u+ cos \ sin 2¢(cos 20+ 1)+ 1].
(53

Also using Egs(13), (10), and(11), one gets

1
E'= a[l—sin2 2a(Sir? \ sin 2u+cos \ cos 26 sin 2¢)

—sin 2a: co$ \ sin 260 cos 24]. (54)

Substituting Eqgs.(51), (52), and (37) in Eq. (53) (which
holds generally, one gets

Q’:%[1+(1+d)sin2¢)], (55)

or equivalently,

1
E'= 5[1—dsin’ 2a sin 2¢ —e,(1-d?)"?sin 2a cos 25].
(59

If we next substitute Eq$56) and(57) in Eq. (59), and solve
for Q’, it follows from the quadratic formula that

—B=*(B?~4AC)"?
I —
Q= 2A

I

d2
A= msmz 2a(1— d? cog 2a),

where

(61)

2d
B= Wsinz 2a[d?(1+d)E'—1—-d—d?sir* 2a],

(62)
dsirf2a\? d(1-d)(2+d)
C=|dE' ~1-—7q| ~ 1+d) sirf 2a.
(63)
Introducing the notation,
1
(64)

P~ 1¥sin2a)(1-R,)’
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we can write Eq(17) as

PHYSICAL REVIEW A 62 042310

—2E)+[(1—p—psir? 2a)?csé 2a— p?]cog 2a
X (1—2E)%+2p(1—2E)3+(seé 2a)(1—2E)%}.

In Eq. (64) and the following, the parameteris a measure  Equation(19) (which holds generallycan be written as fol-

of the inconclusive ratd&?, and the anglex specifying the

nonorthogonal polarization states of the signal. Using Egs.

(61)—(63) and(65), one can show that

(;) =—2(p’E'?~cos 2a) [p°E"*~p(1-p)
XE'?—(1—psirf2a)E'], (66)

and

(%) =(p?E'?—co 2a) H[p*(1—p)®csC 2a]E"*

+[2p(1—p)(1—p—psirt2a)cs@ 2a—2p°]E'3
+[(1—p—psir 2a)?csC 2a—p?]E'?

+2pE’+1}. (67)
Substituting Eqs(66) and (67) in Eq. (60), one obtains
C YEN ([ a(E)k(E)]M
e N

where the functiongy(E’), o(E'), and «(E’) are defined
by

Y(E')=—(1—psir? 2a)E’'— p(1—p)E' 2+ p3E’'3,
(69

o(E")=—cog 2a+ p’E'?, (70

and

k(E'")=1+2pE'+[(1—p—psirt 2a)?cs@2a—p?]E’?
+[2p(1—p)(1—p—p sir? 2a)cs@ 2a—2p°]E’3
+[p%(1—p)?csé 2a]E’4, (71

respectively.
Next substituting Eq(12) in Egs.(66) and (67), one ob-
tains

(;) =—2(1-2E) Y p?cog2a—(1-2E)?]?
x{p3cod 2a—p(1—p)(cog2a)(1-2E)

—(1—-psirf2a)(1-2E)?}, (72

(%) =(1-2E) Y p?cog2a—(1-2E)?] 1

x{p?(1—p)?csc2a cof 2a+[2p(1—p)
X (1—p—psirt2a)csC 2a—2p°](cos 2a)(1

(73)
lows:
-t @
Substituting Eq(12) in Eq. (74), one then obtains
Q:ﬁ[(l—ZE)Q'—ll (79

Then if we substitute Eq60), (72), and(73) in Eq. (75),
the overlapQ, expressed in terms of the error raeand
inconclusive rateR, [throughp in Eq. (64)] becomes

1/2

Q=—71f(e 1:(1—%) }—1}, (76)
where

e=1-2E, (77)

and the following functions are defined:
f(f)— B(E)! (78)

ol

g(e)= % (79
a(e)=p3cod2a—p(1—p)(cog 2a)e—(1—psirf 2a)e?,
(80)
B(e)=p?cos 2a— €, (81

8(€)=cog 2a{p?(1—p)?csé2a cod 2a
+[2p(1—p)(1—p—psirt 2a)cof 2a
—2p3cog2ale+[(1—p—psit2a)?csé2a—p?]
X €2+ 2p (seé 2a) e+ (seé 2a) €'}, (82

where p is given by Eq.(64). The corresponding possible
extremum in the Renyi information gain by the eavesdropper
is given by[1,5]
5= 1002(2—- Q) (83)
and Eq.(76).
Another alternative possible extremufiii) satisfies Eq.
(38), from which it also follows that

sin2u=e,, (84)

where

042310-5
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e, =*+1.

M (89

Substituting Eq(28) in Eg. (30), one obtain$as in Eq.(44)]

~2(1-d)
90 (1—cos 219)2{

—[(1— &sir? 2a)cos 26 sin 2¢+ sin 2¢

_dF’

0= (2— &sir? 2a)sin 2u sin 260

— £ sin 2a sin 26 cos 2¢]sin 20

2 sin26(e,—sin 2¢)

PHYSICAL REVIEW A62 042310

—[(1—&sin’ 2a)sin 20 sin 2¢

+ &sin 2« cos 20 cos 24| (1—cos 26)}. (86)

Next, substituting Eq(84) in Eqg. (86), and solving for¢, we
see that possible extremufiii ) requires

87

&= sin 2a[ sin 2a sin 26(e,,—sin 2¢) — Sir’ 26 cos 2p+ cos 20(1— cos 20)cos 2p]

Furthermore, from Eq928) and(31) one again obtains Eq.

(48), from which one gets

— & Y1+ cos 29) +sir 2a cos 29
sin 2a sin 26

tan 2¢ = (88)

If we then substitute Eq87) in Eq. (88), we obtain

sin 26{ (e, —sin 2¢)[ 2 tan 2¢ sin 20+ sin 2a(1—cos 20) ]
—sin 260 cos 24} =0. (89

One notes that if

sin26=0 (90

is taken as a possible solution to E§9), then one also has

cos20=e,=*1, (91
and then according to E§14), one has
d=si’\+e,cog \, (92
or
d=sir A(1—e,) +e,. (93

Comparing Eq(93) with Eq. (17), we conclude that, since
E’, R,, anda are fixed,e,= — 1, and then, according to Eq.

(99,

cos 2= —1. (94)

[Also, F’ in Eqg. (28) is singular for cos 2=1, and the deri-
vation of Eq.(35) implicitly assumes cos®~1.) It then fol-
lows from Eq.(93) that

d+1
SiIP A= ——, (95)
2
and then also
1-d
co$ A= — (96)

Next substituting Eqs(90) and (94) in Eq. (88), we obtain

tan 2¢=—, 97
sin2¢==*+1, (98

and
cos 26=0. (99

Therefore, substituting Eq&84), (95), (96), (98), and(94) in
Eq. (53), one obtains

=11 ! ! 100
Q' =1+ a eM+ a ( )

Next substituting Eq(65) in Eq. (100, we get
Q'=e,+(1+e,)pE". (102)

Then if one substitutes Eq6101) and (12) in Eq. (19), and
solves forQ, one obtains

(1+e,)pcos 2a+e,(1-2E)—1],
(102

1
Q= 2(1—E)[

where p is given by Eq.(64). But the error rate must be
positive, and fore,=—1 in Eq. (102, one getsQ=—1,
which is nonphysical. Therefore

e,=1 (103
must be chosen, and E(L02) becomes
Q= (1_E)(p00522a—E). (104

The corresponding possible extremum in the Renyi informa-
tion gain by the eavesdropper is given by E¢®3) and
(104).

Alternatively, Eq.(89) is also clearly satisfied if
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(e,—sin2¢)[ 2 tan 2¢ sin 26+ sin 2a(1—cos 29) |

=sin 260 cos 2. (105
From Eq.(109), it follows that
[(A?+1)sin 26+ 2A]sin 26=0, (106)

PHYSICAL REVIEW A 62 042310

1 |2(e,—sin2¢)tan 2¢—cos 2p
A= — -
sin 2« e,—sin2¢

(107

One possible solution to E¢LO6) is again given by Eq90),
and again results in Eq104). The other possible solution to

where Eqg. (106 is
|
sin 20= siizszlr;?:ie—#si nSIZr:;ij)r[[C:ossZ —22( (e (: " —Ssl?nZZCZ)tg]nziﬁ]] 2 (108
and
cos 20=e,(1—sirt 26)*2. (109
Also, one has, according to Eq22) and(24) (which hold generally
cog A= % (110
and
si?n= 905 ¥ (111
1—cos 29
Substituting Eqs(84), (110, and(111) in Egs.(53) and(54), one obtains
. 1+2de,+(1—-d)sin2¢—[1+2e,—(1—d)sin2¢]cos 20 112
d(1—cos 29)
|
and Q’=% 1+2e,—sin 2¢—%
E’'=[d(1-cos29)] {1-de,si 2a _ 2(e,—sin 26)
—[1—e, Si 2a+(1—d)sir? 2a sin 26/] SN2t T " cos2 (116
Xcos2—(1—-d)sin2acos2psin26}. (113  Equations(114—(116), together with Eqs(108) and (109),

Next, substituting Eq(65) in Eqg. (113) and solving forE’,
one obtains

1

=T HIRY e

where

B [p '—(1—e,sir* 2a)](1—cos 20)
~ sin 2a[sin 2a(sin 2¢ cos 20—e,,) +cos 2p sin 20]°
(119

Then substituting Eqg65) and(114) in Eq. (112), one gets

determineQ’ as a function oE’, parametrically in terms of
the parametetp.

Next, substituting Eqs(116) and (12) in Eqg. (19), and
solving for Q, we obtain

1-2E

: 2(e,—sin2¢) 1 1
Q=2(1—_E)[sm 2¢+ ®

1—cos2 1—-2E 1+R

) 2(e, cos 20—sin 2¢)
X|1—sin2¢— T cos 20 H (117
Also, from Eqgs.(12) and(114), it follows that
E=3[1-p(cof2a)(1+R)]. (118

Equationg117), (118), (115), (108), and(109) determine the
function Q(E) in terms ofE, parametrically in terms of the
parameterp. The corresponding possible extrema in the Re-
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nyi information gain by the eavesdropper from the receiver

are then given by Eq83) andQ(E).
Proceeding to solve Eq$32)—(34), we first substitute
Egs.(10), (11), (22), and(24) in Eg. (27) to obtain

1—-cos 29
1-d
1—-cos29°

+[sir? 2a cos 24 sin 2¢

E=sir 2a sin 2,u( 1-

+sin 2a sin 20 cos 24 ] (119

Then substituting Eq119 in Eq. (32), one obtains

(d—cos 29)cos 2u=0. (120

Equation(120) can be satisfied in two possible ways:

(iv) cos20=d, (121

(v) cos2u=0. (122

In the following, we refer to Eqg121) and(122) as possible
extrema(iv) and(v), respectively.

The possible extremurfiv) satisfies Eq(121). Also, sub-
stituting Eq.(119) in Eq. (33), and using Eq945) and(121),
one requires

ey(1—d)Y2cos 2¢

i =Si + - .
SIN 2 =SIN 20+ — T §)™5in 24

(123

Next, substituting Eq(119) in Eq. (34), and using Eq9.121)
and (45), one requires

eyd sin 2«

tan 2¢= (].—T)l? (124

Then substituting Eq(124) in Eq. (55), and using Eq.
(65), one gets

€4(1+pE’)sin 2«
pE/(pZEIZ_COSZ 2a)l/2

Q’=pE’[1+ . (129

Then substituting Eqg125 and(12) in Eq. (75), we obtain

— 1 §
Q—m pCcos2a—1

e, (tan 20)(1—2E)(1—2E+p cos 2a)
* [p2cod2a—(1-2E)2]2

(126

Q=211-E

8e,(1—2E—pcos 2a)

(1+2e,)pcos2a—1+e,

PHYSICAL REVIEW A62 042310

Another possible extremurfv) satisfies Eq(122), from
which Eqs.(84) and(85) again follow. Also, substituting Eq.
(119 in Eq. (33), and using Eq(84), one obtains

2e,Cos 2 sin 2a(e,,—sin 2¢)
cos 2¢p—sir’ 2a(e, —sin 2¢)

tan 20= (127

[Alternatively, Eq.(90) is also possible here, but this again
leads to Eq.(104).] Furthermore, Eqs(119 and (34) also
require

tan 2¢=sin 2« cot 26. (128

Then substituting Eq127) in Eq. (128), the latter becomes

in 2¢ = 2(1-eye, 129
SiN2¢=e,~ 5 1tsi?2a)’ (129

If eg=+1 in Egs.(46) and(129), then one has
sin2¢=e,, (130

and then substituting Eq4130) in Eq. (127), one also has

tan 20=0, (131

from which Eqs.(90)—(104) again follow. Ife,= —1 in Egs.
(46), (129, and(127), then

o cos 2ae, 137
SIN2¢= = 3 s 2a (132
and
tan 29= — 8% e, sec 2 tan 2a(1+sir? 2a) 2
(133
From Eq.(133), one obtains
25— €y
COS = 18 sed2atar 2a(1+sit 2a) |2’
(134
where
=1 (135

Next, using Egs(112), (12), (65), (132), and(134), Eq.(75)
becomes

(7+sirf2a)(1—2E—p coS 2a)
(3+sir? 2a)

T (3+sif2a){1—e,[1+8 se€2a tar? 2a(1+sir? 2a) |72 |-

(136

042310-8
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210 2o
A oa=m/5 L
09 R,=sin2x 0.9
08 ’ 08 .
R, = sin 200
07 07
06 0.6
051 051 a=m/8 a=7/5
04r 04
03 031
02 [ 02 L
0.1 0.1
0 | | L 1 O 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0 01 0.2 0.3 0.4 0.5
E E

FIG. 1. Overlap extrem®, Eq. (76), as a function of error rate FIG. 3. Overlap extrem®, Eqg. (126), as a function ofg, for
E for the inconclusive rateR,=sin2x and a=m/5. The upper R,=sin 2, e,=+1, anda= /5 and /8.

curve corresponds to the positive sign choice in [#6). The lower . . .
curve corresponds to the negative sign choice and is the absolute NeXxt consider the possible extremum given by Ef).
minimum overlap, Eq(137). In Figs. 1 and 2, | ploQQ as a function ofe for R,=sin 2«

and for «= /5 and 7/8, respectively. The lower curve in

Parametric analysis is next to be completed of the posl_Joth figures corresponds to the negative sign choice in Eq.

sible extrema determined heliggs.(42), (76), (104), (117), EK/Ge).S'il'ghnui,hg:gel?xveErq\(/%L)Jen?n:Zbr/epresented by the nega-
(118), (126), and (136)] to determine the global minimum ' '

overlap Q for fixed error and inconclusive rates, and the g(e)\¥?
corresponding maximum Renyi information gain by the Q= e+1 fle)) 1—|1- Te) -1y, (137
eavesdropper from the POVM receiver.
and Eq.(137) represents a possible minimum.
IIl. MINIMUM OVERLAP OF CORRELATED We next calculat& for the possible extrema given para-

metrically in terms of¢ by Eqgs.(117), (118), (108), (109),
and (115, also forR,=sin 2, for = #/5 or 7/8, and for

We seek the minimum overlaD in order to get the maxi- O<d¢=<m. It turns out thatQ is negative fore,=—1 and
mum Renyi information gait [see Eq(83)]. First consider e,=—1, that is, Q(#)je, - 1¢,--1<0. Also -1
the possible extremum given by E(.04). Note that if the ;Q(qb)‘ef_l’egzﬂzl; and E(¢)|ef+1le02ﬂ=0. Thus

parameterR, is chosen to equal or exceed the unp_erturbeq;qs_(lln and(118) cannot, in this case, represent a possible
inconclusive rate, Eq6), thenR,=sin 2, and, according to minimum of Q. (Note that forR,=sin 2, Eq. (B4) must be

Eq. (64), one hasp=1/cog2a. It then follows from Eq. enforced)

(;04) that Q=1, which cannot correspond to a minimum,  Next consider possible extrema given by Eg26). In

since 0=Q=1. Therefore Eq(104) cannot represent a pos- Fig. 3 Q is plotted as a function of for R,=sin 2,

sible minimum ofQ. Also recall that Eq(42) is unphysical es=+1, and a=n/5 and m/8. For e,=—1, one gets

PROBE STATES

for R,=sin 2a. Q(E)<0 for E<%, which is nonphysical(As in [1], it is
assumed in the present work that 3.) Actually, Egs.(54),
210 (65). (12). (22), (24), (121, (123. and(124) imply thatE is
0.9 in each case constafindependent of).
08 210
07F : R,=sin 20,
06 - 09r 0,=+1
05 - =18 08 §e=+1
04k R,= sin 20 07
03k gg L a=n/5
02 '
oq - 04F o=7/8
0 ! ] ] ] 03[
0 01 02 03 04 05 0.2f
E 01
FIG. 2. Overlap extrem®, Eq. (76), as a function of error rate 0 : : . .

0 0.1 02 03 04 05

E for the inconclusive ratR,=sin 2o and «= /8. The upper £

curve corresponds to the positive sign choice in [#6). The lower
curve corresponds to the negative sign choice and is the absolute FIG. 4. Overlap extrem®), Eq. (136), as a function ofE for
minimum overlap, Eq(137). R,=sin 2, e,=+1,€,=+1, anda= w/5 and /8.
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0 10— 210
09F\" . o=ms 09 a=ms
L oo vt . R_=sin 20 08
08 . . . 7 R, /sin 20,
07 . . . 07 :
06 R 081
05+ . e 05
04 . ot 04}
03 e 03
02+ S 02t
0.1 .. . * 01
0 1 | | | hd o
0 0.1 0.2 0.3 04 0.5 0 0.1 0.2 0.3 04 05
E E
FIG. 5. Points correspond to the unoptimized ove@a@#®ppen- FIG. 7. Solid curves are the minimum overl@p Eq. (137), as

dix B) versus the error rat& for R,=sin2x and a==/5 for a @ function of the error rat& for various values of the inconclusive
range of values of nonoptimal probe parameters. The solid curve igteR, for @=m/5. The dashed curve is the minimum overlap for
the corresponding minimum overlap, EG37). the fixed error rate onlyAppendix Q.

IV. ADVANTAGE OF MONITORING

Next consider possible extrema given by E36). In
THE INCONCLUSIVE RATE

Fig. 4 Q is plotted as a function ok for R,=sin 2,

e,=+1,e=+1, anda=n/5 and /8. Fore,=+1 and The minimum overlam of the correlated probe states as
e,=—1, Q(E) exceeds the upper curve in Fig. 4 far g function of error rat& and inconclusive rat®, for a range
=m/5 andw/8, and can be ignored. Fey,=—1 ande,=  of system parameters is given by E337), together with

+1, one get(E) <0 for E<0.37, which is nonphysical. Egs. (77)—~(82) and (64); and the corresponding maximum
Fore,=—1 ande,=—1, one also getQ(E) <0, which is  Renyi information gain by the probe is given bf,, Eq.
nonphysical. Actually, Eqst113), (65), (12), (132—(134),  (83), together with Eq(137). For the fixed error rat& only,
and(128) imply thatE is in each case constafibdependent \yith no restriction on the inconclusive rate, the minimum
of Q). . ) overlap is given parametrically in terms gfby Egs.(CD—
Comparing Figs. 1, 2, 3, and 4, one can conclude that fo[cy) of Appendix C, and the corresponding maximum Renyi
a=m/5 and7/8, the minimum overla@ is given by Eq. information gain is given by Eq(83), together with Egs.
(137),.cqrrespond|ng to the Iqwer curve in poth F_|gs. 1 and<c1)_(c4)_ In Figs. 7-10, | plot Eq(137) and the corre-
2. This is corroborated by Figs. 5 and 6, in which I plot, sponding Eq.(83) as a function of error rate for various
using Egs.(B1), (B2), and (B4)—(B6) of Appendix B, the  yalyes of the inconclusive raR,, and fora = /5 and /8,
general expression for the overlap versus error rateRfor respectively. Also plotted in Figs. 7—10 are E¢S1)—(C4)
=sin 2, for a representative range of values for the nonopyf Appendix C, and the corresponding Eg3) as a function
timal probe parameters, and fer= /5 and /8, respec-  of the error ratdéthe dashed lowest curve for the overlap, and
tively. The solid curve in both figures corresponds to thethe dashed highest curve for the information gaifihe
absolute minimum, Eq(137). In all cases the nonoptimal maximum allowable information gain by the probe for the
values lie above the absolute minimum, as must be the casgxed error rate and fixed inconclusive rate is less than that at

Q4 Qo
0'2 L o="/8 10 \
SN T+ R,=sin2a 0.9 1)
08 [ ¢ " 08 L
07\ " . T 07
061 . 06
05 - . ) 05r
04r 04r
o3\ . . 03
0.2+ 02r
0.1 . 0.1
0 i 1 b | .I 0 PRI | P IR . N T S S
0 01 02 03 04 05 0 0.05 0.10 0.15 0.20
E E
FIG. 6. Points correspond to the unoptimized ove@af\ppen- FIG. 8. Solid curves are the minimum overl@p Eq. (137), as

dix B) versus the error rat& for R,=sin 2« and a=#/8 for a  a function of the error rat& for various values of the inconclusive
range of values of nonoptimal probe parameters. The solid curve imte R, for = 7/8. The dashed curve is the minimum overlap for
the corresponding minimum overlap, E437). the fixed error rate onlyAppendix Q.
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. _ y 0
101;1.0 R?/s1£1_20(- 1.000 1.010 1.015 :)(9)
0.9 1.020 o.s
0.8 )
0.7
0.7 06
0.6 0'5
0.5 0'4
0.4 )
0.3
03 0.2
0.2 0'1
0.1 )
0 1 1 1 1
0 : : : : 1.000 1.005 1.010 1.015 1.020 1.025
0 0.1 0.2 0.3 0.4 0.5 ;
e R?/sm 200

FIG. 9. Solid curves are the maximum Renyi information gain ~ FIG. 11. Minimum overlapQ, Eq. (137), as a function of the

by the probd gpt, Eqs.(83) and(137), as a function of the error rate  inconclusive rateR, for various values of the error rate and «

E for various values of the inconclusive ra for a==/5. The  =m/5.
dashed curve is the maximum Renyi information gain by the probe o ]
for the fixed error rate onlyEgs.(83) and (C1)—(C4)]. In the upper curve in Fig. 15, | plot as a functionaffor

R,=sin 2, the fixed error raté,,,, for which the informa-

the fixed error rate only, and decreases with an increasingion gain by the probe is uniticomplete information The
inconclusive rate. One can conclude that by monitoring thelashed lower curve corresponds to the case in which the
inconclusive rate of the POVM receiver as well as the erroiinconclusive rate is not fixed. One sees that the probe gains
rate, the achievable information gain by the probe can beomplete information at the price of inducing a larger error
reduced below that achievable when only the error rate isate if the inconclusive rate is also monitored.
monitored. It then follows that fewer bits need be sacrificed
in the process of key distillation if the inconclusive rate is V. CONCLUSIONS
also monitored. Also, by increasing the inconclusive-rate
monitoring threshold, the achievable information gain can be The inconclusive rate can be a useful disturbance measure
further decreased. in quantum cryptography. Here the maximum Renyi infor-

In Figs. 11-14, | plot Eq9137 and(83) as a function of ~mation gain by a disturbing eavesdropping probe is calcu-
the inconclusive rate for various values of the error rate, andated analytically for fixed POVM-receiver error and incon-
for a= /5 and /8, respectively. In Fig. 13 foiw=7/5, the  Clusive rates in the two-state protocol in the presence of an
information gain is seen to monotonically decrease with arindividual attack. The maximum Renyi information gain is
increasing value of the inconclusive-rate monitoring threshgiven by Eq.(83), together with Eqs(137), (77)—(82), and
old. However, as in Fig. 14 fox= /8, the information gain  (64). It has been demonstrated that the maximum allowable

may first increase before decreasing with an increasing ininformation gain by the probe for the fixed error rate and
conclusive rate, in which case there is a least desirable irfixed inconclusive rate is less than that for the fixed error rate

conclusive rate threshold exceeding sin 2 only, and decreases with a suitably increasing inconclusive
rate. It follows that by monitoring the inconclusive rate of
%10 Rp/sin20= 1.00 1.0:310 the POVM receiver, as well as the error rate, the achievable
09 210
08 09 r
0.7 0sh E=0.025
06 07 _\_/ E=0.050
05 0.6 —\/
0.4 05F
03 0.4 e
: -
0 L L 02}
0 005 010 015 020 01}
E olb— N
1.00 1.05 1.10
FIG. 10. Solid curves are the maximum Renyi information gain R, /sin 20,
by the probd ffpt, Eqgs.(83) and(137), as a function of the error rate '
E for various values of the inconclusive ra® for a=w/8. The FIG. 12. Minimum overlapQ, Eqg. (137), as a function of the
dashed curve is the maximum Renyi information gain by the probénconclusive rateR, for various values of the error rate and «
for the fixed error rate onlyEgs.(83) and (C1)—(C4)]. =7/8.
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1510 Eox 05
0.9 -
0.8 041 R7=sin20,
0.7 . |
0-6 0.3_ -
05 -
0.4 02}
0.3 |
02k : 01 F
01 -
0 1 1 1 1 0 n n ) L " ) n N
1000 1.005 1.010 1.015 1.020 1.025 0 005 010 015 020 025

R, /sin 20 of/m

FIG. 15. The solid curve is the fixed error rd&g,, which gives
complete information, as a function ef for the inconclusive rate
R,=sin 2a. The dashed curve corresponds to the case in which the
inconclusive rate is not fixe@Appendix Q.
information gain by the probe can be reduced below that _ ) o
achievable when only the error rate is monitored. Also, by5|ble unitary disturbance of each encoded photon incident on
suitably increasing the inconclusive rate monitoring threshihe receivei2]. In this model, an incoming carrier staje

old, the achievable information gain can be further de-and the statgw) of a disturbing probe undergo joint unitary
creased. evolution represented by a unitary operatdgy resulting in
the entangled stafd.,2,5:

FIG. 13. Maximum Renyi information gain by the prob&t,
Egs. (83) and (137), as a function of the inconclusive rak, for
various values of the error raand a= /5.
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(A1)

ere|d,,,) are states in the Hilbert space of the disturbing

APPENDIX A: DISTURBED INCONCLUSIVE RATE Ulv@w) =3 [tan 2¢|Pgg) + (1+ sec )| P 1q)

The Fuchs-Peres model of eavesdropping on the two-state +(1—sec )| d ;) —tan 2a|d ;)] @ |u)
key-distribution protocol represents the most general pos-
+ 3 [(1—sec )| Do) — tan 2a| D)

I R
opt 1.0
0oL o= T8 +tan 2a|® )+ (1+sec )| P 1) @ |v).
0.8 F (A2)
0.7
0 6_’\ The probe state$d,,,) have certain symmetry properties
0'5 _/\&0050 that arise from the random equiprobable selection of carrier
1 states|u) and |v) by the key transmitter, and the resulting
04 E=0025 symmetry of the probe under interchange |of and |v).
03r Specifically, one hafl,?]
0.2
01r |@og =[P14], (A3)
ob—— L
1.00 1.05 1.10
R, /sin 201 |@ gy =[P4, (A4)
FIG. 14. Maximum Renyi information gain by the probﬁ)t, <q)oo|q)0:|.>:<q)11|q)1o>’ (A5)
Egs.(83) and (137), as a function of the inconclusive rak for
various values of the error raand a= 7/8. (B g P19y =(P 14| Ppy), (AB)
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(Do P19y =(P1d Poy), (A7) X,=COS\ COSf COS¢, (A22)
(g Do) =(P1d P1y), (A8) X,=COS\ cosf sin g, (A23)
(Dot P11)=(P1d Do), (A9) Xgz=sin\ sinu, (A24)
(D19 P ooy =(Pod P1y). (A10) X5=COS\ sin# cosg, (A25)

It has been shown in previous wof4,6—8 that the incon-

clusive rateP, of the POVM receiver, for an incoming state Xe=—Coshk singsind, (A26)
[#), s given by consistent with the assumed unitarity of the disturbing probe.
Po= (| Adl ). (A11) Next, substituting Eqs(A17)—(A26) in Eq. (A16), one

gets

According to Eq(Al11), the inconclusive rat®, induced by

_1 : —1rq_
the disturbing probe in the POVM receiver is given by Py =2 (1+sin2e) *{1-cos4x+2(1+cos 4a)

X cog \ sir? 6— 2 sin 2« oS \ sin 26 cos 2

R,=Py,=(u@w|UTAUjuow), (A12)
_ - _ , o —2 sirf 2a sir’ \ sin 2u
whereP,, is the probability that if a photon in polarization
state|u) is transmitted, then the measurement by the POVM —2 sirf 2a cog \ cos 26 sin 2¢]. (A27)
receiver is inconclusive. Equivalently, using E@) in Eq. _
(A12), one also has for the induced inconclusive rate Analogously, it can be shown that EGA14) becomes
R,=1—Py,— Py, (A13) Puu=13 (1—sin2a)[2 sif A +2 cog \ cos 6+tarf 2a
whereP,, andP,, are the probabilities that if the carrier is —tan 2« sec 2v cos \ sin 26 cos 2p

a|uy state, then the detectors ofandv polarization states, —tar? 2a(sin? \ sin 2.+ co \ cos 20'sin 26)].
respectively, respond. Here, one has
(A28)
Pu=(u®w|UTA ,Uluew), (A14)
Next, substituting EQgA27) and(A28) in Eq. (A13), one
Py, =(u®w|U'A ,Ujuew). (Al15)  obtains, after extensive algebraic reduction, the following ex-
pression for the inconclusive rate induced by the disturbing
Substituting Eqgs(2), (A1), and (A3)—(A10) in Eq. (A15),  probe:
one obtains

R,=sin 2a(1+sin 2a) {14 cos \ sin 26 cos 2
Pu=(1+sin2a) [ (1-sin* a—cod a)|®q?

+ % Sin 2a<q)00|q)10>— % Sin 2a<q)00|<D01>

+ (Sir? \ sin 2+ cog \ cos 20 sin 2¢)sin 2a],
(A29)

L L expressed in terms of the angle Eq. (5), and the probe
— 3 SINP 2a( P oo P 11) — 3 SiN 2a(P 3| P o) parameters., u, 6, and ¢ [12].

— 3 Si 2a(® oy D10)]. (A16)
APPENDIX B: NONOPTIMIZED OVERLAP

Using Eqgs(22), (24), (65), (12), and(53) in Eq. (75), one
can show that

The probe statepb,,,), expanded in terms of orthonormal
basis vector$wﬂ>, are given by Eqgs(3a), (3b), and(4) of
[1], namely,

1

1
| D ooy = Xo|Wo) + Xy |wq) + Xo|wyo) + X3l ws), (AL7) —
00) = Xo|Wo) + X1|W1) + X5 Wa) + Xl w3 Q 2(1-F) | T-cos 2

[2 sin2u(1-2E

|P12) = XlWo) + XalWa)+ Xy [Wa) + Xolws), - (AL8) —p co 2a cos 20) + p cos 2a[ 1+ sin 2¢— cos 29

|® o) =Xs|Wy) + Xg|Wp), (A19) . .
X (1—=sin2¢)]—sin2¢(1+cos20)(1—-2E)]—1;.
| D100 =Xg|Wy) + Xs|Ws). (A20)
(B1)
Here the real coefficientsXy,X1,X5,X3,X5,Xg}, expressed o .
in terms of the probe parameteps, u, 6,4}, are[1,2] Here the parametgr is given by Eq.(64). Also, using Egs.
(13), (10), (11), (65), (22), and(24) in Eq. (12), it follows

Xo=SIin\ cospu, (A21)  that

042310-13



HOWARD E. BRANDT PHYSICAL REVIEW A62 042310

E=1[csc 2 Sin 26 cOS 2+ cos 20 sin 2 — sin 2. ]~ APPENDIX C: MINIMUM OVERLAP FOR THE FIXED
ERROR RATE ONLY

X[(p—1)cof 2a(1—cos 20)— (1— p coS 2« cos 20) o , ,
If only the error rate is fixedwith no constraint on the

X sin 2+ (1— p cos 2a)(csc 2 Sin 26 cos 2 inconclusive ratg then the minimum overla@ as a function

. of error rateE, for both a PV receivefl] and the POVM
+cos2sin2¢)|. (B2) receiver[5], is given parametrically in terms of the parameter
One also requires in Eq&B1) and (B2) that v by Eqs.(l;—l&) of [1_]. The latter can _be shown to reduce

to the following equations, parametric in
d=cos 29, (B3)
Q=[cog 2a+f(y)—f(y)] H(1+sir?2a)Y?

in order that in Eq.(24), sif A=0, as must clearly be the ] )
case. Substituting Eq$65) and(12) in Eqg. (B3), one there- X (siny csc 2a— cosy sirf 2a)

fore requires +(1+sir? 2a)siny cosy cos 2w cot 2a+ f5(y)}
0<E<3(1—-pcog2acos). (B4) (CY)

The left-hand side of the inequality follows from the physical 5,4
nature of the error rate. Equatio(B®1), (B2), (64), and(B4)
parametrically determine the dependence of the unoptimized E=1{1-co@2a[f(y)—fu(y)] 1 (C2)
overlapQ on the error ratd, both expressed in terms of the
anglea characterizing the nonorthogonal states of the signaly .o, .o
the inconclusive rat®,, and the probe parametefs¢, and

u. Because of the periodicity i, ¢, and u in Eqgs. (B1),

(B2), and(B4), one need only consider fa(y)=(1+sin 2a)cosy—sinysin2a)  (C3)

0<f<m; O<¢p=m, Osu=<m. (85) and
Of course, one also has the physical requirement fo(y)=sin 2a[cos y sir? 2a+sin* ycsé 2a
0=0Q=1. (B6) —2 sirf y cos y]*2 (CH
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