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Inconclusive rate as a disturbance measure in quantum cryptography
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The inconclusive rate is considered as a disturbance measure in key distribution in quantum cryptography.
Bennett’s two-state protocol is addressed for the case in which a positive operator-valued measure is imple-
mented by the legitimate receiver in the presence of an individual attack by a general unitary disturbing
eavesdropping probe. The maximum Renyi information gain by the disturbing probe is calculated for given
receiver error and inconclusive rates. It is demonstrated explicitly that less information is available to an
eavesdropper at a fixed inconclusive rate and error rate than is available at a fixed error rate only.

PACS number~s!: 03.67.Dd, 03.67.Hk, 03.65.Bz
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I. INTRODUCTION

An essential ingredient of quantum cryptography is
trade-off between the maximum information that an eav
dropper can obtain by intercepting the key-distribution tra
mission and the resulting disturbance induced in the tra
mission. The error rate alone is commonly chosen as
disturbance measure@1,2#; however, it has been conjecture
@1# that the monitoring of other disturbance measures, al
with the error rate, may allow less information gain by t
eavesdropper and necessitate that fewer bits be sacrifice
the legitimate users during key distillation. In the prese
work, I consider the inconclusive rate~the rate of inconclu-
sive measurement outcomes! as an additional disturbanc
measure. I demonstrate that, in fact, less information is av
able to an eavesdropper at a fixed inconclusive rate and e
rate than is available at a fixed error rate only. It then follo
that fewer bits need to be sacrificed during key distillation
the inconclusive rate is appropriately monitored along w
the error rate.

In particular, I consider the two-state protocol@3# sub-
jected to an individual eavesdropping attack@1# in which the
legitimate receiver implements a positive operator-valu
measure~POVM! @4–8#. The following set of POVM opera-
tors represents the possible measurements performed b
receiver:

Au5~11^uuv&!21~12uv&^vu!, ~1!

Av5~11^uuv&!21~12uu&^uu!, ~2!

A?512Au2Av . ~3!

Here, the ketsuu& and uv& represent the two possible nono
thogonal normalized polarization states of a carrier phot
with linear polarizations designated byu andv, respectively.
The angle between the corresponding polarization vecto
ū. Since the photon is a spin-one representation of the L
entz group, it follows that the Dirac bracket between the t
states is@6#

^uuv&5sin 2a, ~4!

where
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2 ū D . ~5!

~Parametrization in terms of the anglea, instead ofū, is
chosen for convenience.! The statesuu& and uv& encode bit
values 0 and 1, respectively. The POVM operators, Eqs.~1!–
~3!, are positive and their sum is unity. The operatorsAu and
Av measure the probability of outcomesu and v, respec-
tively. The operatorA? measures the probability of an incon
clusive measurement outcome.

One advantage of a POVM over a standard projecti
valued~PV! measurement is that, for the POVM, the pro
ability of obtaining an inconclusive result can be low
@9–12#. For the POVM receiver@13# considered in the
present work, the undisturbed inconclusive rateR?

POVM is
given by @4,6,8,12#

R?
POVM5sin 2a. ~6!

~Note that R?
POVM5P?

POVM in the notation of@12#, since
P?

POVM is a probability per incident photon, which I designa
here as a rate.! For an ordinary PV receiver consisting of
beam splitter with Wollaston prisms located at each of
two exit ports to distinguish the polarization stateuu& from
the perpendicular polarization stateuu'&, or the polarization
stateuv& from the perpendicular polarization stateuv'&, re-
spectively, the inconclusive rate is given by@11,12#

R?
PV5 1

2 ~11sin2 2a!. ~7!

~Note thatR?
PV5P?

PV in the notation of@12#.! It follows from
Eqs.~6! and~7! that the inconclusive rate of the ideal POVM
receiver is less than that for the PV receiver, since@12#

R?
POVM

R?
PV 5

2 sin 2a

11sin2 2a
,1. ~8!

The Fuchs-Peres model of eavesdropping on the two-s
key distribution protocol represents the most general poss
unitary disturbance of each encoded photon incident on
receiver@1,2# and caused by the eavesdropper’s probe. Ba
on this model, it has been shown that the eavesdropp
optimization of Slutskyet al. @1# for the two-state protoco
holds for a POVM receiver, as well as for a PV receiver@5#.
©2000 The American Physical Society10-1
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For both types of receiver, identical algebraic expressi
were shown to result for both the Renyi information gain
the eavesdropper, and for the error rate induced by the ea
dropper, expressed in terms of the parameters character
the key distribution system and the eavesdropper’s pro
The resulting disturbed inconclusive rateR? of the POVM
receiver is given by Eq.~A29! of Appendix A @12#. Equiva-
lently, one has

R?5
sin 2a~11c1a sin 2a!

11sin 2a
, ~9!

where~in the notation of@1#!

a5sin2 l sin 2m1cos2l cos 2u sin 2f, ~10!

c5cos2 l sin 2u cos 2f, ~11!

expressed in terms of the probe parametersl, m, u, andf in
the Fuchs-Peres model@1,2#.

The security analysis for the two-state protocol agai
individual attacks is based on maximal Renyi informati
gained by the eavesdropper on corrected data for a fi
error rate@1,5#. The error rate is treated as the disturban
measure by the eavesdropper. The inconclusive rate of
legitimate receiver is the additional disturbance measure c
sidered in the present work. In the following, an analysis
presented of the maximal Renyi information gain for fix
error and inconclusive rates. In Sec. II possible conditio
extrema of the corresponding Lagrange function are ca
lated. In Sec. III a parametric analysis is presented to de
mine the extremum representing the absolute minimum o
lap of the correlated probe states. In Sec. IV the maxim
Renyi information gain for fixed error and inconclusive rat
is specified and shown to be less than that for the fixed e
rate alone. The advantage of monitoring the inconclusive
is demonstrated by further parametric analysis. Section
presents a summary of results and conclusions. In Appe
A a derivation is given of the disturbed inconclusive ra
Eqs. ~9!–~11!. In Appendix B analytic expressions are o
tained for the nonoptimized overlap and the error rate
terms of the probe parameters. In Appendix C a parametric
expression is obtained for the minimum overlap of the c
related probe states as a function of error rate~with no con-
straint on the inconclusive rate!.

II. INFORMATION-GAIN EXTREMA

In @1# the quantityE8, simply related to the error rateE,
was introduced in the problem of conditional minimizatio
of the overlapQ between the two pertinent correlated pro
states for a fixed error rate, namely,

E85
cos2 2a

122E
. ~12!

Also

E85
1

d
~12a sin2 2a2c sin 2a!, ~13!
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where

d5sin2 l1cos2 l cos 2u, ~14!

anda andc are given by Eqs.~10! and~11!. It follows from
Eq. ~13! that

a sin2 2a1c sin 2a512dE8. ~15!

Therefore, substituting Eq.~15! in Eq. ~9!, one obtains

R?5~11sin 2a!21~sin 2a112dE8!. ~16!

From Eq.~16!, it therefore follows that

d5
~11sin 2a!~12R?!

E8
. ~17!

Since constant error rateE corresponds to constantE8 @see
Eq. ~12!, notinga is constant#, it follows from Eq.~17! that
d is constant for the constant error rateE and the constan
inconclusive rateR? . In all of the following, the inconclu-
sive rateR? will appear only through the expression ford,
Eq. ~17!, and can be treated simply as a fixed prescrib
parameter.

The appropriate Lagrange function for determining po
sible conditional extrema is then given by@1#

F5Q81jE8, ~18!

wherej is a Lagrange multiplier, and

Q85@11~sec2 2a!E8#Q1~sec2 2a!E8, ~19!

whereQ is the overlap between the correlated states of
probe. One also has@1#

Q85
a1b11

d
, ~20!

wherea andd are given by Eqs.~10! and~17!, respectively,
and

b5sin2 l sin 2m1cos2 l sin 2f. ~21!

Sinced is constant, it follows from Eq.~14! thatl andu are
constrained by

cos2 l5
12d

12cos 2u
. ~22!

Thereforel will be treated as a dependent variable. Also

sin2 l512cos2 l, ~23!

and substituting Eq.~22! in Eq. ~23!, one obtains

sin2 l5
d2cos 2u

12cos 2u
. ~24!

Substituting Eqs.~13! and ~20! in Eq. ~18!, one obtains
0-2
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INCONCLUSIVE RATE AS A DISTURBANCE MEASURE . . . PHYSICAL REVIEW A 62 042310
F5
F8111j

d
, ~25!

where

F85a1b2jĒ, ~26!

and

Ē5a sin2 2a1c sin 2a. ~27!

Sincej andd are constant in Eq.~25!, extremization ofF8
must also result in extremization ofF, and, because of this
F8 may be taken as the effective Lagrange function. I the
fore extremize the Lagrange function, Eq.~26!. Substituting
Eqs.~10!, ~11!, ~21!–~23!, and~27! in Eq. ~26!, we obtain

F85~22j sin2 2a!sin 2mS 12
12d

12cos 2u D
1@~12j sin2 2a!cos 2u sin 2f1sin 2f

2j sin 2a sin 2u cos 2f#
12d

12cos 2u
. ~28!

Note that in the expression for the effective Lagrange fu
tion F8, the constantsR? andE appear implicitly in the con-
stantd through Eqs.~17! and ~12!.

For the extremum, one requires@1,14#

]F8

]m
50, ~29!

]F8

]u
50, ~30!

]F8

]f
50, ~31!

or

]Ē

]m
50, ~32!
04231
-

-

]Ē

]u
50, ~33!

]Ē

]f
50. ~34!

@Equations~32!–~34! may alternatively be considered as sp
cial cases of Eqs.~29!–~31! in the limit of an infinite
Lagrange multiplierj in Eq. ~26!.# First, substituting Eq.~28!
in Eq. ~29!, we obtain

~22j sin2 2a!~d2cos 2u!cos 2m50. ~35!

Equation~35! can be satisfied in three possible ways:

~ i! j5
2

sin2 2a
, ~36!

~ ii ! cos 2u5d, ~37!

~ iii ! cos 2m50. ~38!

In the following, we refer to Eqs.~36!, ~37!, and ~38! as
possible extrema~i!, ~ii !, and~iii !, respectively.

First consider possible extremum~i!, corresponding to Eq
~36!. If we substitute Eq.~28! in Eq. ~30!, and use Eq.~36!,
we obtain

sin 2f561. ~39!

But substituting Eq.~28! in Eq. ~31!, and using Eq.~36!, we
also obtain

tan 2f5
sin 2a~cos 2u21!

2 sin 2u
. ~40!

According to Eqs.~39! and ~40!, we require that

cos 2u521. ~41!

Combining Eqs.~10!–~13!, ~17!, ~19!–~22!, ~39!, and ~41!,
one obtains
Q5
~12R?!

21~11sin 2a!21@21~161!sin2 2a#2@16~122E!#tan2 2a22

2~12E!tan2 2a
. ~42!

Note that Eq.~42! yields an unphysical valueQ>1 if the inconclusive rate assumes or exceeds its unperturbed value,

R?5sin 2a. ~43!

Next, the alternative possible extremum~ii ! satisfies Eq.~37!. Also, substituting Eq.~28! in Eq. ~30!, one requires

05
]F8

]u
52~12d!~12cos 2u!22$~22j sin2 2a!sin 2m sin 2u

2@~12j sin2 2a!cos 2u sin 2f1sin 2f2j sin 2a sin 2u cos 2f#sin 2u

2@~12j sin2 2a!sin 2f sin 2u1j sin 2a cos 2f cos 2u#~12cos 2u!%. ~44!
0-3
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From a trigonometric identity and Eq.~37!, it follows that

sin 2u56~12cos2 2u!1/25eu~12d2!1/2, ~45!

where

eu561. ~46!

Next, substituting Eqs.~37! and ~45! in Eq. ~44!, one obtains

sin 2m5
~22j sin2 2a!sin 2f2jeu~12d!~12d2!21/2sin 2a cos 2f

22j sin2 2a
. ~47!
-

Furthermore, substituting Eq.~28! in Eq. ~31!, one obtains

05
]F8

]f
52

12d

12cos 2u
$@11~12j sin2 2a!cos 2u#cos 2f

1j sin 2a sin 2u sin 2f%. ~48!

Next, substituting Eqs.~37! and~45! in Eq. ~48!, one obtains

tan 2f5euFd sin2 2a2~11d!j21

~12d2!1/2sin 2a G . ~49!

Solving Eq.~49! for j, one therefore requires

j5
11d

d sin2 2a2eu~12d2!1/2sin 2a tan 2f
. ~50!

Next, substituting Eq.~37! in Eq. ~22!, one requires for pos
sible extremum~ii !,

cos2 l51, ~51!

and therefore, one also requires

sinl50. ~52!

Next, using Eqs.~20!, ~21!, and~10!, it follows that

Q85
1

d
@2 sin2 l sin 2m1cos2 l sin 2f~cos 2u11!11#.

~53!

Also using Eqs.~13!, ~10!, and~11!, one gets

E85
1

d
@12sin2 2a~sin2 l sin 2m1cos2 l cos 2u sin 2f!

2sin 2a cos2 l sin 2u cos 2f#. ~54!

Substituting Eqs.~51!, ~52!, and ~37! in Eq. ~53! ~which
holds generally!, one gets

Q85
1

d
@11~11d!sin 2f#, ~55!

or equivalently,
04231
sin 2f5
dQ821

11d
. ~56!

Then one also has

cos 2f5efF12S dQ821

11d D 2G1/2

, ~57!

where

ef561. ~58!

Next, substituting Eqs.~51!, ~52!, ~37!, and~45! in Eq. ~54!
~which holds generally!, one obtains

E85
1

d
@12d sin2 2a sin 2f2eu~12d2!1/2sin 2a cos 2f#.

~59!

If we next substitute Eqs.~56! and~57! in Eq. ~59!, and solve
for Q8, it follows from the quadratic formula that

Q85
2B6~B224AC!1/2

2A

52
1

2 S B

AD H 17F124S A

BD 2S C

AD G1/2J , ~60!

where

A5
d2

~11d!2 sin2 2a~12d2 cos2 2a!, ~61!

B5
2d

~11d!2 sin2 2a@d2~11d!E8212d2d2 sin2 2a#,

~62!

C5S dE8212
d sin2 2a

11d D 2

2
d~12d!~21d!

~11d!
sin2 2a.

~63!

Introducing the notation,

r5
1

~11sin 2a!~12R?!
, ~64!
0-4
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we can write Eq.~17! as

d5
1

rE8
. ~65!

In Eq. ~64! and the following, the parameterr is a measure
of the inconclusive rateR? and the anglea specifying the
nonorthogonal polarization states of the signal. Using E
~61!–~63! and ~65!, one can show that

S B

AD522~r2E822cos2 2a!21@r3E832r~12r!

3E822~12r sin2 2a!E8#, ~66!

and

S C

AD5~r2E822cos2 2a!21$@r2~12r!2 csc2 2a#E84

1@2r~12r!~12r2r sin2 2a!csc2 2a22r3#E83

1@~12r2r sin2 2a!2 csc2 2a2r2#E82

12rE811%. ~67!

Substituting Eqs.~66! and ~67! in Eq. ~60!, one obtains

Q85
g~E8!

s~E8! H 17F12
s~E8!k~E8!

g~E8!2 G1/2J , ~68!

where the functionsg(E8), s(E8), and k(E8) are defined
by

g~E8!52~12r sin2 2a!E82r~12r!E821r3E83,
~69!

s~E8!52cos2 2a1r2E82, ~70!

and

k~E8!5112rE81@~12r2r sin2 2a!2 csc2 2a2r2#E82

1@2r~12r!~12r2r sin2 2a!csc2 2a22r3#E83

1@r2~12r!2 csc2 2a#E84, ~71!

respectively.
Next substituting Eq.~12! in Eqs.~66! and ~67!, one ob-

tains

S B

AD522~122E!21@r2 cos2 2a2~122E!2#21

3$r3 cos4 2a2r~12r!~cos2 2a!~122E!

2~12r sin2 2a!~122E!2%, ~72!

S C

AD5~122E!22@r2 cos2 2a2~122E!2#21

3$r2~12r!2 csc2 2a cos6 2a1@2r~12r!

3~12r2r sin2 2a!csc2 2a22r3#~cos4 2a!~1
04231
s.

22E!1@~12r2r sin2 2a!2 csc2 2a2r2#cos2 2a

3~122E!212r~122E!31~sec2 2a!~122E!4%.

~73!

Equation~19! ~which holds generally! can be written as fol-
lows:

Q5
Q82~sec2 2a!E8

11~sec2 2a!E8
. ~74!

Substituting Eq.~12! in Eq. ~74!, one then obtains

Q5
1

2~12E!
@~122E!Q821#. ~75!

Then if we substitute Eqs.~60!, ~72!, and ~73! in Eq. ~75!,
the overlapQ, expressed in terms of the error rateE and
inconclusive rateR? @throughr in Eq. ~64!# becomes

Q5
1

e11 H f ~e!F17S 12
g~e!

f ~e! D
1/2G21J , ~76!

where

e5122E, ~77!

and the following functions are defined:

f ~e!5
a~e!

b~e!
, ~78!

g~e!5
d~e!

a~e!
, ~79!

a~e!5r3 cos4 2a2r~12r!~cos2 2a!e2~12r sin2 2a!e2,

~80!

b~e!5r2 cos2 2a2e2, ~81!

d~e!5cos2 2a$r2~12r!2 csc2 2a cos4 2a

1@2r~12r!~12r2r sin2 2a!cot2 2a

22r3 cos2 2a#e1@~12r2r sin2 2a!2 csc2 2a2r2#

3e212r ~sec2 2a!e31~sec4 2a!e4%, ~82!

where r is given by Eq.~64!. The corresponding possibl
extremum in the Renyi information gain by the eavesdrop
is given by@1,5#

I opt
R 5 log2~22Q2! ~83!

and Eq.~76!.
Another alternative possible extremum~iii ! satisfies Eq.

~38!, from which it also follows that

sin 2m5em , ~84!

where
0-5
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em561. ~85!

Substituting Eq.~28! in Eq. ~30!, one obtains@as in Eq.~44!#

05
]F8

]u
5

2~12d!

~12cos 2u!2 $~22j sin2 2a!sin 2m sin 2u

2@~12j sin2 2a!cos 2u sin 2f1sin 2f

2j sin 2a sin 2u cos 2f#sin 2u
.

.

04231
2@~12j sin2 2a!sin 2u sin 2f

1j sin 2a cos 2u cos 2f#~12cos 2u!%. ~86!

Next, substituting Eq.~84! in Eq. ~86!, and solving forj, we
see that possible extremum~iii ! requires
j5
2 sin 2u~em2sin 2f!

sin 2a@sin 2a sin 2u~em2sin 2f!2sin2 2u cos 2f1cos 2u~12cos 2u!cos 2f#
. ~87!
a-
Furthermore, from Eqs.~28! and ~31! one again obtains Eq
~48!, from which one gets

tan 2f5
2j21~11cos 2u!1sin2 2a cos 2u

sin 2a sin 2u
. ~88!

If we then substitute Eq.~87! in Eq. ~88!, we obtain

sin 2u$~em2sin 2f!@2 tan 2f sin 2u1sin 2a~12cos 2u!#

2sin 2u cos 2f%50. ~89!

One notes that if

sin 2u50 ~90!

is taken as a possible solution to Eq.~89!, then one also has

cos 2u5eu561, ~91!

and then according to Eq.~14!, one has

d5sin2 l1eu cos2 l, ~92!

or

d5sin2 l~12eu!1eu . ~93!

Comparing Eq.~93! with Eq. ~17!, we conclude that, since
E8, R? , anda are fixed,eu521, and then, according to Eq
~91!,

cos 2u521. ~94!

@Also, F8 in Eq. ~28! is singular for cos 2u51, and the deri-
vation of Eq.~35! implicitly assumes cos 2uÞ1.! It then fol-
lows from Eq.~93! that

sin2 l5
d11

2
, ~95!

and then also

cos2 l5
12d

2
. ~96!
Next substituting Eqs.~90! and ~94! in Eq. ~88!, we obtain

tan 2f52`, ~97!

sin 2f561, ~98!

and

cos 2f50. ~99!

Therefore, substituting Eqs.~84!, ~95!, ~96!, ~98!, and~94! in
Eq. ~53!, one obtains

Q85S 11
1

dDem1
1

d
. ~100!

Next substituting Eq.~65! in Eq. ~100!, we get

Q85em1~11em!rE8. ~101!

Then if one substitutes Eqs.~101! and ~12! in Eq. ~19!, and
solves forQ, one obtains

Q5
1

2~12E!
@~11em!r cos2 2a1em~122E!21#,

~102!

where r is given by Eq.~64!. But the error rate must be
positive, and forem521 in Eq. ~102!, one getsQ521,
which is nonphysical. Therefore

em51 ~103!

must be chosen, and Eq.~102! becomes

Q5
1

~12E!
~r cos2 2a2E!. ~104!

The corresponding possible extremum in the Renyi inform
tion gain by the eavesdropper is given by Eqs.~83! and
~104!.

Alternatively, Eq.~89! is also clearly satisfied if
0-6
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~em2sin 2f!@2 tan 2f sin 2u1sin 2a~12cos 2u!#

5sin 2u cos 2f. ~105!

From Eq.~105!, it follows that

@~A211!sin 2u12A#sin 2u50, ~106!

where
04231
A5
1

sin 2a F2~em2sin 2f!tan 2f2cos 2f

em2sin 2f G . ~107!

One possible solution to Eq.~106! is again given by Eq.~90!,
and again results in Eq.~104!. The other possible solution to
Eq. ~106! is
sin 2u5
2 sin 2a~em2sin 2f!@cos 2f22~em2sin 2f!tan 2f#

sin2 2a~em2sin 2f!21@cos 2f22~em2sin 2f!tan 2f#2 ~108!

and

cos 2u5eu~12sin2 2u!1/2. ~109!

Also, one has, according to Eqs.~22! and ~24! ~which hold generally!

cos2 l5
12d

12cos 2u
~110!

and

sin2 l5
d2cos 2u

12cos 2u
. ~111!

Substituting Eqs.~84!, ~110!, and~111! in Eqs.~53! and ~54!, one obtains

Q85
112dem1~12d!sin 2f2@112em2~12d!sin 2f#cos 2u

d~12cos 2u!
~112!
e-
and

E85@d~12cos 2u!#21$12dem sin2 2a

2@12em sin2 2a1~12d!sin2 2a sin 2f#

3cos 2u2~12d!sin 2a cos 2f sin 2u%. ~113!

Next, substituting Eq.~65! in Eq. ~113! and solving forE8,
one obtains

E85
1

r~11R!
, ~114!

where

R5
@r212~12em sin2 2a!#~12cos 2u!

sin 2a@sin 2a~sin 2f cos 2u2em!1cos 2f sin 2u#
.

~115!

Then substituting Eqs.~65! and~114! in Eq. ~112!, one gets
Q85
1

11R F112em2sin 2f2
2~em2sin 2f!

12cos 2u G
1sin 2f1

2~em2sin 2f!

12cos 2u
. ~116!

Equations~114!–~116!, together with Eqs.~108! and ~109!,
determineQ8 as a function ofE8, parametrically in terms of
the parameterf.

Next, substituting Eqs.~116! and ~12! in Eq. ~19!, and
solving for Q, we obtain

Q5
122E

2~12E! H sin 2f1
2~em2sin 2f!

12cos 2u
2

1

122E
1

1

11R

3F12sin 2f2
2~em cos 2u2sin 2f!

12cos 2u G J . ~117!

Also, from Eqs.~12! and ~114!, it follows that

E5 1
2 @12r ~cos2 2a!~11R!#. ~118!

Equations~117!, ~118!, ~115!, ~108!, and~109! determine the
function Q(E) in terms ofE, parametrically in terms of the
parameterf. The corresponding possible extrema in the R
0-7



ve
.

in

HOWARD E. BRANDT PHYSICAL REVIEW A62 042310
nyi information gain by the eavesdropper from the recei
are then given by Eq.~83! andQ(E).

Proceeding to solve Eqs.~32!–~34!, we first substitute
Eqs.~10!, ~11!, ~22!, and~24! in Eq. ~27! to obtain

Ē5sin2 2a sin 2mS 12
12d

12cos 2u D1@sin2 2a cos 2u sin 2f

1sin 2a sin 2u cos 2f#
12d

12cos 2u
. ~119!

Then substituting Eq.~119! in Eq. ~32!, one obtains

~d2cos 2u!cos 2m50. ~120!

Equation~120! can be satisfied in two possible ways:

~ iv! cos 2u5d, ~121!

~v! cos 2m50. ~122!

In the following, we refer to Eqs.~121! and~122! as possible
extrema~iv! and ~v!, respectively.

The possible extremum~iv! satisfies Eq.~121!. Also, sub-
stituting Eq.~119! in Eq. ~33!, and using Eqs.~45! and~121!,
one requires

sin 2m5sin 2f1
eu~12d!1/2cos 2f

~11d!1/2sin 2a
. ~123!

Next, substituting Eq.~119! in Eq. ~34!, and using Eqs.~121!
and ~45!, one requires

tan 2f5
eud sin 2a

~12d2!1/2 . ~124!

Then substituting Eq.~124! in Eq. ~55!, and using Eq.
~65!, one gets

Q85rE8F11
ef~11rE8!sin 2a

rE8~r2E822cos2 2a!1/2G . ~125!

Then substituting Eqs.~125! and~12! in Eq. ~75!, we obtain

Q5
1

2~12E! H r cos2 2a21

1
ef ~ tan 2a!~122E!~122E1r cos2 2a!

@r2 cos2 2a2~122E!2#1/2 J .

~126!
04231
r Another possible extremum~v! satisfies Eq.~122!, from
which Eqs.~84! and~85! again follow. Also, substituting Eq
~119! in Eq. ~33!, and using Eq.~84!, one obtains

tan 2u5
2eu cos 2f sin 2a~em2sin 2f!

cos2 2f2sin2 2a~em2sin 2f!2 . ~127!

@Alternatively, Eq.~90! is also possible here, but this aga
leads to Eq.~104!.# Furthermore, Eqs.~119! and ~34! also
require

tan 2f5sin 2a cot 2u. ~128!

Then substituting Eq.~127! in Eq. ~128!, the latter becomes

sin 2f5em2
2~12eu!em

22eu~11sin2 2a!
. ~129!

If eu511 in Eqs.~46! and ~129!, then one has

sin 2f5em , ~130!

and then substituting Eq.~130! in Eq. ~127!, one also has

tan 2u50, ~131!

from which Eqs.~90!–~104! again follow. Ifeu521 in Eqs.
~46!, ~129!, and~127!, then

sin 2f52
cos2 2aem

31sin2 2a
~132!

and

tan 2u5281/2emef sec 2a tan 2a~11sin2 2a!1/2.
~133!

From Eq.~133!, one obtains

cos 2u5
ēu

@118 sec2 2a tan2 2a~11sin2 2a!#1/2,

~134!

where

ēu561. ~135!

Next, using Eqs.~112!, ~12!, ~65!, ~132!, and~134!, Eq. ~75!
becomes
Q5
1

2~12E! H ~112em!r cos2 2a211em

~71sin2 2a!~122E2r cos2 2a!

~31sin2 2a!

2
8em~122E2r cos2 2a!

~31sin2 2a!$12ēu@118 sec2 2a tan2 2a~11sin2 2a!#1/2%J . ~136!
0-8
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Parametric analysis is next to be completed of the p
sible extrema determined here@Eqs.~42!, ~76!, ~104!, ~117!,
~118!, ~126!, and ~136!# to determine the global minimum
overlap Q for fixed error and inconclusive rates, and t
corresponding maximum Renyi information gain by t
eavesdropper from the POVM receiver.

III. MINIMUM OVERLAP OF CORRELATED
PROBE STATES

We seek the minimum overlapQ in order to get the maxi-
mum Renyi information gainI @see Eq.~83!#. First consider
the possible extremum given by Eq.~104!. Note that if the
parameterR? is chosen to equal or exceed the unperturb
inconclusive rate, Eq.~6!, thenR?>sin 2a, and, according to
Eq. ~64!, one hasr>1/cos2 2a. It then follows from Eq.
~104! that Q>1, which cannot correspond to a minimum
since 0<Q<1. Therefore Eq.~104! cannot represent a pos
sible minimum ofQ. Also recall that Eq.~42! is unphysical
for R?>sin 2a.

FIG. 1. Overlap extremaQ, Eq. ~76!, as a function of error rate
E for the inconclusive rateR?5sin 2a and a5p/5. The upper
curve corresponds to the positive sign choice in Eq.~76!. The lower
curve corresponds to the negative sign choice and is the abs
minimum overlap, Eq.~137!.

FIG. 2. Overlap extremaQ, Eq. ~76!, as a function of error rate
E for the inconclusive rateR?5sin 2a and a5p/8. The upper
curve corresponds to the positive sign choice in Eq.~76!. The lower
curve corresponds to the negative sign choice and is the abs
minimum overlap, Eq.~137!.
04231
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Next consider the possible extremum given by Eq.~76!.
In Figs. 1 and 2, I plotQ as a function ofE for R?5sin 2a
and for a5p/5 and p/8, respectively. The lower curve in
both figures corresponds to the negative sign choice in
~76!. Thus, the lower value ofQ is represented by the nega
tive sign choice in Eq.~76!, namely,

Q5
1

e11 H f ~e!F12S 12
g~e!

f ~e! D
1/2G21J , ~137!

and Eq.~137! represents a possible minimum.
We next calculateQ for the possible extrema given para

metrically in terms off by Eqs.~117!, ~118!, ~108!, ~109!,
and ~115!, also forR?5sin 2a, for a5p/5 or p/8, and for
0<f<p. It turns out thatQ is negative forem521 and
eu521, that is, Q(f) uem521,eu521,0. Also 21
>Q(f) uem521,eu511>1; and E(f) uem511,eu56150. Thus

Eqs.~117! and~118! cannot, in this case, represent a possi
minimum of Q. ~Note that forR?>sin 2a, Eq. ~B4! must be
enforced.!

Next consider possible extrema given by Eq.~126!. In
Fig. 3 Q is plotted as a function ofE for R?5sin 2a,
ef511, and a5p/5 and p/8. For ef521, one gets
Q(E),0 for E, 1

2 , which is nonphysical.~As in @1#, it is
assumed in the present work thatE, 1

2 .! Actually, Eqs.~54!,
~65!. ~12!. ~22!, ~24!, ~121!, ~123!. and~124! imply that E is
in each case constant~independent ofQ!.

ute

ute

FIG. 3. Overlap extremaQ, Eq. ~126!, as a function ofE, for
R?5sin 2a, ef511, anda5p/5 andp/8.

FIG. 4. Overlap extremaQ, Eq. ~136!, as a function ofE for
R?5sin 2a, em511, ēu511, anda5p/5 andp/8.
0-9



.

fo

nd
t,

op

h
l
a

s

m

yi

s

nd

e
t at

e

e

e
or

e
or

HOWARD E. BRANDT PHYSICAL REVIEW A62 042310
Next consider possible extrema given by Eq.~136!. In
Fig. 4 Q is plotted as a function ofE for R?5sin 2a,
em511, ēu511, anda5p/5 and p/8. For em511 and
ēu521, Q(E) exceeds the upper curve in Fig. 4 fora
5p/5 andp/8, and can be ignored. Forem521 and ēu5
11, one getsQ(E),0 for E,0.37, which is nonphysical
For em521 andēu521, one also getsQ(E),0, which is
nonphysical. Actually, Eqs.~113!, ~65!, ~12!, ~132!–~134!,
and~128! imply thatE is in each case constant~independent
of Q!.

Comparing Figs. 1, 2, 3, and 4, one can conclude that
a5p/5 and p/8, the minimum overlapQ is given by Eq.
~137!, corresponding to the lower curve in both Figs. 1 a
2. This is corroborated by Figs. 5 and 6, in which I plo
using Eqs.~B1!, ~B2!, and ~B4!–~B6! of Appendix B, the
general expression for the overlap versus error rate forR?
5sin 2a, for a representative range of values for the non
timal probe parameters, and fora5p/5 and p/8, respec-
tively. The solid curve in both figures corresponds to t
absolute minimum, Eq.~137!. In all cases the nonoptima
values lie above the absolute minimum, as must be the c

FIG. 5. Points correspond to the unoptimized overlapQ ~Appen-
dix B! versus the error rateE for R?5sin 2a and a5p/5 for a
range of values of nonoptimal probe parameters. The solid curv
the corresponding minimum overlap, Eq.~137!.

FIG. 6. Points correspond to the unoptimized overlapQ ~Appen-
dix B! versus the error rateE for R?5sin 2a and a5p/8 for a
range of values of nonoptimal probe parameters. The solid curv
the corresponding minimum overlap, Eq.~137!.
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IV. ADVANTAGE OF MONITORING
THE INCONCLUSIVE RATE

The minimum overlapQ of the correlated probe states a
a function of error rateE and inconclusive rateR? for a range
of system parameters is given by Eq.~137!, together with
Eqs. ~77!–~82! and ~64!; and the corresponding maximum
Renyi information gain by the probe is given byI opt

B , Eq.
~83!, together with Eq.~137!. For the fixed error rateE only,
with no restriction on the inconclusive rate, the minimu
overlap is given parametrically in terms ofg by Eqs.~C1!–
~C4! of Appendix C, and the corresponding maximum Ren
information gain is given by Eq.~83!, together with Eqs.
~C1!–~C4!. In Figs. 7–10, I plot Eq.~137! and the corre-
sponding Eq.~83! as a function of error rate for variou
values of the inconclusive rateR? , and fora5p/5 andp/8,
respectively. Also plotted in Figs. 7–10 are Eqs.~C1!–~C4!
of Appendix C, and the corresponding Eq.~83! as a function
of the error rate~the dashed lowest curve for the overlap, a
the dashed highest curve for the information gain!. The
maximum allowable information gain by the probe for th
fixed error rate and fixed inconclusive rate is less than tha

is

is

FIG. 7. Solid curves are the minimum overlapQ, Eq. ~137!, as
a function of the error rateE for various values of the inconclusiv
rateR? for a5p/5. The dashed curve is the minimum overlap f
the fixed error rate only~Appendix C!.

FIG. 8. Solid curves are the minimum overlapQ, Eq. ~137!, as
a function of the error rateE for various values of the inconclusiv
rateR? for a5p/8. The dashed curve is the minimum overlap f
the fixed error rate only~Appendix C!.
0-10
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the fixed error rate only, and decreases with an increa
inconclusive rate. One can conclude that by monitoring
inconclusive rate of the POVM receiver as well as the er
rate, the achievable information gain by the probe can
reduced below that achievable when only the error rate
monitored. It then follows that fewer bits need be sacrific
in the process of key distillation if the inconclusive rate
also monitored. Also, by increasing the inconclusive-r
monitoring threshold, the achievable information gain can
further decreased.

In Figs. 11–14, I plot Eqs.~137! and~83! as a function of
the inconclusive rate for various values of the error rate,
for a5p/5 andp/8, respectively. In Fig. 13 fora5p/5, the
information gain is seen to monotonically decrease with
increasing value of the inconclusive-rate monitoring thre
old. However, as in Fig. 14 fora5p/8, the information gain
may first increase before decreasing with an increasing
conclusive rate, in which case there is a least desirable
conclusive rate threshold exceeding sin 2a.

FIG. 9. Solid curves are the maximum Renyi information ga
by the probeI opt

R , Eqs.~83! and~137!, as a function of the error rate
E for various values of the inconclusive rateR? for a5p/5. The
dashed curve is the maximum Renyi information gain by the pr
for the fixed error rate only@Eqs.~83! and ~C1!–~C4!#.

FIG. 10. Solid curves are the maximum Renyi information g
by the probeI opt

R , Eqs.~83! and~137!, as a function of the error rate
E for various values of the inconclusive rateR? for a5p/8. The
dashed curve is the maximum Renyi information gain by the pr
for the fixed error rate only@Eqs.~83! and ~C1!–~C4!#.
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In the upper curve in Fig. 15, I plot as a function ofa, for
R?5sin 2a, the fixed error rateEmax for which the informa-
tion gain by the probe is unity~complete information!. The
dashed lower curve corresponds to the case in which
inconclusive rate is not fixed. One sees that the probe g
complete information at the price of inducing a larger er
rate if the inconclusive rate is also monitored.

V. CONCLUSIONS

The inconclusive rate can be a useful disturbance mea
in quantum cryptography. Here the maximum Renyi info
mation gain by a disturbing eavesdropping probe is cal
lated analytically for fixed POVM-receiver error and inco
clusive rates in the two-state protocol in the presence of
individual attack. The maximum Renyi information gain
given by Eq.~83!, together with Eqs.~137!, ~77!–~82!, and
~64!. It has been demonstrated that the maximum allowa
information gain by the probe for the fixed error rate a
fixed inconclusive rate is less than that for the fixed error r
only, and decreases with a suitably increasing inconclus
rate. It follows that by monitoring the inconclusive rate
the POVM receiver, as well as the error rate, the achieva

e

e

FIG. 11. Minimum overlapQ, Eq. ~137!, as a function of the
inconclusive rateR? for various values of the error rateE and a
5p/5.

FIG. 12. Minimum overlapQ, Eq. ~137!, as a function of the
inconclusive rateR? for various values of the error rateE and a
5p/8.
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HOWARD E. BRANDT PHYSICAL REVIEW A62 042310
information gain by the probe can be reduced below t
achievable when only the error rate is monitored. Also,
suitably increasing the inconclusive rate monitoring thre
old, the achievable information gain can be further d
creased.
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APPENDIX A: DISTURBED INCONCLUSIVE RATE

The Fuchs-Peres model of eavesdropping on the two-s
key-distribution protocol represents the most general p

FIG. 13. Maximum Renyi information gain by the probeI opt
R ,

Eqs. ~83! and ~137!, as a function of the inconclusive rateR? for
various values of the error rateE anda5p/5.

FIG. 14. Maximum Renyi information gain by the probeI opt
R ,

Eqs. ~83! and ~137!, as a function of the inconclusive rateR? for
various values of the error rateE anda5p/8.
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sible unitary disturbance of each encoded photon inciden
the receiver@2#. In this model, an incoming carrier stateuu&
and the stateuw& of a disturbing probe undergo joint unitar
evolution represented by a unitary operatorU, resulting in
the entangled state@1,2,5#:

Uuu^ w&5 1
2 @~11sec 2a!uF00&1tan 2auF10&

2tan 2auF01&1~12sec 2a!uF11&] ^ uu&

2 1
2 @ tan 2auF00&2~12sec 2a!uF10&

2~11sec 2a!uF01&2tan 2auF11&] ^ uv&.

~A1!

Here uFmn& are states in the Hilbert space of the disturbi
probe, and are neither normalized nor orthogonal. Equa
~A1! follows from Eqs.~1! and ~2! of @1#. Similarly, for an
incoming stateuv&, one has

Uuv ^ w&5 1
2 @ tan 2auF00&1~11sec 2a!uF10&

1~12sec 2a!uF01&2tan 2auF11&] ^ uu&

1 1
2 @~12sec 2a!uF00&2tan 2auF10&

1tan 2auF01&1~11sec 2a!uF11&] ^ uv&.

~A2!

The probe statesuFmn& have certain symmetry propertie
that arise from the random equiprobable selection of car
statesuu& and uv& by the key transmitter, and the resultin
symmetry of the probe under interchange ofuu& and uv&.
Specifically, one has@1,2#

uF00u5uF11u, ~A3!

uF01u5uF10u, ~A4!

^F00uF01&5^F11uF10&, ~A5!

^F00uF10&5^F11uF01&, ~A6!

FIG. 15. The solid curve is the fixed error rateEmax which gives
complete information, as a function ofa, for the inconclusive rate
R?5sin 2a. The dashed curve corresponds to the case in which
inconclusive rate is not fixed~Appendix C!.
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INCONCLUSIVE RATE AS A DISTURBANCE MEASURE . . . PHYSICAL REVIEW A 62 042310
^F01uF10&5^F10uF01&, ~A7!

^F01uF00&5^F10uF11&, ~A8!

^F01uF11&5^F10uF00&, ~A9!

^F11uF00&5^F00uF11&. ~A10!

It has been shown in previous work@4,6–8# that the incon-
clusive rateP? of the POVM receiver, for an incoming stat
uc&, is given by

P?5^cuA?uc&. ~A11!

According to Eq.~A11!, the inconclusive rateR? induced by
the disturbing probe in the POVM receiver is given by

R?5Pu?5^u^ wuU†A?Uuu^ w&, ~A12!

wherePu? is the probability that if a photon in polarizatio
stateuu& is transmitted, then the measurement by the POV
receiver is inconclusive. Equivalently, using Eq.~3! in Eq.
~A12!, one also has for the induced inconclusive rate

R?512Puu2Puv , ~A13!

wherePuu andPuv are the probabilities that if the carrier
a uu& state, then the detectors ofu andv polarization states
respectively, respond. Here, one has

Puu5^u^ wuU†AuUuu^ w&, ~A14!

Puv5^u^ wuU†AvUuu^ w&. ~A15!

Substituting Eqs.~2!, ~A1!, and ~A3!–~A10! in Eq. ~A15!,
one obtains

Puv5~11sin 2a!21@~12sin4 a2cos4 a!uF00u2

1~12 1
2 sin2 2a!uF01u21 1

2 sin 2a^F01uF11&

1 1
2 sin 2a^F00uF10&2 1

2 sin 2a^F00uF01&

2 1
2 sin2 2a^F00uF11&2 1

2 sin 2a^F01uF00&

2 1
2 sin2 2a^F01uF10&#. ~A16!

The probe statesuFmn&, expanded in terms of orthonorma
basis vectorsuwb&, are given by Eqs.~3a!, ~3b!, and ~4! of
@1#, namely,

uF00&5X0uw0&1X1uw1&1X2uw2&1X3uw3&, ~A17!

uF11&5X3uw0&1X2uw1&1X1uw2&1X0uw3&, ~A18!

uF01&5X5uw1&1X6uw2&, ~A19!

uF10&5X6uw1&1X5uw2&. ~A20!

Here the real coefficients$X0 ,X1 ,X2 ,X3 ,X5 ,X6%, expressed
in terms of the probe parameters$l, m, u,f%, are@1,2#

X05sinl cosm, ~A21!
04231
X15cosl cosu cosf, ~A22!

X25cosl cosu sinf, ~A23!

X35sinl sinm, ~A24!

X55cosl sinu cosf, ~A25!

X652cosl sinu sinf, ~A26!

consistent with the assumed unitarity of the disturbing pro
Next, substituting Eqs.~A17!–~A26! in Eq. ~A16!, one

gets

Puv5 1
4 ~11sin 2a!21@12cos 4a12~11cos 4a!

3cos2 l sin2 u22 sin 2a cos2 l sin 2u cos 2f

22 sin2 2a sin2 l sin 2m

22 sin2 2a cos2 l cos 2u sin 2f#. ~A27!

Analogously, it can be shown that Eq.~A14! becomes

Puu5 1
2 ~12sin 2a!@2 sin2 l12 cos2 l cos2 u1tan2 2a

2tan 2a sec 2a cos2 l sin 2u cos 2f

2tan2 2a~sin2 l sin 2m1cos2 l cos 2u sin 2f!#.

~A28!

Next, substituting Eqs.~A27! and~A28! in Eq. ~A13!, one
obtains, after extensive algebraic reduction, the following
pression for the inconclusive rate induced by the disturb
probe:

R?5sin 2a~11sin 2a!21@11cos2 l sin 2u cos 2f

1~sin2 l sin 2m1cos2 l cos 2u sin 2f!sin 2a#,

~A29!

expressed in terms of the anglea, Eq. ~5!, and the probe
parametersl, m, u, andf @12#.

APPENDIX B: NONOPTIMIZED OVERLAP

Using Eqs.~22!, ~24!, ~65!, ~12!, and~53! in Eq. ~75!, one
can show that

Q5
1

2~12E! H 1

12cos 2u
@2 sin 2m~122E

2r cos2 2a cos 2u!1r cos2 2a@11sin 2f2cos 2u

3~12sin 2f!#2sin 2f~11cos 2u!~122E!#21J .

~B1!

Here the parameterr is given by Eq.~64!. Also, using Eqs.
~13!, ~10!, ~11!, ~65!, ~22!, and ~24! in Eq. ~12!, it follows
that
0-13
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E5 1
2 @csc 2a sin 2u cos 2f1cos 2u sin 2f2sin 2m#21

3@~r21!cot2 2a~12cos 2u!2~12r cos2 2a cos 2u!

3sin 2m1~12r cos2 2a!~csc 2a sin 2u cos 2f

1cos 2u sin 2f!#. ~B2!

One also requires in Eqs.~B1! and ~B2! that

d>cos 2u, ~B3!

in order that in Eq.~24!, sin2 l>0, as must clearly be the
case. Substituting Eqs.~65! and ~12! in Eq. ~B3!, one there-
fore requires

0<E< 1
2 ~12r cos2 2a cos 2u!. ~B4!

The left-hand side of the inequality follows from the physic
nature of the error rate. Equations~B1!, ~B2!, ~64!, and~B4!
parametrically determine the dependence of the unoptim
overlapQ on the error rateE, both expressed in terms of th
anglea characterizing the nonorthogonal states of the sig
the inconclusive rateR? , and the probe parametersu, f, and
m. Because of the periodicity inu, f, and m in Eqs. ~B1!,
~B2!, and~B4!, one need only consider

0<u<p; 0<f<p; 0<m<p. ~B5!

Of course, one also has the physical requirement

0<Q<1. ~B6!
ev

e

ev
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APPENDIX C: MINIMUM OVERLAP FOR THE FIXED
ERROR RATE ONLY

If only the error rate is fixed~with no constraint on the
inconclusive rate!, then the minimum overlapQ as a function
of error rateE, for both a PV receiver@1# and the POVM
receiver@5#, is given parametrically in terms of the paramet
g by Eqs.~11–13! of @1#. The latter can be shown to reduc
to the following equations, parametric ing:

Q5@cos2 2a1 f 1~g!2 f 2~g!#21$~11sin2 2a!1/2

3~sing csc 2a2cosg sin2 2a!

1~11sin2 2a!sing cosg cos 2a cot 2a1 f 2~g!%

~C1!

and

E5 1
2 $12cos2 2a@ f 1~g!2 f 2~g!#21% ~C2!

where

f 1~g!5~11sin2 2a!1/2~cosg2sing sin 2a! ~C3!

and

f 2~g!5sin 2a@cos4 g sin2 2a1sin4 g csc2 2a

22 sin2 g cos2 g#1/2. ~C4!
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